
Patch Replacement: A Transformation-based Method to Improve
Robustness against Adversarial Attacks
Hanwei Zhang

Inria, CNRS, IRISA, Univ Rennes

East China Normal University

Yannis Avrithis

Inria, CNRS, IRISA, Univ Rennes

Teddy Furon

Inria, CNRS, IRISA, Univ Rennes

Laurent Amsaleg

Inria, CNRS, IRISA, Univ Rennes

ABSTRACT
Deep Neural Networks (DNNs) are robust against intra-class vari-

ability of images, pose variations and random noise, but vulnerable

to imperceptible adversarial perturbations that are well-crafted

precisely to mislead. While random noise even of relatively large

magnitude can hardly affect predictions, adversarial perturbations

of very small magnitude can make a classifier fail completely.

To enhance robustness, we introduce a new adversarial defense

called patch replacement, which transforms both the input images

and their intermediate features at early layers to make adversarial

perturbations behave similarly to random noise. We decompose

images/features into small patches and quantize them according to

a codebook learned from legitimate training images. This maintains

the semantic information of legitimate images, while removing as

much as possible the effect of adversarial perturbations.

Experiments show that patch replacement improves robustness

against both white-box and gray-box attacks, compared with other

transformation-based defenses. It has a low computational cost

since it does not need training or fine-tuning the network. Impor-

tantly, in the white-box scenario, it increases the robustness, while

other transformation-based defenses do not.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Security
and privacy→ Intrusion detection systems.

KEYWORDS
Adversarial robustness, transformation, product quantization

ACM Reference Format:
Hanwei Zhang, Yannis Avrithis, Teddy Furon, and Laurent Amsaleg. 2021.

Patch Replacement: A Transformation-basedMethod to Improve Robustness

against Adversarial Attacks. In Proceedings of the 1st International Workshop
on Trustworthy AI for Multimedia Computing (Trustworthy AI ’21), October
24, 2021, Virtual Event, China. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3475731.3484955

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Trustworthy AI ’21, October 24, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8674-6/21/10. . . $15.00

https://doi.org/10.1145/3475731.3484955

0 20 40

0

0.2

0.4

layer

r
e
l
a
t
i
v
e
d
i
s
t
o
r
t
i
o
n

𝑥 vs. 𝑥 + 𝑛
𝑥 vs. 𝑥 + 𝑟
𝑥 vs.𝑄 (𝑥 + 𝑟)

Figure 1: Making adversarial perturbation behave like noise.
Relative distortion of random noise, adversarial perturba-
tion and our patch replacement on input images (layer 0) vs.
ResNet-50 layer, averaged over the ImageNet test set. Ran-
domnoise follows a normal distribution and adversarial per-
turbations are generated byDecoupling Direction andNorm
(DDN) attack [28]. 𝑥 : original input image; 𝑛: random noise;
𝑟 : adversarial perturbation; 𝑄 : our patch replacement quan-
tizer.

1 INTRODUCTION
Adversarial perturbations are modifications of small magnitude on

images, almost imperceptible to human eyes, which lead classifiers

to make erroneous predictions [31]. They reveal the vulnerability of

Deep Neural Networks (DNNs) and the potential danger in machine

learning-based applications, for instance, traffic sign detection in

self-driving cars.

Based on different assumptions on adversarial perturbations,

different defenses are proposed to address the security problem

and enhance the robustness of networks against adversarial at-

tacks. Considering the lack of corresponding data, adversarial train-
ing [6, 19] includes adversarial images as part of training data. It

improves the robustness against adversarial attacks, but decreases

the accuracy of legitimate images and is very expensive to train.

Several works improve the architecture of networks, assuming

that attackers take advantage of weaknesses in model design [3, 6,

11, 18, 19, 22, 25, 32]. Instead of using the image labels, distillation

defenses [11, 22] train a small network on the probability vectors

predicted by a large network. To reduce the sensitivity of networks

to their input, one may constrain e.g. each layer to be a Lipschitz

https://doi.org/10.1145/3475731.3484955
https://doi.org/10.1145/3475731.3484955
https://doi.org/10.1145/3475731.3484955

function [7, 33]. However, these defenses are either expensive to

train or not practical due to their mathematical hypotheses.

Considering adversarial perturbations as a special kind of noise

is a simple and practical perspective. Motivated by this, a number

of defenses detect the adversarial image and/or pre-process input

images to remove the effect of the adversarial perturbation [8, 16,

17, 24, 36]. For instance, MagNet [20] uses auto-encoders to project

the input image to the manifold of natural images. However, these

approaches are complicated to train, attack-specific or vulnerable

in white-box settings.

It is well-known that DNNs, such as AlexNet [14], Inception [30]

and ResNet-50 [10], are robust to random noise and transformations

such as cropping, reshaping, and rotation but vulnerable to adver-

sarial perturbations, even when the are of much smaller magnitude

than random noise. By considering adversarial perturbations as a

special kind of noise, a fundamental question arises:

What is the difference between random noise and ad-
versarial perturbations?

To answer this question, we consider images with random noise

and adversarial perturbations as inputs to a ResNet-50 classifier.

For adversarial perturbations, we use the DDN attack [28], which is

known for its very low distortion. The network generalizes to ran-

dom noise despite an accuracy drop of around 3%, but is completely

deceived by adversarial perturbations. We measure the magnitude

of the noise or perturbations relative to intermediate features and

observe its evolution through network layers. In particular, given

input 𝑥 and noise/perturbation 𝑟 , we measure the relative distortion

in layer 𝐿 as ∥ 𝑓𝐿 (𝑥 + 𝑟) − 𝑓𝐿 (𝑥)∥ /∥ 𝑓𝐿 (𝑥)∥, where 𝑓𝐿 (·) is the part
of network from the input to layer 𝐿 and layer 0 is the input.

As shown in Figure 1, the relative distortion of random noise

increases fast at the beginning because max pooling amplifies the

distortion by taking the maximum values locally, and decreases

at the end because average pooling weakens the effect of noise.

