
EJNIKO METSOBIO POLUTEQNEIO
SQOLH HLEKTROLOGWN MHQANIKWN KAI MHQANIKWN

UPOLOGISTWN
TOMEAS TEQNOLOGIAS PLHROFORIKHS KAI UPOLOGISTWN
ERGASTHRIO EXERGASIAS EIKONAS BINTEO KAI POLUMESWN

Kat�tmhsh Fusik¸n Eikìnwn

me Teqnikèc AposÔnjeshc SkeletoÔ

DIPLWMATIKH ERGASIA

tou

SpurÐdwnoc M. Leon�rdou

Epiblèpwn: Stèfanoc Kìlliac
Kajhght c E.M.P.

Aj na, M�rtioc 2012

EJNIKO METSOBIO POLUTEQNEIO
SQOLH HLEKTROLOGWN MHQANIKWN KAI MHQANIKWN

UPOLOGISTWN
TOMEAS TEQNOLOGIAS PLHROFORIKHS KAI UPOLOGISTWN
ERGASTHRIO EXERGASIAS EIKONAS BINTEO KAI POLUMESWN

Kat�tmhsh Fusik¸n Eikìnwn

me Teqnikèc AposÔnjeshc SkeletoÔ

DIPLWMATIKH ERGASIA

tou

SpurÐdwnoc M. Leon�rdou

Epiblèpwn: Stèfanoc Kìlliac
Kajhght c E.M.P.

EgkrÐjhke apì thn trimel exetastik epitrop thn 19h MartÐou 2012.

(Upograf)

..

Stèfanoc Kìlliac

Kajhght c E.M.P.

(Upograf)

..

Stafulop�thc Andrèac-Ge¸rgioc

Kajhght c E.M.P.

(Upograf)

..

St�mou Ge¸rgioc

Lèktorac E.M.P.

Aj na, M�rtioc 2012

...................................
SpurÐdwn M. Leon�rdoc
DiplwmatoÔqoc Hlektrolìgoc Mhqanikìc kai Mhqanikìc Upologist¸n E.M.P.

Copyright c© SpurÐdwn M. Leon�rdoc (2012) Ejnikì Metsìbio PoluteqneÐo.
Me epifÔlaxh pantìc dikai¸matoc. All rights reserved.
ApagoreÔetai h antigraf , apoj keush kai dianom thc paroÔsac ergasÐac, ex olokl rou
 tm matoc aut c, gia emporikì skopì. Epitrèpetai h anatÔpwsh, apoj keush kai dianom
gia skopì mh kerdoskopikì, ekpaideutik c ereunhtik c fÔshc, upì thn proôpìjesh na
anafèretai h phg proèleushc kai na diathreÐtai to parìn m numa. Erwt mata pou aforoÔn
th qr sh thc ergasÐac gia kerdoskopikì skopì prèpei na apeujÔnontai proc ton suggrafèa.
Oi apìyeic kai ta sumper�smata pou perièqontai se autì to èggrafo ekfr�zoun ton sug-
grafèa kai den prèpei na ermhneujeÐ ìti antiproswpeÔoun tic epÐshmec jèseic tou EjnikoÔ
Metsìbiou PoluteqneÐou.

EuqaristÐec

H paroÔsa diplwmatik ergasÐa ekpon jhke kat� to akadhmaðkì ètoc 2011-2012
sto Ergast rio Yhfiak c EpexergasÐac Eikìnac, BÐnteo kai Polumèswn tou EjnikoÔ
Metsìbiou PoluteqneÐou. Ja jela na euqarist sw ton epiblèponta Kajhght k.
Stèfano Kìllia gia thn empistosÔnh pou mou èdeixe anajètont�c mou thn ergasÐa au-
t kai gia th dunatìthta pou mou èdwse na asqolhj¸ me to sugkekrimèno endiafèron
jèma. EpÐshc, euqarist¸ idiaÐtera ton Dr. Iw�nnh AbrÐjh gia thn kajod ghs tou
kai gia thn exairetik sunergasÐa pou eÐqame. Tèloc, ja jela na euqarist sw touc
goneÐc mou gia thn kajod ghsh kai thn hjik sumpar�stash pou mou prosèferan ìla
aut� ta qrìnia.

5

6

PerÐlhyh

Sthn paroÔsa diplwmatik ergasÐa parousi�zontai teqnikèc kat�tmhshc eikìnwn
basismènec se mÐa diadikasÐa aposÔnjeshc skeletoÔ. Xekin¸ntac apì to mètro thc dis-
di�stathc klÐshc thc eikìnac th gkrÐza eikìna akm¸n thc, upologÐzoume èna stajmi-
smèno metasqhmatismì apìstashc kai ton antÐstoiqo stajmismèno skeletì mèsw miac
diadikasÐac grammikoÔ qrìnou. Efarmìzontac, t¸ra, ton Ðdio mesqhmatismì apìsta-
shc apì to skeletì an�poda, lamb�noume duadik� mia arqik kat�tmhsh thc eikìnac
kai èna gr�fo pou anaparist� th dom c thc eikìnac. Autì einai isodÔnamo me efarmo-
g metasqhmatismoÔ watershed sto stajmismèno metasqhmatismì apìstashc. 'Omwc,
eÐnai pio apodotikì afoÔ pr¸ta aposunjètoume to skeletì kai Ôstera qrhsimopoioÔme
th diadikasia grammikoÔ qrìnou gia th di�dosh thc aposÔnjeshc sthn upìloiph epi-
f�neia thc eikìnac. Anaparist¸ntac thn eikìna wc disjoint-set forest dom , en¸noume
geitonikèc perioqèc b�sei k�poiwn krithrÐwn. Di�fora krit ria upolopoi jhkan kai
axiolog jhkan. Kat� to pr¸to apì aut� ta krit ria, qrhsimopoioÔme to Ôyoc twn
shmeÐwn sèllac tou skeletoÔ gia na ekfr�soume thn omoiìthta metaxÔ geitonik¸n
perioq¸n. Mia deÔterh diaforetik kateÔjunsh pou akoloujoÔme einai h qr sh e-
nìc mètrou kleistìthtac twn perioq¸n thc eikìnac gia na apofasÐsoume e�n prèpei
na en¸soume dÔo geitonikèc perioqèc. TrÐth kai teleutaia kateÔjunsh einai h qr sh
enìc mètrou anomoiomorfÐac metaxÔ dÔo perioq¸n pou ikanopoieÐ thn upermetrik i-
diìthta. Me autì ton tropo, ulopoioÔme mia ierarqik kat�tmhsh eikìnac. Gia to
mètro anomoiomorfÐac metaxÔ perioq¸n qrhsimopoioÔme th mèsh tim tou mètrou thc
disdi�stathc klÐshc sto koinì sÔnoro twn dÔo perioq¸n kaj¸c kai èna mètro klei-
stìthtac tou koinoÔ sunìrou. 'Olec oi parap�nw teqnikèc axiologoÔntai me b�sh th
sullog dedomènwn tou panepisthmÐou Berkeley kai sugkrÐnontai me gnwstèc teqnikèc
thc bibliografÐac. QwrÐc m�jhsh, petuqaÐnoume polÔ kal� apotelèsmata kont� sth
st�jmh thc teqnik c kai me polÔ praktikoÔc qrìnouc ektèleshc.

Lèxeic Kleidi�

'Orash upologist¸n, epexergasia eikìnac, kat�tmhsh, skeletìc, aposÔnjesh ske-
letoÔ, anÐqneush akm¸n, gr�foi geitnÐashc perioq¸n, mèjodoi taqeÐac prospèlashc,
stajmismènoc metasqhmatismìc apìstashc, algìrijmoc akriboÔc prospèlashc kat�
om�dec.

7

8

Abstract

In the framework of this thesis, we present new image segmentation techniques
based on a weighted medial axis decomposition procedure. Starting from image
gradient or grayscale contour map, we first compute a weighted distance map and
its weighted medial axis by a linear-time process. Now, applying the same distance
propagation from the medial axis backwards, we dually obtain an initial image
partition and a graph representing image structure. This is equivalent to applying
watershed transform on the weighted distance map, hence is both topological and
contrast-weighted. However, it is more efficient because we first decompose the
medial axis and then use our linear-time process to propagate on the remaining
image surface. Using a disjoint-set data structure, we then merge adjacent regions
according to some criteria. Several different criteria were examined and tested.
First, we use medial axis saddle point height to express similarity between adjacent
regions and merge correspondingly. A second distinct direction we follow is to
merge adjacent regions according to how fragmented they are. Last but not least, we
use ultrametric contour map representation to implement hierarchical segmentation.
As inter-region ultrametric dissimilarities, we use mean boundary strength on the
common boundary between adjacent regions and inter-region fragmentation. All the
above mentioned techniques are evaluated using the Berkeley Segmentation Dataset
and compared with some state of the art algorithms. Without learning, we achieve
performance near the state of the art with very practical running times.

Keywords

Computer vision, image processing, segmentation, partition, grouping, medial axis,
skeleton, medial axis decomposition,weighted distance transform, region adjacency
graphs, exact group marching, fast marching methods, contour detection, watershed.

9

10

Contents

1 Introduction 19

1.1 Defining image segmentation . 19

1.2 Motivation . 20

1.3 Thesis outline . 22

2 Literature survey on image segmentation methods 25

2.1 Generic image segmentation methods 25

2.2 Related Work . 28

2.2.1 Watershed Transform . 28

2.2.2 Oriented watershed transform and ultrametric contour map . 31

2.2.3 Efficient graph-based image segmentation 32

3 Contour detection 35

3.1 Baseline Canny contour detection . 35

3.2 Globalized probability of boundary 36

4 Distance transforms 41

4.1 Distance transform . 41

4.1.1 Definitions . 41

4.1.2 Distance transform as wave propagation 42

4.1.3 Distance transform as infimal convolution 44

4.2 Solving the eikonal equation . 45

4.2.1 Fast marching methods . 45

4.3 Weighted distance transform and the exact group marching algorithm 47

11

5 Medial axis 51

5.1 Introduction . 51

5.2 Weighted medial axis . 52

6 Image partition 57

6.1 Medial Axis Decomposition . 57

6.2 Image partition . 58

7 Adjacent region merging 63

7.1 Efficient Merging based on similarity 63

7.2 Merging controlled by region fragmentation 65

7.3 Hierarchical segmentation and ultrametric contour maps 67

7.3.1 Inter-region fragmentation ultrametric dissimilarity 69

7.3.2 Mean Boundary Gradient Ultrametric Dissimilarity 70

8 Evaluation 71

8.1 Introduction . 71

8.2 Dataset . 71

8.3 Evaluation metrics . 73

8.3.1 Precision-recall framework . 73

8.3.2 Variation of information . 73

8.3.3 Rand index . 74

8.3.4 Segmentation covering . 75

8.4 Results . 75

8.5 Evaluation . 82

8.5.1 Boundary benchmarks . 83

8.5.2 Region benchmarks . 83

8.6 Discussion . 83

9 Conclusions 87

9.1 Conclusions . 87

9.2 Future work . 87

12

A Proofs 89

13

14

List of Tables

8.1 Boundary benchmarks on the BSDS500. 84

8.2 Region benchmarks on the BSDS500. 85

15

16

List of Figures

1.1 Implemented segmentation framework 23

2.1 Topographic surface of an image with the corresponding catchment
basins and watershed ridge lines . 29

2.2 Watershed flooding procedure . 30

2.3 Oversegmentation produced by applying watershed transform directly
to image gradient . 30

2.4 Determination of the h-domes of a grayscale image 31

2.5 Segmenting a medical image using marker-controlled watershed trans-
form . 31

3.1 Canny contour detection . 36

3.2 Oriented gradient of histograms . 37

3.3 Filters for creating textons . 38

3.4 Probability of boundary . 39

3.5 Eigenvectors carry contour information 40

3.6 Globalized probability of boundary 40

4.1 Euclidean distance transform visualized as wave propagation 42

4.2 Normalized euclidean distance transform 43

4.3 Upwind construction of accepted values in fast marching methods . . 46

4.4 Weighted distance transform computed with the exact group march-
ing algorithm . 50

5.1 Illustration of a binary shape and its medial axis 51

5.2 Binary shapes and corresponding medial axes 52

5.3 Medial axis for multiple values of the pruning parameter 54

17

5.4 Weighted medial axis computed with the WMA algorithm 55

6.1 Medial axis decomposition . 58

6.2 One dimensional illustration of duality between medial axis and source
set . 60

6.3 Image partition procedure . 61

6.4 Effect of the scale parameter of the EGM algorithm to the finesse of
the initial partition . 62

7.1 Illustration of an ultrametric contour map 68

8.1 Human ground-truth of Berkeley Segmentation Dataset 72

8.2 Precision-recall curve . 74

8.3 Segmentation results on the BSDS500 produced by the gPb-mad-esf
algorithm using a constant value threshold 76

8.4 Additional segmentation results on the BSDS500 produced by the
gPb-mad-esm algorithm using a constant value threshold 77

8.5 Segmentation results on the BSDS500 produced by the gPb-mad-esm
algorithm using a threshold based on region size 78

8.6 Segmentation results on the BSDS500 produced by the gPb-mad-sfm
algorithm. 79

8.7 Hierarchical segmentation results on the BSDS500 produced by using
the inter-region fragmentation ultrametric dissimilarity 80

8.8 Hierarchical segmentation results on the BSDS500 produced by using
the boundary strength ultrametric dissimilarity 81

8.9 Additional hierarchical segmentation results on the BSDS500 pro-
duced by using the boundary strength ultrametric dissimilarity 82

18

Chapter 1

Introduction

1.1 Defining image segmentation

The problem of image segmentation is one of the most fundamental problems in
the field of computer vision. Although it has been studied since the early years of
computer vision, segmentation still remains a great challenge. Since the time of the
Gestalt movement in psychology, it has been known that perceptual grouping plays
a powerful role in human visual perception. In late 1930’s Wertheiner [54] described
perceptual grouping as following: “I stand at the window and see a house, trees,
sky. Theoretically, I might say there were 327 brightnesses and nuances of colour.
Do I have “327”? No. I have sky, house, and trees. It is impossible to achieve “327”
as such. And yet even though such droll calculation were possible and implied, say,
for the house 120, the trees 90, the sky 117 – I should at least have this arrangement
and division of the total, and not, say, 127 and 100 and 100; or 150 and 177.”

More specifically, image segmentation is described as the process of partitioning
an image into disjoint regions, each one being homogeneous and connected with
respect to one or multiple cues such as image intensity, texture, color, motion and
others. The goal of image segmentation is to cluster pixels into salient image regions,
i.e. regions corresponding to individual surfaces, objects or natural parts of objects.
Hence, one can easily see that there is no single definition of segmentation. In fact, it
is impossible to generally formulate the exact goals of segmentation, as Marr [33] has
underlined. Thus, it can be concluded that segmentation is application-dependent
and finding a unique solution is, in general, ambiguous.

A formal definition of segmentation is presented by Gonzalez and Woods [23].
Let X represent the spatial domain that is occupied by an image. In this case, image
segmentation process can be considered as a procedure which separates space X into
n discrete regions R1, R2, .., Rn in such a manner that the following properties are
satisfied:

(a) Ri is a connected set for all i = 1, 2, 3, .., n

19

(b)
n⋃
i=1

Ri = X

(c) Ri ∩Rj = ∅ for all i, j with i 6= j

Condition (a) denotes that all elements of a region Ri must be connected under a
predefined manner (e.g. 4-connectivity or 8-connectivity). The next condition de-
mands that the process of segmentation must be complete, i.e. each image element
(pixel) must belong to some region Ri. Moreover, according to the third condition
all regions to which the original image is divided into must be disjoint or mutually
exclusive. In addition, two more properties related to the termination of the seg-
mentation procedure, must be satisfied. Given a logical predicate Q(Ri) defined for
all discrete regions Ri, segmentation procedure must terminate when

(d) Q(Ri) = true for all i = 1, 2, 3, .., n

(e) Q(Ri ∩Rj) = false for any two adjacent regions Ri and Rj

where two regions Ri and Rj are adjacent if and only if their union is a connected
set. Condition (d) denotes that predicate Q must be true for each discrete region Ri

whereas any two adjacent regions Ri and Rj must differ considering Q. Note that a
specific segmentation S or partition P of an image is defined as the set containing
all the discrete subregions R1, R2, .., Rn into which the image is divided.

Image segmentation is one of the most popular computer vision problems because
it is related to a wide range of applications as numerous visual tasks benefit from the
existence of some hundreds or thousands “superpixels” rather than millions of pixels.
Segmentation is closely connected to object detection and recognition and there is
huge literature on methods combing these two problems [20, 22, 28, 53]. Some other
popular applications of segmentation and grouping include topics such as occlusion
boundary estimation within motion systems [47], object-based image compression
[52], content-based image retrieval [8], medical imaging [41], face recognition [29, 57],
iris recognition [17, 21] and fingerprint recognition [36].

1.2 Motivation

Significant psychophysical evidence suggests that when looking at a natural scene
the visual brain differentiates the scene into surface regions and boundary contours
that delineate possible meaningful object parts. More specifically, two important
research results support the explicit use of the medial axis in the human visual
system, one using psychophysics and the other through neurophysiological data.
First, Kovacs and Julesz [25] showed that the detection of closed curves in an am-
biguous scene is much easier than the detection of open curves. Furthermore, they
showed that this notion of closure is associated with an enhancement of feature
detection inside the figure as opposed to outside the figure. The non-uniformity of
this enhancement showed peaks at central loci of the figure, which they correlated
very closely to the medial axis of the shape. In addition, Lee et al. [27] confirmed

20

Lamme’s empirical findings of an enhancement inside a figure indicated by texture
or motion boundaries [26] and explored the spatial and dynamical aspects of such a
response. They showed that the enhancement in response was not spatially uniform
but rather showed distinct peaks at the boundary of the figure, and more interest-
ingly, at its medial axis. Thus, the initial local edge contrast perceived by human
vision system is expected to improve with feedback from higher areas which have a
more abstract and global view of the image. In conclusion, there is strong scientific
evidence that the visual brain uses medial axes to assist in scene segmentation and
perceptual grouping. Our motivation for a segmentation framework based on medial
axis derives from this evidence in conjunction with the fact that medial axis has not
been extensively studied as a means towards image partitioning.

The segmentation method presented in the framework of this thesis originates at
the medial feature detector. Avrithis and Rapantzikos [7] developed a framework for
blob-like feature detection. Although this work focused on a different problem, i.e.
feature detection, it produces an initial image partition (oversegmentation). They
introduced a medial axis decomposition based method to obtain this initial partition.
This image representation is more descriptive than the classic watershed transform
[9] concerning region boundaries. Using the above representation, we do not only
overcome contour discontinuities and boundary fragmentation but we can measure
the fragmentation of a boundary curve or the fragmentation of an entire region.

