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Abstract

This paper investigates the visual quality of the adversarial examples. Recent
papers propose to smooth the perturbations to get rid of high frequency
artefacts. In this work, smoothing has a different meaning as it perceptually
shapes the perturbation according to the visual content of the image to be
attacked. The perturbation becomes locally smooth on the flat areas of the input
image, but it may be noisy on its textured areas and sharp across its edges.

This operation relies on Laplacian smoothing, well-known in graph signal
processing, which we integrate in the attack pipeline. We benchmark several
attacks with and without smoothing under a white-box scenario and evaluate
their transferability. Despite the additional constraint of smoothness, our attack
has the same probability of success at lower distortion.
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1 Introduction
Adversarial examples where introduced by Szegedy et al. [1] as imperceptible per-

turbations of a test image that can change a neural network’s prediction. This

has spawned active research on adversarial attacks and defenses with competitions

among research teams [2]. Despite the theoretical and practical progress in under-

standing the sensitivity of neural networks to their input, assessing the impercep-

tibility of adversarial attacks remains elusive: user studies show that Lp norms are

largely unsuitable, whereas more sophisticated measures are limited too [3].

Machine assessment of perceptual similarity between two images (the input image

and its adversarial example) is arguably as difficult as the original classification task,

while human assessment of whether one image is adversarial is hard when the Lp

norm of the perturbation is small. Of course, when both images are available and

the perturbation is isolated, one can always see it. To make the problem interesting,

we ask the following question: given a single image, can the effect of a perturbation

be magnified to the extent that it becomes visible and a human may decide whether

this example is benign or adversarial?

Figure 1 shows that the answer is positive for a range of popular adversarial

attacks. In Appendix A we propose a simple adversarial magnification producing a

“magnified” version of a given image, without the knowledge of any other reference

image. Assuming that natural images are locally smooth, this can reveal not only the

existence of an adversarial perturbation but also its pattern. One can recognize, for

instance, the pattern of Fig. 4 of [6] in our Fig. 1(f), revealing a universal adversarial

perturbation.

Motivated by this example, we argue that popular adversarial attacks have a

fundamental limitation in terms of imperceptibility that we attempt to overcome
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(a) Original image (b) Original, magnified

(c) C&W [4] (d) sC&W (this work)

(e) DeepFool [5] (f) Universal [6]

(g) FGSM [7] (h) I-FGSM [8]

Figure 1 Given a single input image, our adversarial magnification (cf. Appendix A) reveals the
effect of a potential adversarial perturbation. We show (a) the original image followed by (b) its
own magnified version as well as (c)-(h) magnified versions of adversarial examples generated by
different attacks. Our smooth adversarial example (d) is invisible even when magnified.

by introducing smooth adversarial examples. Our attack assumes local smoothness

and generates examples that are consistent with the precise smoothness pattern of

the input image. More than just looking “natural” [9] or being smooth [10, 11],

our adversarial examples are photorealistic, low-distortion, and virtually invisible

even under magnification. This is evident by comparing our magnified example in

Fig. 1(d) to the magnified original in Fig. 1(b).

Given that our adversarial examples are more constrained, an interesting question

is whether they perform well according to metrics like probability of success and

Lp distortion. We show that our attack is not only competitive but outperforms

Carlini & Wagner [4], from which our own attack differs basically by a smoothness

penalty.

Contributions. As primary contributions, we

1 investigate the behavior of existing attacks when perturbations become

“smooth like” the input image; and

2 devise one attack that performs well on standard metrics while satisfying the

new constraint.

As secondary contributions, we

3. magnify perturbations to facilitate qualitative evaluation of their impercepti-

bility;
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4. show that properly integrating the smoothness constraint is not as easy as

smoothing the perturbation generated by an attack; and

5. define a new, more complete/fair evaluation protocol.

The remaining text is organized as follows. Section 2 formulates the problem and

introduces a classification of attacks. It describes the C&W attack and the related

work. Section 3 explains Laplacian smoothing, on which we build our method. Sec-

tion 4 presents our smooth adversarial attacks, and section 5 provides experimental

evaluation. Conclusions are drawn section 6. Our adversarial magnification used to

generate Fig. 1 is specified in Appendix A.

2 Problem formulation and related work
Let us denote by x ∈ X := [0, 1]n×d an image of n pixels and d color channels

that has been flattened in a given ordering of the spatial components. A classifier

network f maps that input image x to an output y = f(x) ∈ Rk which contains

the logits of k classes. It is typically followed by softmax and cross-entropy loss at

supervised training or by arg max at test time. An input x with logits y = f(x) is

correctly classified if the prediction p(x) := arg maxi yi equals the true label of x.