By contrast, the relative distortion of adversarial perturbations

increases slowly at the beginning and faster at the end.

In image space, random noise is of much larger relative distor-

tion than adversarial perturbations (0.044 vs. 0.003). However, the
situation is reversed at the logit layer (0.251 vs. 0.457). We speculate

that adversarial perturbations at the logit layer focus on a particular

class, resulting in misclassification. We confirm this by measuring

the entropy of the output distribution as 0.76 on clean inputs, 0.73

on images with random noise but 0.69 on adversarial images.

Based on these observations, we propose to transform inputs and

features such that adversarial perturbations behave more like ran-

dom noise. To do so, we split them into patches, both spatially and

over channel dimensions, and replace them with nearest neighbors

in a codebook learned from clean training data. This introduces

quantization noise that reduces the effect of adversarial perturba-

tions, while having little effect on legitimate images. Codebook

learning is independent of network training and patch replacement

is efficient at inference time.

We find that it is most effective to apply patch replacement

to the early layers of the network, including the input image. By

doing so, we achieve indeed a behavior similar to random noise,

even when the input is adversarial, as shown in Figure 1. This

improves significantly the robustness against adversarial attacks,

while slightly reducing the accuracy on legitimate images.

Contributions Our contributions can be summarized as follows:

• we introduce a relatively simple and efficient defense, with-

out network training or using any attack, which can be easily

adapted to networks of different architecture;

• we investigate experimentally the impact of patch replace-

ment in different layers and the influence of codebook qual-

ity;

• we apply patch replacement on images as well as features at

different layers, finding a good trade-off between accuracy

and robustness;

• we outperform other transformation-based defenses in both

gray-box and white-box settings; and

• we achieve better accuracy than adversarial training and

even better robustness under attacks of low distortion.

The rest of the paper is organized as follows. Section 2 briefly

recaps defenses against adversarial perturbations. Section 3 presents

our patch replacement defense, and section 4 provides experimental

analysis and comparisons. Conclusions are drawn in section 5.

2 RELATEDWORK
Existing defenses are either reactive [8, 16, 17, 24, 36], i.e. adding
an extra element to detect or remove adversarial perturbation, or

proactive [3, 6, 11, 18, 19, 22, 25, 32], i.e. making the network in-

trinsically robust against adversarial attacks. Reactive methods are

easy to compute and adapt to different networks but vulnerable in

white-box settings, while proactive methods are more robust but

expensive and hard to integrate into a new model since they train

the network, either from scratch or by fine-tuning.

Transformation-based defenses [8, 24, 29, 34] are reactive de-

fenses that attempt to reform adversarial examples while not chang-

ing their semantics. Basic transformations, such as cropping, rescal-

ing, bit-depth reduction, jpeg compression, total variance minimiza-

tion, and image quilting, succeed in removing adversarial effects

to some extent [8]. Inspired by this result, feature squeezing [36]

detects adversarial perturbations by comparing features of given

inputs and their filtered versions. However, these defenses fail to

defend against strong attacks [2].

To make the transformation-based defenses more robust, pixel
deflection [23] redistributes pixels according to a robust activation

map generated by Class Activation Maps (CAM) [39] and softens

the introduced noise and adversarial perturbations by a subsequent

wavelet-based denoising operation. Inspired by pixel deflection,

CIIDefence [9] reconstructs the small and carefully selected image

areas that are most influential to the current prediction according

to the class activation map obtained for multiple top-ranking class

labels. These works achieve good performance in gray-box settings

but are still relatively vulnerable in white-box settings.

Another class of transformation-based methods attempts to map

inputs to a latent space, such that legitimate images and their adver-

sarial versions share the same representations [13, 21, 27, 29]. These

defenses are normally more expensive than other transformation-

based methods, but require less computation cost than proactive

methods. For instance, Divide, Denoise and Defend (D3) [21] encodes

the input according to multiple sparse dictionaries for different spar-

sity levels. It divides the input into multiple patches and denoises

each one with sparse reconstruction. It builds a set of dictionaries

greedily by selecting important and diverse patches.

Adversarial perturbations are amplified through the layers of a

network and introduce noise in otherwise flat areas of their features.

Based on this observation, a new architecture design, i.e. denoising
block [35], reduces their effect by feature denoising. BlurNet [26]
proposes to remove high frequencies via a depthwise convolution

layer of standard blur kernels after the first layer and is effective

against the Robust Physical Perturbations (RP2) [5] attack. Asadi

et al. [1] propose a method based on whitening coloring transform

to diminish the misrepresentation of any desirable layer caused by

adversaries. These works indicate the importance of intermediate

features in augmenting robustness.

Inspired by these approaches, we introduce patch replacement, a
transformation-based method that removes the adversarial effect

from both input images and features. Patch replacement shares a

similar principle with D3 [21]. However, to our knowledge, it is

the first transformation-based defense on both images and inter-

mediate features, achieving a good trade-off between accuracy and

robustness. Also, as a variant of matching pursuit, D3 is expensive.

Our approach is more efficient, both at learning (by 𝑘-means) and

at inference (by directly quantizing). Since the code of D3 is not

published, we cannot compare to it experimentally.

3 METHODOLOGY
Patch replacement is a transformation-based defense against ad-

versarial perturbations. It reduces the adversarial effect not only

from images but also from feature maps, i.e. intermediate represen-

tations of convolutional, pooling, and fully connected layers. We

first decompose inputs and feature maps into patches and replace

them with their nearest neighbor according to a codebook learned

on training data. To understand the approach, we first discuss pre-

liminary concepts of features, slices, and patches. We then explain

how we build the codebook and introduce a number of replacement

strategies to limit the loss of information incurred by quantization.