Apart from boundary description, the initial partition of [7] has some advantages
over the watershed transform used in mathematical morphology [9]. The latter has
the drawback that the initial produced oversegmentation is too fine to be exploited.
This problem has been partially dealt with the introduction of marker controlled wa-
tershed. On the one hand, the marker controlled watershed seems to function pretty
well for blob-like objects subtraction from the background. On the other hand, this
approach has not proved to be general enough but is rather image-dependent. The
initial partition of [7] is not as fine as classic watershed output but it still preserves
boundaries quality. In fact, finesse of the initial partition can be controlled by a
scale parameter in the weighted distance map computation. Last but not least, it
is more efficient because first the medial axis is decomposed and then region labels
are propagated on the remaining image surface in linear-time.

Our contribution is the implementation, examination and evaluation of several
merging criteria and techniques to process the initial partition at hand, i.e. to turn
the oversegmentation into a “proper” partition. As the term “proper partition” is
ambiguous we define that, in the framework of this thesis, the “proper” partition we
seek is the closest possible partition to human ground-truth segmentations. Human
segmentations are provided along with a set of images in the Berkeley Segmentation
Dataset [4, 34].

Felzenszwalb and Huttenlocher [18] presented an efficient graph based merging
technique. It is of special interest that they define as inter-region dissimilarity as the
minimum edge weight connecting the two regions. In such a way, the total merging
process reduces to a single sorting process and a single pass from each graph edge to

21

evaluate whether the two corresponding regions should be merged or not. We adopt
an analogous efficient merging process in the implemented framework. Furthermore,
to include semi-global information from the total area of any two adjacent regions,
we propose a second similar efficient merging technique in which adjacent region
merging is controlled by an area fragmentation factor. In addition, we propose a
method with two variants which exploits information related to region boundaries
and uses the notion of ultrametric contour maps [2]. Using dissimilarities that satisfy
the ultrametric property we manage to implement hierarchical segmentation. The
ultrametric dissimilarities we use are based on mean boundary strength between
adjacent regions and inter-region fragmentation.

Overall, the segmentation method presented in the framework of this thesis can
be summarized in the following six steps :

Contour Detection

Weighted Distance Transform

Weighted Medial Axis

Medial Axis Decomposition

Domain Partition

Adjacent Region Merging

1.3 Thesis outline

This diploma thesis structure is generally based on the discrete steps of the
implemented segmentation framework. Chapter 2 includes a literature survey on
generic image segmentation methods. Several methods are briefly described, from
simplest methods to more sophisticated state-of-art algorithms. Greatest attention

22

Figure 1.1: Top row, from left to right: input image, grayscale contour map
and normalized weighted distance transforms. Bottom row, from left to right:
medial axis(in red), initial partition and final partition after the merging process.

has been given to methods related to the proposed technique. In Chapter 3, the
two contour detectors whose outputs are used in order to compute the weighted
distance transform. The baseline Canny contour detector is first presented and
then the state-of-art global probability of boundary detector. In Chapter 4, the-
ory and definitions of distance transforms are presented. Then, general algorithms
for computing distance transforms such as the fast marching methods are discussed
along with the algorithm implemented for the computation of the weighted distance
transform, i.e. the linear-time exact group marching algorithm. In Chapter 5,
the concept of medial axis is briefly discussed and then the algorithm of the com-
putation of the weighted medial axis is presented. In Chapter 6, the algorithm for
the weighted medial axis decomposition is described along with the way of obtain-
ing an initial image partition by a dual distance propagation. In Chapter 7, the
merging techniques are presented along with their properties and implementation
issues. Chapter 8 includes evaluation and comparison of our segmentation tech-
niques using the Berkeley segmentation dataset with some well-know state of the
art segmentation algorithms. In addition, we illustrate representative results for the
several implemented techniques. In Chapter 9, several conclusions derived from
this thesis are presented along with directions for future work. In Appendix A,
several basic proofs of the majority of lemmas and algorithms are included.

23

24

Chapter 2

Literature survey on image
segmentation methods

2.1 Generic image segmentation methods

Image segmentation methods can be classified into two broad categories: boundary-
based approaches, which generate an edge image which delineates the segments of
the image, and region-based approaches, which group image pixels based on the
homogeneity of spatially localized features.

The simplest form of segmentation is thresholding. A threshold is defined and
then every pixel in an image is compared with this threshold. If the pixel lies above
the threshold it will be marked as foreground. Otherwise, it will be marked as back-
ground. The threshold will most often be an intensity or colour value. Other forms
of thresholding exist where the threshold is allowed to vary across the image, but
thresholding is a primitive technique, and will only work for very simple segmenta-
tion tasks. The key of this method is to select the threshold value. Several popular
methods can be used for this purpose including the maximum entropy method and
Otsu’s method [40] (maximum variance).

Compression based methods postulate that the optimal segmentation is the
one that minimizes, over all possible segmentations, the coding length of the data.
Mobahi et al. [37] describe each segment by its texture and boundary shape. Each of
these components is represented by a probability distribution function and its coding
length is computed as follows: the boundary encoding leverages the fact that regions
in natural images tend to have a smooth contour. This prior is used by Huffman
coding to encode the difference chain code of the contours in an image. Thus, the
smoother a boundary is, the shorter coding length it attains. Texture is encoded by
lossy compression in a way similar to minimum description length (MDL) principle,
but here the length of the data given the model is approximated by the number of
samples times the entropy of the model. The texture in each region is represented
by a multivariate normal distribution whose entropy has closed form expression. For

25

any given segmentation of an image, this scheme yields the number of bits required
to encode that image based on the given segmentation. Thus, among all possible
segmentations of an image, the goal is to find the segmentation which produces the
shortest coding length. This can be achieved by a simple agglomerative clustering
method. The distortion in the lossy compression determines the coarseness of the
segmentation. It has the drawback that distortion optimal value may differ for each
image.

Another broad family of segmentation techniques includes clustering methods.
One basic representative of this category is the k-means algorithm, an iterative
technique that is used to partition an image into K clusters. The basic algorithm
proceeds as following:

1. Initialize the K cluster centers.

2. Assign each pixel in the image to the cluster that minimizes the distance between
the pixel and the cluster center.

3. Recompute cluster centers by averaging all of the pixels in the cluster.

4. Repeat steps 2 and 3 until convergence.

In this case, distance is the squared or absolute difference between a pixel and a
cluster center. The difference is typically based on pixel color, intensity, texture,
location or a weighted combination of these. k-means is guaranteed to converge,
but it may not return the optimal solution. The quality of the solution depends on
initializations and on the value of K. It is similar to the expectation-maximization
algorithm for mixtures of Gaussians in that they both attempt to find the centers
of natural clusters in the data. The objective it tries to achieve is to minimize total
intra-cluster variance, or, the squared error function. In terms of performance the
algorithm is not guaranteed to return a global optimum. The quality of the final
solution depends largely on the initial set of clusters, and may, in practice, be much
poorer than the global optimum. A drawback of the k-means algorithm is that the
number of clusters K is an input parameter. An inappropriate choice of K may
yield poor results. The algorithm also assumes that the variance is an appropriate
measure of cluster scatter.

The mean shift algorithm [15] offers an alternative clustering framework. Pixels
are represented in the joint spatial-range domain by concatenating their spatial
coordinates and color values into a single vector. Applying mean shift filtering in this
domain yields a convergence point for each pixel. Regions are formed by grouping
together all pixels whose convergence points are closer than hs in the spatial domain
and hr in the range domain, where hs and hr are respective bandwidth parameters.
Additional merging can also be performed to enforce a constraint on minimum region
area.

Histogram-based methods are very efficient when compared to other image seg-
mentation methods because they typically require only one pass through the pixels.
In this technique, a histogram is computed from all of the pixels in the image, and

26

the peaks and valleys in the histogram are used to locate the clusters in the im-
age [46]. Color or intensity can be used as the measure. One disadvantage of the
histogram-seeking method is that it may be difficult to identify significant peaks
and valleys in the image. In this technique of image classification distance metric
and integrated region matching are familiar.

Graph partitioning methods can effectively be used for image segmentation. In
these methods, the image is viewed as a weighted, undirected graph. Usually a
pixel or a group of pixels are associated with nodes and edge weights define the
similarity or dissimilarity between adjacent regions or pixels. The graph (image) is
then partitioned according to a specific criterion. Each partition of the nodes (pixels)
output from these algorithms are considered an object segment in the image. Some
popular algorithms of this category are the normalized cuts [44], the minimum cut
algorithm [55] and minimum spanning tree-based segmentation [18].

Spectral graph theory [14] and in particular the normalized cuts criterion [44]
provide a method of integrating image global information into the grouping process.
In the normalized cuts framework the feature space the image is represented as an
undirected weigthed graph. Vertices represent (pixels) and edges exist between all
pairs of vertices. Edge weights measure the similarity between the two corresponding
vertices. A graph can be partitioned in two disjoint sets A,B by simply removing
edges connecting these two parts. The degree of dissimilarity between these two sets
can be computed as the sum of weights of all the edges that have been removed.
This quantity is called the cut. The optimal bipartitioning of a graph is the one
that minimizes this cut value. However, using the minimum cut criterion results
in cutting small sets of isolated nodes in the graph. Wu and Leahy [55] proposed
a clustering method based on this minimum cut criterion and noticed the above
mentioned problem in their work. To overcome this problem, Shi and Malik [44]
introduced a normalized measure of disassociation between two groups taking into
account the total edge connections to all nodes in the graphs. This measure, called
the normalized cut (Ncut), is defined as:

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)
(2.1)

where assoc(A, V) is the total connection from nodes in A to all nodes in the graph.
Shi and Malik proved that finding the optimal graph bipartition that minimizes
the Ncut value reduces to a generalized eigenvalue problem. The image is biparti-
tioned using the eigenvector solution with the second smallest eigenvalue. Then, the
segmented parts are recursively bipartitioned if Ncut is below a prespecified value.
Alternatively, k-means clustering is applied to obtain the desired image partition.
However, this approach often breaks uniform regions where the eigenvectors have
smooth gradients. Recently, a multiscale approach of normalized cuts for image
segmentation was introduced by Cour et al. [16]. The fact that the affinity ma-
trix must be sparse, in order to avoid a prohibitively expensive computation, limits
the naive implementation to using only local pixel affinities. Cour et al. [16] solve
this limitation by computing sparse affinity matrices at multiple scales, setting up

27

cross-scale constraints and deriving a new eigenvector problem for this constrained
multiscale cut.

Many approaches to image segmentation fall into a different category than those
covered so far, relying on the formulation of the problem in a variational framework.
An example is the model proposed by Mumford and Shah [38], where the segmen-
tation of an observed image u0 is given by the minimization of the functional:

F(u,C) =

∫

Ω

(u− u0)2dx+ µ

∫

Ω\C
|∇u|2dx+ ν

∮

C

ds (2.2)

where C denotes the smooth and closed segmenting curve, u denotes the piecewise
smooth approximation to u0 with discontinuities only along C, Ω denotes the image
domain and µ, ν are weighting parameters where. Several algorithms have been
developed to minimize the energy (2.2) or its simplified version, where u is piecewise
constant in Ω\C.

The watershed transform considers the gradient magnitude of an image as a
topographic surface. Pixels having the highest gradient magnitude correspond to
watershed lines, which represent the region boundaries. Water placed on any pixel
enclosed by a common watershed line flows downhill to a common local intensity
minimum. Pixels draining to a common minimum form a catchment basin, which
represents a segment. One of the principal applications of watershed segmentation
is in the extraction of nearly uniform (bloblike) objects from the background. As
the method implemented in the framework of this thesis is related to the watershed
transform, a more detailed description of this method is discussed in section 2.2.1.

2.2 Related Work

2.2.1 Watershed Transform

A brief presentation of the watershed transform as described by [9, 23] follows.
The basic concept of watersheds is based on visualizing an image in three dimensions:
two spatial coordinates versus gray levels. In such a “topographic” interpretation,
three types of points are considered: (a) points belonging to regional minima; (b)
points at which a drop of water, if placed at the location of any of those points,
would fall with certainty to a single minimum and (c) points at which water would
be equally likely to fall to more than on such minimum. The points satisfying
condition (c) form crest lines on the topographic surface and are termed divide lines
or watershed lines or watershed arcs.

The principal objective of segmentation algorithms based on these concepts is to
find the watersheds lines. The basic idea is simple: suppose that a hole is punched
in each regional minimum and that the entire topography is flooded from below by
letting water rise through the holes at a uniform rate. When the rising water in

28

Figure 2.1: left: input image, right: its topographic surface with corresponding
catchment basins and a watershed ridge line between them.

distinct catchment basins is about to merge, a dam is built to prevent the merging.
The flooding will eventually reach a stage when only the tops of the dams are visible
above the water line. These dam boundaries correspond to the divide lines of the
watersheds. Therefore, they are the continuous boundaries extracted by a watershed
segmentation algorithm.

Regions characterized by small variations in gray levels have small gradient val-
ues. Thus, in practise, watershed segmentation is most often applied to the gradient
of an image, rather to the image itself. In this formulation, the regional minima of
catchment basins correlate nicely with the small value of the gradient corresponding
to the objects of interest.

The dam construction is based on binary morphological dilation. Initially, the
set of regional minima corresponds to value 1 while all other pixels have zero value.
In each subsequent step, the 3D topography is flooded from below and the pixels
covered by the rising water are 1s and others 0s. At each step of the algorithm, the
binary image in obtained by a binary morphological dilation. The dam is constructed
by the points on which the dilation would cause the sets being dilated to merge,
resulting one-pixel thick connected path.

Let M1, M2, . . . , MR denote the regional minima of an (gradient) image g(x, y),
C(Mi) the sets of the points in the catchment basin associated with regional min-
imum Mi and the minimum and maximum gray levels of g(x, y) as minlevel and
maxlevel. T [n] is defined as:

T [n] = {(s, t) : g(s, t) < n} (2.3)

The topography will be flooded in integer flood increments, from n = minlevel+
1 to n = maxlevel + 1. If Cn(Mi) denote the sets of the points in the catchment
basin associated with regional minimum Mi and flooded at step n one can write:

Cn(Mi) = C(Mi) ∩ T [n] (2.4)

Let C[n] denote as the union of the flooded catchment basin portions at stage n.

Then C[n] =
R⋃
i=1

Cn(Mi) and obviously C[maxlevel+1] =
R⋃
i=1

C(Mi). The algorithm

29

Figure 2.2: Left: two partially flooded catchment basins at stage n− 1 of flooding,
Middle: flooding at stage n, showing that water has spilled between basins, Right:
result of dilation and dam construction (from [23])

Figure 2.3: Left: input image. Right: oversegmentation produced by applying
watershed transform directly to image gradient.

is initialized with C[minlevel + 1] = T [minlevel + 1]. The algorithm at each step
constructs C[n] given C[n − 1]. Denote Q[n] the set of connected components in
T [n]. For each connected component q ∈ Q[n], there are three possibilities:

1. q∩C[n−1] is empty. Then, a new minimum is encountered and q is incorporated
into C[n− 1] to form C[n].

2. q∩C[n−1] contains one connected component of C[n−1]. Then, q is incorporated
into C[n− 1] to form C[n].

3. q ∩C[n− 1] contains more than one connected components of C[n− 1]. Then, a
ridge separating two or more catchment basins has been encountered and a dam
has to be built within q to prevent overflow between the catchment basins .

The above procedure is repeated until n = maxlevel + 1

The direct application of the watershed transformation to a gradient image usu-
ally leads to oversegmentation similar to the result shown in Fig. 2.3.

To prevent this phenomenon, a marker-controlled watershed transform is intro-
duced. A major enhancement of the watershed transformation consists in flooding
the topographic surface from a previously defined set of markers. An example of
marker extraction is the generalized maxima/minima extraction or dome/basin ex-
traction [50]. For the domes, the principle is to subtract an arbitrary constant h

30

I

I-1
grayscale

reconstruction
⇒

Regional maxima

Figure 11: Extracting the regional maxima of I by reconstruction of I from I � 1.

De�nition 3.4 The h-dome image Dh(I) of the h-domes of a grayscale image I is given by:

Dh(I) = I � �I(I � h):

Geometrically speaking, an h-dome can be interpreted the same way maxima are: an h-dome D of
image I is a connected component of pixels such that:
� every pixel p neighbor of D satis�es: I(p) < minfI(q) j q 2 Dg,

� maxfI(q) j q 2 Dg �minfI(q) j q 2 Dg < h.
In addition, the value of pixel p of h-dome D in image Dh(I) is equal to I(p)-minfI(q) j q 2 Dg.

The h-dome transformation is illustrated on Fig. 12. Unlike classical top-hats, the h-dome
transformation extracts light structures without involving any size or shape criterion. The only
parameter (h) is related to the height of these structures. This characteristic is of interest for
complex segmentation problems.

I

I-h

Grayscale reconstruction

Subtraction

h

Figure 12: Determination of the h-domes of grayscale image I.

As an example, let us consider Fig. 13.a, which is an image of the corneal endothelial tissue
of the eye, obtained using a wide-�eld specular microscope. The analysis of images of this kind
is detailed in [29]. The �rst step of their segmentation consists in extracting a marker for each

12

Figure 2.4: Determination of the h-domes of grayscale image I (from [50]).

Figure 2.5: From left to right: input image, morphological gradient, markers of
domes (in black), final segmentation.

from the original image I and to perform a grayscale reconstruction opening of I
from I − h. The reconstructed image is then subtracted from the original one, thus
yielding a grayscale image J of all the domes and crest lines of I. From J it easy
to extract a binary picture of the most important domes by a simple thresholding
operation. The dual process can be used to extract the basins and valleys of I.

2.2.2 Oriented watershed transform and ultrametric con-
tour map

A recent version of the classical watershed transform which includes informa-
tion about boundaries strength and orientation is the oriented watershed transform.
Arbelaez et al. [4] introduces the oriented watershed transform(OWT). As input to
this algorithm can be used any contour detector output E(x, y, θ) which predicts the
probability of an image boundary at location (x, y) with orientation θ. Regional min-
ima of E(x, y) = maxθ E(x, y, θ) are considered as seed locations for homogeneous
segments and then the classical watershed transform described in section 2.2.1 is
applied on the topographic surface of E(x, y). The catchment basins of the minima
(P0) provide the regions of the finest partition and the corresponding watershed arcs
(K0) the possible locations of the boundaries.

31

Next a adjacent region dissimilarity based on boundary strength is defined. Sim-
ply weighting each arc by the mean value of E(x, y) can introduce artifacts. To
correct this problem, consistency is enforced between the strength of the boundaries
of K0 and the underlying E signal. The watershed arcs are approximated with line
segments. Then, each pixel (x, y) is assigned the orientation o(x, y) ∈ [0, π) of the
corresponding line segment. Boundary strength at pixel (x, y) is now E(x, y, o(x, y))
instead of E(x, y, θ). In addition, this dissimilarity satisfies the ultrametric property
as discussed in [2]. A more detailed description of ultrametric contour maps notion
is included in section 7.3.