The attacker mounts a white-box attack that is specific to f, public and known.

The attack modifies an original image xo ∈ X with given true label t ∈ {1, . . . , k}
into an adversarial example xa ∈ X , which may be incorrectly classified by the

network, that is p(xa) 6= t, although it looks similar to the original xo. The latter

is often expressed by a small L2 distortion ‖xa − xo‖.

2.1 Families of attacks

In a white box setting, attacks typically rely on exploiting the gradient of some loss

function. We propose to classify known attacks into three families.

Target Distortion. This family gathers attacks targeting a distortion ε given as

an input parameter. Examples are early attacks like Fast Gradient Sign Method

(FGSM) [7] and Iterative-FGSM (I-FGSM) [8]. Their performance is then measured

by the probability of success Psuc := P(p(xa) 6= t) as a function of ε.

Target Success. This family gathers attacks that always succeed in misclassifying

xa, at the price of a possible large distortion. DeepFool [5] is a typical example.

Their performance is then measured by the expected distortion D := E(‖xa−xo‖).
These two first families are implemented with variations of a gradient descent

method. A classification loss function is defined on an output logit vector y = f(x)

with respect to the original true label t, denoted by `(y, t).

Target Optimality. The above attacks are not optimal because they a priori do

not solve the problem of succeeding under minimal distortion,

min
x∈X :p(x)6=t

‖x− xo‖. (1)

Szegedy et al. [1] approximate this constrained minimization problem by a La-

grangian formulation

min
x∈X

λ ‖x− xo‖2 + `(f(x), t). (2)
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Parameter λ controls the trade-off between the distortion and the classification loss.

Szegedy et al. [1] carry out this optimization by box-constrained L-BFGS.

The attack of Carlini & Wagner [4], denoted C&W in the sequel, pertains to this

approach. A change of variable eliminates the box constraint: x ∈ X is replaced by

σ(w), where w ∈ Rn×d is a latent vector and σ is the element-wise sigmoid function

that projects Rn×d to X . A margin is introduced: an untargeted attack makes the

logit yt less than any other logit yi for i 6= t by at least a margin m ≥ 0. Similar

to the multi-class SVM loss by Crammer and Singer [12] (where m = 1), the loss

function ` is then defined as

`(y, t) := [yt −max
i6=t

yi +m]+, (3)

where [·]+ denotes the positive part. The C&W attack uses the Adam optimizer [13]

to minimize the functional

J(w, λ) := λ ‖σ(w)− xo‖2 + `(f(σ(w)), t), (4)

initializing by wo := σ−1(xo). When the margin is reached, loss `(y, t) (3) vanishes

and the distortion term pulls σ(w) back towards xo, causing oscillations around the

margin. Among all successful iterates, the one with the least distortion is kept; if

there is none, the attack fails. The process is repeated for different Lagrangian mul-

tiplier λ according to line search. This family of attacks is typically more expensive

than the two first.

2.2 Imperceptibility of adversarial perturbations

Adversarial perturbations are often invisible only because their amplitude is ex-

tremely small. Few papers deal with the need of improving the imperceptibility of

the adversarial perturbations. The main idea in this direction is to create low or

mid-frequency perturbation patterns.

Zhou et al. [14] add a regularization term for the sake of transferability, which re-

moves the high frequencies of the perturbation via low-pass spatial filtering. Heng et

al. [10] propose a harmonic adversarial attack where perturbations are very smooth

gradient-like images. Guo et al. [11] design an attack explicitly in the Fourier do-

main. However, in all cases above, the convolution and the bases of the harmonic

functions and of the Fourier transform are independent of the visual content of the

input image.

In contrast, the adversarial examples in this work are crafted to be locally com-

pliant with the smoothness of the original image. Our perturbation may be sharp

across the edges of xo but smooth wherever xo is, e.g. on background regions. It is

not just smooth but photorealistic, because its smoothness pattern is guided by the

input image.

An analogy becomes evident with digital watermarking [15]. In this application,

the watermark signal pushes the input image into the detection region (the set

of images deemed as watermarked by the detector), whereas here the adversarial

perturbation drives the image outside its class region. The watermark is invisible

thanks to the masking property of the input image [16]. Its textured areas and its
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contours can hide a lot of watermarking power, but the flat areas can not be modified

without producing noticeable artefacts. Perceptually shaping the watermark signal

allows a stronger power, which in turn yields more robustness.