3.1 Preliminaries
A Convolutional Neural Network (CNN) processes images into a

sequence of feature maps obtained by learnable convolutional layers.
As shown in Figure 2(a), a feature map has depth 𝐷 , the number of

filter channels, as well as height 𝐻 and width𝑊 , which depend on

the input size and the stride and padding of convolutional layers.We

denote the feature map of layer 𝐿 by tensor 𝐹 := 𝑓𝐿 (𝑥) ∈ R𝑊 ×𝐻×𝐷
,

where 𝑥 is the input image, 𝑓𝐿 denotes the part of network from

the input to layer 𝐿 and layer 0 is the input (𝑓𝐿 (𝑥) = 𝑥).
To combat the curse of dimensionality, we first decompose fea-

tures into slices. That is, a feature is represented as a concatenation

of slices over filter channels, i.e. 𝐹 = [𝐹1, 𝐹2, · · · , 𝐹𝑚] where 𝐹𝑘
denotes a slice. As shown in Figure 2(b), slice 𝐹𝑘 := 𝐹 (𝑘−1)𝑑+1:𝑘𝑑 ∈
R𝑊 ×𝐻×𝑑

contains channels (𝑘 − 1)𝑑 + 1 to 𝑘𝑑 of feature map 𝐹 ,

where 𝑑 is the depth of the slice and 𝑑 ×𝑚 = 𝐷 .

Each slice 𝐹𝑘 is then decomposed into sub-tensors with same

depth but smaller width and height over spacial locations. Each

sub-tensor is called a patch 𝑃𝑖 𝑗𝑘 where 𝑖, 𝑗 denote the horizontal

𝐻

𝑊
𝐷

𝐻

𝑊
𝐷

𝐻

𝑊
𝐷

(a) Feature map (b) Slice (c) Patch

Figure 2: (a) Feature map with width𝑊 , height 𝐻 and depth
𝐷 . (b)We decompose the featuremap into slices along depth
(over channels). (c) For each slice, we decompose the feature
map into patches over spatial locations.

and vertical location and 𝑘 denotes the slice. More precisely, patch

𝑃𝑖 𝑗𝑘 := 𝐹𝑘 (𝑖 − 𝑎 : 𝑖 + 𝑎, 𝑗 − 𝑎 : 𝑗 + 𝑎) is a sub-tensor of size

(2𝑎 + 1) × (2𝑎 + 1) × 𝑑 , centered at location (𝑖, 𝑗) of slice 𝐹𝑘 .
Patches can be sampled densely or sparsely. In the sparse case,

patch centers are sampled on a spatial grid with cell size 𝑐 . When

𝑐 = (2𝑎 + 1), there is no overlapping among patches, as shown in

Figure 2(c); while for 𝑐 < (2𝑎 + 1), patches overlap.

3.2 Codebook
To be able to replace patches, we learn a codebook from patches

of training data. For each slice 𝐹𝑘 , we learn a quantizer 𝑞𝑘 , whose

objective is to quantize patches obtained from this particular slice.

Each quantizer 𝑞𝑘 has its own codebook 𝐶𝑘 with 𝐾 codewords,

learned by 𝐾-means. At inference, we decompose the feature map

of a test image into slices and patches and use the corresponding

quantizer to find their nearest neighbors in the training data and

replace them.

The set of codebooks𝐶𝑘 for all slices 𝐹𝑘 can be seen as a codebook

𝐶 := 𝐶1 × · · · ×𝐶𝑚 according to product quantization (PQ) [12]. PQ

allows a codebook size that is exponential in the number𝑚 of slices,

while both training and inference are linear in𝑚. The number 𝐾 of

centroids per slice and the depth 𝑑 of slices control the quality of

the codebook 𝐶 . To maintain classification accuracy of legitimate

images, we need a fine codebook; whereas, to remove the effects of

adversarial perturbations, we need a coarse codebook. To handle

this trade-off, we introduce replacement strategies as follows.

3.3 Replacement Strategies
When the codebook is coarse, quantization incurs a significant

loss of information. To limit the loss, we introduce a number of

quantization strategies. Those are functions of a given quantizer

that are continuous in a given parameter. For the sake of simplicity,

we denote a general patch (in any spatial location or slice) as 𝑃

and a general quantizer (in any slice) as 𝑞 in this subsection. The

nearest patch of 𝑃 is then denoted as 𝑞(𝑃).

Plain strategy As shown in Figure 3(a), the baseline strategy

refers to directly replacing patches by their nearest codewords, i.e.
𝑃 ′ = 𝑞(𝑃).

𝐿2 strategy As shown in Figure 3(b), we limit quantization of

𝑃 within the 𝐿2 ball of radius 𝜖 > 0 centered at 𝑃 . If the nearest

(a) plain strategy (b) 𝐿2 strategy

(c) 𝐿∞ strategy (d) linear strategy

Figure 3: Visualization of the four replacement strategies.
Black: codewords; red: original patches; green: replaced
patches. In (b), dashed circles indicate 𝐿2 balls with radius
𝜖. In (c), the dashed boxes indicate 𝐿∞ balls with radius 𝜖.

codeword is inside this 𝐿2 ball, we replace 𝑃 with 𝑞(𝑃); otherwise,
we project 𝑞(𝑃) on the ball:

𝑞𝐿2 (𝑃) :=
{
𝑞(𝑃) ∥𝑞(𝑃) − 𝑃 ∥ < 𝜖
𝑃 + 𝜖n(𝑞(𝑃) − 𝑃) otherwise,

(1)

where n(𝑃) := 𝑃/∥𝑃 ∥ for any patch 𝑃 .

𝐿∞ strategy As shown in Figure 3(c), we limit quantization of

𝑃 within the 𝐿∞ ball of radius 𝜖 > 0 centered at 𝑃 . If the nearest

codeword is inside this 𝐿∞ ball, we replace 𝑃 with 𝑞(𝑃), otherwise
we project 𝑞(𝑃) on the ball (clip element-wise):

𝑞𝐿∞ (𝑃) := 𝑃 + clip[−𝜖,𝜖] (𝑞(𝑃) − 𝑃) . (2)

Linear strategy As shown in Figure 3(d), we use a linear inter-

polation between the original patch 𝑃 and its nearest codeword

𝑞(𝑃):

𝑞lin (𝑃) := 𝑃 + 𝜆(𝑞(𝑃) − 𝑃), (3)

where 𝜆 ∈ [0, 1].
𝐿2 and 𝐿∞ strategies limit the distortion within 𝜖 but according

to different norms. When 𝜖 = 0, the patch 𝑃 is not replaced. When 𝜖

is large enough, both strategies are equivalent to the plain strategy.

