
ivl by Example

A Scientific Computing Library, Applied to Learning and Vision

Kimon Kontosis, Yannis Avrithis and Christos Varytimidis
National Technical University of Athens

9, Iroon Polytechniou Str., 157 73 Zographou, Athens, Greece
{kimonas,iavr,chrisvar}@image.ntua.gr

ABSTRACT
Researchers, engineers and professionals in any discipline of
scientific computing often prefer a computing and visual-
ization environment like Matlab1 for everyday work, es-
pecially when trying out a new idea. On the other hand,
joint development of large projects with emphasis on perfor-
mance, ease of integration, or genericity, typically requires
a full-fledged language like C ..++, particularly so for open
source, cross-platform software. Transition between these
two worlds often ends up in painful code re-writing.
Our approach is to bring, among others, elements of the

Matlab syntax into C ..++, where they can become even
more powerful, blended e.g . with classes, templates, or the
standard library (STL). Our open source template library
ivl extends language syntax towards mathematical nota-
tion and serves as a foundation in scientific computing rather
than a collection of problem-oriented algorithm implementa-
tions. As such, we choose to illustrate it through a concrete
example in the field of machine learning and computer vi-
sion, followed by a brief outline of its design principles and
major features.

1. ORIENTATION
Instead of explaining what ivl is, we shall attempt in sec-
tion 2 to show what it looks like by building a randomized
decision forest classifier from scratch. Trained by one input
image and associated ground truth of pixel-level class labels,
the classifier learns to classify individual pixels of a new im-
age into one of 23 object classes like ‘building’, ‘flower’, or
‘car’, plus a ‘void’ (unknown) class, according to the MSRC
dataset2. In particular, we follow the formulation of Shotton
et al . [3] and Moosman et al . [2].
We assume familiarity with Matlab and a good knowl-

edge of C ..++. On the other hand, no background on the
classification method itself is assumed; we shall explain it
along the way, using blocks of actual working C ..++ code

1http://www.mathworks.com/products/matlab/
2http://research.microsoft.com/en-us/projects/
objectclassrecognition/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Multimedia 2012, 29 October – 2 November, 2012, Nara, Japan
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

instead of algorithm pseudocode and, in a few cases, mathe-
matical formulae. In less than six pages, we shall expose the
complete 120-line project code, including its main function,
while discussing relevant ivl features.

In fact, using a set of bash/awk/sed scripts, the single
project source file is automatically generated, compiled and
executed from the same file as the latex source of this docu-
ment. The documentation of ivl follows the same principle,
validating each piece of code with the compiler, as well as
feeding the standard output of the executable back to the
document for each individual example.

2. A RANDOMIZED DECISION FOREST
We begin in section 2.1 with preliminaries like including
headers and defining types to represent data. We then dis-
cuss in sections 2.2 and 2.3 the classification and learning
processes, respectively. Although we are certainly not build-
ing a generic library here, our development is such that gen-
eralizing to arbitrary learning problems is straightforward.
Specific aspects of the particular image classification prob-
lem are handled in section 2.4, and the main function is given
in section 2.5.

2.1 Preliminaries

2.1.1 Using ivl
We first include a couple of ivl headers, specifying that we
shall also be using OpenCV3 to load or display images,

#include <ivl/ivl>
#include <ivl/cv>

To keep code structure as simple as possible, we define a
set global variables, classes and functions within a forests

namespace, which uses namespace ivl,

namespace forests {
using namespace ivl; using ivl::rand;

2.1.2 Patches and samples
Each image pixel is classified according to its surrounding
square image patch p. A patch thus plays the role of a
data point in our problem, and is defined as a contiguous
rectangular sub-array of an image,

typedef image<double>::const_box patch;

where image is an ivl template class that is interoperable
with OpenCV’s IplImage; double here is the underlying
data type of each color component of each pixel, and box is

3http://opencv.willowgarage.com/

http://www.mathworks.com/products/matlab/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://research.microsoft.com/en-us/projects/objectclassrecognition/
http://opencv.willowgarage.com/

..

image

.