Another related problem, with similar solutions mathematically, is photorealistic

style transfer. Luan et al. [17] transfer style from a reference style image to an

input image, while constraining the output to being photorealistic with respect to

the input. This work as well as follow-up works [18, 19] are based on variants of

Laplacian smoothing or regularization much like we do.

It is important to highlight that high frequencies can be powerful for deluding a

network, as illustrated by the extreme example of the one pixel attack [20]. However

this is arguably one of the most visible attacks.

3 Background on graph Laplacian smoothing
Popular attacks typically produce noisy patterns that are not found in natural im-

ages. They may not be visible at first sight because of their low amplitude, but

they are easily detected once magnified (see Fig. 1). Our objective is to craft an

adversarial perturbation that is locally as smooth as the input image, remaining in-

visible through magnification. This section gives background on Laplacian smooth-

ing [21, 22], a classical operator in graph signal processing [23, 24], which we adapt

to images here. Section 4 uses it generate a smooth perturbation guided by the

original input image.

Graph. Laplacian smoothing builds on a weighted undirected graph whose n ver-

tices correspond to the n pixels of the input image xo. The i-th vertex of the

graph is associated with feature xi ∈ [0, 1]d that is the i-th row of xo, that is,

xo = [x1, . . . ,xn]>. Matrix p ∈ Rn×2 denotes the spatial coordinates of the n pixels

in the image, and similarly p = [p1, . . . ,pn]>. An edge (i, j) of the graph is associ-

ated with weight wij ≥ 0, giving rise to an n× n symmetric adjacency matrix W,

for instance defined as

wij :=

kf(xi,xj)ks(pi,pj), if i 6= j

0, if i = j
(5)

for i, j ∈ {1, . . . , n}, where kf is a feature kernel and ks is a spatial kernel, both

being usually Gaussian or Laplacian. The spatial kernel is typically nonzero only

on nearest neighbors, resulting in a sparse matrix W. We further define the n× n
degree matrix D := diag(W1n) where 1n is the all-ones n-vector.

Regularization [21]. Now, given a new signal z ∈ Rn×d on this graph, the

objective of graph smoothing is to find another signal r, which is close to z,

while at the same time being smooth according to the neighborhood system rep-

resented by the graph. Precisely, given z, we define the output signal sα(z) :=

arg minr∈Rn×d φα(r, z), with

φα(r, z) :=
α

2

∑
i,j

wij ‖r̂i − r̂j‖2 + (1− α) ‖r− z‖2F (6)
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where r̂ := D−1/2r and ‖·‖F is the Frobenius norm. The first summand is the

smoothness term. It encourages r̂i to be close to r̂j when wij is large, i.e. when

pixels i and j of input xo are neighbours and similar. This encourages r to be

smooth wherever xo is. The second summand is the fitness term that encourages r

to stay close to z. Parameter α ∈ [0, 1) controls the trade-off between the two.

Filtering. If we symmetrically normalize matrix W as W := D−1/2WD−1/2 and

define the n × n regularized Laplacian matrix Lα := (In − αW)/(1 − α), then the

expression (6) simplifies to the following quadratic form:

φα(r, z) = (1− α) tr
(
r>Lαr− 2z>r + z>z

)
. (7)

This reveals, by letting the derivative ∂φ/∂r vanish independently per column, that

the smoothed signal is given in closed form:

sα(z) = L−1
α z. (8)

This solution is unique because matrix Lα is positive-definite. Parameter α controls

the bandwidth of the smoothing: function sα is the all-pass filter for α = 0 and

becomes a strict ‘low-pass’ filter when α→ 1 [25].

Variants of the model above have been used for instance for interactive image

segmentation [26, 22, 27], transductive semi-supervised classification [28, 21], and

ranking on manifolds [29, 30]. Input z expresses labels known for some input pixels

(for segmentation) or samples (for classification), or identifies queries (for ranking),

and is null for the remaining vertices. Smoothing then spreads the labels to these

vertices according the weights of the graph.

Normalization. Contrary to applications like interactive segmentation or semi-

supervised classification [21, 22], z does not represent a binary labeling but rather

an arbitrary perturbation in this work. Also contrary to such applications, the

output is neither normalized nor taken as the maximum over feature dimensions

(channels). If L−1
α is seen as a spatial filter, we therefore row-wise normalize it to

one in order to preserve the dynamic range of z. We therefore define the normalized

smoothing function as

ŝα(z) := diag(sα(1n))−1sα(z). (9)

This function of course depends on xo. We omit this from notation but we say ŝα

is smoothing guided by xo and the output is smooth like xo.