Because of the existence of closed, weighted and non-self-intersecting contours
the method used in the next step is the ultrametric contour map (UCM) . UCM
produces an hierarchy on regions based on contours with the latter properties. The
hierarchy of region is constructed by a greedy graph-based region merging algorithm.
An initial graph G = (P0,K0) is defined where the nodes are the regions P0, the
links are the arcs K0 separating adjacent regions, and the weights W : K0 → R+ are
a measure of dissimilarity between regions. The algorithm proceeds by sorting the
links by similarity and iteratively merging the most similar regions.

1) Select minimum weight contour: C∗ = arg minC∈K0
W (C)

2) Let R1, R2 ∈ P0 be the regions separated by C∗

3) Set R = R1 ∪R2 and update: P0 ← P0\{R1, R2} ∪R and K0 ← K0\{C∗}
4) Stop if K0 is empty. Otherwise, update weights W (K0) and repeat.

2.2.3 Efficient graph-based image segmentation

The graph based region merging algorithm advocated by Felzenszwalb and Hut-
tenlocher [18] attempts to partition image pixels into components such that the
resulting segmentation is neither too coarse nor too fine. In this work, definitions
of the terms “too fine”, “proper refinement of a segmentation” and “too coarse” are
given as following:

Definition 2.2.1 A segmentation S is too fine if there is some pair of regions
R1, R2 ∈ S for which there is no evidence for a boundary between them.

Definition 2.2.2 Given two segmentations S and T of the same base set, T is
a refinement of S when each component of T is contained in (or equal to) some
component of S. T is a proper refinement of S if and only T 6= S.

Definition 2.2.3 A segmentation S is too coarse if there exists a proper refinement
of S that is not too fine.

In this approach, an image is represented as an undirected graph G = (V,E).
Vertices vi ∈ V are the set of elements to be segmented, i.e. pixels, and edges

32

(vi, vj) ∈ E correspond to pairs of neighboring vertices. Each edge (vi, vj) ∈ E has
a corresponding weight w(vi, vj), which is a non-negative measure of dissimilarity
between neighboring vertices (e.g. intensity or color differences).

The internal difference of a region (component) R ⊆ V is defined as the largest
weight in the minimum spanning tree of the component MST (R,E). That is:

Int(R) = max
e∈MST (R,E)

w(e) (2.5)

The difference between two regions R1, R2 ⊆ V is defined as the minimum edge
connecting the two regions. That is:

Dif(R1, R2) = min {w(vi, vj) : vi ∈ R1, vj ∈ R2, (vi, vj) ∈ E} (2.6)

If there is no edge connecting R1 and R2 then let Dif(R1, R2) =∞
A region comparison predicate is introduced to evaluate evidence for a bound-

ary between a pair of regions by checking if the difference between the regions,
Dif(R1, R2), is large compared to the internal difference within at least one of the
regions, Int(R1) and Int(R2). For small components, Int(R) is not a good estimate.
Therefore, a threshold function τ(R), based on region size, is used to control the
degree to which the difference between the regions must be larger than the mini-
mum internal difference. That is, for small regions a stronger evidence of boundary
is required. The pairwise comparison predicate is defined as:

D(R1, R2) =

{
true , if Dif(R1, R2) > MInt(R1, R2)

false , otherwise
(2.7)

where the minimum internal difference, MInt, is defined as

MInt(R1, R2) = min (Int(R1) + τ(R1), Int(R2) + τ(R2)) (2.8)

According to the main merging algorithm each node is initially placed in its own
component (region). Considering edges in non-decreasing order by weight, each step
of the algorithm merges regionsR1 andR2 connected by the current edge if D(R1, R2)
is false. The running time of the above segmentation algorithm is O(nlogn), where n
is the total number of image pixels. For grayscale images, the edge weight function
is based on the absolute intensity difference between the pixels connected by an
edge. For color images, the above algorithm is performed three times, one for each
color channel, and then the three sets of components are intersected. An important
characteristic of the method is its ability to preserve detail in low-variability image
regions while ignoring detail in high-variability regions.

33

34

Chapter 3

Contour detection

3.1 Baseline Canny contour detection

As a baseline to the contour detection step of the segmentation framework, a
grayscale version of the Canny edge detector [13] is implemented. In this section,
the basic steps of the Canny edge detector are briefly presented and then it is
explained how the basic algorithm is modified to produce grayscale and not binary
contour maps.

The first step of the Canny edge detection is a convolution of the grayscaled
input image with a Gaussian filter to achieve noise reduction. Then, first order
gaussian derivatives are used to compute the blurred image gradient. This derivative
procedure returns a value for the first derivative in the horizontal direction (Gx) and
the vertical direction (Gy). From this, the gradient magnitude G and direction Θ
can be determined:

G =
√
G2
x +G2

y (3.1)

Θ = arctan

(
Gy

Gx

)
(3.2)

The gradient direction angle is rounded to one of four angles representing vertical,
horizontal and the two diagonals (0, 45, 90 and 135 degrees for example). Given
estimates of the image gradients, a search is then carried out to determine if the
gradient magnitude assumes a local maximum in the gradient direction. This is
called the non-maximum suppression step and produces thin lines in the output
contour image.

The last step is the hysteresis thresholding operation. Large intensity gradients
are more likely to correspond to edges than small intensity gradients. In most
cases, it is impossible to specify a threshold at which a given intensity gradient
switches from corresponding to an edge into not doing so. Therefore Canny uses
thresholding with hysteresis. Thresholding with hysteresis requires two thresholds

35

Figure 3.1: left: input images, right: grayscale contour images produced by the
modified Canny contour detection algorithm.

– high and low. Making the assumption that important edges should be along
continuous curves in the image allows to follow a faint section of a given line and
to discard a few noisy pixels that do not constitute a line but have produced large
gradients. Therefore, a high threshold is first applied. This marks out the edges that
are probably genuine. Starting from these, using the directional information derived
earlier, edges can be traced through the image. While tracing an edge, the lower
threshold (which is usually a fraction of the high threshold) is applied, allowing to
trace faint sections of edges as long as we find a starting point. Once this process is
complete, a binary image where each pixel is marked as either an edge pixel or a non-
edge pixel is obtained. Using multiple values for the high threshold and weighting
accordingly results in the desired grayscale contour image. Examples are illustrated
in Fig. 3.1. The implementation used in the framework of this thesis is based on the
implementation of D. R. Martin, which is publicly available at http://www.eecs.

berkeley.edu/Research/Projects/CS/vision/bsds/code/Detectors/.

3.2 Globalized probability of boundary

At this point there will be a brief description of the second contour detection
input to the implemented segmentation framework. That is the globalized probability
of boundary (gPb) detector [3]. This detector combines multiple local cues such as
brightness, color, texture in multiple scales and combines these cues with global
information. It is the state-of-art algorithm in the field of contour detection and
produces results closest to human results than any other algorithm.

To begin with, Martin et al. [35] define a function Pb(x, y, θ) to describe the
posterior probability of a boundary with orientation θ at each image pixel (x, y) by
measuring the difference in local image brightness, color, and texture channels. Ar-
belaez et al. [3] introduce the globalized probability of boundary (gPb). The globalized

36

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/code/Detectors/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/code/Detectors/

5

2.3.2 Rand Index
Originally, the Rand Index [62] was introduced for gen-
eral clustering evaluation. It operates by comparing the
compatibility of assignments between pairs of elements
in the clusters. The Rand Index between test and ground-
truth segmentations S and G is given by the sum of the
number of pairs of pixels that have the same label in
S and G and those that have different labels in both
segmentations, divided by the total number of pairs of
pixels. Variants of the Rand Index have been proposed
[5], [7] for dealing with the case of multiple ground-truth
segmentations. Given a set of ground-truth segmenta-
tions {Gk}, the Probabilistic Rand Index is defined as:

PRI(S, {Gk}) =
1

T

∑

i<j

[cijpij + (1− cij)(1− pij)] (6)

where cij is the event that pixels i and j have the same
label and pij its probability. T is the total number of
pixel pairs. Using the sample mean to estimate pij , (6)
amounts to averaging the Rand Index among different
ground-truth segmentations. The PRI has been reported
to suffer from a small dynamic range [5], [7], and its
values across images and algorithms are often similar.
In [5], this drawback is addressed by normalization with
an empirical estimation of its expected value.

2.3.3 Segmentation Covering
The overlap between two regions R and R′, defined as:

O(R,R′) =
|R ∩R′|
|R ∪R′| (7)

has been used for the evaluation of the pixel-wise clas-
sification task in recognition [8], [11]. We define the
covering of a segmentation S by a segmentation S′ as:

C(S′ → S) =
1

N

∑

R∈S
|R| · max

R′∈S′
O(R,R′) (8)

where N denotes the total number of pixels in the image.
Similarly, the covering of a machine segmentation S by

a family of ground-truth segmentations {Gi} is defined
by first covering S separately with each human segmen-
tation Gi, and then averaging over the different humans.
To achieve perfect covering the machine segmentation
must explain all of the human data. We can then define
two quality descriptors for regions: the covering of S by
{Gi} and the covering of {Gi} by S.

3 CONTOUR DETECTION

As a starting point for contour detection, we consider
the work of Martin et al. [2], who define a function
Pb(x, y, θ) that predicts the posterior probability of a
boundary with orientation θ at each image pixel (x, y)
by measuring the difference in local image brightness,
color, and texture channels. In this section, we review
these cues, introduce our own multiscale version of the
Pb detector, and describe the new globalization method
we run on top of this multiscale local detector.

0 0.5 1

Upper Half−Disc Histogram

0 0.5 1

Lower Half−Disc Histogram

Fig. 4. Oriented gradient of histograms. Given an
intensity image, consider a circular disc centered at each
pixel and split by a diameter at angle θ. We compute
histograms of intensity values in each half-disc and output
the χ2 distance between them as the gradient magnitude.
The blue and red distributions shown in the middle panel
are the histograms of the pixel brightness values in the
blue and red regions, respectively, in the left image. The
right panel shows an example result for a disc of radius
5 pixels at orientation θ = π

4 after applying a second-
order Savitzky-Golay smoothing filter to the raw histogram
difference output. Note that the left panel displays a larger
disc (radius 50 pixels) for illustrative purposes.

3.1 Brightness, Color, Texture Gradients
The basic building block of the Pb contour detector is
the computation of an oriented gradient signal G(x, y, θ)
from an intensity image I . This computation proceeds
by placing a circular disc at location (x, y) split into two
half-discs by a diameter at angle θ. For each half-disc, we
histogram the intensity values of the pixels of I covered
by it. The gradient magnitude G at location (x, y) is
defined by the χ2 distance between the two half-disc
histograms g and h:

χ2(g, h) =
1

2

∑

i

(g(i)− h(i))2

g(i) + h(i)
(9)

We then apply second-order Savitzky-Golay filtering
[63] to enhance local maxima and smooth out multiple
detection peaks in the direction orthogonal to θ. This is
equivalent to fitting a cylindrical parabola, whose axis
is orientated along direction θ, to a local 2D window
surrounding each pixel and replacing the response at the
pixel with that estimated by the fit.

Figure 4 shows an example. This computation is moti-
vated by the intuition that contours correspond to image
discontinuities and histograms provide a robust mech-
anism for modeling the content of an image region. A
strong oriented gradient response means a pixel is likely
to lie on the boundary between two distinct regions.

The Pb detector combines the oriented gradient sig-
nals obtained from transforming an input image into
four separate feature channels and processing each chan-
nel independently. The first three correspond to the
channels of the CIE Lab colorspace, which we refer to

Figure 3.2: Left: input image with a circular disc with orientation θ = π/4 centered
at an arbitrary pixel. The disc is bigger for illustrative purposes. Middle: the blue
and red distributions are the histograms of the pixel brightness values in the blue
and red regions, respectively, in the input image. Right: result after a second order
Savitzky-Golay smoothing filter is applied to the raw histogram difference output.

probability of boundary includes a multiscale version of the previous Pb detector
plus an additional globalization step based on spectral clustering.

The basic building block of the Pb contour detector is the computation of an ori-
ented gradient signal G(x, y, θ) from an intensity image I. Its computation proceeds
as following: a circular disc is placed at location (x, y) and split into two half-discs
by a diameter at angle θ. The gradient magnitude G at location (x, y) is defined by
the χ2 distance between the two half-disc histograms g and h:

χ2 =
1

2

∑

i

(g(i)− h(i))2

g(i)− h(i)
(3.3)

Then, a second-order Savitzky-Golay filtering is applied to enhance local maxima
and smooth out multiple detection peaks in the direction orthogonal to θ. An
example of the above procedure is illustrated in Fig. 3.2. In total, four channels are
used to combine cues. The first three are the channels of the CIELab colorspace
(L, a, b) and the fourth is the texture channel. This first step of gPb detector is
illustrated in Fig. 3.2.

The process of computing the texture gradient is of special interest. First, the
grayscale version of the input image is convolved with the 17 filters of Fig. 3.3.
Then, each pixel is associated with a 17-dimensional vector of responses and these
vectors are clustered using k-means. The cluster centers define a set of image-specific
textons. Finally, each pixel is assigned the integer id in [1, K] of the closest center
and the texture gradient is computed with the histograms same as before.

All the above cues consist the Pb detector. To detect coarse as well as fine
structures, gradients are computed at three scales (radii of disks): [σ

2
, σ, 2σ]. The

37

6

Fig. 5. Filters for creating textons. We use 8 oriented
even- and odd-symmetric Gaussian derivative filters and
a center-surround (difference of Gaussians) filter.

as the brightness, color a, and color b channels. For
grayscale images, the brightness channel is the image
itself and no color channels are used.

The fourth channel is a texture channel, which assigns
each pixel a texton id. These assignments are computed
by another filtering stage which occurs prior to the
computation of the oriented gradient of histograms.
This stage converts the input image to grayscale and
convolves it with the set of 17 Gaussian derivative and
center-surround filters shown in Figure 5. Each pixel is
associated with a (17-dimensional) vector of responses,
containing one entry for each filter. These vectors are
then clustered using K-means. The cluster centers define
a set of image-specific textons and each pixel is assigned
the integer id in [1,K] of the closest cluster center. Exper-
iments show choosing K = 32 textons to be sufficient.

We next form an image where each pixel has an
integer value in [1,K], as determined by its texton id.
An example can be seen in Figure 6 (left column, fourth
panel from top). On this image, we compute differences
of histograms in oriented half-discs in the same manner
as for the brightness and color channels.

Obtaining G(x, y, θ) for arbitrary input I is thus the
core operation on which our local cues depend. In the
appendix, we provide a novel approximation scheme for
reducing the complexity of this computation.

3.2 Multiscale Cue Combination

We now introduce our own multiscale extension of the
Pb detector reviewed above. Note that Ren [28] intro-
duces a different, more complicated, and similarly per-
forming multiscale extension in work contemporaneous
with our own [3], and also suggests possible reasons
Martin et al. [2] did not see performance improvements
in their original multiscale experiments, including their
use of smaller images and their choice of scales.

In order to detect fine as well as coarse structures,
we consider gradients at three scales: [σ2 , σ, 2σ] for each
of the brightness, color, and texture channels. Figure 6
shows an example of the oriented gradients obtained for
each channel. For the brightness channel, we use σ = 5
pixels, while for color and texture we use σ = 10 pixels.
We then linearly combine these local cues into a single
multiscale oriented signal:

mPb(x, y, θ) =
∑

s

∑

i

αi,sGi,σ(i,s)(x, y, θ) (10)

where s indexes scales, i indexes feature channels
(brightness, color a, color b, texture), and Gi,σ(i,s)(x, y, θ)
measures the histogram difference in channel i between

Channel θ = 0 θ = π
2 G(x, y)

mPb(x, y)

Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The
brightness and color a and b channels of Lab color space,
and the texton channel computed using image-specific
textons, followed by the input image. Rows: Next to each
channel, we display the oriented gradient of histograms
(as outlined in Figure 4) for θ = 0 and θ = π

2 (horizontal
and vertical), and the maximum response over eight
orientations in [0, π) (right column). Beside the original
image, we display the combination of oriented gradients
across all four channels and across three scales. The
lower right panel (outlined in red) shows mPb, the final
output of the multiscale contour detector.

Figure 3.3: The filterbank for creating textons consists of 8 oriented even- and odd-
symmetric Gaussian derivative filters and a center-surround (difference of Gaussians)
filter.

multiscale oriented gradient signal is computed as:

mPb(x, y, θ) =
∑

s

∑

i

ai,sGi,σ(i,s)(x, y, θ) (3.4)

Orientation θ is sampled at 8 equally spaced orientations in the interval [0, π). The
weights ai,s are learned by gradient ascent on the F-measure using the Berkeley
Segmentation Dataset [3].

On top of the multiscale implementation of the Pb detector there is a globaliza-
tion procedure. As input to this stage, a sparse affinity matrix W is constructed
using the maximal value of mPb along the line segment ij connecting two pixels i,j.
All pixels i and j within a fix radius r are connected with affinity:

Wij = exp(−max
p∈ij
{mPb(p)}/ρ) (3.5)

where ρ is a constant. In order to introduce global information, a similar global-
ization procedure as in the Normalized Cuts framework [44] is adopted. A diagonal
matrix Dii =

∑
j Wij is defined and the corresponding generalized eigenvalues prob-

lem is solved:
(D−W)v = λDv (3.6)

Eigenvectors carry themselves contour information as one can easily see in Fig. 3.5.
Based on this observation, each eigenvector vk is treated as a image and convolved
with Gaussian directional filters at multiple orientations θ. In this way, oriented sig-
nals {∇θvk(x, y)} are obtained and the spectral component of the boundary detector
is formed:

sPb(x, y, θ) =
n∑

k=1

1√
λk

vk(x, y) (3.7)

Finally, the globalized probability of boundary is a linear combination of the mul-
tiscale Pb and the above mentioned spectral component sPb:

gPb(x, y, θ) =
∑

s

∑

i

βi,sGi,σ(i,s)(x, y, θ) + γ · sPb(x, y, θ) (3.8)

The weights βi,s and γ are learned by gradient ascent on the F-measure using the
Berkeley Segmentation Dataset [3]. An example of the gPb detector output is illus-
trated in Fig. 3.6.

38

6

Fig. 5. Filters for creating textons. We use 8 oriented
even- and odd-symmetric Gaussian derivative filters and
a center-surround (difference of Gaussians) filter.

as the brightness, color a, and color b channels. For
grayscale images, the brightness channel is the image
itself and no color channels are used.