α

.........x .k.

p

.
· · ·

.
· · ·

......

X

Figure 1: Memory organization for patches, sam-
ples, and data sets.

a view that can be used to access the actual image data as
if it were an image itself—respectively, const_box is a read-
only view. The patch side α in pixels and patch size 3α2 for
three color channels are fixed here,

const int alpha = 9; // patch side
const int sz = 3 * _[alpha]->*2; // patch size

where syntax _[] denotes an ivl scalar, providing, among
others, power operator ->* to fundamental types like int.
A sample x = (p, k) is a pair of a patch p and a discrete

target variable or class label k,

struct sample { patch p; int k; };

while a set of samples or data set X is represented by a
sub-array of a given array of samples,

typedef array<sample>::const_indirect_array data;

where array is ivl’s basic one-dimensional array type; sam-
ple here is the underlying data type, and indirect_array

is another type of view that is non-contiguous in memory, in-
dexed by an arbitrary array of positions—again, const_indi-
rect_array is read-only. Data in all array types can be
accessed in a variety of ways, including different types of it-
erators that are either compatible or generalize those of the
STL.
The overall memory organization is illustrated in Figure 1.

A data set X can be seen as an array of pointers to samples
x = (p, k), where the samples are actually stored in another
array and each patch p can also be seen as a pointer to a
rectangular 3d box of a 3-channel image. When sampling an
image, a patch is constructed with reference to the central
pixel; for that, α is an odd integer. Nothing fancy so far, but
we shall see how conveniently our structures are initialized
and used.

2.1.3 Tests
Randomized decision forests [1] consist of a number of deci-
sion trees, each trained separately on a number of random
tests. A test t is an object that comprises one or two sim-
ple attributes or features φ1, φ2 of an image patch, a split
function f , and a threshold θ. A feature refers to a specific
color component of one pixel of the patch, represented by a
position in the underlying sub-array.

struct test {
int type, feat[2]; double th;

There are four types of tests depending on the choice of f ,
as specified in Table 1. Being as straightforward as possible,
we define f as follows.

double f(const sample& x) const {
double v1 = x.p[feat[0]], v2 = x.p[feat[1]];
return type == 0 ? v1 : type == 1 ? v1 + v2 :

type == 2 ? v1 - v2 : abs(v1 - v2);
}

type value sum difference absolute

f(x) v1 v1 + v2 v1 − v2 |v1 − v2|
example . . + . . − . | . − . |

Table 1: Let v1, v2 be the values of two features on
the patch of a given sample x. The value of f(x) for
each of the four types of tests is shown here, along
with an example on tiny patches.

A random test is generated by choosing all parameters uni-
formly at random within appropriate ranges,

void gen(const data& X) {
type = rand(0, 3); lnk(feat) = rand(2, 0, sz-1);
th = rand[extrema(_[this][&test::f](X))];

}
};

where our first exotic ivl examples come up. Function rand

yields either a scalar or a 2-element array that is linked to C
array feat. Given a data set X, the range of thresholds θ is
determined by the extrema of f(x) over all samples x ∈ X.
Here &test::f is a C ..++ pointer to member function f of �
class test, and syntax _[this][&test::f] denotes an ivl

element function that can apply f to the entire data set
X—what one would write as f(X) in set theory!

But extrema yields two quantities (min, max)—how are
they both fed into rand? Let us wait until we build our own
example in sections 2.3.1,2.3.2.

2.1.4 Class distributions
Fixing the number K of classes,

const int K = 24; // number of classes

we represent a distribution of class probabilities P (k) for
k = 1, . . . ,K by an ivl array of fixed length K,

typedef array<double, fixed<K> > prob;

which is allocated on stack, contrary to the default ivl ar-

ray that is allocated on heap. Despite implying more copies
and no resizing, this option is generally preferred for small
arrays, saving allocation time. In general, the second tem-
plate argument of class array can used to specify several
more options on representing and manipulating underlying
data.

2.2 Classification
We first discuss the decision tree classification process in
section 2.2.1, and then generalize to decision forests in sec-
tion 2.2.2.