Instead of setting a limit on the distortion, the linear strategy

interpolates between the original patch 𝑃 and its nearest codeword

𝑞(𝑃) with interpolation factor 𝜆. When 𝜆 = 0, the patch is not

replaced. When 𝜆 = 1, the linear strategy is equivalent to the plain

strategy.

(a) with overlap (b) without overlap

Figure 4: Reconstruction of first layer features with overlap
(𝑐 < 2𝑎 + 1) and without overlap (𝑐 = 2𝑎 + 1).

3.4 Reconstruction
After quantizing the patches 𝑃 into 𝑃 ′ according to a replacement

strategy, we reconstruct a feature map 𝐹 ′ from these patches. For

every slice, we concatenate all patches 𝑃 ′ over spatial locations,
applying linear interpolation if patches are overlapping. We then

concatenate all slices over channels, i.e. 𝐹 ′ = [𝐹 ′
1
, 𝐹 ′

2
, · · · , 𝐹 ′𝑚]. As

a whole, we denote the patch replacement operation, including

quantization and reconstruction, as 𝐹 ′ = 𝑄 (𝐹).
We then feed the reconstructed feature map 𝐹 ′ through the re-

maining part of the network to obtain a prediction for the original

input. Since the reconstructed feature 𝐹 ′ consists of the nearest
patches in the learned codebook, 𝐹 ′ preserves the semantic infor-

mation of the original input, while reducing the adversarial effect.

When we reconstruct features, the stride 𝑐 determines whether

patches are overlapping or not. The example of Figure 4 shows

that with overlap (𝑐 < 2𝑎 + 1), the reconstructed features F ′
are

smoother than without (𝑐 = 2𝑎+1). We prefer the smoother features

since it works slightly better in all experiments.

3.5 Multi-layer patch replacement
Depending on the size of images and feature maps, codebooks with

similar parameters on different layers have different qualities. To

further investigate the trade-off between accuracy and robustness,

we propose to apply patch replacement on multiple layers. We first

apply patch replacement on a chosen layer, then reconstruct the new

feature map, feed it to the network and apply patch replacement

on another layer.

On one hand, patch replacement on multiple layers provides

more space to search for the optimal trade-off, allowing to progres-

sively remove the adversarial effect at multiple layers. On the other

hand, it increases the complexity as a defense, so that it is more

difficult to be attacked.

4 EXPERIMENTS
We evaluate our method patch replacement (PR) and compare it to

existing defenses under the gray-box setting and white-box setting.

4.1 Experimental setup
Dataset We use the ImageNet [4] dataset. We randomly sample

50, 000 images (50 per class) from the training set to learn a code-

book and 1, 000 images (one per class) from the validation set for

testing.

Networks All experiments are carried out on PyTorch
1
. We use

the pre-trained ResNet-50 [10] from PyTorch-Torchvision models
2
,

whose accuracy is 75.7% on the test set. As robust network, we take

ResNet-50 as pre-trained by adversarial training
3
on adversarial

examples generated by Projected Gradient Descent (PGD) attack

with 𝐿∞ upper bound 𝜖 = 8 [19].

Attacks For the gray-box setting, we employ the target success
attack DDN [28] with 20 iterations, which achieves a 0.999 suc-

cess rate on the test set against ResNet-50, and the target distortion
attacks Fast Gradient Sign Method (FGSM) [6], PGD [19], and Ba-

sic Iterative Method (BIM) [15] with 20 iterations for PGD and

BIM. The implementation of DDN [28] is from its authors
4
and the

implementation of FGSM, PGD, and BIM is from foolbox
5
.

For the white-box setting, we use Backward Pass Differentiable
Approximation (BPDA) [2]6, a smart attack for transformation-based

defenses, using 20 iterations. It is also a target distortion attack that

is equivalent to PGD when there is no defense.

The distortion bound 𝜖 for target distortion attacks is discussed

with evaluation metrics below.

Competitors We compare patch replacement to other defense

methods, including adversarial training and other transformation-

based defenses. For adversarial training, we use ResNet-50 pre-

trained with PGD [19] as discussed above. As transformation-based

defenses, we use bit-depth reduction to 3 bits and 5 bits, denoted as

bit3 and bit5 [8]; median smoothing filter with a kernel size of two

and three, denoted as ms2 and ms3 [36]; pixel deflection [23] with

CAM as a robust activation map
7
.

Evaluation metrics In ablation, we evaluate patch replacement

by accuracy on both legitimate images (original accuracy) and adver-
sarial images (adversarial accuracy). At testing, we also use success

rate and distortion. For accuracy and distortion, higher is better;

for success rate, lower is better.

Given a test set of 𝑁 ′
images, we only consider its subset 𝑋 of

𝑁 images that are classified correctly without attack. The accuracy

of the classifier on legitimate images is thus 𝑁 /𝑁 ′
. Let 𝑋suc be the

subset of 𝑋 with 𝑁suc := |𝑋suc | where the attack succeeds and let

𝐷 (x) := ∥x − y∥ be the distortion for image x ∈ 𝑋suc, where y is

the closest adversarial example the attack succeeds to forge. The

global statistics are the success probability (rate) 𝑃suc and conditional
average distortion 𝐷

𝑃suc :=
𝑁suc

𝑁
, 𝐷 :=

1

𝑁suc

∑
x∈𝑋suc

𝐷 (x) . (4)