4 Integrating smoothness into the attack
The key idea of the paper is that the smoothness of the perturbation is now con-

sistent with the smoothness of the original input image xo, which is achieved by

smoothing operations guided by xo. This section integrates smoothness into attacks

targeting distortion (section 4.1) and attacks targeting optimality (section 4.2), but

in very different ways.
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4.1 Simple attacks

We consider here simple attacks targeting distortion or success based on gradient

descent of the loss function. There are many variations which normalize or clip the

update according to the norm used for measuring the distortion, a learning rate or

a fixed step etc. These variants are loosely prototyped as the iterative process

g = ∇x`(f(x(k)
a ), t), (10)

x(k+1)
a = c

(
x(k)
a − n(g)

)
, (11)

where c is a clipping function and n a normalization function according to the

variant. Function c should at least produce a valid image: c(x) ∈ X = [0, 1]n×d.

Quick and dirty. To keep these simple attacks simple, smoothness is loosely inte-

grated after the gradient computation and before the update normalization:

x(k+1)
a = c

(
x(k)
a − n(̂sα(g))

)
. (12)

This approach can be seen as a projected gradient descent on the manifold of

perturbations that are smooth like xo. When applied to PGD2, we call this attack

qPGD2 where the ‘q’ stands for a ‘quick and dirty’ integration of the smoothness

constraint.

4.2 Attack targeting optimality

This section integrates smoothness in the attacks targeting optimality like C&W.

Our starting point is the unconstrained problem (4) [4]. However, instead of rep-

resenting the perturbation signal r := x − xo implicitly as a function σ(w) − xo

of another parameter w, we express the objective explicitly as a function of vari-

able r, as in the original formulation of (2) in [1]. We make this choice because

we need to directly process the perturbation r. On the other hand, we now need

the element-wise clipping function c(x) := min([x]+, 1) to satisfy the constraint

x = xo + r ∈ X (2). Our problem is then

min
r

λ ‖r‖2 + `(f(c(xo + r)), t), (13)

where r is unconstrained in Rn×d.

Smoothness penalty. At this point, optimizing (13) results in ‘independent’ up-

dates at each pixel. We would rather like to take the smoothness structure of the

input xo into account and impose a similar structure on r. Representing the pair-

wise relations by a graph as discussed in section 3, a straightforward choice is to

introduce a pairwise loss term

µ
∑
i,j

wij ‖r̂i − r̂j‖2 (14)

into (13), where we recall that wij are the elements of the adjacency matrix W

of xo, r̂ := D−1/2r and D := diag(W1n). A problem is that the spatial kernel is
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typically narrow to capture smoothness only locally. Even if parameter µ is large,

it would take a lot of iterations for the information to propagate globally, each

iteration needing a forward and backward pass through the network.

Smoothness constraint. What we advocate instead is to apply a global smoothing

process at each iteration: we introduce a latent variable z ∈ Rn×d and seek for a

joint solution with respect to r and z of the following

min
r,z

µφα(r, z) + λ ‖r‖2 + `(f(c(xo + r)), t), (15)

where φ is defined by (6). In words, z represents an unconstrained perturbation,

while r should be close to z, smooth like xo, small, and such that the perturbed

input xo + r satisfies the classification objective. Then, by letting µ → ∞, the

first term becomes a hard constraint imposing a globally smooth solution at each

iteration:

min
r,z

λ ‖r‖2 + `(f(c(xo + r)), t) (16)

subject to r = ŝα(z), (17)

where ŝα is defined by (9). During optimization, every iterate of this perturbation

r is smooth like xo.

Optimization. With this definition in place, we solve for z the following uncon-

strained problem over Rn×d:

min
z

λ ‖ŝα(z)‖2 + `(f(c(xo + ŝα(z))), t). (18)

Observe that this problem has the same form as (13), where r has been replaced

by ŝα(z). This implies that we can use the same optimization method as the C&W

attack. The only difference is that the variable is z, which we initialize by z = 0n×d,

and we apply function ŝα at each iteration.

Gradients are easy to compute because our smoothing is a linear operator. We

denote the loss on this new variable by L(z) := `(f(c(xo + ŝα(z))), t). Its gradient is

∇zL(z) = Jŝα(z)> · ∇x`(f(c(xo + ŝα(z))), t), (19)

where Jŝα(z) is the n×n Jacobian matrix of the smoothing operator at z. Since our

smoothing operator as defined by (8) and (9) is linear, Jŝα(z) = diag(sα(1n))−1L−1
α

is a matrix constant in z, and multiplication by this matrix is equivalent to smooth-

ing. The same holds for the distortion penalty ‖ŝα(z)‖2. This means that in the

backward pass, the gradient of the objective (18) w.r.t. z is obtained from the gra-

dient w.r.t. r (or x) by smoothing, much like how r is obtained from z in the forward

pass (17).