2.2.1 Decision trees
A single decision tree classifier is a binary tree consisting
of split nodes and leaf nodes. Both inherit a base node,
capturing only common behavior,

struct node
{ virtual const prob& classify(const sample&) = 0; };

allowing us to define a tree as a pointer to its root node,

typedef node* tree;

A split node, apart from pointers to its left and right children
l, r, is assigned a test t, in turn equipped with split function
f and threshold θ,

struct split_node : public node {
test t; node *l, *r; // left / right children
split_node(test t,node *l,node *r): t(t),l(l),r(r) {}

Starting from the root node, a new sample x recursively
descends the tree towards l (r) whenever f(x) < θ (f(x) ≥
θ), as illustrated in Figure 2,

const prob& classify(const sample& x)
{ return (t.f(x) < t.th ? l : r)->classify(x); }

};

eventually reaching a leaf node, for instance node 5 in Fig-
ure 2. Each leaf node n is assigned an array of learned class
probabilities P (k|n) for k = 1, . . . ,K,

struct leaf_node : public node {
prob P; leaf_node(const prob& P) : P(P) {}

which is returned by the final call to classify,

const prob& classify(const sample&) { return P; }
};

If we were to classify sample x based on a single tree, we
would simply let x descend the tree down to some leaf node
n and choose the class k that maximizes P (k|n), for instance
class 2 in Figure 2.

2.2.2 Decision forests
A single tree classifier is prone to overfitting due to hard
decision boundaries. To improve generalization, a decision
forest classifier F uses an array of T trees,

typedef array<tree> forest;
const int T = 4; // number of trees

Now a sample x descends all T trees down to leaf nodes
N = {n1, . . . , nT }, and is classified to the most likely class

k∗ = argmax
k

P (k|N) = argmax
k

∑
n∈N

P (k|n) (1)

after averaging (or summing) class distributions over leaf
nodes,

int classify_(const forest& F, const sample& x)
{ return arg_max(sum(F[&node::classify](x))); }

where we apply, to sample x, member function classify�
of class node for forest F , an array of (pointers to) nodes,
yielding an array of entire leaf class distributions! Func-
tion sum then operates along this array, computing a single
distribution, whose mode is found by arg_max.
We can now classify an entire data set X with a single

call to a named element function

static binary_elem<int, const forest&, const sample&,
classify_> classify;

to be used in function main on all pixels of an image. This
syntax denotes a binary function object named classify

with return type int, two input arguments of types const

forest& and const sample&, and underlying implementa-
tion given by function classify_. An operator () provides
the input arguments, which may be arrays as well. For in-
stance, given a data set X, classify_ will be invoked once
for every sample x ∈ X.

2.3 Learning
The decision tree learning process is illustrated in Figure 3
for a toy 2d classification problem of K = 5 classes, where
data points are shown as points x = (x1, x2) ∈ R2, colored
according to class. Learning relies on data splitting, which
for this problem is represented by lines separating the plane
into two half-planes.
Starting from the entire data set, five random tests are

generated with split functions of the linear form f(x) =

..x.

1

.

2

.

3

.

4

.

4

.

5

.

5

.

3

.

2

.

3

.

4

.

5

.

5

.

4

.

3

.

4

.

4

.

y1 > θ1

.

y2 < θ2

.

y3 < θ3

.

y4 > θ4

.

k

..

P (k|5)

.

0

.

2

.

4

.

6

.

· · ·

Figure 2: Decision tree classification. Sample x de-
scends from root node 1 down to leaf node 5, as-
signed class probabilities P (k|5), k = 1, . . . ,K. Each
node i = 1, . . . , 5 is assigned a test with split function
fi and threshold θi, and we let yi = fi(x). Leaf nodes
are shown in yellow.

f(x1, x2) = ax1 + bx2. The one that best separates the data
into classes is chosen to split the data set into two subsets
that are recursively subjected to the same process until no
split is considered necessary. A split node in the tree records
each chosen test, while leaf nodes record the class label dis-
tributions of the data points they contain. The resulting
tree is not necessarily balanced, and training samples may
still be misclassified.