The fourth channel is a texture channel, which assigns
each pixel a texton id. These assignments are computed
by another filtering stage which occurs prior to the
computation of the oriented gradient of histograms.
This stage converts the input image to grayscale and
convolves it with the set of 17 Gaussian derivative and
center-surround filters shown in Figure 5. Each pixel is
associated with a (17-dimensional) vector of responses,
containing one entry for each filter. These vectors are
then clustered using K-means. The cluster centers define
a set of image-specific textons and each pixel is assigned
the integer id in [1,K] of the closest cluster center. Exper-
iments show choosing K = 32 textons to be sufficient.

We next form an image where each pixel has an
integer value in [1,K], as determined by its texton id.
An example can be seen in Figure 6 (left column, fourth
panel from top). On this image, we compute differences
of histograms in oriented half-discs in the same manner
as for the brightness and color channels.

Obtaining G(x, y, θ) for arbitrary input I is thus the
core operation on which our local cues depend. In the
appendix, we provide a novel approximation scheme for
reducing the complexity of this computation.

3.2 Multiscale Cue Combination

We now introduce our own multiscale extension of the
Pb detector reviewed above. Note that Ren [28] intro-
duces a different, more complicated, and similarly per-
forming multiscale extension in work contemporaneous
with our own [3], and also suggests possible reasons
Martin et al. [2] did not see performance improvements
in their original multiscale experiments, including their
use of smaller images and their choice of scales.

In order to detect fine as well as coarse structures,
we consider gradients at three scales: [σ2 , σ, 2σ] for each
of the brightness, color, and texture channels. Figure 6
shows an example of the oriented gradients obtained for
each channel. For the brightness channel, we use σ = 5
pixels, while for color and texture we use σ = 10 pixels.
We then linearly combine these local cues into a single
multiscale oriented signal:

mPb(x, y, θ) =
∑

s

∑

i

αi,sGi,σ(i,s)(x, y, θ) (10)

where s indexes scales, i indexes feature channels
(brightness, color a, color b, texture), and Gi,σ(i,s)(x, y, θ)
measures the histogram difference in channel i between

Channel θ = 0 θ = π
2 G(x, y)

mPb(x, y)

Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The
brightness and color a and b channels of Lab color space,
and the texton channel computed using image-specific
textons, followed by the input image. Rows: Next to each
channel, we display the oriented gradient of histograms
(as outlined in Figure 4) for θ = 0 and θ = π

2 (horizontal
and vertical), and the maximum response over eight
orientations in [0, π) (right column). Beside the original
image, we display the combination of oriented gradients
across all four channels and across three scales. The
lower right panel (outlined in red) shows mPb, the final
output of the multiscale contour detector.

Figure 3.4: Left, from top to bottom: the brightness, color a, color b channels
of Lab color space and the texton channel. Rows, from left to right: next to
each channel, oriented gradient of histograms for θ = 0 and θ = π/2 (horizontal and
vertical) and maximum response over eight orientations in [0, π).

39

7

Fig. 7. Spectral Pb. Left: Image. Middle Left: The thinned non-max suppressed multiscale Pb signal defines a sparse
affinity matrix connecting pixels within a fixed radius. Pixels i and j have a low affinity as a strong boundary separates
them, whereas i and k have high affinity. Middle: First four generalized eigenvectors resulting from spectral clustering.
Middle Right: Partitioning the image by running K-means clustering on the eigenvectors erroneously breaks smooth
regions. Right: Instead, we compute gradients of the eigenvectors, transforming them back into a contour signal.

Fig. 8. Eigenvectors carry contour information. Left: Image and maximum response of spectral Pb over
orientations, sPb(x, y) = maxθ{sPb(x, y, θ)}. Right Top: First four generalized eigenvectors, v1, ...,v4, used in
creating sPb. Right Bottom: Maximum gradient response over orientations, maxθ{∇θvk(x, y)}, for each eigenvector.

two halves of a disc of radius σ(i, s) centered at (x, y) and
divided by a diameter at angle θ. The parameters αi,s
weight the relative contribution of each gradient signal.
In our experiments, we sample θ at eight equally spaced
orientations in the interval [0, π). Taking the maximum
response over orientations yields a measure of boundary
strength at each pixel:

mPb(x, y) = max
θ
{mPb(x, y, θ)} (11)

An optional non-maximum suppression step [22] pro-
duces thinned, real-valued contours.

In contrast to [2] and [28] which use a logistic regres-
sion classifier to combine cues, we learn the weights αi,s
by gradient ascent on the F-measure using the training
images and corresponding ground-truth of the BSDS.

3.3 Globalization

Spectral clustering lies at the heart of our globalization
machinery. The key element differentiating the algorithm
described in this section from other approaches [45], [47]

is the “soft” manner in which we use the eigenvectors
obtained from spectral partitioning.

As input to the spectral clustering stage, we construct
a sparse symmetric affinity matrix W using the interven-
ing contour cue [49], [64], [65], the maximal value of mPb
along a line connecting two pixels. We connect all pixels
i and j within a fixed radius r with affinity:

Wij = exp

(
−max

p∈ij
{mPb(p)}/ρ

)
(12)

where ij is the line segment connecting i and j and ρ is
a constant. We set r = 5 pixels and ρ = 0.1.

In order to introduce global information, we define
Dii =

∑
jWij and solve for the generalized eigenvectors

{v0,v1, ...,vn} of the system (D − W)v = λDv (2),
corresponding to the n+1 smallest eigenvalues 0 = λ0 ≤
λ1 ≤ ... ≤ λn. Figure 7 displays an example with four
eigenvectors. In practice, we use n = 16.

At this point, the standard Normalized Cuts approach
associates with each pixel a length n descriptor formed
from entries of the n eigenvectors and uses a clustering

Figure 3.5: Left: Image and maximum response of spectral Pb over orientations,
sPb(x, y) = maxθ{sPb(x, y, θ)}. Right top: first four generalized eigenvectors,
v1, . . . ,v4 used in creating sPb. Right bottom: maximum gradient response over
orientations,maxθ{∇θvk (x, y)}, for each eigenvector.

Figure 3.6: From left to right: input image, maximum response of gPb over all
eight orientations, gPb for θ = π/2, θ = 0 and θ = π/4 respectively.

40

Chapter 4

Distance transforms

4.1 Distance transform

4.1.1 Definitions

Before proceeding to definitions concerning distance transforms, there is a short
description of the representations that will be used from this point and on. These
representations are the same as in [7] in order to retain consistency with the work
we are based on. To begin with, 2D images are represented by functions f : X→ V.
As range V will be used the extended real line R = R∪{−∞,∞} and as domain X
the continuous (discrete) space R2 (Z2).The space of all such functions is denoted
by F. In practice, only a bounded subset X ⊆ X is used. In the discrete domain, X
is identified with the set of vertices V of a grid (graph) G = {V,E} and its edges
E ⊆ V × V are defined as the set of vertex pairs e = (u, v) such that u, v ∈ V are
connected. We use 4- or 8-connectivity, and write u � v (u+×v) iff u, v are 4- (8-)
connected.

A function g from V × V → R+ is called:

(a) Positive definite: if g(u, v) = 0 ⇔ u = v , ∀u, v ∈ V
(b) Symmetric: if g(u, v) = g(v, u) , ∀u, v ∈ V
(c) Triangular: if g(u,w) ≤ g(u, v) + g(v, w) , ∀u, v, w ∈ V

If g satisfies (a)-(c), it is called a distance function or a metric [42].

A distance transform is a special distance function that will be shortly intro-
duced. Consider first of all a binary image consisting of feature and non-feature
points, respectively foreground and background pixels, which can be single points,
edges or entire objects. A distance transform is an operation that converts a binary
image to a grayscale image where all points have a value corresponding to the dis-
tance to the nearest feature value. The image foreground set is denoted as S ⊆ X

41

Figure 4.1: From left to right: binary source set, outer distance transform, inner
distance transform.

and its background set Sc ⊆ X, where Sc denotes the complement X\S of set S.
Given a metric d in X, the distance transform of S is defined as the nonnegative
function Dd(S) whose value at each point x ∈ X is the (infimum) distance between
x and the foreground S:

Dd(S)(x) ,
∧

y∈S

d(x− y) (4.1)

where
∧

stands for infimum (or minimum in the discrete case). Obviously, Dd(S)(x)
is zero for all x ∈ S. Thus, the foreground set S can be seen as a set of sources
emanating a distance wave propagating away from the foreground and into the
background. The distance transform as a wave propagation will be analyzed in
section 4.1.2. From this point of view, definition (4.1) consists an outer distance
transform and is useful when we are concerned about the geometrical structure and
the morphology of the background set Sc. In case we are interested in the shape
of the foreground set S, for instance when S represents an object, it is preferable
to consider the inner distance transform Dd(S

c) which uses the foreground set S to
measure distances from the background set Sc. Two examples of euclidean distance
transforms are illustrated in Fig. 4.1 and Fig. 4.2.

The distance transform has a wide range of applications in image processing,
computer vision and robotics problems like smoothing, skeletonization, segmenta-
tion, size distributions, shape description, object detection and recognition, motion
planning, shortest paths and even pathfinding.

4.1.2 Distance transform as wave propagation

Maragos [31] describes how a distance transform can be viewed as wave propaga-
tion. This formulation has been adopted in this section. Using Huygen’s construc-
tion [12], the boundaries of multiscale dilations (erosions) by some convex struc-

42

Figure 4.2: From left to right: binary source set, normalized (outer) distance
transform.

turing elements can also be viewed as the wavefronts of a wave initiating from the
original image boundary and propagating outwards. In case of euclidean distance,
the structuring elements are disks and the wave propagates with constant normal
speed, i.e. in a homogeneous medium.

To quantify this, assume the boundary C(0) = ∂S of the set S is a smooth simple

closed curve and let
−→
C 0(s) be a parametrization of the initial curve. Further, let−→

C (s, t) represent the evolving boundary curve, i.e. wavefront,
−→
C (t) of the multiscale

dilation or erosion of S by some structuring element B(λ) of size λ. After dilation

(erosion) of
−→
C (s, t) with the above structuring element, the boundary curve will be

evolved to a new curve C(s, t+ λ). This evolution can be represented as [48]

−→
C (s, t+ λ)−−→C (s, t) = ∆(s, t, λ)

−→
N (s, t) (4.2)

where
−→
N is the outward normal vector at each point of the curve and ∆(s, t, λ) is

the distance along
−→
N that a point on the boundary moves in a dilation operation

with a structuring element of size λ. Since ∆(s, t, 0) = 0 :

∂C

∂t
(s, t) = lim

λ→0

∆(s, t, λ)−∆(s, t, 0)

λ

−→
N =

∂∆(s, t, λ)

∂λ

∣∣∣∣
λ=0

−→
N = β(s, t)

−→
N (4.3)

According to [5], the amount of differential deformation, β, of shape S at a point
x ∈ X due to dilation (erosion) with a convex structuring element B, is the maximal

(minimal) projection of B onto the normal
−→
N of the boundary at x, so that β can

only depend on the orientation of the target to the shape
−→
T (s, t), leading to the

following differential evolution law:

∂
−→
C (s, t)

∂t
= β(

−→
T (s, t))

−→
N (s, t)

−→
C (s, 0) =

−→
C 0(s)

(4.4)

43

If β(
−→
T (s, t)) = 1, we obtain the dilations and the outer distance transform:

Dd(S)(x) = inf{t ≥ 0 : x ∈ C(t)} (4.5)

Thus, by equating scale (distance) with time, the distance function has a minimum-
of-arrival interpretation and its isolevel contours coincide with those of the wave

phase function. By using a negative normal velocity β(
−→
T (s, t)) = −1 in (4.4)

the distance wavefront propagates inwards and creates the boundaries of multiscale
erosions. According to Blum’s grassfire propagation principle [11], points where
these wavefronts intersect and extinguish themselves are the points of the Euclidean
medial axis of S [10, 11]. Overall, the euclidean distance function of D2(S) is the
weak solution of the following nonlinear partial differential equation:

‖∇u(x)‖ = 1 x ∈ Sc
u(x) = 0 x ∈ ∂S (4.6)

This is a special case of the eikonal PDE which corresponds to wave propagation in
heterogeneous media and whose solution u is a weighted distance function, where
the weights F (x) are inversely proportional to the varying propagation speed:

‖∇u(x)‖2 = F (x) in Ω, F (x) > 0

u(x) = g(x) on Γ
(4.7)

where Ω is a domain in R2 or R3 and F (x) is typically supplied as known input to
the equation, as is the boundary condition that u equal a known function g(x) given
along a prescribed curve or surface Γ in X.

4.1.3 Distance transform as infimal convolution

The infimal convolution f ? g of the two-dimensional signals f, g is defined as:

(f ? g)(x) ,
∧

y∈X

g(x− y) + f(y), x ∈ X (4.8)

The distance transform of a function is closely related to the infimum convolution
operation. One can easily observe that when g(x− y) = ‖x− y‖d for a given metric
d in X, the distance transform of f is exactly the infimum convolution of f and g.
Analytically, recalling the definition of distance transform of the foreground set S
we have:

Dd(S)(x) =
∧

y∈S

d(x− y), x ∈ X ⇒

Dd(S)(x) =
∧

y∈X

d(x− y) + 1S(y), x ∈ X ⇒

Dd(S)(x) = (1S ? d)(x)

44

where 1S(x) is the 0/∞ indicator function for membership in the set S:

1S(x) =

{
0, x ∈ S
+∞, otherwise

4.2 Solving the eikonal equation

4.2.1 Fast marching methods

Fast marching methods are computational techniques introduced by Sethian [43]
that approximate the solution to nonlinear eikonal equations of the form:

‖∇u(x)‖ = F (x) in Ω, F (x) > 0

u = g(x) on Γ
(4.9)

where Ω is a domain in R2 or R3. Here, the right-hand side, F (x) > 0, is typically
supplied as known input to the equation, as is the boundary condition that u equal
a known function g(x) given along a prescribed curve or surface Γ in Ω.

Equation (4.9) is part of a broader class of Hamilton-Jacobi equations of the
form:

H(ux, uy, uz, x, y, z) = 0 (4.10)

In the case of the eikonal equation, the function H reduces to H = |∇u(x)| −F (x).

First of all, the finite difference approximation that Sethian [43] uses in its for-
mulation should be mentioned:

u2
x ≈

(
max

(
D+x
i u, 0

)2
+ min

(
D−xi u, 0

)2
)

(4.11)

where the standard finite difference notation has been used:

D−xi u =
ui − ui−1

h
, D+x

i u =
ui+1 − ui

h
(4.12)

Here, ui is the value of u on a grid at the point ih with grid spacing h.

Extending the previous approximations for the gradient to multiple dimensions,
results in the following scheme:

|∇u| ≈
[

max
(
D−xij u, 0

)2
+ min

(
D+x
ij u, 0

)2

+ max
(
D−yij u, 0

)2
+ min

(
D+y
ij u, 0

)2

]1/2

= Fij (4.13)

or equivalently: [
max

(
D−xij u,−D+x

ij u, 0
)2

+ max
(
D−yij u,−D+y

ij u, 0
)2

]1/2

= Fij (4.14)

45

Figure 4.3: Upwind construction of accepted values (from [43])

One way to solve (4.14) is through iteration as it is a piecewise quadratic equa-
tion for uij, assuming that the neighboring grid values for u are given. Assuming
N × N grid and N iterations until convergence, the computational complexity of
the above method is O(N3), which is computationally expensive. Fast marching
methods reduce this complexity to O(N2logN).

The central idea behind fast marching methods is to systematically construct the
solution in a “downwind” fashion to produce the solution u. The upwind difference
structure of (4.14) means that information propagates “one way”, that is, from
smaller values of u to larger values. Hence, the fast marching algorithm rests on
“solving” (4.14) by building the solution outwards from the smallest u value. The
algorithm is made fast by confining the “building zone” to a narrow band around
the front. The idea is to sweep the front ahead in a downwind fashion by considering
a set of points in a narrow band around the existing front, and to march this narrow
band forward, freezing the values of existing points and bringing new ones into the
narrow band structure (see Fig. 4.2.1). The key is in the selection of which grid
point in the narrow band to update.

Another way to look at this scheme is that each minimum trial value begins
an application of the Huygens principle, and the expanding wavefront touches and
updates all others. The speed of the algorithm comes from a heapsort technique
to efficiently locate the smallest element in the set Trial. Thus, the fast marching
method is as follows: First, tag points in the initial conditions as Alive. Then tag as
Close all points one grid point away. Finally, tag as Far all other grid points. Then
the loop is as follows:

1. Begin Loop: let Trial be the point in Close with the smallest value of u.

2. Tag as Close all neighbors of Trial that are not Alive. If the neighbor is in Far,
remove it from that list and add it to the set Close.

3. Recompute the values of u at all Close neighbors of Trial by solving the piecewise
quadratic equation according to 4.14.

46

4. Add the point Trial to Alive; remove it from Close.

5. Return to top of Loop.

The key to an efficient version of the above technique lies in a fast way of locating
the grid point in the narrow band with the smallest value for u. This is accomplished
by the use of a min-heap data structure. In an abstract sense, a min-heap is a
“complete binary tree” with a property that the value at any given node is less than
or equal to the values at its children. Since the total work in changing the value
of one element of the heap and bubbling its value upwards is O(logM), where M
is the size of the heap, this produces a total operation cost of O(M logM) for the
fast marching method on a grid of M total points. Thus, for a two-dimensional grid
of N ×N points, the fast marching method reduces the computational complexity
from O(N3) to O(N2logN); essentially, each grid point is visited once to compute
its value.

4.3 Weighted distance transform and the exact

group marching algorithm

In this section, the additively weighted distance transform will be presented along
with an efficient linear time algorithm for its computation. To help readers under-
standing, definitions and main algorithm are analytically presented as in [7]. To
begin with, given a metric d in X the additively weighted distance transform Dd(f)
of image f is defined as:

Dd(f)(x) =
∧

y∈X

d(x, y) + f(y), x ∈ X, (4.15)

Most often, one can use a metric induced by a norm ‖·‖, that is, d(x, y) = ‖x−y‖ for
x, y ∈ X. Also, d can be omitted and one can simply write D(f) instead. Although
(4.15) applies to arbitrary functions f , if the problem at hand is for instance image
segmentation or contour detection, a function that is related to boundaries, like
gradient or contour map, should be used.

The weighted distance transform has been studied primarily as a solution to
the eikonal equation, in problems like shading from shape [49]. A given function
specifies the refractive index on the plane, while a set of source points specifies
boundary conditions. A given source map is not required here. The weighting
mechanism is more similar to [19] where the distance map is obtained by an infimal
convolution operation, equivalent to weighted erosion [32].

