Medial Feature Detector
Version 0.5, March 2011

Anonymous ICCV submission

March 8, 2011

1 Purpose, license

This software is confidential and is meant to accompany ICCV 2011 anonymous paper sub-
mission #1016 in its supplementary material. Licence for its use is granted only for the
purpose of paper review. A public version will be released by the authors if/when the paper
is accepted for publication.

2 Environment, installation

This program has been developed in C++ using MS Visual Studio under Windows XP. It
uses OpenCV libraries only to open, save or display images. It therefore supports all image
file types that OpenCV does, including JPEG, PNG, PBM/PGM/PPM, and TIFF. It has
only been tested on Intel processors running Windows XP. All required library files are
included within this distribution, in the same folder with MFD executable. No installation
is needed—just unzip the distributed archive into a local folder and MFD should run.

3 Contents

Main files:

mfd.exe MFD executable
mfd.pdf this document
img/ folder with test images

MS Visual Studio dependencies, also used by OpenCV:

Microsoft.VC80.CRT.manifest
Microsoft.VC80.0penMP.manifest
msvcp80.dll

msvcr80.dll

vcomp.dll

OpenCV libraries:

cv110.d11
cvaux110.d11
cxcorell0.d1l1
cxts001.d11
highguil10.d1l1l
ml1110.d11

Test images in folder img/:

alumgrns.png
b_grafl.png
b_graf2.png
b_frag.png
grafl.png
graf2.png

Files starting with b_ are binary, the rest are gray-scale. MFD automatically converts color
images to gray-scale; it uses no color information.

4 Syntax, command list
Use the following syntax to execute MFD:
mfd <command(s)> <filename(s)> [options]

Alternatively, to see information about MFD, its syntax above and a complete list of com-
mands and options, simply type

mfd

In this document, only a summary of the most important commands and options is given
on specific examples. You may experiment with more advanced options, but no further
documentation is given.

5 Restrictions

MFD’s view mode (normally available with option -v) is forced in the current distributed
version. This means one can only view MFD’s output on screen but not save files to disk.
Also, no feature descriptors (normally available with option -de) are supported; only viewing
detected features on screen. All remaining commands and options are fully supported.

6 Distance map and medial axis

The first examples are on test image alumgrns.png:

I

_a

Given a gray-scale image, commands -d and -m compute the weighted distance map and
weighted medial azris, respectively. They may be used independently, or together:

mfd -d -m img\alumgrns.png

In this case, the two output images are displayed in sequence:

It is more useful to display the medial axis overlayed on top of the distance map or the input
image, with options -od or -o, respectively:

nfd -m img\alumgrns.png -od -a
mnfd -m img\alumgrns.png -o -a

Here we have also used option -a to visualize height on the medial axis using a yellow-red
color map (yellow/red being low /high, respectively):

7 Duality and decomposition

Duality can be demonstrated by commands -ud and -u, computing the dual distance map
and dual medial axis, respectively:

mfd -ud img\alumgrns.png
mfd -u img\alumgrns.png -o -a

Here, the dual medial axis is displayed on top of the image and together with the primal
medial axis. It is clear that the dual medial axis lies close to image boundaries, yet there
are undesirable effects near crossings of the two types of curves:

Though the latter may be explored with option -sd, let’s proceed to the medial axis decom-
position and image partitioning with command -p:

mfd -p img\alumgrns.png -o
mfd -p img\alumgrns.png -o -a -pm

Here, option -pm displays the medial axis underlying the partition boundaries:

8 Medial features
Finally, let’s detect medial features with command -£:

mfd -f img\alumgrns.png -o
mfd -f img\alumgrns.png -o -fp

where, similarly to -pm, option -fp displays the partition underlying the features:

The shape fragmentation threshold 7 here corresponds to parameter -ff. A lower value is
more selective, while the default is .6:

mfd -f img\alumgrns.png -o -ff .4
mfd -f img\alumgrns.png -o -ff .8

The effect of scale parameter o, corresponding here to parameter ~hf with default value 4,
is better seen on the distance map:

mfd -d img\alumgrns.png -hf 1
mfd -d img\alumgrns.png -hf 2

9 More examples

Let’s look at the more complex image 1 of the GRAFFITI scene, grafl.png:

Here is the weighted distance map and medial axis:

mfd -d img\grafl.png
mfd -m img\grafl.png -o -a

And here are the medial features, along with the underlying partition, of images 1 and 2:

mfd -f img\grafl.png -o -fp
mfd -f img\graf2.png -o -fp

A

- g
PU| L S L
E &

|

10 Binary input

Let’s try the binary input b_graf1.png, obtained via Canny edge detection from graf1l.png:

Binary images are processed in MFD with option -b. Everything works the same way as
for grayscale images, with the main difference being a faster underlying implementation and
that no gradient is computed. For instance, the medial axis:

nfd -m img\b_grafl.png -b -o -a

__

It is interesting to look at the image partition obtained from the edge map and similarities

with the grayscale case:

mfd -p img\b_grafl.png -b

{0)
S

Similarly for the medial features:

mfd -f img\b_grafl.png -b -o

10

11 Fragmented shapes

Finally, a simple binary image of a fragmented shape, b_frag.png:

and the corresponding distance map, medial axis, partition, and features:

nfd -f img\b_frag.png -b -a -od -fp -pm

11

12 Further options
Further options worth exploring are the following:

-t display detailed timing

-vs display detailed statistics

-i display distance isocontours

-re display chord residue

-vc display labels after medial axis decomposition

-fc show underlying feature cover

-df simulate grassfire in distance propagation, e.g. -df 5

12