We first discuss data splitting in section 2.3.1, and then
develop randomized decision tree and forest learning in sec-
tions 2.3.2 and 2.3.3, respectively. Once the form of split
functions f is fixed, the remaining process is independent
of the dimensionality or structure of the input space, hence
applicable in particular to the 2d problem of Figure 3, to
image classification or indeed to any classification problem.
Learning is a lot more complex than classification, providing
a good opportunity to reveal a few more advanced features
of ivl.

2.3.1 Data splitting
Given a data set X and a test t with split function f and
threshold θ, we compare f(x) to θ for each sample x ∈ X,
and split (partition) X into L,R, where L = {x ∈ X :
f(x) < θ} and R = X \ L,
ret<data, data> split_(const test& t, const data& X) {

array<bool> mask = _[t][&test::f](X) < t.th;
return (_, X[find(mask)], X[find(!mask)]);

}

where we apply function f of test t to the entire set X, as
we did in test::gen; then, collect all test comparisons in a
boolean array, or mask ; use find as in Matlab to index X
and split it into L,R; and return both as output arguments! �
This is made possible by construct (_,L,R), an ivl tuple

representing pair (L,R); and ivl return type ret, which,
more than being a tuple itself, eliminates temporary objects.
We are now ready to split X according to an entire array
of tests t by

static binary_elem<ret<data, data>, const test&, const
data&, split_> split;

Trying a number of random splits, the strategy is to find
the one that best separates classes across L,R. For this we
first need class label distributions, empirically estimated as
normalized histograms over an array of labels,

prob hist(const array<int>& k)

{ prob h(K, 0.0); ++h[k]; return h / k.size(); }

which is exactly how Matlab syntax becomes richer within
C ..++, observing how much is hidden beneath the 6-character
expression ++h[k]: whenever a label is repeated in array k,�
the reference to a bin counter in h[k] is repeated as well,
and ++ just increases it!
Next, given a data set X with class label distribution

P (k) = P (k|X) empirically estimated by a normalized his-
togram, its entropy

H[X] = −
K∑

k=1

P (k) lnP (k) (2)

is found as simply as

double entropy(const prob& P)
{ return -sum((P * log(P))[P>0]); }

Most STL math functions like log, and all arithmetic, com-
parison, logical, bitwise and compound assignment C ..++
operators like (element-wise) *, are extended for all array
types in ivl. What’s more, every ivl function or operator
actually constructs an element function that defers evalu-�
ation until needed. As a result, no temporaries are con-
structed for the entire expression: what is really happening
behind the scenes is that the analogous expression of indi-
vidual elements P (k) is constructed at compile time and a
single for loop over k is executed at run time!
Condition P>0 simply encapsulates the fact that x lnx → 0

as x → 0+, so that zero probabilities do not contribute to
the sum, which is an implicit assumption in definition (2).
Operator [] applies equally to ivl arrays, function objects,
or entire expressions, simply because all are arrays, differing
only on template parameters!
Hence, given a data set X (or L,R in particular), the

entropy of its class label distribution is given by

double H(const data& X)
{ return entropy(hist(X[&sample::k])); }

But how do we get class labels out of X? For all that mat-
ters, X is an array of samples, so we view member k of class
sample for each sample x ∈ X as if they all formed an array
of labels!
Now, given a split Y = {L,R} of data set X, its informa-

tion gain over X is given by mutual information I[X;Y] =
H[X]−H[X|Y], where

H[X|Y] = −
∑
Y ∈Y

K∑
k=1

P (k, Y) lnP (k|Y) (3)

=
∑
Y ∈Y

P (Y)

{
−

K∑
k=1

P (k|Y) lnP (k|Y)

}
(4)

=
∑

Y =L,R

|Y |
|X|H[Y] (5)

is the conditional entropy of X given Y and |X| = |L|+ |R|.
SinceH[X] is independent of the split, the gain is maximized
whenever −H[X|Y] is,

double gain_(const data& L, const data& R) {
int l = L.size(), r = R.size();
return !(l&&r) ? -infty : -(l*H(L) + r*H(R)) / (l+r);

}

where a value of −∞ signifies that the trivial split Y =
{∅, X} is not an option. In fact, H[X|Y] is the expected

..