Matrix Lα is fixed during optimization, depending only on input xo. For small

images like in the MNIST dataset [31], it can be inverted: function ŝα is really

a matrix multiplication. For larger images, we use the conjugate gradient (CG)
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method [32] to solve the set of linear systems Lαr = z for r given z. Again, this is

possible because matrix Lα is positive-definite, and indeed it is the most common

solution in similar problems [26, 33, 30]. At each iteration, one computes a product of

the form v 7→ Lαv, which is efficient because Lα is sparse. In the backward pass, one

can either use CG on the gradient, or auto-differentiate (AD) through the forward

CG iterations. We choose the latter because it is the simplest implementation-wise.

The two options have the same complexity and should have the same run-time in

theory. In practice, Tensorflow AD takes 0.43s on average for 50 CG iterations on

ImageNet and InceptionV3, while CG forward takes 0.33s.

Discussion. The clipping function c that we use is just the identity over the interval

[0, 1] but outside this interval its derivative is zero. Carlini & Wagner [4] therefore

argue that the numerical solver of problem (13) suffers from getting stuck in flat

spots: when a pixel of the perturbed input xo + r falls outside [0, 1], it keeps having

zero derivative after that and with no chance of returning to [0, 1] even if this is

beneficial. This limitation does not apply to our case thanks to the L2 distortion

penalty in (13) and to the updates in its neighborhood: such a value may return to

[0, 1] thanks to the smoothing operation.

5 Experiments
Our experiments focus on the white-box setting, where the defender first exhibits a

network, and then the attacker mounts an attack specific to this network; but we

also investigate a transferability scenario. All attacks are untargetted, as defined by

loss function (3).

5.1 Evaluation protocol

For the perceptual evaluation of the quality of the adversarial images, we follow

the recommendation of [34]. This paper compares fifteen metrics (including SSIM,

PSNR, and wPSNR) to the subjective perceptual evaluation of a panel of users. The

conclusion is that most apparent distortion (MAD) [35] is the metric best reflecting

user assessment. A low MAD score means better fidelity.

For quantitative evaluation of the strength of an attack, we use two global statistics

and an operating characteristic curve. Given a test image set of N ′ images, we

only consider its subset X of N images that are classified correctly without any

attack. The accuracy of the classifier is N/N ′. Let Xsuc be the subset of X with

Nsuc := |Xsuc| where the attack succeeds and let D(xo) := ‖xa − xo‖ be the

distortion for image xo ∈ Xsuc.

The global statistics are the success probability Psuc and expected distortion D as

defined in section 2, estimated by

Psuc =
Nsuc

N
, D =

1

Nsuc

∑
xo∈Xsuc

D(xo), (20)

with the exception that D here is the conditional average distortion, where condi-

tioning is on success. Indeed, distortion makes no sense for a failure.

If Dmax = maxxo∈Xsuc
D(xo) is the maximum distortion, the operating character-

istic function P : [0, Dmax]→ [0, 1] measures the probability of success as a function
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of a given upper bound D on distortion. For D ∈ [0, Dmax],

P(D) :=
1

N
|{xo ∈ Xsuc : D(xo) ≤ D}|. (21)

This function increases from P(0) = 0 to P(Dmax) = Psuc.

It is difficult to define a fair comparison of distortion targeting attacks to opti-

mality targeting attacks. For the first family, we run a given attack several times

over the test set with different target distortion ε. The attack succeeds on image

xo ∈ X if it succeeds on any of the runs. For xo ∈ Xsuc, the distortion D(xo) is the

minimum distortion over all runs. All statistics are then evaluated as above.

5.2 Datasets, networks, and attacks

MNIST [36]. We consider a simple convolutional network with three convolutional

layers and one fully connected layer that we denote as C4, giving accuracy 0.99. In

detail, the first convolutional layer has 64 features, kernel of size 8 and stride 2; the

second layer has 128 features, kernel of size 6 and stride 2; the third has also 128

features, but kernel of size 5 and stride 1.

ImageNet. We use the dataset of the NIPS 2017 adversarial competition [37], com-

prising 1,000 images from ImageNet [38]. We use InceptionV3 [39] and ResNetV2-

50 [40] networks, with accuracy 0.96 and 0.93 respectively.