The exact group marching algorithm is a variant of group marching (GMM) [24],
a linear-time fast marching method that selects a number of points on the propa-
gating front to move as a group, thus avoiding the cost of sorting. all points are
moved of the front as a group using a constant-time priority queue on quantized
distance. This is more similar to [56], and in the binary case it would reduce to

47

the two-queue scheme of [32]. However, due to the Euclidean assumption and a
bidirectional update, the entire computation is exact.

With a careful look at equations (4.15) and (4.8), it can be immediately con-
cluded that the weighted distance transform is equivalent to the infimal convolution
of a norm-induced metric d with the image f . Thus, the algorithm described here
for distance transforms of sampled functions can be seen as a minimum convolution
algorithm.

Now, given an image function f , the minimal set Ŝ(x) is defined for each point
x ∈ X as the set of points y ∈ X for which quantity d(x, y) + f(y) is minimized:

Ŝ(x) = {y ∈ X : d(x, y) + f(y) = D(f)(x)} (4.16)

for x ∈ X. If y ∈ Ŝ(x), one can equivalently write y 3 x. The source set S(x) of x
is defined as the subset of its minimal set such that no two points y, z ∈ S(x) are
related by y 3 z:

S(x) = {y ∈ Ŝ(x) : @z(y 3 z 3 x)}. (4.17)

A point y is a source of x, or equivalently y � x, iff y ∈ S(x). More generally,
y ∈ X is a source iff y � x for some x ∈ X, even itself. In this work, it is assumed
that each x ∈ X has at least one source: y � x for some y ∈ X. This is always true
in the discrete domain.

Lemma 4.3.1 Given y ∈ X, the following are equivalent:

(a) y is a source,

(b) y 3 y.

(c) D(f)(y) = f(y),

(d) S(y) = {y},

(e) y � y.

The source set S(f) of f is defined as the set of all sources y ∈ X. It follows that
S(f) = {x ∈ X : x � x}. This makes it easy to detect sources. By s(x), x ∈ X is
denote the source of x if it is unique, otherwise any representative of S(x). Function
s : X → X is called a source map.

Lemma 4.3.2 The distance map Dd(f) is uniquely determined by the restriction
f |S(f) of f on its source set.

This is a generalization of an analogous observation on the binary distance map,
which, for a binary input B ⊆ X, is uniquely determined by its boundary ∂B. Source

48

sets are then closely related to region boundaries. Accordingly, the interior set of f
is defined as I(f) = X \ S(f).

Given an image f , we use the exact group marching (EGM) algorithm to compute
the distance map h = D(f) according to (4.15) and the source map s in the discrete
domain, using the Euclidean metric. EGM is outlined in algorithm 1. Propagation
is initialized at the source seed set S+(f), defined as

S+(f) = {x ∈ X : f(x) < min
y�x

f(y) + 1}. (4.18)

Because d(x, y) = 1 for y�x, it can be shown that S+(f) is a superset of the source
set S(f).

Algorithm 1 Exact Group Marching

1: procedure EGM(image f)
2: initialize q, h, s; construct seed S+ as in (4.18)
3: for all x ∈ S+ do {s(x)← x; prop(x, x); }
4: for all x ∈ X \ S+ do { label x as far; }
5: while ¬ q.empty() do
6: x← q.pop(); label x as done

7: for y�x, y near do update(y, x) . incoming
8: for y�x, y near do update(x, y) . outgoing
9: for y�x, y far do prop(x, y)
10: end while
11: return distance map h, source map s
12: end procedure
13:

14: procedure prop(point x, point y)
15: h(y)← d(y, s(x)) + f(s(x));
16: s(y)← s(x);
17: q.push(y, bh(y)c);
18: label y as near;
19: end procedure
20:

21: procedure update(point x, point y)
22: h0 ← d(y, s(x)) + f(s(x));
23: if h0 ≥ h(y) return
24: h(y)← h0;
25: s(y)← s(x);
26: end procedure

At the heart of propagation lies a priority queue with discrete priority levels,
implemented as an array of internal FIFO queues. Points are labelled as far, near,
or done. The queue holds points that are near, that is, points on the propagation
front. Points are processed in groups : each point x is processed according to its
level bh(x)c and points with the same level at random order. Neighbors y that are

49

Figure 4.4: From left to right: input images, corresponding contour maps, binary
source sets (in black) and normalized weighted distance transforms computed by
the exact group marching algorithm.

far propagate the front; near ones participate in an update process twice, first in
an incoming and then in an outgoing direction x. The computation is exact, despite
the random processing order.

Proposition 4.3.3 (a) EGM computes the exact distance D(f)(x) as defined in
4.15 and the correct source point s(x) for each x ∈ X. (b) The while loop processes
each x exactly once. (c) Its time complexity is O(n), where n = |X|.

What remains undefined so far is the function height function f one should use
for distance computation. Here, we start from a contour detector output g and then
f(x) = σ/g(x) for x ∈ X, where σ is a scale parameter. This is a generalization of
the 0/∞ indicator function used in binary distance transform. The contour detectors
we used are the Canny detector and the gPb detector as described in the previous
chapter.

In Fig. 5.4 some examples of the weighted distance transform using euclidean
metric are illustrated. Computation is done by our implementation of the exact
group marching algorithm. One can easily see that sources lie close to true image
edges where images contour maps have high values.

50

Chapter 5

Medial axis

5.1 Introduction

The medial axis transformation is a technique first proposed by Blum [10] as a
means to describe a figure and has been extensively used for shape representation
and description [11]. It is formally defined as follows: given an object represented,
say by a simple polygon G, the medial axis A(G) is the set of points q internal to G
such that there are at least two points on the object’s boundary that are equidistant
from q and are closest to q. Because of its shape, the medial axis of a figure is also
called the skeleton or the symmetric axis of the figure. Associated with the medial
axis is a radius function R, which defines for each point on the axis its distance to
the boundary of the object (see Fig. 5.1). With the axis and the radius function one
can reconstruct the figure by taking the union of all circles centered on the points
comprising the axis, each with a radius given by the radius function.

Figure 5.1: Illustration of a binary shape and its medial axis. Radii of drawn circles
correspond to the distance of each medial axis point to the boundary.

51

Figure 5.2: Binary shapes (in white) and corresponding medial axes (in red).

5.2 Weighted medial axis

Recently, Avrithis and Rapantzikos [7] studied the medial axis on a distance
map weighted by infimal convolution. Rather than working on PDE’s like [45],
they use a residue criterion based on proximity of source points along boundaries.
This is naturally connected to the definition of the medial axis and guarantees
connectedness. They extend it from binary shapes to arbitrary functions in the
plane and compute it with a similar constant-time operation. This approach is
adopted here and will be analytically described.

Given the definitions of sources in a weighted distance map in section 4.3, x ∈ X
is a medial point of f if it has at least two distinct sources. The weighted medial
axis or simply medial axis A(f) is the set of all such points:

A(f) = {x ∈ X : |Sf (x)| > 1} (5.1)

Lemma 5.2.1 The source set and the medial axis of an image f are mutually ex-
clusive: S(f) ∩ A(f) = ∅. Hence the medial axis is contained in the interior set,
A(f) ⊆ I(f).

The medial axis transform or medial axis function A(f) is defined as the restric-
tion of the distance map D(f) on the medial axis: A(f) = D(f)|A(f). It is a subset
of the (3D) product space E = X×V. The definitions above make sense only in the
continuous domain. In the discrete domain, the following properties are applicable:

Lemma 5.2.2 Let A be the medial axis of f in a Euclidean space, and let x ∈ A
and y ∈ S(x).
(a) Construct a parametrized, open line segment from x to y. Then each point z on
the segment has a unique source s(z) = y.
(b) A has zero thickness, i.e. A ⊆ ∂A.

Given two neighboring points x�y with s(x) 6= s(y), lemma 5.2.2(b) suggests
there is a medial point m with S(m) = {s(x), s(y)} on the line segment between

52

x, y. Therefore, pair (x, y) is labeled as medial. To deal with singularities in the
distance map in the discrete domain, an extension of the chord residue criterion [39]
is used.

The weighted medial axis (WMA) algorithm computes the medial axis A(f) of
image f given its weighted distance map h = D(f) and its source map s. Propaga-
tion starts with the medial seed set defined as:

A+(f) = {x ∈ X : h(x) ≥ max
y�x

h(y)}, (5.2)

and continue propagating downwards along A(f) using a FIFO queue q. For each
point x being processed, we scan 4-connected neighbors y�x to decide if (x, y) is a
medial pair. We only propagate to x’s 8-connected neighbors if x is found medial af-
ter scanning. “Medialness” is recorded by means of residue r(x) = maxy�x res(x, y)
for x ∈ X and the medial axis is given by (??). Residue function res is discussed
below.

A(f) = {x ∈ X : r(x) > 0} (5.3)

Ogniewicz and Kübler [39] define chord residue for binary shapes only, as the
difference between the length of a boundary curve segment and corresponding chord
length of a circle that is contained in the shape and bitangent to the boundary
curve at the two endpoints of the segment. The generalized distance map (4.15)
is used and the distance value is seen as a third dimension, or height. Recalling
lemma 4.3.2, Avrithis and Rapantzikos [7] define source function S(f) of f as the
restriction of D(f) on the source set: S(f) = D(f)|S(f) = f |S(f). Dually to the
medial axis function, S(f) ⊆ E is associated to local minima and valleys of the
distance map. Circles are generalized to cones lying below and bitangent to S(f),
and 2D curve segments in X to 3D paths along S(f) in E. Distances are measured
with the product metric δ formed by the Euclidean metric d of 2D space X and the
absolute difference of 1D space V:

δ(u, v) = d(u, v) + |h(u)− h(v)|, u, v ∈ X. (5.4)

Now, given two points x, y ∈ X with sources u = s(x), v = s(y), the chord residue
is generalized as:

res(x, y) = `(u, v)− δ(u, v) (5.5)

The length function ` generalizes the potential function of [39] as the length
of the shortest path (geodesic) connecting points (u, f(u)) and (v, f(v)) along the
surface of the source function S(f) in space E. Its computation is facilitated by the
following.

Lemma 5.2.3 The medial axis A(f) is uniquely determined by the restriction f |∂S(f)

of function f on the boundary of its source set.

53

Figure 5.3: From left to right: medial axis (in red) computed with the WMA
algorithm for scale = 0, 1, 2, 5.

In the discrete domain, the source set S(f) = {x ∈ X : x � x} is first computed
and follows the discrete boundary of the source set S(f) w.r.t. 4-connectivity as

∂S(f) = {x ∈ S(f) : ∃y(y�x ∧ y ∈ I(f))}. (5.6)

A weighted graph H is constructed as a subgraph of grid G with vertex set
V (H) = ∂S(f), and weight function w(e) = δ(u, v) for edge e = (u, v) ∈ E(H).
Its components and the faces of each component are computed. Then, seeing each
face c as a cycle with start vertex v0, we compute for each vertex v of c the weight
wc(v) of path (v0, . . . , v). Each vertex v ∈ V (H) may belong to up to four faces.
If C(v) denotes the set of faces containing v, intersection C(u, v) = C(u) ∩ C(v) is
either empty (if u, v belong to distinct components, in which case we define `(u, v) =
+∞) or contain exactly one common face c, associated to the component of I(f)
containing x, y. In the latter case:

`(u, v) = min(`c(u, v), w(c)− `c(u, v)) (5.7)

where `c(u, v) = |wc(u) − wc(v)| and w(c) is the total weight of face c. This is a
constant-time operation.

Lemma 5.2.4 (a) Given point pairs (x, y), (x′, y′) in the same component of inte-
rior set I(f) with source pairs (u, v), (u′, v′), respectively, define paths π = (u, . . . , v),
π′ = (u′, . . . , v′). If π ⊂ π′, then res(x, y) < res(x′, y′). (b) WMA generates exactly
one component of A(f) for each component of I(f). (c) Its complexity excluding
initialization is O(k), where k = |A(f)|.

Hence the residue function is increasing w.r.t. inward moves along the medial
axis, and pruning is as simple as thresholding with parameter scale. Typically
scale = 2 (pixels). In Fig. 5.3 the medial axis is illustrated for multiple values of
scale. One can observe that minor changes occur for values above the default value
of scale = 2.

In addition, we define for each point x ∈ X its medial pair set P (x) as the set
of points that maximize the residue r (x), or equivalently:

P (x) = {y�x : r(x) = res(x, y)} (5.8)

and its computation is done in scan procedure of the WMA algorithm.

54

Algorithm 2 Weighted Medial Axis
1: procedure medial(distance map h, source map s)
2: initialize q, r;
3: construct A+ as in (5.2);
4: for x ∈ X do r(x)← ∅; label x as far;
5: for x ∈ X do if x � x then label x as done;
6: for x ∈ A+ do prop(x)
7: while ¬ q.empty() do
8: x← q.pop();
9: label x as done;

10: for y�x, ¬y done do scan(x, y)
11: if r(x) 6= 0 then for y×+x, y far do prop(y);
12: end while
13: return residue r
14: end procedure
15:

16: procedure prop(point x)
17: q.push(x);
18: label x as near;
19: end procedure
20:

21: procedure scan(point x, point y)
22: ρ← res(x, y);
23: if s(x) = s(y) ∨ ρ < scale then return
24: if ρ > r(y) ∧ y far then prop(y);
25: r(x)← max(r(x), ρ);
26: r(y)← max(r(y), ρ);
27: end procedure

Figure 5.4: From left to right: input images, corresponding binary source sets (in
black), normalized weighted distance transforms and medial axes(in red).

55

56

Chapter 6

Image partition

6.1 Medial Axis Decomposition

Medial axis decomposition methods are most often found in problems of compu-
tational geometry like domain decomposition [30] in binary images. The approach
adopted in the framework of this thesis in order to decompose the weighted medial
axis is the decomposition methodology developed by Avrithis and Rapantzikos [7]
and it will be shortly presented in this section. It is closest to watershed segmen-
tation applied to the distance map of binary regions [51], but using the weighted
distance map of the gray-level input instead. The partitioning is fundamentally
different from gray-level watershed, in that the latter is guided by image gradient.

While most work in the literature uses the medial axis to represent the shape
of single object or image region, its usage, here, is to represent the structure of an
entire image in terms of regions. Medial axis is decomposed into components and a
corresponding weighted graph G = {V , E} is constructed:

(a) Vertices V correspond to local maxima (peaks) of the distance map.

(b) Edges E correspond to local minima along the medial axis (i.e., along ridges),
therefore to saddle points of the distance map.

(c) Edge weights w(G) : E → R are given by a function of the height at saddle
points.

As function f is related to image gradient or to grayscale contour map, peaks of
the distance map correspond to the interior of image regions, and saddle points to
adjacent region pairs, like mountain passes. Referring to Fig. 6.1, red components
correspond to regions, each contains a peak, and each is represented in G as a vertex.
Similarly, black points correspond to saddle points, and are each represented as an
edge of graph G. The medial axis decomposition (MAD) algorithm [6] constructs
graph G given a distance map h = D(f) and the associated medial axis A(f). Start

57

Figure 6.1: Left: input image. Right: each red component contains a peak and is
represented in G as a vertex. Black points correspond to saddle points and are each
represented as an edge of graph G.

points are the distance peaks on the medial axis:

Â+(f) = A+(f) ∩ A(f) (6.1)

and propagation continues downwards as outlined in algorithm 3. A priority queue
q is used again and propagation is performed to 8-connected neighbors according to
height, as in EGM algorithm. However, the priority level is now negated in prop,
because of the downward direction. A component label κ(x) is assigned to each
x ∈ X, represented by a vertex of graph G. Then, G is build by gradually inserting
a vertex whenever a peak with unlabelled neighbors is visited for the first time
and an edge whenever two fronts with distinct labels meet.

Propagation and component labelling in MAD is equivalent to applying water-
shed segmentation to the negated distance map restricted to the medial axis (i.e.
on A(f)) with peaks as markers. However: (a) due to group marching, complexity
is linear in k, where k = |A(f)|. (b) A single point per marker is ensured, even in
flat areas (plateaus), in which case this point is chosen at random; effectively, the
connected components of the markers are build in parallel to propagation. (c) The
graph G is constructed again in parallel. (d) What is not shown in outline algorithm
3, is that an edge e = (u, v) is contracted or equivalently u is identified with v
whenever |h(u)− h(x(e))| ≤ 1 or |h(v)− h(x(e))| ≤ 1 in order to remove discretiza-
tion effects along ridges while retaining true peaks, where x(e) is the corresponding
saddle point.

6.2 Image partition

Next, the entire image is partitioned via a reconstruction operation. A duality
property, which reduces this operation to EGM algorithm, is exploited. Recall that
the distance map D(f) applies to functions f defined on domain X whereas the
medial axis function A(f) is restricted to subset A(f) ⊂ X. Given any function
f : U → V, the extension operator is defined as f |X = f ∪ ((X \U)×{−∞}), which

58

Algorithm 3 Medial Axis Decomposition
1: procedure mad(distance map h, medial axis A)
2: initialize q,G;
3: construct Â+

4: for x ∈ A do κ(x)← ∅; label x as far
5: for x ∈ Â+ do prop(x)
6: while ¬ q.empty() do
7: x← q.pop();
8: label x as done;
9: for y×+x, y ∈ A do scan(x, y)

10: if κ(x) = ∅ then κ(x)← G.vertex(x)
11: end while
12: return graph G
13: end procedure
14:

15: procedure prop(point x)
16: q.push(x, b−h(y)c);
17: label x as near;
18: end procedure
19:

20: procedure scan(point x, point y)
21: if y far then prop(y)
22: if κ(y) = ∅ return
23: if κ(x) = ∅ then κ(x)← κ(y); return
24: if κ(x) 6= κ(y) then G.edge(κ(x), κ(y), w(x))
25: end procedure

59

0 10 20 30 40

0

5

10

0 10 20 30 40

−10

−5

0

(a) (b)

0 10 20 30 40

0

5

10

0 10 20 30 40

−10

−5

0

(c) (d)

Figure 6.2: Illustrating duality of proposition 6.2.1 in one dimension. Functions in
(b),(d) are negated versions of (a), (c); horizontal axis is X. (a) Black: f , blue:
D(f), green dots: A(f). f is low at image boundaries, high inside regions. (b) Blue:
red dots: A(−g). (c) Red dots: S(f ′) = −A(−g). This is where fronts meet during
partitioning.

extends its domain to X with value −∞ wherever f is not defined. The extended
medial operator is defined as M by M(f) = A(f)|X for f ∈ F. Since M(f) is
defined on domain X, distance or medial axis operators can be applied sequentially:

Proposition 6.2.1 Given function f , let g = M(f) in a Euclidean space, define
f ′ = −M(−g), g′ = M(f ′). Then source function S and medial axis function A
are dual:

(a) −S(−g) = A(f)

(b) S(f ′) = −A(−g) ⊆ S(f)

(c) g′ = g.