. .

..level 0 (root) ..level 1

. .

..level 2 ..level 3 (final)

Figure 3: Decision tree learning for a 2d problem at
each tree level. (Gray) random splits (lines); (ma-
genta) best splits found for each node at current
level; (black) best splits of previous levels, and final
ones.

(average) entropy of X when split according to Y, so we do
not split X unless −H[X|Y] is below gain threshold γ,

const double gamma = -0.1; // gain threshold

We certainly want to be able to compute the gain of multiple
splits at once, given by two arrays of data sets L,R of the
same length,

static binary_elem<double, const data&, const data&,
gain_> gain;

which is yet another convenience of an element function.

2.3.2 Tree learning
We are now in a position to define the entire tree learning
process, as illustrated in Figure 3. Given a data set X, we
shall try a number of random tests, each giving rise to a split,
looking for the one that best separates classes according to
our measure of information gain. Fixing the number S of
tests, or splits,

const int S = 10; // number of random tests / splits

we begin by generating an array t of random tests,

node* learn(const data& X) {
array<test> tests(S); tests[&test::gen](_[X]);

where we apply member function gen of class test to array
t of tests, giving an array X of samples as input! But X
is wrapped inside a scalar by _[], thus treated as a single
object rather than an array of objects, such that the loop
over t in t is the outer one.

Next, we split X according to each test t in t, measure its
gain, and maximize over t,

double g; int best; // max gain, best test
(_, g, best) = max++(gain[split(tests, _[X])]);

where element functions are connected into a processing
pipeline to do all the work in one line of code! Again, there �
are no temporaries for the entire expression: there is only
one for loop over t underneath, and for each t, an inner loop
over samples x ∈ X. And again, the loop over t becomes
the outer one by wrapping X inside a scalar.

Observe that split returns a tuple, while gain expects
two separate arguments L,R; syntax gain[] conveniently
provides a copy-free conversion. This is exactly the kind of
‘collaboration’ that extrema and rand had within test::gen

in section 2.1.3. By default, every ivl function has a fixed
output type—in particular, the maximum value of an array
for max. An extended ++ version enables output argument
overloading ! For instance, another option is a tuple con-
taining the maximizing index as well.
All that remains now is to keep splitting recursively and

recording our actions in split nodes, until the class label
distribution is pure enough or no more gain is possible (e.g .,
we are left with one sample),

if(g < gamma && !isinf(g)) {
data L, R; const test& t = tests[best];
(_, L, R) = split(t, _[X]);
return new split_node(t, learn(L), learn(R));

}

in which case we just record the residual class label distri-
bution in a leaf node,

return new leaf_node(hist(X[&sample::k]));
}

2.3.3 Forest learning
The learning process described so far refers to a single tree;
the element function that will lead to forest learning,

static unary_elem<tree, const data&, learn, loops::
intensive> core_learn;

has the optional property loops::intensive: given an array
of T trees, core_learn automatically distributes the work
load over multiple processing cores whenever possible, in-�
stead of simply iterating over trees in a single core! In fact,
namespace ivl::loops is the place where all for loops are
isolated, potentially executing concurrently while leaving all
remaining code in and out of ivl as clean as possible.
Then, starting with a single data set X, all we need to do

is artificially replicate it into an array of T virtual copies of
X, and feed this array into core_learn,

forest learn(const array<sample>& X)
{ return core_learn(rep(T, data(X))); }

where the constructor of data is needed to generate a view
of the given array of samples. Ideally, each CPU core will
learn a different randomized decision tree! Given multiple
training images, one would employ different, possibly over-
lapping, random subsets of the data for each tree; but we
keep things as simple as possible and train the classifier on
a single image.