1
We use PyTorch1.4.0-py3.7 with CUDA 10.0.130.

2
https://github.com/Cadene/pretrained-models.pytorch

3
https://github.com/MadryLab/robustness

4
https://github.com/jeromerony/fast_adversarial

5
https://github.com/bethgelab/foolbox

6
https://github.com/Annonymous-repos/attacks-in-pytorch

7
https://github.com/iamaaditya/pixel-deflection

layer 𝑑 𝐷 𝐾

image 1 3

392, 785, 3927, 6284, 7855, 11783, 15711, 19639, 26185,

31422, 39278, 58917, 78557, 117835, 157114, 235671

layer 1

4 64 39278, 78557, 117836, 157114, 235671, 314228, 785568

8 64 39278, 78557, 117836, 157114, 261856, 392784, 785568

layer 4

2 256 78557

4 256 78557, 785568

8 256 78557

layer 7

2 256 78557

4 256 78557

8 256 78557, 785568

layer 10

2 256 78557, 785568

4 256 78557, 785568

8 256 78557, 785568

Table 1: The list of the number of clusters 𝐾 and slice depth
𝑑 for different layers tested for codebooks. Depth 𝐷 is the
number of filter channels on the given layer.

50 60 70

20

40

60

original accuracy

a
d
v
e
r
s
a
r
i
a
l
a
c
c
u
r
a
c
y

image

layer 1

layer 4

layer 7

layer 10

Figure 5: Effect of codebook quality, as controlled by𝐾 (num-
ber of clusters) and 𝑑 (slice depth), applying patch replace-
ment on different layers independently, using the plain
strategy. We plot the accuracy in the same curve for vary-
ing 𝐾,𝑑 per layer, ranking the points according to original
accuracy.

Here,𝐷 is conditioned on success. Indeed, distortionmakes no sense

for a failure. For target success attacks, the attack is only performed

once per image, which yields success/failure and a distortion result.

For target distortion attacks, we use a fixed distortion bound 𝜖 =

0.03 when measuring adversarial accuracy and a set of values
8

for 𝜖 when measuring success rate and distortion. In the latter

case, we increase 𝜖 until the attack succeeds, yielding a distortion

measurement, or the attack fails for all 𝜖 . We also use operating
characteristics [37, 38], which provide a more detailed picture of

this process.

4.2 Ablation study: single layer
Codebook quality When applying patch replacement to a single

layer, we evaluate the effect of the quality of the codebook and the

layer where we apply patch replacement.

8𝜖 ∈ {0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.08, 0.1}

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/MadryLab/robustness
https://github.com/jeromerony/fast_adversarial
https://github.com/bethgelab/foolbox
https://github.com/Annonymous-repos/attacks-in-pytorch
https://github.com/iamaaditya/pixel-deflection

The quantizers of all slices are trained independently. The quality

of the codebook depends on the number of clusters 𝐾 for 𝐾-means

and the depth 𝑑 of a slice. A larger 𝐾 or a smaller 𝑑 results in a finer

codebook, preserving more information but doing little against an

attack. We vary 𝐾 from 392 to 785, 568 and 𝑑 from 1 to 8. A compete

list of values for 𝐾 and 𝑑 we have explored in different layers is

given in Table 1.

In Figure 5, points on the left have a coarse codebook (small 𝐾 /

large𝑑) and points on the bottom right have a fine codebook (large𝐾

/ small 𝑑). A coarse codebook improves the adversarial accuracy but

drops the original accuracy. By contrast, a fine codebook maintains

original accuracy but is of little help for adversarial accuracy.

We further observe from Figure 5 that the deeper layer we choose,

the worse performance we get overall (trade-off between original

and adversarial accuracy). This can be attributed to the fact that the

effect of the adversarial perturbation is amplified in deeper layers,

as shown in Figure 1. It is thus best to apply the defense as early as

possible. The best single-layer setting is in the top right corner of

Figure 5, i.e. 𝐾 = 3927, 𝑑 = 1 on images (layer 0). This gives original

accuracy 71.7% (4% loss compared with baseline) and adversarial

accuracy 64.2% (64.1% gain compared with baseline). For the first

layer, the best setting is 𝐾 = 235671, 𝑑 = 4, giving original accuracy

65.7% and adversarial accuracy 53.7%.

Effect through network layers By selecting the best setting,

i.e. 𝐾 = 3927, 𝑑 = 1 on images, we study the effect or random noise

and adversarial perturbation with and without patch replacement

through the network layers. Figure 6 is an extension of Figure 1

and it confirms that our patch replacement changes the behavior

of the adversarial perturbation through the network and makes

it similar to random noise: the quantized original input 𝑄 (𝑥) and
the quantized adversarial input 𝑄 (𝑥 + 𝑟) (green and black line,

respectively) are near identical and similar to random noise (blue

line) when compared to the input 𝑥 and give small distortion when

compared to each other (brown line).

Replacement strategy When applying patch replacement to

either the image or the first network layer and fixing the codebook

quality, we evaluate the effect of the replacement strategy. We

choose 𝐾 = 3927, 𝑑 = 1 in the image layer and 𝐾 = 235671, 𝑑 = 4 in

the first layer, as discussed in the previous paragraph.

We control the replacement strategies by parameters 𝜖 or 𝜆. We

let 𝜖, 𝜆 ∈ {0, 0.1, . . . , 0.9, 1} for 𝐿2 and linear strategies. For 𝐿∞
strategy, we let 𝜖 ∈ {0, 0.01, . . . , 0.09, 0.1} on the image layer and

𝜖 ∈ {0, 0.01, . . . , 0.19, 0.2} on the first layer.

In Figure 7, points in the bottom right corner correspond to 𝜖 = 0

or 𝜆 = 0. In this case, any replacement strategy other than plain

strategy is equivalent to the original network (no defense). Points

in the top left corner correspond to the maximum value of 𝜖 for 𝐿2
strategy (𝜖 = 1) and 𝐿∞ (𝜖 = 0.1), and 𝜆 = 1 for the linear strategy.

These cases are equivalent to the plain strategy.