This result is quite condensed, but an one-dimensional example in Fig. 6.2 illus-
trates the idea. Proposition 6.2.1 suggests that the extended boundary operator B
can be defined as B(f) = −M(−f) for f ∈ F. Then, similarly to morphological
erosion and dilation, the two operators are dual. Also, similarly to opening (clos-
ing), composition B ◦M (M◦B) is idempotent and has fixed point f iff f = B(g)
(f =M(g)) for some g.

In practice, given the distance map h = D(f) and medial axis A(f), EGM is
invoked with input function g:

g(x) =

{
−h(x), x ∈ A(f)

+∞, otherwise
(6.2)

Label map κ from MAD is used to construct component or equivalently region
labels κ(x) for all x ∈ X. Initial Partition P0 is produced by a label propagation

60

Figure 6.3: From top to bottom: input images, medial axis (in red) and corre-
sponding saddle points (in black), dual source set which is identified with the medial
axis as can be easily observed, dual distance map, (initial) partition.

operation:
κ(x) = κ(ŝ(x)), for all x ∈ X (6.3)

where ŝ(x) denotes the dual source of x ∈ X. The label map κ that corresponds to
the initial partition P0 will be denoted as κ0. Image is represented as a disjoint-set
forest data structure where each pixel corresponds to a node. Initially, all nodes
are in disjoint sets or equivalently each node has as parent the node itself. After
the label propagation according to (6.3), each node in the disjoint-set forest has as
parent its source point of the dual distance transform.

In Fig. 6.2 an example of the initial partition produced by the medial axis de-
composition and the dual distance map. In addition, Fig. 6.4 an illustrates the EGM
algorithm scale parameter σ effect to the finesse of the initial partition.

61

Figure 6.4: Initial partition for scale parameter of the exact group marching algo-
rithm for σ = 0.25, 0.5, 1.0 and 2.0 respectively.

62

Chapter 7

Adjacent region merging

7.1 Efficient Merging based on similarity

The first merging technique we propose is an efficient merging technique based
on a similarity measure between adjacent regions. Returning to line 24 of algorithm
3, we define the weight of each edge e ∈ E for this merging technique as:

w(e) = h(x(e)) (7.1)

where x(e) is the saddle point where e is generated. The choice of the above weight
function as a measure of similarity will be shortly justified.

First of all, recall the definition of the weighted distance transform at point x:

h(x) = d(x, s(x)) + f(s(x)) (7.2)

where s(x) is the source point of x. Large value of a saddle point height potentially
means that there is a large boundary discontinuity or equivalently a large gap in
the binary source set. This discontinuity is associated with the term d(x, s(x)) . In
addition, it could demonstrate the existence of a weak boundary in case of a small
value of f(s(x)). In any of the above cases, the saddle point height can be viewed
as a non-negative measure of similarity between adjacent regions.

We define as similarity between two regions (components) R,R′ ⊆ X is defined
as the maximum edge connecting the two regions. That is:

Sim(R,R′) = max {w(u, v) : u ∈ R, v ∈ R′, (u, v) ∈ E} (7.3)

If there is no edge connecting R and R′ then let Sim(R,R′) = 0.

A region comparison predicate Q(R,R′) is introduced to evaluate whether a
boundary exists between a pair of regions R,R′. If this predicate is true then the
two regions should not be merged. The predicate checks if the similarity between

63

the components, Sim(R,R′), is less or equal than a threshold function τ(R,R′). The
pairwise comparison predicate for the existence of a boundary is defined as:

Q(R,R′) =

{
true , if Sim(R,R′) < τ(R,R′)

false , otherwise
(7.4)

The implemented algorithm , which we name Efficient Similarity Merging (ESM),
has analogous basic steps as [18]. We first sort edge weights by non increasing edge
weight. Then we process each weight in the latter order. Regions pairs are merged
if the predicate Q is false for the two adjacent regions that each edge connects. A
disjoint set forest representation ,as described in the previous section, is used along
with union by rank and path compression techniques to improve running time. The
main merging algorithm is outlined below.

Algorithm 4 ESM
1: procedure Segmentation(graph G, initial label map κ0)
2: Sort E = (e1, . . . , em) by non increasing edge weight.
3: for q = 1, . . . ,m do
4: Let eq = (u, v), u ∈ R and v ∈ R′
5: κu ← find(u)
6: κv ← find(v)
7: if ¬Q(R,R′) then union(κu, κv)
8: end for
9: return label map κ
10: end procedure
11:

What remains undefined so far is the threshold function. The threshold function
of two regions Ri and Rj is defined as the minimum between the threshold function
of each region separately:

τ(R,R′) = min (τ(R), τ(R′)) (7.5)

For the threshold function of one region, two choices have been used and tested.
The first one is a simple constant, that is:

τ(R) = τ (7.6)

where τ is a constant. On the other hand, the second choice of the threshold function
is proportional to the region area, denoted as |R|. That is for a small region, a smaller
evidence for similarity is required.

τ(R) = |R| /k (7.7)

where k is a constant and plays the role of a scale factor.

64

Lemma 7.1.1 If an edge eq and the two corresponding distinct region are consid-
ered and not merged then at least one of the two components will be in the final
segmentation.

Lemma 7.1.2 The segmentation S produced by 5 is not too fine according to 2.2.1,
using the predicate Q.

Lemma 7.1.3 The segmentation S produced by 5 is not too coarse according to
2.2.1, using the predicate Q.

Detailed proofs of the above lemmas are presented in Appendix A.

7.2 Merging controlled by region fragmentation

In this section we present an alternative merging technique based on the fact that
resulting regions from any segmentation procedure are closed. In addition, image
representation we adopted in this framework is able to measure a region’s boundary
closure or inversely a region boundary fragmentation. Thus, we see image segmen-
tation as a search for most closed region boundaries. We introduce a new logical
predicate for adjacent region merging based on region boundaries fragmentation.

The source set may frequently become disconnected or fragmented. Gaps appear
either due to variation of f along edges, or to region shape. Medial axis decomposi-
tion helps overcome fragmentation because for every gap there is associated a local
minimum of the distance map along the medial axis, that is, a saddle point. The
surrounding saddle points give rise to edges of graph G. Returning ,again, to line 24
of algorithm 3 we define a different edge weight function which we consider as more
appropriate for this method. We now define the weight w(e) for each edge e ∈ E
as the width of the associated gap of the source set. If x = x(e) denotes the saddle
point where e is generated and y ∈ P (x) one point of the medial pair set of x, then
the edge weight w(e) or equivalently the width of the associated gap can be written
as:

w(e) = d(x, s(x)) + d(y, s(y))⇔ (7.8)

w(e) = h(x)− h(s(x))︸ ︷︷ ︸
d(x,s(x))

+h(y)− h(s(y))︸ ︷︷ ︸
d(y,s(y))

(7.9)

Medial pair set may contain more than one points and four at most. In case there
are more than one medial pairs of x, its choice does not significantly affect the
associated width measurement. Thus, in practice we randomly choose one out of
these medial pairs to measure the gap width.

65

Given a region R with area a(R) and corresponding edge set E(R), its shape
fragmentation factor is defined as [7]:

φ(R) =
1

a(R)

∑

e∈E(R)

w2(e) (7.10)

whereas φ(R) = 0 if E(R) = ∅. This factor is a dimensionless, scale invariant quan-
tity. It is an increasing function of both the width of the gaps and their cardinality
(for constant sum of widths), and is identically zero for closed shapes.

With a single iteration through each edge e ∈ E , we compute the sum of squared
gap widths appearing in (7.10) for each component, prior to region merging.

Now, we define the predicate for merging two adjacent regions R, and R′ :

Q(R,R′) = max (φ(R′), φ(R)) > τ (7.11)

where threshold τ is a constant. At this point it should be underlined that when
a merging between a pair of adjacent regions (R,R′) occurs, then the new region’s
R ∪R′ fragmentation factor is computed as following:

φ(R ∪R′) =

∑
e∈E(R) w

2(e) +
∑

e∈E(R′) w
2(e)− 2 ·∑e∈E(R)∩E(R′) w

2(e)

a(R) + a(R′)
(7.12)

The merging process is similar to the one described in the previous section.
Again, we first sort edge weights by non increasing edge weight and then we process
each weight in the latter order. Regions pairs are merged if the predicate Q is true
for the two adjacent regions that each edge connects. The predicate is true if at least
one of them has fragmented boundaries, i.e. it has a fragmentation factor greater
than a constant τ . Our Shape Fragmentation based Merging (SFM) algorithm is
presented below.

Algorithm 5 SFM
1: procedure Merging(graph G, initial label map κ0)
2: Sort E = (e1, . . . , em) by non increasing edge weight.
3: for q = 1, . . . ,m do
4: Let eq = (u, v), u ∈ R and v ∈ R′
5: κu ← find(u)
6: κv ← find(v)
7: if Q(R,R′) then
8: union(κu, κv)
9: update(φ(R ∪R′)) according to (7.12)
10: end if
11: end for
12: return label map κ
13: end procedure
14:

66

7.3 Hierarchical segmentation and ultrametric con-

tour maps

Arbelaez [2] defines the notion of ultrametric contour maps that are used to pro-
duce hierarchical image partitions. The main idea is to represent the whole process
of partition from the finest level (the initial oversegmentation) to the coarser level
(entire image is one segment) in a single grayscale image. From this grayscale image
named ultrametric contour map one can obtain segmentation at any desired scale
by a simple thresholding operation. The definitions and description that follows can
be found at [2] and are included in this section to improve readers comprehension.

Let P0 denote an initial partition of image domain X and λ ∈ R a scale parame-
ter. A Hierarchical Segmentation Operator (HSO) is a mapping between a partition
Pλ to (P0, λ) in such a way that the three following properties are satisfied:

Pλ = P0, ∀λ ≤ 0 (7.13)

∃λ1 ∈ R+ : Pλ = {X} , ∀λ ≥ λ1 (7.14)

λ ≤ λ
′ ⇒ Pλ v Pλ′ (7.15)

where symbol v denotes the partial order of partitions, such that P v P ′ iff:

∀Ri ∈ P ,∃R
′

i ∈ P ′ : Ri ⊆ R
′

i (7.16)

According to (7.16), sets of partitions at different scales are nested and impose
a hierarchical structure to the family:

H = {R ⊆ X | ∃λ : R ∈ Pλ} (7.17)

The stratification index is defined as the scale λ at which a region appears in H:

I(R) = inf {λ ∈ [0, λ1] : R ∈ Pλ} (7.18)

Pair (H, I) is called an indexed hierarchy of subsets of X.This indexed hierarchy
can be represented by a dendogram, where the height of each region is given by the
stratification index I(R). The construction of the above hierarchy is equivalent to
the definition of a distance or a metric between two elements x, y ∈ X:

Y(x, y) = inf{I(R) | x ∈ R ∧ y ∈ R ∧R ∈ H} (7.19)

Metric Y belongs to a special type of distances, called ultrametrics, which in
addition to the triangle inequality they satisfy the following property:

Y(x, y) ≤ max{Y(x, z),Y(y, z)}, x, y, z ∈ X (7.20)

Alternatively, segmentation can be expressed in terms of contours. A segmen-
tation K of domain X can be defined as a finite set of Jordan curves, the contours

67

ods of reference in segmentation by clustering, the varia-
tional approach of [7] and the hierarchical watersheds [12].
Furthermore, we show that the performance of our method
is superior to state of the art local edge detectors [8], while
providing a set of closed curves for any threshold.

2. Definitions
2.1. Hierarchical Segmentation

Let Ω ⊂ R2 be the domain of definition of an image,
P0 an initial partition of Ω and λ ∈ R a scale parameter. A
hierarchical segmentation operator (HSO) is an application
that assigns a partition Pλ to the couple (P0, λ), such that
the following properties are satisfied:

Pλ = P0, ∀λ ≤ 0 (1)

∃ λ1 ∈ R+ : Pλ = {Ω}, ∀λ ≥ λ1 (2)

λ ≤ λ′ ⇒ Pλ v Pλ′ (3)

Relations (1) and (2) determine the effective range of
scales of the operator and indicate that the analysis can be
restricted to the interval [0, λ1]. The symbol v denotes the
partial order of partitions : P v P ′ ⇔ ∀ a ∈ P, ∃ b ∈
P ′ : a ⊆ b. Thus, relation (3) sets that partitions at dif-
ferent scales are nested, imposing a hierarchical structure to
the familyH = {R ⊂ Ω | ∃λ : R ∈ Pλ}.

By considering the scale where a region appears in H,
one can then define a stratification index, the real valued
application f given by :

f(R) = inf{λ ∈ [0, λ1] | R ∈ Pλ}, ∀ R ∈ H (4)

The couple (H, f) is called an indexed hierarchy of sub-
sets of Ω. It can be represented by a dendrogram, where the
height of a region R is given by f(R). The construction of
(H, f) is equivalent to the definition of a distance between
two elements x, y of P0 :

Υ(x, y) = inf{f(R) | x ∈ R ∧ y ∈ R ∧R ∈ H}. (5)

The application Υ belongs to a special type of distances
called ultrametrics that, in addition to the usual triangle in-
equality, satisfy the stronger relation :

Υ(x, y) ≤ max{Υ(x, z),Υ(z, y))}. (6)

2.2. Ultrametric Contour Maps

We now follow [10] for the definition of a segmentation
in terms of contours in a continuous domain.

A segmentation K of an image u as a finite set of rec-
tifiable Jordan curves, called the contours of K. The re-
gions of K, noted (Ri)i are the connected components of
Ω \ K. Furthermore, we suppose that the contours meet

K0 K1 K2 C(Υ) C(Υ)

Figure 2. From left to right : Family of segmentations defined by
a HSO, UCM and 3D view of UCM.

each other and ∂Ω only at their tips, that each contour sepa-
rates two different regions and that each tip is common to at
least three contours. The contour separating regions Ri and
Rj is noted ∂ij .

Hence, a segmentation can be equivalently expressed by
its contours K or by the partition P = {Ri}i of Ω.

Rewriting properties (1) to (3) in terms of contours of
the segmentations leads to the following characterization of
a HSO :

Kλ = K0, ∀λ ≤ 0 (7)

Kλ = ∂Ω, ∀λ ≥ λ1 (8)

λ ≤ λ′ ⇒ Kλ ⊇ Kλ′ (9)

Relation (7) determines the set of initial contoursK0 and (8)
indicates that all inner contours vanish at finite scale. The
hierarchical structure imposed by (9), called the principle of
strong causality in [10], establishes that the localization of
contours is preserved through the scales.

We can now define the model of contours that will be
considered.

Let Υ be the ultrametric distance defined by a HSO. The
ultrametric contour map (UCM) associated to Υ is the
application C(Υ) : K0 → [0, λ1] given by:

C(Υ)(∂) = inf{λ ∈ [0, λ1] | ∂ * Kλ},∀ ∂ ∈ K0. (10)

The number C(Υ)(∂) is called the saliency of contour ∂.
Note the duality with the regions, the saliency of ∂ being its
scale of disappearance from the hierarchy of contours.

The ultrametric contour map is a representation of a HSO
in a single real-valued image. Figure 2 presents a simple ex-
ample of UCM. By definition, thresholding this soft bound-
ary image at scale λ provides a set of closed curves, the
segmentation Kλ.

Nevertheless, note that if the initial partition P0 is fixed,
all the UCM weight the elements of the same set K0.
Hence, the utility of such a representation is determined by
the distance Υ, whose value defines the saliency of each
contour. Our objective will be to design ultrametrics such
that the UCM model the boundaries of physical objects in
natural images.

Figure 7.1: From left to right: Family of segmentations defined by a HSO, UCM
and 3D view of UCM.

of K. The regions Ri of K are the connected components of X \K. The contour
separating adjacent regions Ri and Rj is denoted as ∂ij.

Hierarchical segmentation operation can be dually expressed in terms of contours.
Thus, equations (7.13) to (7.14) can be rewritten as following:

Kλ = K0, ∀λ ≤ 0 (7.21)

∃λ1 ∈ R+ : Kλ = ∂X, ∀λ ≥ λ1 (7.22)

λ ≤ λ
′ ⇒ Kλ ⊇ Kλ′ (7.23)

Property (7.21) determines the set of initial contours K0 which are related to the
initial partition P0. Property (7.22) demonstrates that all inner contours of domain
X vanish at a scale λ1. According to the third property (7.23), localization of
contour is preserved through different scales.

Let Y be the ultrametric distance defined by a Hierarchical Segmentation Oper-
ator (HSO). The ultrametric contour map (UCM) associated to Y is defined as:

C(Y)(∂) = inf{λ ∈ [0, λ1] | ∂ * Kλ}, ∀∂ ∈ K0 (7.24)

The number C(Y)(∂) is called the saliency of contour ∂. Note the duality with
the regions, the saliency of ∂ being its scale of disappearance from the hierarchy
of contours. The ultrametric contour map is a representation of a HSO in a single
real valued image. Figure 7.3 presents a simple example of UCM. By definition,
thresholding this soft boundary image at scale λ provides a set of closed curves, the
segmentation K.

Starting from a family of nested partitions constructed by a region merging
process, one can always define an ultrametric distance by considering as stratification
index an increasing function of the merging order. However, in order to define a
meaningful notion of scale, the distance between any two points in adjacent regions
should coincide with the inter-region dissimilarity δ:

Y(x, y) = δ(Ri, Rj),∀x ∈ Ri,∀y ∈ Rj (7.25)

This property is satisfied by setting the value of the dissimilarity at the creation
of a region as its stratification index. However, for an arbitrary dissimilarity, this
choice can lead to the existence of two regions

(
R,R

′) ∈ H2 such that R ⊂ R
′

68

but f(R) > f(R
′
). In terms of contours, this case implies the violation of property

(7.23))

Hence, we call δ an ultrametric dissimilarity if the pair (H, I) is an indexed
hierarchy, where I is defined by:

I(Ri ∪Rj) = δ(Ri, Rj) (7.26)

for all pairs of connected regions (Ri, Rj) ∈ H2.

One can then prove that a dissimilarity δ is ultrametric if and only if:

δ(Ri, Rj) ≤ δ (Ri ∪Rj, Rk) (7.27)

where (Ri, Rj) is the region pair minimizing δ and Rk is a region connected to Ri∪Rj

and appearing in the partition obtained after the merging of (Ri, Rj)).

Working with ultrametric dissimilarities, as those defined in the next section,
is important for our application because it guarantees that the saliency of each
contour in the UCM is exactly the value of the dissimilarity between the two regions
it separates.