2.4 Image classification
We now complete the remaining operations required for the
collection of samples from pairs of input images and class
label maps for training, and the construction of label images
from classifier output. The ground truth consists of a man-
ually generated image of pixel class labels for each input
image, either used for training, or for evaluating classifica-
tion performance. These images are color-coded, so we shall
provide class label map ↔ label image conversions.
It is convenient to group an input image and a class label

map into a structure named, well, quite unimaginatively,
group,

struct group { image<double> im; array_2d<int> id; };

id class rgb color id class rgb color

0 void 000 . 12 car 102 .
1 building 200 . 13 bicycle 302 .
2 grass 020 . 14 flower 122 .
3 tree 220 . 15 sign 322 .
4 cow 002 . 16 bird 010 .
5 horse 202 . 17 book 210 .
6 sheep 022 . 18 chair 030 .
7 sky 222 . 19 road 212 .
8 mountain 100 . 20 cat 032 .
9 aeroplane 300 . 21 dog 232 .
10 water 120 . 22 body 110 .
11 face 320 . 23 boat 310 .

Table 2: MSRC class label ids, names, rgb values
(divided by 64), and colors.

where ivl array_2d is an optimized array of fixed dimen-
sionality 2. By contrast, the dimension of a general ivl
array_nd is a property rather than a static template param-
eter, and may change after construction. In fact, ivl image

is an array_nd with an arbitrary number of color channels
in its third dimension. Every ivl array type can also be
seen as an one-dimensional array, can access the underly-
ing data as stored in memory and can be reshaped without
actual data reallocation.

2.4.1 Sampling
We represent an image position by an ivl 2d point, assigned
a row r and a column c, also referred to as coordinates y,x.
Given a group g and position q, we find the range of image
rows and columns for a square patch of side α pixels that is
centered at q,

sample pick(const point<int>& q, const group& g) {
sample x; int h = alpha / 2; // half-side
x.p = g.im((q.r-h,_,q.r+h), (q.c-h,_,q.c+h), _);

where (a,_,b) denotes an ivl range equivalent to Mat-
lab’s (a:b). We then use the ranges to refer indirectly
to all three color channels of this patch in the input image,
with ivl syntax a(i,j,_) providing multidimensional array �
indexing equivalent to Matlab’s a(i,j,:); however, the re-
sulting sub-array is a view rather than a copy, since a patch
is defined as such.

Of course, indexing works as well for single coordinates or
just a point. This is the case for the class label image, which
we only sample when training,

if(!g.id.empty()) x.k = g.id(q);
return x;

}

During learning, an image is sparsely sampled on a grid of
overlapping patches, with a grid step σ fixed here,

const int sigma = 5; // grid step

Given a group g, we specify the rows and columns of grid
positions, leaving a margin of half patch side around the
images of g,

array_2d<sample> sparse(const group& g, int s = sigma) {
int h = alpha / 2; // half-side
size_range rows = (h,_,s,_,g.im.rows()-h-1);
size_range cols = (h,_,s,_,g.im.cols()-h-1);

with (a,_,b,_,c) being equivalent to Matlab’s (a:b:c)

(a range from a to c with step b). We then sample g at all
positions on the grid by

Figure 4: Example images from the MSRC dataset. Rows 1 and 3 rows depict input images, while rows 2
and 4 depict the associated ground truth, representing class labels by the color codes of Table 2.

return _[pick](pnt[grid(rows, cols)], _[g]);
}

In doing so, we construct an ivl 2d grid comprising two 2d
coordinate arrays, which we couple into a single 2d array of
points by pnt; grid is similar to Matlab’s meshgrid but
with row-first ordering, as in matrices. Wrapped inside _[],�
pick becomes an element function that now applies to a 2d
array of points and, maintaining their size and shape, yields
a 2d array of samples! By contrast, g is treated as a scalar

as in previous examples. Whether one uses a temporary
element function by _[] or defines a named one is really a
matter of taste and intended usage.
On the other hand, classification typically involves dense

sampling of one patch centered on every pixel. Thanks to
our definition above, dense sampling is no more than sparse
sampling of step 1,