As shown in Figure 7, the behavior of all strategies is similar

and there is no clear winner. In general, points in the top right

corner are more interesting. These points correspond to strategies

improving the original accuracy comparing to the plain strategy,

while maintaining the adversarial accuracy or even improving it

slightly. We highlight three particular settings:

0 20 40

0

0.2

0.4

layer

r
e
l
a
t
i
v
e
d
i
s
t
o
r
t
i
o
n

random

𝑥 vs. 𝑥 + 𝑟
𝑥 vs.𝑄 (𝑥)
𝑥 vs.𝑄 (𝑥 + 𝑟)
𝑄 (𝑥) vs.𝑄 (𝑥 + 𝑟)

Figure 6: Relative distortion of random noise, adversarial
perturbation and our patch replacement on input images
(layer 0) using the plain strategy vs. ResNet-50 layer, aver-
aged over the ImageNet test set. Random noise follows a
normal distribution and adversarial perturbations are gen-
erated byDDN [28]. 𝑥 : original input image;𝑛: randomnoise;
𝑟 : adversarial perturbation; 𝑄 : our patch replacement quan-
tizer.

71 72 73 74 75 76

0

20

40

60

original accuracy

a
d
v
e
r
s
a
r
i
a
l
a
c
c
u
r
a
c
y

𝐿2

𝐿∞
linear

(a) image layer

66 68 70 72 74 76

0

20

40

60

original accuracy

a
d
v
e
r
s
a
r
i
a
l
a
c
c
u
r
a
c
y

𝐿2

𝐿∞
linear

(b) layer 1

Figure 7: Effect of replacement strategies for varying param-
eters 𝜖, 𝜆, applying patch replacement independently on (a)
image layer with 𝐾 = 3927, 𝑑 = 1; and (b) first layer with
𝐾 = 235671, 𝑑 = 4.

66 68 70 72

60

62

64

66

original accuracy

a
d
v
e
r
s
a
r
i
a
l
a
c
c
u
r
a
c
y

image, 𝐿∞
layer 1, 𝐿2

layer 1, 𝐿∞
layer 1, Linear

Figure 8: Based on the best codebook and strategy on the im-
age layer, we add patch replacement on layer 1 with the best
codebook, and find the best strategy for this combination.

• Image layer, 𝐿∞ strategy with 𝜖 = 0.1: original accuracy

72.0% (0.3% gain compared to plain strategy), adversarial

accuracy 64.0% (0.2% loss compared to plain strategy).

• Image layer, 𝐿∞ strategy with 𝜖 = 0.17: original accuracy

71.7% (zero loss), adversarial accuracy 64.5% (0.3% gain).

• Layer 1, 𝐿∞ strategy with 𝜖 = 0.17: original accuracy 69.3%

(3.6% gain), adversarial accuracy 55.6% (1.9% gain).

By comparing Figure 7(a) with Figure 7(b), it can be seen that

replacement strategies in the first layer improve the performance

more than on images. This is possibly due to the fact that the code-

book chosen from Figure 5 for images is finer than the codebook

chosen for the first layer.

4.3 Ablation study: multi-layer
From single layer experiments, we know that

• patch replacement on images works with a fine codebook,

giving high original and adversarial accuracy;

• patch replacement on features of the first layer works with

a coarse codebook; and

• replacement strategies help patch replacement in the first

layer most, increasing original accuracy while maintaining

or slightly improving adversarial accuracy.

To benefit from both fine and coarse codebooks, we investigate

applying patch replacement on both the image layer and the first

layer. We take the setting of patch replacement on images with the

plain strategy, i.e. 𝐾 = 3927, 𝑑 = 1, losing 4% original accuracy but

gaining 64.1% adversarial accuracy. We then apply patch replace-

ment in the first layer, where we find that the best codebook with

the plain strategy is 𝐾 = 235671, 𝑑 = 4. To reduce the cost, we use

the same set of codebooks learned independently per layer, as in

the previous experiments.

With codebooks being fixed in both the image layer and the

first layer, we optimize the replacement strategy in the first layer.

In Figure 8, the bottom right point of the plots corresponding to

layer 1, is obtained with 𝜖/𝜆 = 0, such that patch replacement

only applies to images. This is the same as the top left point of the

image layer plot, which corresponds to the plain strategy for that

layer. We observe that replacement strategies on layer 1 improve

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

𝐷

𝑃
s
u
c

FGSM→ PR FGSM→ baseline

BIM→ PR BIM→ baseline

PGD→ PR PGD→ baseline

DDN→ PR DDN→ baseline

Figure 9: Operating characteristics of gray-box attacks
against ResNet-50, with patch replacement (PR) and with-
out (baseline).

the adversarial accuracy while losing little or no original accuracy.

Thus, the combination of patch replacement on both layers achieves

a more interesting operating point in terms of both accuracies. We

select the 𝐿∞ strategy with 𝜖 = 0.01, giving original accuracy 71.8%

and adversarial accuracy 66.0%.

It is possible to apply patch replacement to more layers, fixing the

settings of the first layers before optimizing the next. However, this

process is expensive and increases the inference cost and required

space for codebooks, while the improvement in performance is

small. We thus apply patch replacement only to images and layer 1.

4.4 Comparisons
We investigate two kinds of attacks. Gray-box attacks have full

knowledge of the original network but no knowledge of the de-

fense. White-box attacks are aware of both the network and the

transformation-based defense.

Gray-box attacks As shown in Table 2, adversarial training with

PGD performs poorly on legitimate images (45.9%). It is vulnera-

ble against DDN attack, but it defends well against FGSM, BIM,

and PGD. Transformation-based defenses, like bit5 and ms2, have

slightly higher original accuracy than patch replacement but signifi-

cantly lower adversarial accuracy. Comparing to bit5 andms2, patch

replacement gains around 20% on adversarial images obtained by

BIM, PGD and DDN, while it loses around 3% on legitimate images.

Comparing to pixel deflection, patch replacement loses around 1.5%

on legitimate images but gains around 8% on adversarial images of

DDN and more on BIM and PGD.