The algorithm we implemented for region merging using ultrametric contour
maps proceeds as following. The hierarchy of regions is constructed by a greedy
graph-based region merging algorithm. A graph G = (P ,K) is defined where the
nodes are the regions P , the edges correspond to contours K separating adjacent
regions and the weightsW are a measure of ultrametric dissimilarity between regions.
The above graph is initialized by the initial partition produced by MAD algorithm.
In addition, it produces as output the corresponding Ultrametric Contour Map
(UCM) which is initially set to zero for all elements in image domain. The algorithm
proceeds by sorting the links by similarity and iteratively merging the most similar
regions. The merging process can be summarized in the following main steps:

1) Select minimum weight contour: C∗

2) Let Ri, Rj ∈ P be the regions separated by C∗

2) UCM(x) = W (C∗), ∀x ∈ ∂ij
4) Set R = Ri ∪Rj and update: P ← P\{Ri, Rj} ∪R and K ← K\{C∗}
5) Stop if K is empty. Otherwise, update weights W and repeat.

As we have computed the ultrametric Contour Map, one can obtain the final seg-
mentation by simply thresholding UCM at a desired scale.

7.3.1 Inter-region fragmentation ultrametric dissimilarity

In this section, we exploit the rich image representation provided by the medial
axis decomposition method we are based on. Specifically, we define the inter-region
fragmentation factor between two adjacent regions Ri and Rj as the sum of the

69

gap widths associated with their common boundary divided by the length of their
common boundary. That is:

Φ(Ri, Rj) =

∑
e∈E(Ri)∩E(Rj)

w(e)

L(∂ij)
(7.28)

A large value of the inter-region fragmentation demonstrates the absence of a strong
and continuous boundary between two regions. Thus, it expresses similarity between
corresponding regions. Now, we define the ultrametric dissimilarity δΦ which is based
on the inter-region fragmentation:

δΦ(Ri, Rj) = exp (−Φ(Ri, Rj)) (7.29)

Lemma 7.3.1 The dissimilarity δΦ is ultrametric.

Lemma 7.3.1 is analytically proved in the Appendix A.

7.3.2 Mean Boundary Gradient Ultrametric Dissimilarity

In addition to the previous ultrametric dissimilarity, we experimented on and
implemented an ultrametric dissimilarity based on the mean boundary strength
between adjacent regions. Using mean boundary strength is a common approach
[2, 4] to express adjacent region dissimilarity. The boundary strength ultrametric
dissimilarity is defined as:

δg(Ri, Rj) =

∑
g(∂ij)

L(∂ij)
(7.30)

where
∑

g(∂ij) =
∫
∂ij
g(x(s))ds, that is the sum of image gradient or the sum of a

grayscale contour output g along the common boundary.

Lemma 7.3.2 The dissimilarity δg as defined in equation (7.30) is ultrametric.

Lemma 7.3.2 is analytically proved in the Appendix A.

70

Chapter 8

Evaluation

8.1 Introduction

When developing a scientific method in any field, it is more than essential to test
how well the particular method works according to some objective criteria. This
point is eloquently underlined by Lord Kelvin words: “When you can measure what
you are speaking about and express it in numbers, you know something about it; but
when you cannot measure it, when you cannot express it in numbers, your knowledge
is of the meager and unsatisfactory kind”. Thus, in this chapter we evaluate our
method, compare it to other methods and discuss the pros and the cons of each
merging technique.

8.2 Dataset

To evaluate our method we used the Berkeley Segmentation Dataset which is the
most popular and wide known dataset for the purpose of image segmentation. The
original Berkeley Segmentation Dataset (BSDS300) consists of 300 natural images,
manually segmented by a number of different subjects. The ground-truth data for
this large collection shows the diversity, yet high consistency, of human segmenta-
tion. The images are divided into a training set of 200 images, and a test set of
100 images. A new dataset (BSDS500) is an extension of the BSDS300, where the
original 300 images are used for training / validation and 200 fresh images, together
with human annotations, are added for testing. Each image was segmented by five
different subjects on average.

71

Figure 8.1: Human ground-truth of Berkeley segmentation dataset

72

8.3 Evaluation metrics

In the following sections, several metrics for evaluating both boundaries and
regions against human ground-truth are presented as described in the documentation
of the BSDS500 [4].

8.3.1 Precision-recall framework

In the field of information retrieval, precision is the fraction of retrieved items
that are relevant to the search:

Precision =
|{Relevant items} ∩ {Retrieved items}|

|{Retrieved items}| (8.1)

Recall in information retrieval is the fraction of relevant items that are success-
fully retrieved:

Recall =
|{Relevant items} ∩ {Retrieved items}|

|{Relevant items}| (8.2)

The precision-recall framework has been used to evaluate the output of a contour
detector or a segmentation algorithm as both outputs are image regions boundaries.
This framework considers two aspects of boundary detection performance. Precision
(P) measures the fraction of true positives in the boundaries produced by a detec-
tor or a segmentation method. Recall (R) measures the fraction of ground-truth
boundaries detected. Thus, precision quantifies the amount of noise in the output
of a contour detection or a segmentation method, while recall quantifies the amount
of ground-truth detected. Computation of precision and recall is performed as fol-
lowing: the machine boundary map is separately corresponded with each human
map in turn. Only those machine boundary pixels that match no human boundary
are counted as false positives. The hit rate is simply averaged over the different
humans, so that to achieve perfect recall the machine boundary map must explain
all of the human data. For detectors that provide real-valued outputs, one obtains a
curve parametrized by detection threshold, quantifying performance across operat-
ing regimes. The global F-measure, defined as the harmonic mean of precision and
recall, provides a useful summary score for the algorithm. The F-measure is defined
as:

F =
2PR

P +R
(8.3)

8.3.2 Variation of information

The Variation of Information metric was introduced for the purpose of clustering
comparison. It measures the distance between two clusterings C and C ′ in terms of

73

Figure 8.2: The Precision-recall curve is presented in blue. The light green curves
represent the isolevel lines of the function F (P,R). They can be used to situate the
Precision-Recall curves, since the quality of a detector is judged by considering the
image of its curve by the function F . Thus, the point with maximal F-measure, in
red, can be interpreted as the highest point of the curve on the surface z = F (P,R),
the objective being the point F (1, 1) = 1. The isolevel line F (P,R) = 0.79, in dark
green, corresponds to the human consistency on the test data set of the BSDS300,
obtained by comparing the human segmentations among them. This line represents
the reference with respect to which the performance of machines for the task of
boundary detection is measured. (From [1]).

their average conditional entropy given by:

V I(C, C ′) = H(C) +H(C ′)− 2I(C, C ′) (8.4)

where H and I represent respectively the entropies and mutual information between
two clusterings of data C ′ and C ′. In the case of image segmentation, these clusterings
are test and ground truth segmentations. Although V I possesses some interesting
theoretical properties, its perceptual meaning and applicability in the presence of
several ground-truth segmentations remains unclear.

8.3.3 Rand index

Originally, the Rand Index was introduced for general clustering evaluation. It
operates by comparing the compatibility of assignments between pairs of elements
in the clusters. The Rand Index between test and ground truth segmentations S
and G is given by the sum of the number of pairs of pixels that have the same label
in S and G and those that have different labels in both segmentations, divided by
the total number of pairs of pixels. Variants of the Rand Index have been proposed
for dealing with the case of multiple ground-truth segmentations. Given a set of
ground-truth segmentations {Gk} , the Probabilistic Rand Index is defined as:

PRI(S, {Gk}) =
1

T

∑

i<j

[cijpij + (1− cij)(1− pij)] (8.5)

74

where cij is the event that pixels i and j have the same label and pij its probability.
T is the total number of pixel pairs. Using the sample mean to estimate pij, amounts
to averaging the Rand Index among different ground-truth segmentations. The PRI
has been reported to suffer from a small dynamic range and its values across images
and algorithms are often similar. In, this drawback is addressed by normalization
with an empirical estimation of its expected value.

8.3.4 Segmentation covering

The overlap between two regions R1 and R2 is defined as:

O(R1, R2) =
|R1 ∩R2|
|R1 ∪R2|

(8.6)

The covering of a segmentation S1 by a segmentation S2 is defined as:

C(S1 → S2) =
1

N

∑

R∈S

|R| · max
R2∈S2

O(R1, R2) (8.7)

where N denotes the total number of pixels in the image.

Similarly, the covering of a machine segmentation S by a family of ground-truth
segmentations is defined by first covering S separately with each human segmentation
{Gk}, and then averaging over the different humans. To achieve perfect covering
the machine segmentation must explain all of the human data.

8.4 Results

In the following figures we show some representative results of the segmentation
techniques we implemented. Results that follow are produced using the gPb contour
detector as input to our framework. All implemented merging techniques depend on
a single threshold value. The threshold value that maximizes the F-measure for the
entire test set is called the optimal dataset scale (ODS) whereas the threshold value
that maximizes the F-measure for each image of the test set is called the optimal
image scale (OIS). Thus, we expect segmentations produced at OIS to be closest to
human ground-truth segmentations.

75

Figure 8.3: Segmentation results on the BSDS500 produced by the gPb-
mad-esm algorithm using a constant value threshold. From left to right:
input image, and segmentations obtained by thresholding at the optimal dataset
scale (ODS) and optimal image scale (OIS). All images are from the test set.

76

Figure 8.4: Additional segmentation results on the BSDS500 produced by
the gPb-mad-esm algorithm using a constant value threshold. From top
to bottom: input image, and segmentations corresponding to the optimal dataset
scale (ODS) and optimal image scale (OIS). All images are from the test set.

77

Figure 8.5: Segmentation results on the BSDS500 produced by the gPb-
mad-esm algorithm using a threshold based on region size. From left
to right: input image, segmentations corresponding to the optimal dataset scale
(ODS) and optimal image scale (OIS). All images are from the test set.

78

Figure 8.6: Segmentation results on the BSDS500 produced by the gPb-
mad-sfm algorithm using a threshold based on region size. From top
to bottom: input image, and segmentations segmentations corresponding to the
optimal dataset scale (ODS) and optimal image scale (OIS). All images are from
the test set.

79

Figure 8.7: Hierarchical segmentation results on the BSDS500 by using the
inter-region fragmentation ultrametric dissimilarity. From left to right:
input image, segmentations obtained by thresholding at the optimal dataset scale
(ODS) and optimal image scale (OIS).

80

Figure 8.8: Hierarchical segmentation results on the BSDS500 by using
the boundary strength ultrametric dissimilarity . From left to right:
input image, ultrametric contour map and segmentations obtained by thresholding
at the optimal dataset scale (ODS) and optimal image scale (OIS).

81

Figure 8.9: Hierarchical segmentation results on the BSDS500 produced by
using the boundary strength ultrametric dissimilarity. From left to right:
input image, ultrametric contour map and segmentations obtained by thresholding
at the optimal dataset scale (ODS) and optimal image scale (OIS).

8.5 Evaluation

To provide a basis of comparison for the the merging techniques of our segmen-
tation framework, we make use of the state-of-art gPb-owt-ucm [3] algorithm along
with its baseline, the Canny-owt-ucm algorithm. In addition, we provide results as
presented in [3] for the region merging by Felzenszwalb and Huttenlocher [18] (Felz-
Hutt), Mean Shift [15], Multiscale Normalized Cuts [16] and for a fixed hierarchy of
regions such as the Quad-Tree with 8 levels.

82

For our implemented techniques, let ucmg denote our merging technique based
on boundary strength ultrametric dissimilarity, ucmφ denote our merging technique
based on inter-region fragmentation ultrametric dissimilarity, esmc denote the ESM
algorithm with a constant threshold value and esma denote the ESM algorithm with
using a threshold based on region size. In addition, we denote our grayscale canny
contour detector as gCanny.

We evaluate each method using the boundary based precision-recall framework
as well as the Variation of Information, Probabilistic Rand Index, and Covering
criteria described in the previous sections. The BSDS serves as ground-truth for
both the boundary and region quality measures, since the human-drawn boundaries
are closed and hence are also segmentations.

8.5.1 Boundary benchmarks

The overall results for boundary evaluation criteria are presented in Table 8.5.1.
Results for several different segmentation methods (upper table) and contour detec-
tors (lower table) are given. Shown are the F-measures when choosing an optimal
scale for the entire dataset (ODS) or per image (OIS). The boundary benchmark is
considered to have the largest discriminative power among the evaluation criteria,
clearly separating the Quad-Tree from all the data-driven methods.

8.5.2 Region benchmarks

The overall results for region evaluation criteria are presented in Table 8.5.1.
For each segmentation method, the leftmost three columns report the score of the
covering of ground-truth segments according to optimal dataset scale (ODS), optimal
image scale (OIS), or Best covering criteria. The rightmost four columns compare
the segmentation methods against ground-truth using the Probabilistic Rand Index
(PRI) and Variation of Information (VI) benchmarks, respectively. Among the
region benchmarks, the covering criterion has the largest dynamic range, followed
by PRI and VI.

8.6 Discussion

From all merging techniques we implemented, the gPb-mad-ucmg has the best
performance in both boundary and region benchmarks. It is almost as good as
the state-of-art gPb-owt-ucm algorithm in the boundary benchmark and in Cov-
ering metric, exactly as good in Probabilistic Rand Index metric and significantly
outperforms the gPb-owt-ucm algorithm in the Variation of Information metric.
The gPb-mad-ucmφ technique that merges according to the inter-region ultrametric
dissimilarity performs quite well in the boundary benchmark but it has the worst

83

BSDS500
ODS OIS

Human 0.80 0.80
gPb-owt-ucm [3] 0.73 0.76
gPb-mad-ucmg 0.72 0.75
gPb-mad-esmc 0.69 0.72
gPb-mad-ucmφ 0.69 0.71
gPb-mad-sfm 0.67 0.70
gPb-mad-esma 0.64 0.68
Mean Shift [15] 0.64 0.68
NCuts [16] 0.64 0.68
gCanny-mad-ucmg 0.61 0.65
Felz-Hutt [18] 0.61 0.64
Canny-owt-ucm [3] 0.60 0.64
gCanny-mad-esmc 0.58 0.61
gCanny-mad-esma 0.58 0.61
gCanny-mad-sfm 0.56 0.59
gCanny-mad-ucmφ 0.55 0.58
Quad-Tree 0.38 0.39
gPb [3] 0.71 0.74
gCanny 0.61 0.64
Canny [3] 0.60 0.63

Table 8.1: Boundary benchmarks on the BSDS500.

performance in the region benchmark. This is quite expected as the inter-region frag-
mentation dissimilarity is actually a binary approximation of the boundary strength
between two regions. Consider the following case: two regions are separated by a
relatively small boundary segment which has a medium contour strength. If the are
stronger gradients in the neigborhood of this segment, then probably there will not
be formed any sources on the this boundary segment. As a result, this segment will
be considered as one of very weak dissimilarity and the two corresponding regions
will be merged despite the fact that there is underlying boundary strength.

The efficient similarity merging technique using a constant threshold seems to be
the second best technique out the five we proposed and tested. It has the advantage
that it is efficient, easy to implement and produces good results. Its main drawback
is that it does not take into account the region size. Thus, it will not merge two
small adjacent regions even if there is relatively strong evidence for similarit. In
addition, using a threshold function based on region area, instead of a constant
threshold, does not actually produce the desired results. It creates a preference for
regions size rather than a proper normalization of regions similarity. Moreover, the
merging technique controlled by shape fragmentation factor has the advantage that
it takes into account more global information than the other methods. One the one
hand, it can merge small regions if their boundaries are fragmented enough. On the

84

BSDS500
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.72 0.72 – 0.88 0.88 1.17 1.17
gPb-owt-ucm[3] 0.59 0.65 0.74 0.83 0.86 1.69 1.48
gPb-mad-ucmg 0.58 0.64 0.74 0.83 0.86 1.62 1.39
gPb-mad-esmc 0.55 0.62 0.71 0.82 0.86 1.83 1.51
Mean Shift [15] 0.54 0.58 0.66 0.79 0.81 1.85 1.64
Felz-Hutt [18] 0.52 0.57 0.69 0.80 0.82 2.21 1.87
gPb-mad-sfm 0.52 0.56 0.62 0.79 0.82 1.83 1.70
gPb-mad-esma 0.51 0.54 0.60 0.79 0.80 1.86 1.82
Canny-owt-ucm [3] 0.49 0.55 0.66 0.79 0.83 2.19 1.89
myCanny-mad-ucmg 0.48 0.55 0.65 0.79 0.83 2.10 1.77
gPb-mad-ucmφ 0.46 0.54 0.63 0.77 0.80 2.07 1.81
NCuts [16] 0.45 0.53 0.67 0.78 0.80 2.23 1.89
gCanny-mad-esmc 0.45 0.53 0.63 0.78 0.83 2.31 1.91
gCanny-mad-sfm 0.42 0.49 0.58 0.77 0.80 2.18 1.95
gCanny-mad-esma 0.40 0.47 0.53 0.76 0.77 2.41 2.27
gCanny-mad-ucmφ 0.35 0.42 0.50 0.74 0.77 2.43 2.29
Quad-Tree 0.32 0.37 0.46 0.73 0.74 2.46 2.32

Table 8.2: Region benchmarks on the BSDS500.

other hand, it can break up uniform regions.

Finally, we see that the use of a contour detector that does not take into account
texture information such as the implemented Canny detector, yields in quite poor
result not only for the techniques of our framework but for algorithms such the
owt-ucm. So, the choice of a contour detector is of high importance for the problem
at hand. Natural images are very complicated and usually textured and thus, a
sophisticated contour detector as the gPb is necessary. If the problem was to seg-
ment another type of images, e.g. textureless biomedical images, then probably our
baseline contour detector would be sufficient to produce good results and preferable
than the computationally costly gPb detector.

85

86

Chapter 9

Conclusions

9.1 Conclusions

In the framework of this thesis, we presented new image segmentation techniques
based on a recently developed medial axis decomposition procedure. We investigated
various merging techniques and explored several possible applications of a medial
decomposition procedure for the purposes of segmenting natural images. We evalu-
ated the implemented merging techniques using the Berkeley Segmentation Dataset
and compared with some state of the art algorithms. The performance of devel-
oped techniques, with a proper contour detection as input, proved to be comparable
with the state of the art. Although medial axis is considered, in general, unstable,
we demonstrated that medial axis can be applied for image segmentation purposes
with success, producing meaningful segmentations which are close to human visual
perception.

9.2 Future work

Medial axis decomposition technique for the purpose of image segmentation has
not been fully investigated in the narrow limits of a diploma thesis. We plan to
further investigate several different directions in the future. Some of them are:

• A modified distance transform including contour orientation information.

• Integration of local characteristics and features provided by the medial axis
decomposition method into a more globalized procedure.

• Usage of the segmentation along with a medial axis shape description for the
purpose of object recognition.

• A faster algorithm to compute the weighted distance transform as it consumes
significant part of the method total running time.

87

• A more robust ultrametric dissimilarity based on boundary strength. Again,
orientation can be exploited to take more accurate measurements of the bound-
ary strength between adjacent regions.