array_2d<sample> dense(const group& g)
{ return sparse(g, 1); }

2.4.2 Class label coding
Class label images are typically color-coded images of pixel
class labels of the same size as input images. Class labels
and color codes for MSRC are shown in Table 2. Observing
that rgb codes take values in {0, 1, 2, 3} when divided by 64,
we can encode each rgb tuple by a single base-4 integer,

const int c[K] =
{ 0, 32, 8, 40, 2, 34, 10, 42, 16, 48, 24, 56,

18, 50, 26, 58, 4, 36, 12, 38, 14, 46, 20, 52 };
const array<int> colors(c);

where we conveniently initialize an ivl 1d array by a C
array. This is an array of length K = 24, mapping class
labels to color codes; the inverse mapping is given by

array<int> labels() {
array<int> id(max(colors) + 1, 0);
id[colors] = (0,_,K-1); return id;

}

making use of indirect array indexing and ranges, exactly
as in Matlab. With the two mappings at hand, we can
easily provide for image → label map conversion by dividing
color channels by 64, converting from base-4 to base-10 and
mapping to label,

array_2d<int> im2label(const image<unsigned char>& im) {
return labels() [im(_,_,0) / 64 +

im(_,_,1) / 16 + im(_,_,2) / 4];
}

where, as in Matlab, im(_,_,i) is the complete i-th color
channel of image im. Similarly, for label map → image con-
version, we map to color code, convert back to base-4, and
multiply by 64,

image<unsigned char> label2im(const array_2d<int>& id) {
image<unsigned char> im(id.rows(), id.cols(), 3);
array_2d<int> c = colors[id];
im(_,_,2) = c >> 4; im(_,_,0) = c;
im(_,_,1) = c >> 2; im &= 3; return im <<= 6;

}

where we now choose to take advantage of bitwise operators.
Yet, this may be considered kind of ‘wordy’. State of the
art ivl code would do the same in just one line of code, but
is still experimental.

And that’s it! We can now close the forests namespace.

} // namespace forests

2.5 Main program
What is left for the main program is really simple. We begin
by declaring the use of namespaces ivl and forests,

int main(int argc, char** argv) {
using namespace ivl;
using namespace forests;

Then, assuming that the first two program arguments are
the filenames of an input image and its ground truth for
training, we load them into a group and display them

group g; g.im = imread<double>(argv[1]);
g.id = im2label(imread<unsigned char>(argv[2]));
imshow(g.im, "training image");
imshow(label2im(g.id), "ground truth");

with template versions of Matlab’s or OpenCV’s com-
mands imread, imshow, internally using OpenCV. Finally,
we train a decision forest on sparse samples of the single
input image,

forest F = learn(sparse(g));

and classify another input image given as a third argument,

Figure 5: Classification for images 8 (left) and 9
(right) of sequence 8 (‘bicycle’), with training on
image 8 only. (Top) input images; (middle) ground
truth; (bottom) classification labels.

hopefully of similar class labels,

g.im.load(argv[3]); g.id = _;
imshow(g.im, "test image");
g.id = classify(F, dense(g));
imshow(label2im(g.id), "classification");

}

where again, classify maintains the size and shape of its
input samples, yielding a 2d array of labels! Syntax a=_ just
clears array a.
Let us run the program! Figure 4 shows a few samples

of the MSRC dataset; we first choose the ‘bicycle’ sequence.
Figure 5 shows the result of two runs, on the same image
used for training and a different one. Training and testing
take approximately 500 ms and 50 ms, respectively. Another
example from the ‘road’/‘building’ sequence is given in Fig-
ure 6. Observe that ‘sky’ is correctly classified even where
ground truth incorrectly says otherwise. However, data for
‘car’ are far too few for the classifier to learn: it fails even
in the training image!
This completes our example of a very basic but complete

working version of a randomized decision forest classifier for
images. The result is pretty good for the simplicity of the
method, small size of the training set, and small number of
tests, S = 10. Extending to multiple training images, other
datasets, or performance evaluation, is left to the reader.
For really more than a toy, one may consult [3], [2].