Attacks. The following six attacks are benchmarked:

• L∞ distortion: FGSM [41] and I-FGSM [8].

• L2 distortion: an L2 version of I-FGSM [42], denoted as PGD2 (projected

gradient descent).

• Optimality: The L2 version of C&W [4].

• Smooth: our smooth versions qPGD2 of PGD2 (sect. 4.1) and sC&W of C&W

(sect. 4.2). Note that the smoothness constraint integration differs a lot be-

tween qPGD2 and sC&W.

Parameters. On MNIST, we use ε = 0.3 for FGSM; ε = 0.3, α = 0.08 for I-FGSM;

ε = 5, α = 3 for PGD2; confidence margin m = 1, learning rate η = 0.1, and

initial constant c = 15 (the inverse of λ in (4)) for C&W. For smoothing, we use

Laplacian feature kernel, set α = 0.95, and pre-compute L−1
α . On ImageNet, we

use ε = 0.1255 for FGSM; ε = 0.1255, α = 0.08 for I-FGSM; ε = 5, α = 3 for

PGD2; m = 0, η = 0.1, and c = 100 for C&W. For smoothing, we use Laplacian

feature kernel, set α = 0.997, and use 50 iterations of CG. These settings are used

in sect. 5.5.

5.3 White box scenario

Qualitative results and perceptual evaluation. Figures 2 and 3 show MNIST

and ImageNet examples respectively, focusing on worst cases. Both sC&W and

qPGD2 produce smooth perturbations that look more natural. However, smoothing

of qPGD2 is more aggressive especially on MNIST, as these images contain flat

black or white areas.
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PGD2 * qPGD2 C&W sC&W

D=6.00 D=6.00 D=0.36 D=0.52

PGD2 qPGD2 * C&W sC&W

D=2.25 D=6.00 D=3.33 D=2.57

PGD2 qPGD2 C&W * sC&W

D=4.00 D=6.00 D=4.22 D=3.31

PGD2 qPGD2 C&W sC&W *

D=4.00 D=6.00 D=4.15 D=4.85

Figure 2 For a given attack (denoted by * and bold typeface), the adversarial image with the
strongest distortion D over MNIST. In green, the attack succeeds; in red, it fails.

This is due to the ‘quick and dirty’ integration of the smoothness constraint: On

some images, the perturbation update ŝα(g) is weakly correlated with gradient g,

which is does not help in lowering the classification loss. Consequently, the perturba-

tion becomes stronger in order to succeed. For the same reason, qPGD2 completely

fails on natural images like Fig 3(a) and (c). It consumes way more distortion than

PGD2, and although this perturbation is smoother, it is becomes visible.

By contrast, the proper integration of the smoothness constraint in sC&W pro-

duces totally invisible perturbation. For images like Fig 3(a) or (c), sC&W consumes

more distortion than C&W, but the perturbation remains less visible according to

the MAD score. The reason is the ‘phantom’ of the original that is revealed when

the perturbation is isolated.
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original image C&W: D=3.64 sC&W: D= 4.59 PGD2: D=2.77 qPGD2: D=5.15

C&W: MAD=14.80 sC&W: MAD= 0.28 PGD2: MAD=0.32 qPGD2: MAD=5.61

(a)
original image C&W: D=6.55 sC&W: D= 4.14 PGD2: D=2.78 qPGD2: D=2.82

C&W: MAD=0.05 sC&W: MAD= 0.01 PGD2: MAD=0.00 qPGD2: MAD=0.00

(b)
original image C&W: D=6.55 sC&W: D= 10.32 PGD2: D=2.77 qPGD2: D=31.76

C&W: MAD=0.93 sC&W: MAD= 0.40 PGD2: MAD=0.00 qPGD2: MAD=8.44

(c)

Figure 3 Original image xo (left), adversarial image xa = xo + r (above) and scaled perturbation
r (below; distortion D = ‖r‖ and MAD scores) against InceptionV3 on ImageNet. Scaling maps
each perturbation and each color channel independently to [0, 1]. The perturbation r is indeed
smooth like xo for sC&W. (a) Despite the higher distortion compared to C&W, the perturbation
of sC&W is totally invisible, even when magnified (cf. Fig. 1). (b) One of the failing examples
of [10] that look unnatural to human vision. (c) One of the examples with the strongest distortion
over ImageNet for sC&W: xo is flat along stripes, reducing the dimensionality of the ‘smooth like
xo’ manifold.