• A combination of some merging techniques we have implemented.

88

Appendix A

Proofs

Proof of Lemma 4.3.1 (From [6])
(a)→ (b). Using definitions (4.17), (4.16) and (4.15), it follows that if y is a source,

d(x, y) + f(y) ≤ d(x, z) + f(z) ∀z ∈ X (A.1)

for some x ∈ X, or

f(y) ≤ d(x, z)− d(x, y) + f(z) ∀z ∈ X. (A.2)

Now, using the triangle inequality and the fact that d(y, y) = 0, we derive that

d(y, y) + f(y) ≤ d(y, z) + f(z) ∀z ∈ X, (A.3)

which, similarly to (A.1), implies that y 3 y.

(b) → (c). If y 3 y, then by definition (4.16), D(f)(y) = f(y).

(c)→ (d). If D(f)(y) = f(y), then by definition (4.16) y ∈ Ŝ(y), or y 3 y. Suppose
there is some other point z ∈ S(y), then z ∈ Ŝ(y) or z 3 y 3 y. By definition (4.17)
z /∈ S(y), a contradiction. Therefore Ŝ(y) = {y} implying that S(y) = {y}.
(d) → (e) and (d) → (a) are straightforward. �

Proof of Lemma 4.3.2 (From [6])
Let

g(x) =

{
f(x), x ∈ S(f)
+∞, otherwise.

(A.4)

By definition (4.15), for all x ∈ X,

Dd(g)(x) =
∧

y∈X

d(x, y) + g(y) (A.5)

=
∧

y∈S(f)

d(x, y) + f(y). (A.6)

89

On the other hand, assuming source existence, it follows from definition (4.17) that

Dd(f)(x) = d(x, s(x)) + f(s(x)), x ∈ X. (A.7)

But since s(x) ∈ S(f), definition (4.15) for f gives

Dd(f)(x) =
∧

y∈S(f)

d(x, y) + f(y), x ∈ X. (A.8)

The above imply that Dd(f) = Dd(g), where (by construction) g is uniquely deter-
mined by f |S(f), as claimed.

Proof of Lemma 5.2.1 (From [6])
Let y ∈ S(f). By lemma 4.3.1, S(y) = {y} hence |S(y)| = 1. Then y cannot be a
medial point: y /∈ A(f). �

Proof of Lemma 5.2.4 (From [6])
(a) Clearly,

`(u′, v′) = `(u′, u) + `(u, v) + `(v, v′), (A.9)

with all four lengths being non-zero. By (strict) triangle inequality,

δ(u′, v′) < `(u′, u) + δ(u, v) + `(v, v′). (A.10)

Hence, substituting `(u′, u) + `(v, v′) by `(u′, v′)− `(u, v) from (A.9),

δ(u′, v′) < δ(u, v) + `(u′, v′)− `(u, v), (A.11)

and, by definition (??),

res(x, y) < res(x′, y′) (A.12)

as claimed.

Proof of Lemma 7.1.1 (An analogous proof can be found at [18])
Let eq = (vi, vj), w(eq) the corresponding edge weight. Let Cq−1

i and Cq−1
j the

components of vertices vi and vj at step q. If Cq−1
i and Cq−1

j are not merged, then

there are two cases. Either w(eq) < τ(Cq−1
i) or w(eq) < τ(Cq−1

j). Consider the
first case. Since edges are considered in non-increasing weight order then w(ek) ≤
w(eq) < τ(Cq−1

i), for all k ≥ q + 1. Thus, no additional merging will happen to this
component and it will then appear to the final segmentation, i.e. Ci = Cq−1

i . The
second case is exactly analogous.

Proof of Lemma 7.1.2 (An analogous proof can be found at [18])
By definition, in order for S to be too fine there is some pair of components for

90

which Q does not hold. Thus, we have:

Q(Cq−1
i , Cq−1

j) = false⇒
Sim(Cq−1

i , Cq−1
j) > τ(Cq−1

i , Cq−1
j)⇒

max
vi∈Cq−1

i ,vj∈Cq−1
j ,(vi,vj)∈E

w((vi, vj)) > τ(Cq−1
i , Cq−1

j)⇒

∃ e = (vi, vj) : w(e) > τ(Cq−1
i , Cq−1

j)

So there exists an edge e = (vi, vj) between components Cq−1
i , Cq−1

j that will not
cause their merging. By lemma 7.1.1, one of them at least will be in the final
segmentation. Without loss of generality, suppose that Ci = Cq−1

i . Then:

w(e) > τ(Cq−1
i , Cq−1

j)⇒
w(e) > τ(Ci, C

q−1
j) ≥ τ(Ci, Cj)⇒

Q(Ci, Cj) = true

So the predicate Q(Ci, Cj) is true, which is a contradiction. Thus, there is no pair of
components for which Q does not hold and subsequently the segmentation produced
in not too fine.

Proof of Lemma 7.1.2 (An analogous proof can be found at [18])
In order for S to be too coarse there must be some proper refinement, T , that is
not too fine. Consider the maximum weight edge e that is internal to a component
C ∈ S but connects distinct components A,B ∈ T . Note that by the definition
of refinement A ⊂ C and B ⊂ C. Since T is not too fine, either w(e) < τ(A) or
w(e) < τ(B). Without loss of generality, say the former is true. By construction
any edge connecting A to another sub-component of C has weight smaller or equal
to w(e). So the algorithm must have formed A before forming C, and in forming
C it must have merged A with some other sub-component of C. The weight of the
edge that caused this merge must be small or equal to w(e). However, the algorithm
would not have merged A in this case because w(e) < τ(A), which is a contradiction.

Proof of Lemma 7.3.1 Proving that dissimilarity δΦ defined in equation 7.29 is
ultrametric, is equivalent to proving that δΦ satisfies property (7.27). Let (Ri, Rj)
denote the pair of regions that minimize δΦ and Rk denote any region connected to
Ri ∪ Rj and belonging to the partition obtained after the merging of (Ri, Rj)). In
addition, let Aij =

∑
e∈E(Ri)∩E(Rj) w(e) .

δΦ(Ri, Rj) ≤ δΦ(Ri, Rk)⇒
exp(−Φ(Ri, Rj)) ≤ exp(−Φ(Ri, Rk))⇒

Φ(Ri, Rj) ≥ Φ(Ri, Rk)⇒
Aij
L(∂ij)

≥ Aik
L(∂ik)

⇒

L(∂ik) · Aij ≥ L(∂ij) · Aik (A.13)

91

Similarly,
L(∂jk) · Aij ≥ L(∂ij) · Ajk (A.14)

Combining equations (A.13) and (A.14) we have:

L(∂jk) · Aij + L(∂ik) · Aij ≥ L(∂ij) · Ajk + L(∂ij) · Aik ⇒
(L(∂jk) + L(∂ik)) · Aij ≥ L(∂ij) · (Ajk +Aik)⇒

Aij
L(∂ij)

≥ Ajk +Aik
L(∂jk) + L(∂ik)

⇒
∑

e∈E(Ri)∩E(Rj) w(e)

L(∂ij)
≥
∑

e∈E(Rj)∩E(Rk) w(e) +
∑

e∈E(Ri)∩E(Rk) w(e)

L(∂jk) + L(∂ik)
⇒

∑
e∈E(Ri)∩E(Rj) w(e)

L(∂ij)
≥
∑

e∈E(Ri∪Rj)∩E(Rk) w(e)

L(∂i∪j,k)
⇒

Φ(Ri, Rj) ≥ Φ(Ri ∪Rj, Rk)⇒
exp(−Φ(Ri, Rj)) ≤ exp(−Φ(Ri ∪Rj, Rk))⇒

δΦ(Ri, Rj) ≤ δΦ(Ri ∪Rj, Rk)

(A.15)

Proof of Lemma 7.3.2 Proving that dissimilarity δg is ultrametric is analogous to
proof of lemma 7.3.1. Let (Ri, Rj) denote the pair of regions that minimize δΦ and
Rk denote any region connected to Ri ∪Rj and belonging to the partition obtained
after the merging of (Ri, Rj)).

δg(Ri, Rj) ≤ δg(Ri, Rk)⇒∑
g(∂ij)

L(∂ij)
≤
∑

g(∂ik)

L(∂ik)
⇒

L(∂ik) ·
∑

g

(∂ij) = L(∂ij) ·
∑

g

(∂ik) (A.16)

(A.17)

Similarly,

L(∂jk) ·
∑

g

(∂ij) ≤ L(∂ij) ·
∑

g

(∂jk) (A.18)

Combining equations (A.16) and (A.18) we have:

(L(∂ik) + L(∂jk)) ·
∑

g

(∂ij) ≤ L(∂ij) · (
∑

g

(∂ik) +
∑

g

(∂jk))⇒
∑

g(∂ij)

L(∂ij)
≤

(
∑

g(∂ik) +
∑

g(∂jk))

L(∂ik) + L(∂jk))
⇒

δg(Ri, Rj) ≤ δg(Ri ∪Rj, Rk)

(A.19)

92

Bibliography

[1] P. Arbelaez. Notes on the evaluation methodology. http://www.cs.berkeley.
edu/~arbelaez/Notes.html.

[2] P. Arbelaez. Boundary extraction in natural images using ultrametric contour
maps. In Proceedings of POCV, 2006.

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to regions: An
empirical evaluation. In Proceedings of Computer Vision and Pattern Recogni-
tion, pages 2294–2301, 2009.

[4] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hi-
erarchical image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 898–916, 2011.

[5] A.B. Arehart, L. Vincent, and B.B. Kimia. Mathematical morphology: The
Hamilton-Jacobi connection. In ICCV, pages 215–219, 1993.

[6] Y. Avrithis and K. Rapantzikos. The medial feature detector: Stable regions
from image boundaries (long version). Unpublished, 2010.

[7] Y. Avrithis and K. Rapantzikos. The medial feature detector: Stable regions
from image boundaries. In Proceedings of International Conference on Com-
puter Vision, 2011.

[8] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color- and texture-based
image segmentation using em and its application to content-based image re-
trieval. In Proceedings of IEEE International Conference on Computer Vision,
pages 675–692, 1998.

[9] S. Beucher and F. Meyer. The Morphological Approach to Segmentation : The
Watershed Transformation. In Mathematical Morphology in Image Processing,
chapter 12, pages 433–481. Ed. E. R. Dougherty, 1993.

[10] H. Blum. A transformation for extracting new descriptors of shape. In Models
for the Perception of Speech and Visual Form. MIT Press, Cambridge, 1967.

[11] H. Blum. Biological shape and visual science. Journal of Theoretical Biology,
38:205–287, 1973.

93

http://www.cs.berkeley.edu/~arbelaez/Notes.html
http://www.cs.berkeley.edu/~arbelaez/Notes.html

[12] Max Born and Emil Wolf. Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light (7th Edition). Cambridge
University Press, 7th edition, 1999.

[13] J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 679–698, 1986.

[14] Fan R K Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[15] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24:603–619, 2002.

[16] T. Cour, F. Bénézit, and J. Shi. Spectral segmentation with multiscale graph
decomposition. In Proceedings of Computer Vision and Pattern Recognition,
pages 1124–1131, 2005.

[17] H. Demirel and G. Anbarjafari. Iris recognition system using combined colour
statistics. In IEEE International Symposium on Signal Processing and Infor-
mation Technology,, pages 175 –179, 2008.

[18] P.F. Felzenszwalb and D.P Huttenlocher. Efficient graph-based image segmen-
tation. Internationl Journal of Computer Vision, 59(2):167–181, 2004.

[19] P.F. Felzenszwalb and D.P Huttenlocher. Distance transforms of sampled func-
tions. Faculty of Computing and Information Science, Cornell Univ, 2004.

[20] V. Ferrari, T. Tuytelaars, and L. Van Gool. Simultaneous object recognition and
segmentation by image exploration. In Proceedings of the European Conference
on Computer Vision, 2004.

[21] C.F.F.C. Filho and M.G.F. Costa. Iris segmentation exploring color spaces.
In Image and Signal Processing 2010 3rd International Congress on, volume 4,
pages 1878 –1882, 2010.

[22] M. Fussenegger, A. Opelt, A. Pinz, and P. Auer. Object recognition using
segmentation for feature detection. In In ICPR, pages 41–44, 2004.

[23] R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edition).
Prentice-Hall, Inc., 2006.

[24] S. Kim. An O(N) Level Set Method for Eikonal Equations. SIAM journal on
scientific computing, 22(6):2178–2193, 2001.

[25] I. Kovacs and B. Julesz. A closed curve is much more than an incomplete one:
Effect of closure in figure-ground segmentation. Proceedings of the National
Academy of Sciences, USA, 90:7495–7497, 1993.

[26] V. Lamme. The neurophysiology of figure-ground segregation in primary visual
cortex. Journal of Neuroscience, 15:1605–1615, 1995.

94

[27] T. S. Lee, D. Mumford, R. Romero, and V. Lamme. The role of the primary
visual cortex in higher level vision. Vision Research, 38:2429–2454, 1998.

[28] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved
categorization and segmentation. International Journal of Computer Vision,
77:259–289, 2008.

[29] Hwei-Jen Lin, Shu-Yi Wang, Shwu-Huey Yen, and Yang-Ta Kao. Face detection
based on skin color segmentation and neural network. In Proceedings of Neural
Networks and Brain, 2005., volume 2, pages 1144 –1149, 2005.

[30] L. Linardakis and N. Chrisochoides. A static medial axis domain decomposition
for 2d geometries. ACM Transactions on Mathematical Software, 34(1):1–19,
2005.

[31] P. Maragos. Image Analysis And Computer Vision. National Technical Uni-
versity of Athens, 2005. Book draft version.

[32] P. Maragos and M.A. Butt. Curve evolution, differential morphology, and dis-
tance. Fundamenta Informaticae, 41:91–129, 2000.

[33] D. Marr. Vision: A Computational Investigation into the Human Representa-
tion and Processing of Visual Information. Henry Holt and Co., Inc. New York,
NY, USA, 1982.

[34] D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics. In ICCV, pages 416–425, 2001.

[35] David R. Martin, Charless Fowlkes, and Jitendra Malik. Learning to detect
natural image boundaries using local brightness, color, and texture cues. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 530–549,
2004.

[36] B. M. Mehtre and B. Chatterjee. Segmentation of fingerprint images - a com-
posite method. Pattern Recognition, 22(4):381–385, 1989.

[37] H. Mobahi, S. Rao, A. Yang, S. Sastry, and Y. Ma. Segmentation of natural im-
ages by texture and boundary compression. International Journal of Computer
Vision, pages 1–13, 2011.

[38] D. Mumford and J. Shah. Optimal approximations by piecewise smooth func-
tions and associated variational problems. Communications on Pure and Ap-
plied Mathematics, 42:577–685, 1989.

[39] R.L. Ogniewicz and O. Kübler. Hierarchic voronoi skeletons. Pattern Recogni-
tion, 28(3):343–359, 1995.

[40] N. Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9:62–66, 1979.

95

[41] D. L. Pham, C. Xu, and J. L. Prince. A survey of current methods in medical
image segmentation. Annual Review of Biomedical Engineering, 2:315–338,
2000.

[42] A. Rosenfeld and J. L. Pfaltz. Distance functions on digital pictures. Pattern
Recognition, 1:33–61, 1968.

[43] J.A. Sethian. Fast marching methods. SIAM journal on scientific computing,
41(2):199–235, 1999.

[44] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22:888–905, 1997.

[45] K. Siddiqi, S. Bouix, A. Tannenbaum, and S.W. Zucker. Hamilton-jacobi skele-
tons. Internationl Journal of Computer Vision, 48(3):215–231, 2002.

[46] George Stockman and Linda G. Shapiro. Computer Vision. Prentice Hall, 1st
edition, 2001.

[47] P. Sundberg, T. Brox, M. Maire, P. Arbelaez, and J. Malik. Occlusion boundary
detection and figure/ground assignment from optical flow. In IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, 2011.

[48] H. Tek and B. B. Kimia. Curve evolution, wave propagation, and mathematical
morphology. In Proc. 4th Int. Symposium on Mathematical Morphology, June
1998.

[49] P.W. Verbeek and B.J.H. Verwer. Shading from shape, the eikonal equation
solved by grey-weighted distance transform. PRL, 11(10):681–690, 1990.

[50] L. Vincent. Morphological grayscale reconstruction in image analysis: Appli-
cations and efficient algorithms. IEEE Transactions on Image Processing, 2:
176–201, 1993.

[51] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(6):583–598, 2002.

[52] Chee S. W. A block-based map segmentation for image compressions. IEEE
Transanctions on Circuits Syst. Video Techn., 8:592–601, 1998.

[53] L. Wang, J. Shi, G. Song, and I. Shen. Object detection combining recognition
and segmentation. In Proceedings of the Asian conference on Computer vision,
pages 189–199, 2007.

[54] M. Wertheiner. Laws of organization in perceptual forms (partial translation).
In W. B. Ellis, editor, A Sourcebook of Gestalt Psychology, pages 71–88. Har-
court, Brace and Company, 1938.

96

[55] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 15:1101–1113, 1993.

[56] L. Yatziv, A. Bartesaghi, and G. Sapiro. O(N) Implementation of the fast
marching algorithm. Journal of Computational Physics, 212(2):393–399, 2006.

[57] Y. Yi, D. Qu, and F. Xu. Face detection method based on skin color seg-
mentation and eyes verification. In Proceedings of Artificial Intelligence and
Computational Intelligence, volume 3, pages 495 –501, 2009.

97

	Introduction
	Defining image segmentation
	Motivation
	Thesis outline

	Literature survey on image segmentation methods
	Generic image segmentation methods
	Related Work
	Watershed Transform
	Oriented watershed transform and ultrametric contour map
	Efficient graph-based image segmentation

	Contour detection
	Baseline Canny contour detection
	Globalized probability of boundary

	Distance transforms
	Distance transform
	Definitions
	Distance transform as wave propagation
	Distance transform as infimal convolution

	Solving the eikonal equation
	Fast marching methods

	Weighted distance transform and the exact group marching algorithm

	Medial axis
	Introduction
	Weighted medial axis

	Image partition
	Medial Axis Decomposition
	Image partition

	Adjacent region merging
	Efficient Merging based on similarity
	Merging controlled by region fragmentation
	Hierarchical segmentation and ultrametric contour maps
	Inter-region fragmentation ultrametric dissimilarity
	Mean Boundary Gradient Ultrametric Dissimilarity

	Evaluation
	Introduction
	Dataset
	Evaluation metrics
	Precision-recall framework
	Variation of information
	Rand index
	Segmentation covering

	Results
	Evaluation
	Boundary benchmarks
	Region benchmarks

	Discussion

	Conclusions
	Conclusions
	Future work

	Proofs