3. SO WHAT IS ivl?
ivl is a fully templated C ..++ library with convenient syntax
for arrays, matrices, images, tuples and functions, including
mathematical operations upon them. Often resembling a
new language, it targets abstract, concise, readable, yet ef-
ficient code. It supports the principle that the path from
theory and pseudocode through rapid prototyping to ‘pro-
duction quality’ software should be as short as possible.

Figure 6: Classification for images 23 (left) and 26
(right) of sequence 17 (‘road’/‘building’), with train-
ing on image 23 only. (Top) input images; (middle)
ground truth; (bottom) classification labels.

ivl consists of the core library and, currently, two mod-
ules: ivl-lina, wrapping Lapack4 linear algebra functions,
and ivl-cv, using OpenCV for image processing and com-
puter vision. The ivl core library does not depend on
any external libraries. It is compilable with most modern
ISO C ..++98 compilers and automatically configured and in-
stalled on any operating system using CMake. The entire
core library has no single piece of non-header code, while
pre-processor macros are strictly limited to platform and
module options.

The core library uses a number of advanced meta-pro-
gramming techniques including a modification of curiously
recurring template pattern (CRTP), and a number of perfor-
mance tools such as STL-compatible iterators, n-dimensio-
nal iterators, automatically-controlled lazy evaluation and
dynamic multithreading. Based upon templates, the com-
piler is utilized to solve meta-problems related to how data
can be stored or copied in the most efficient way. Along with
inlining and compiler optimization, this results in transform-
ing tedious loops into high-level code that is often equivalent
to the optimum C code in performance. No more space is
allocated for ivl objects than absolutely necessary.

The fundamental class of ivl is array. It is templated on
the type of data it holds, e.g . array<int>, array<float>,
and on how it manipulates data, e.g . array<T, fixed<N> >,
array<T, subarray<A,I> >. There is a class hierarchy hav-
ing array as the base class, array_nd as the n-dimensional
derived class, and array_2d, image as higher level derived
classes. Each inheritance layer has added functionality, e.g .
array_2d supports matrix multiplication. n-dimensional ar-
rays can be viewed as one-dimensional as defined by their
base class array<T,D>, with ‘unfolded’ dimensions.

Operators on the underscore character _ conveniently con-
struct e.g . a tuple, a range or a function object, while com-

4http://netlib.org/lapack/

http://netlib.org/lapack/

pound operators beyond C ..++ support are defined including
array concatenation, matrix multiplication, left/right divi-
sion, power, and (conjugate) transpose. Tuples equip func-
tion objects with left/right argument overloading and mul-
tiple return values without copies. Function pipelining and
serializing makes code more abstract and extremely com-
pact, eliminating temporary storage and taking care of the
underlying, optionally parallel, implementation.
ivl is at the moment in a pre-release version where correc-

tions, feature completions and performance improvements
are constantly taking place. However, all syntax is fully
working and well optimized. Its documentation includes a
leisurely introduction by example, a complete reference, and
a number of samples, with this document not being an ex-
ception.
Apart from integrating with more scientific libraries for

e.g . numeric computation or visualization, there is also a
lot of undergoing development in directions like tensor no-
tation and functional programming, which can give entirely
new perspectives to scientific computing. Massively parallel
computation on GPU is not supported yet but may follow
with minimal effort, given that e.g . for loops are very lim-
ited and completely isolated.
We hope you have enjoyed this quick tour of ivl and

welcome you to try it, starting from its project home5, or at
SourceForge6. There is much more to explore!

4. REFERENCES
[1] P. Geurts, D. Ernst, and L. Wehenkel. Extremely

randomized trees. Machine Learning, 63(1):3–42, 2006.

[2] F. Moosmann, E. Nowak, and F. Jurie. Randomized
clustering forests for image classification. PAMI,
30:1632–1646, 2008.

[3] J. Shotton, M. Johnson, and R. Cipolla. Semantic
texton forests for image categorization and
segmentation. In CVPR, 2008.

5http://image.ntua.gr/ivl/
6http://sourceforge.net/projects/ivl/

http://image.ntua.gr/ivl/
http://sourceforge.net/projects/ivl/