The superior perceptual quality of our smooth adversarial examples is also con-

firmed quantitatively: On ImageNet, 93% of the images produced by sC&W have

lower MAD score than the ones by C&W. Fig. 4 shows that when the MAD score

of sC&W is greater than the one of C&W, it usually happens for very small score

values (below 0.1), meaning that both are almost equally imperceptible.

Quantitative results on success and distortion. The global statistics Psuc, D

are shown in Table 1. Operating characteristics over MNIST and ImageNet are

shown in Figures 5 and 6 respectively.
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Figure 4 MAD scores [35] of sC&W vs. C&W for all images of ImageNet. For 93% of the images
below the diagonal, sC&W is less perceptible than C&W according to MAD score.

Table 1 Success probability Psuc and average L2 distortion D.

MNIST ImageNet
C4 InceptionV3 ResNetV2

Psuc D Psuc D Psuc D

FGSM 0.89 5.02 0.97 5.92 0.92 8.20

I-FGSM 1.00 2.69 1.00 5.54 0.99 7.58

PGD2 1.00 1.71 1.00 1.80 1.00 3.63

C&W 1.00 2.49 0.99 4.91 0.99 9.84

qPGD2 0.97 3.36 0.96 2.10 0.93 4.80

sC&W 1.00 1.97 0.99 3.00 0.98 5.99

We observe that our sC&W, with the proper integration via a latent variable (18),

improves a lot the original C&W in terms of distortion, while keeping the probability

of success roughly the same. This result, consistent in all experiments, is surprising.

We would expect a price to be paid for a better invisibility as the smoothing is

adding an extra constraint on the perturbation. This price can be rather high in

the literature: In order to preserve the success rate, Table 1 of [11] reports an

increase of distortion by a factor of 3 when integrating smoothness in the attack.

An explanation may be that the smoothing operation of [11] is independent of the

input image; while in our case, smoothing is guided by the input.

On the contrary, the ‘quick and dirty’ integration (12) dramatically spoils qPGD2

with big distortion especially on MNIST. This reveals the utmost importance of

properly integrating the smoothness constraint. It cannot be just a post-processing

filtering of the perturbation.

The price to pay for smoothing is the run-time: using Tensorflow and 50 CG itera-

tions on ImageNet and InceptionV3, sC&W takes 205s per image on average, while

C&W takes 47s. This is with our own implementation of CG without particular

optimization effort. Runtime was not within our objectives.

We further observe that PGD2 outperforms by a vast margin the C&W attack,

which is supposed to be close to optimality. This may be due in part to how the

Adam optimizer treats L2 norm penalties as studied in [43]. This interesting finding
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Figure 5 Operating characteristics of the attacks over MNIST. Attacks PGD2 and qPGD2 are
tested with target distortion D ∈ [1, 6].
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Figure 6 Operating characteristics over ImageNet attacking InceptionV3 (solid lines) and
ResNetV2-50 (dotted lines).

is a result of our new evaluation protocol: C&W internally optimizes its parameter

c = 1/λ independently per image, while for PGD2 we externally try a small set

of target distortions D on the entire dataset. This is visible in Fig. 5, where the

operating characteristic is piecewise constant. Our comparison is fair, given that

C&W is more expensive.

As already observed in the literature, ResnetV2 is more robust to attacks than In-

ceptionV3: The operating characteristic curves are shifted to the right and increase

at a slower rate.

5.4 Adversarial training

The defender now uses adversarial training [41] to gain robustness against attacks.

Yet, the white-box scenario still holds: this network is public. The training set com-
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Table 2 Success probability and average L2 distortion D when attacking networks adversarially
trained against FGSM.

MNIST - C4 ImageNet - InceptionV3
Psuc D Psuc D

FGSM 0.15 4.53 0.06 6.40

I-FGSM 1.00 3.48 0.97 29.94

PGD2 1.00 2.52 1.00 3.89

C&W 0.93 3.03 0.95 6.43

qPGD2 0.99 2.94 0.69 7.86

sC&W 0.99 2.39 0.75 6.22

Table 3 Success probability and average L2 distortion D of attacks on variants of InceptionV3 under
transferability.

Bilateral filter Adv. training
Psuc D Psuc D

FGSM 0.77 5.13 0.04 10.20

I-FGSM 0.82 5.12 0.02 10.10

PGD2 1.00 5.14 0.12 10.26

C&W 0.82 4.75 0.02 10.21

qPGD2 0.95 5.13 0.01 10.17

sC&W 0.68 2.91 0.01 4.63

prises images attacked with “step l.l” model [8][1]. The accuracy of C4 on MNIST

(resp. InceptionV3 on ImageNet) is now 0.99 (resp. 0.94).