Our defense as well as the other transformation-based defenses

perform better on adversarial images with small distortion, DDN

in particular. For adversarial images with large distortion, patch

replacement still outperforms other transformation-based defenses.

Focusing on success rate and distortion, all attacks need greater

distortion for the same success rate close to 1, but the required

distortion is greatest under patch replacement.

Figure 9 provides an detailed view of the performance of patch

replacement against gray-box attacks using operating characteris-

tics [37, 38]. The plots with patch replacement are all below the plot

Method

Ori FGSM [6] BIM [15] PGD [19] DDN [28] BPDA [2]

Acc Acc 𝑃suc 𝐷 Acc 𝑃suc 𝐷 Acc 𝑃suc 𝐷 Acc 𝑃suc 𝐷 Acc 𝑃suc 𝐷

Baseline 75.7 12.1 0.95 5.13 1.20 1.00 2.50 3.80 1.00 3.12 0.10 1.00 0.53 3.80 1.00 3.12

Patch replacement (ours) 71.8 23.2 0.92 7.98 30.1 0.99 6.10 46.4 0.83 7.21 66.0 0.08 0.57 48.3 0.89 12.89

Adv. training [19] 45.9 44.3 0.69 6.25 44.1 0.67 5.07 44.3 0.65 3.81 19.0 0.58 0.32 – – –

Bit3 [8] 64.7 17.8 0.94 6.66 17.5 1.00 4.53 32.9 0.98 6.30 55.1 0.15 0.49 0.9 1.00 1.00

Bit5 [8] 74.9 12.2 0.95 5.42 1.70 1.00 2.93 6.50 1.00 3.81 18.9 0.75 0.53 1.9 1.00 1.00

Ms2 [36] 74.2 21.2 0.93 7.71 13.1 0.99 4.57 26.5 0.92 5.62 47.9 0.33 0.51 3.3 1.00 1.76

Ms3 [36] 71.8 21.0 0.95 7.66 17.8 0.98 4.76 34.2 0.84 5.45 55.6 0.23 0.53 1.6 1.00 1.25

Pixel deflection [23] 73.2 16.4 0.94 6.97 13.4 1.00 4.57 31.0 1.00 6.70 58.6 0.20 0.53 1.3 1.00 0.89

Table 2: Original accuracy, adversarial accuracy, success rate (𝑃suc) and average distortion (𝐷) for combinations of defenses (ad-
versarial training and transformation-based) and attacks, including gray-box (FGSM, BIM, PGD, DDN) and white-box (BPDA).

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

𝐷

𝑃
s
u
c

BPDA→ bit3 BPDA→ pixel deflection

BPDA→ bit5 BPDA→ baseline

BPDA→ ms2 BPDA→ PR

BPDA→ ms3

Figure 10: Operating characteristics of white-box attack
BPDA [2] against different defenses or the original network
(baseline). PR: patch replacement. 𝑃suc: success rate; 𝐷: dis-
tortion.

without, meaning that attacks either need more distortion for the

same success rate, or have less success rate for the same distortion.

For example, when fixing 𝐷 = 5, all attacks achieve success rate

0.7 or more on the original network but roughly 0.5 or less against

patch replacement. Conversely, when fixing 𝑃suc = 0.5, a distortion

around 2 is enough for all attacks to succeed against the original

network, but against patch replacement, a distortion of more than

7 is needed.

White-box attacks We use BPDA [2] smart attack, which in-

cludes the transformation-based defense in the forward pass but re-

places it with the identity function in the backward.We apply BPDA

on patch replacement as well as the other transformation-based

defenses but not adversarial training, as this would be equivalent

to PGD.

As shown in the rightmost part of Table 2, for competing de-

fenses, BPDA has near zero adversarial accuracy, success rate of 1

and small distortion, less than 2 on average. By contrast, for patch

replacement, it has adversarial accuracy 48.3, success rate 0.89 and

average distortion of more than 12. Patch replacement is thus an ef-

fective defense against this smart attack, while competing defenses

are not.

Figure 10 elaborates on the previous results by using operating

characteristics [37, 38]. Patch replacement not only outperforms all

other transformation-based defenses by a large margin, but it also

improves over the baseline of BPDA against the original network,

while all other defenses are actually outperformed by the baseline.

This means that in the white-box setting, patch replacement makes

the network more robust even though the attacker is aware of

the defense, while all other transformation-based defenses fail by

making the network easier to attack.

5 CONCLUSION
Motivated by the fact that networks are robust against random noise

but vulnerable to adversarial perturbations, we have introduced

patch replacement, a transformation-based defense, which succeeds

in making adversarial perturbations behave similarly to random

noise and defending against adversarial attacks with at low training

and inference cost.

We have found it most effective to apply patch replacement in

the early stages of the network, in particular, to input images and

the first layer. This indicates that the effect of the perturbation

is amplified in the deeper layers and is thus harder to remove.

Applying patch replacement to both input images and the first

layer improves the trade-off between accuracy and robustness.

Patch replacement is more effective than other transformation-

based defenses. Against a gray-box attack with lower distortion

(DDN [28]) and a white-box attack (BPDA [2]), it is even more effec-

tive than adversarial training, which is notoriously more expensive

to train. In the case of the white-box attack, all other transformation-

based defenses fail, making the network easier to attack.

Acknowledgements Experiments were performed using HPC

resources of GENCI–IDRIS
9
(Grant 2019-AD011011287). This work

is supported by ANR chaire IAD SAIDA (Grant ANR-20-CHIA-0011-

01).

9
http://www.genci.fr/?lang=en

http://www.genci.fr/?lang=en

REFERENCES
[1] Nader Asadi, AmirMohammad Sarfi, Mehrdad Hosseinzadeh, Sahba Tahsini, and

Mahdi Eftekhari. 2019. Diminishing the effect of adversarial perturbations via

refining feature representation. arXiv preprint arXiv:1907.01023 (2019).
[2] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.

arXiv preprint arXiv:1802.00420 (2018).
[3] Hao-Yun Chen, Jhao-Hong Liang, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen,

Wei Wei, and Da-Cheng Juan. 2019. Improving adversarial robustness via guided

complement entropy. In Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV). 4881–4889.

[4] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR). IEEE, 248–255.

[5] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei

Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust physical-

world attacks on deep learning visual classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR). 1625–1634.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
[7] Shixiang Gu and Luca Rigazio. 2014. Towards Deep Neural Network Architectures

Robust to Adversarial Examples. arXiv:1412.5068 [cs.LG]

[8] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. 2017.

Countering Adversarial Images using Input Transformations. arXiv preprint
arXiv:1711.00117 (2017).

[9] Puneet Gupta and Esa Rahtu. 2019. Ciidefence: Defeating adversarial attacks by

fusing class-specific image inpainting and image denoising. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR). 6708–6717.

[10] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identitymappings

in deep residual networks. In Proceedings of the European Conference on Computer
Vision (ECCV). Springer, 630–645.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[12] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence (IEEE Trans. PAMI) 33, 1 (2010), 117–128.

[13] Vishaal Munusamy Kabilan, Brandon Morris, Hoang-Phuong Nguyen, and Anh

Nguyen. 2021. Vectordefense: Vectorization as a defense to adversarial examples.

In Soft Computing for Biomedical Applications and Related Topics. Springer, 19–35.
[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Proceedings of the International
conference on Neural Information Processing Systems (NeurIPS). 1097–1105.

[15] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial examples

in the physical world. arXiv preprint arXiv:1607.02533 (2016).
[16] Bin Liang, Hongcheng Li, Miaoqiang Su, Xirong Li, Wenchang Shi, and Xiaofeng

Wang. 2018. Detecting adversarial image examples in deep neural networks with

adaptive noise reduction. IEEE Transactions on Dependable and Secure Computing
(2018).

[17] Jiajun Lu, Theerasit Issaranon, and David Forsyth. 2017. Safetynet: Detecting and

rejecting adversarial examples robustly. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 446–454.

[18] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. 2015. A unified gradi-

ent regularization family for adversarial examples. In Proceedings of the IEEE
International Conference on Data Mining (ICDM). IEEE, 301–309.

[19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083 (2017).
[20] Dongyu Meng and Hao Chen. 2017. Magnet: a two-pronged defense against

adversarial examples. In Proceedings of the Conference on Computer and Commu-
nications Security (SIGSAC). ACM, 135–147.

[21] Seyed-Mohsen Moosavi-Dezfooli, Ashish Shrivastava, and Oncel Tuzel. 2018.

Divide, denoise, and defend against adversarial attacks. arXiv preprint
arXiv:1802.06806 (2018).

[22] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

2016. Distillation as a defense to adversarial perturbations against deep neural

networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP).
IEEE.

[23] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James

Storer. 2018. Deflecting adversarial attacks with pixel deflection. In Proceedings of
the IEEE conference on computer vision and pattern recognition (CVPR). 8571–8580.

[24] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James

Storer. 2018. Protecting JPEG images against adversarial attacks. In Proceedings
of the Data Compression Conference. IEEE, 137–146.

[25] Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. 2019. Barrage

of random transforms for adversarially robust defense. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR). 6528–6537.

[26] Ravi S Raju and Mikko Lipasti. 2020. Blurnet: Defense by filtering the feature

maps. In Proceedings of the 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE, 38–46.

[27] Thiyagarajan Ramanathan, Abinaya Manimaran, Suya You, and CC Jay Kuo. 2019.

Robustness of saak transform against adversarial attacks. In Proceedings of IEEE
International Conference on Image Processing (ICIP). IEEE, 2531–2535.

[28] Jérôme Rony, Luiz GHafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin,

and Eric Granger. 2019. Decoupling direction and norm for efficient gradient-

based l2 adversarial attacks and defenses. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR). 4322–4330.

[29] Bo Sun, Nian-Hsuan Tsai, Fangchen Liu, Ronald Yu, and Hao Su. 2019. Adversarial

Defense by Stratified Convolutional Sparse Coding. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR).

[30] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR). 2818–2826.

[31] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.

arXiv preprint arXiv:1312.6199 (2013).
[32] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick

McDaniel. 2017. Ensemble Adversarial Training: Attacks and Defenses. arXiv
preprint arXiv:1705.07204 (2017).

[33] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. 2018. Lipschitz-margin train-

ing: Scalable certification of perturbation invariance for deep neural networks.

In Proceedings of the International conference on Neural Information Processing
Systems (NeurIPS). 6541–6550.

[34] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2017. Miti-

gating adversarial effects through randomization. arXiv preprint arXiv:1711.01991
(2017).

[35] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He.

2019. Feature denoising for improving adversarial robustness. In Proceedings of
the IEEE conference on computer vision and pattern recognition (CVPR). 501–509.

[36] Weilin Xu, David Evans, and Yanjun Qi. 2017. Feature squeezing: Detecting

adversarial examples in deep neural networks. arXiv preprint arXiv:1704.01155
(2017).

[37] Hanwei Zhang, Yannis Avrithis, Teddy Furon, and Laurent Amsaleg. 2020. Smooth

adversarial examples. EURASIP Journal on Information Security 2020, 1 (2020),

1–12.

[38] Hanwei Zhang, Yannis Avrithis, Teddy Furon, and Laurent Amsaleg. 2020. Walk-

ing on the edge: Fast, low-distortion adversarial examples. IEEE Transactions on
Information Forensics and Security (IEEE Trans. TIFS) 16 (2020), 701–713.

[39] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR). 2921–2929.

https://arxiv.org/abs/1412.5068

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Preliminaries
	3.2 Codebook
	3.3 Replacement Strategies
	3.4 Reconstruction
	3.5 Multi-layer patch replacement

	4 Experiments
	4.1 Experimental setup
	4.2 Ablation study: single layer
	4.3 Ablation study: multi-layer
	4.4 Comparisons

	5 Conclusion
	References