Table 2 shows interesting results. As expected, FGSM is defeated in all cases,

while average distortion of all attacks is increased in general. What is unexpected is

that on MNIST, sC&W remains successful while the probability of C&W drops. On

ImageNet however, it is the probability of the smooth versions qPGD2 and sC&W

that drops. I-FGSM is also defeated in this case, in the sense that average distortion

increases too much.

5.5 Transferability

This section investigates the transferability of the attacks under the following sce-

nario: the attacker has now a partial knowledge about the network. For instance,

he/she knows that the defender chose a variant of InceptionV3, but this variant

is not public so he/she attacks InceptionV3 instead. Also, this time he/she is not

allowed to test different distortion targets. The results are shown in Table 3.

The first variant uses a bilateral filter (with standard deviation 0.5 and 0.2 in the

domain and range kernel respectively; cf. Appendix A) before feeding the network.

This does not really prevent the attacks. PGD2 remains a very powerful attack if

the distortion is large enough. Smoothing makes the attack less effective but the

perturbations are less visible. The second variant uses the adversarially trained

InceptionV3, which is, on the contrary, a very efficient counter-measure under this

scenario.

Figure 7 shows the operating characteristics of C&W and sC&W corresponding

to the bilateral filter results of Table 3. We see that within a distortion budget of

5, sC&W succeeds with 67% probability, whereas C&W with 50%. Yet, at larger

[1]Model taken from: https://github.com/tensorflow/models/tree/master/research/adv_imagenet_

models
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Figure 7 Operating characteristics of C&W and sC&W on ImageNet with InceptionV3 under
bilateral filter transferability, corresponding to Table 3.

distortion budgets, C&W keeps on forging more adversarial images whereas sC&W

stops making progress. This is understandable: C&W creates strong artefacts clearly

visible when the distortion is larger or equal to 5, as shown in Fig. 3. The upfront

defense filters out some of these strong perturbations, but the rest remain successful.

These images are adversarial by definition, yet not useful in practice because they

are too much distorted.

6 Conclusion

Smoothing helps masking the adversarial perturbation by shaping it ‘like’ the input

image. However, this rule holds only when smoothness is properly integrated in the

attack. Filtering the perturbation by post-processing is not a sound idea, even if

it is done in accordance with the original image, even if it is done at each attack

iteration. A sounder integration is to inject smoothness as a constraint inside the

loss function.

It is impressive how sC&W improves upon C&W in terms of distortion and im-

perceptibility at the same time while maintaining the same success rate. To our

knowledge and as far as a white box scenario is considered, this is the first time

smoothness comes for free from this viewpoint. Yet, a price to be paid is the larger

complexity.

Smoothing allows the attacker to delude more robust networks thanks to larger

distortions while still being invisible. However, its impact on transferability is mit-

igated. The question raised in the introduction is still open: Fig. 1 shows that a

human does not make the difference between the input image and its adversarial

example even with magnification. This does not prove that an algorithm will not

detect some statistical evidence.
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Appendix A: Adversarial magnification
Given a single-channel image x : Ω → R as input, its adversarial magnification

mag(x) : Ω→ R is defined as the following local normalization operation

mag(x) :=
x− µx(x)

βσx(x) + (1− β)σΩ(x)
, (22)

where µx(x) and σx(x) are the local mean and standard deviation of x respectively,

and σΩ(x) ∈ R+ is the global standard deviation of x over Ω. Parameter β ∈ [0, 1]

determines how much local variation is magnified in x.

In our implementation, µx(x) = b(x), the bilateral filtering of x [44]. It applies a

local kernel at each point p ∈ Ω that is the product of a domain and a range Gaussian

kernel. The domain kernel measures the geometric proximity of every point q ∈ Ω to

p as a function of ‖p− q‖ and the range kernel measures the photometric similarity

of every point q ∈ Ω to p as a function |x(p) − x(q)|. On the other hand, σx(x) =

bx((x− µx(x))2)−1/2. Here, bx is a guided version of the bilateral filter, where it is

the reference image x rather than (x− µx(x))2 that is used in the range kernel.

When x : Ω→ Rd is a d-channel image, we apply all the filters independently per

channel, but photometric similarity is just one scalar per point as a function of the

Euclidean distance ‖x(p)− x(q)‖ measured over all d channels.

In Fig. 1, β = 0.8. The standard deviation of both the domain and range Gaussian

kernels is 5.
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