
PFE
No d’ordre : PFE-INFO-2016-19

Projet de Fin d’Études
présenté par

Hoel KERVADEC
Élève ingénieur de l’INSA Rennes

Spécialité INFO
Année universitaire 2015 - 2016

Deep Hough networks for
object detection
Lieu du Projet de Fin d’Études
Inria Rennes

Tuteur du Projet de Fin d’Études
Yannis Avrithis

Correspondant pédagogique INSA Rennes
Bertrand Coüasnon

PFE soutenu le 02/09/2016
Inria Rennes

Contents

1 Introduction 5

2 Context 5
2.1 On the difference between detection and classification 5
2.2 Convolutional Neural Networks (CNN) . 8
2.3 Related work . 11
2.4 Hough transform . 12
2.5 Motivations . 13

3 CNN: From classification to detection 13
3.1 Pre-trained networks . 13
3.2 Convolutionify . 14
3.3 Retrain the last layer . 16

3.3.1 20: Object classes . 17
3.3.2 21: With backgrounds . 19

4 Non-Maxima Suppression 22
4.1 Filtering step . 23
4.2 Regrouping . 24
4.3 Testing . 24

5 End-to-end training 25
5.1 Loss function . 28
5.2 Back-propagation and derivatives . 31
5.3 Evaluation and training . 32

6 Further developments 32
6.1 Voting space . 32
6.2 Multiple images and aggregating . 32
6.3 Box regression . 33

7 Experiment reproducibility 33
7.1 Datasets . 34
7.2 Experiments . 35
7.3 Results analysis . 35
7.4 Improvements . 36

8 Conclusion 38

A Schedule 38

3

1 Introduction

This report will explain the work I did during the past six month in the Linkmedia team,
under the supervision of Yannis Avrithis and Guillaume Gravier.

Linkmedia is doing content analysis of different kind of media (audio, video, text) to
"link" them. For instance, semantic links between some news article and a video docu-
mentary. To achieve such multi-modal links, fundamental research in different fields are
cohabiting in the team. Among them, computer vision, where the goal is to achieve high-
level understanding of images and videos: what are the objects that appears in the image
? What is the action taking place, and where ? Who is this person in the image ? Is this
the same in this other image ?

To solve those problems, machine learning is often used: instead of implementing an
algorithm that would directly solve it, we give the machine ways to learn. By giving it
enough time and examples, it will figure out recurring patterns, and be able to solve the
task it was intended for. During the past years, one method gained a wide popularity:
Deep Learning. It consist to train neural networks in a supervised fashion: we provide
examples and their correct answers to the network. The term "deep" comes from the size
of the networks, that are much bigger (and deeper, hence the name) that in the past,
and from the number of training examples required: thousands of them, if not tens of
thousands.

This is what we used for our task: object recognition. We will first reintroduce more
context from the field, before explaining what we are trying to achieve. Then, we will focus
on the work we did, and the results we were able to produce. Because this is still a work in
progress, we will explain the future works that can be done and tested. Before concluding,
we will explain how the code and experiments were managed to ensure meaningful and
reproducible results.

2 Context

2.1 On the difference between detection and classification

To clarify the reading of this report, and to avoid confusion, we will first explain the
difference between image classification, object detection and image segmentation.

Image classification The goal is to label an entire image, corresponding to its most
prominent feature. Depending on the task, it could be the action taking place, or the
object taking the most space in the image. For instance, in Figure 1, we can easily say
that this is an image of an eagle. Under the image, are the top-5 labels proposed by a
Convolutional Neural Network. It can be problematic when different objects are present

5

on the same image: which one should we prefer ? In some case, it can be difficult to decide,
even for a human.

Figure 1: Example of image classification with a network trained for the ImageNet [4]
dataset [10].

Object detection It can be seen as an extension of image classification. Instead of
giving the main theme of the image, instances of objects are detected with their location
(usually a simple rectangular box around it). This is more precise, and allows us to detect
multiple objects from multiple classes. Or, as in Figure 2, only one object: a cat.

Object localization Similar to object detection, but there is only one object, from a
class that is already known to us. It is therefore much easier to deal with false detection.

Image segmentation Bounding boxes are still quite limited, since a lot of the pixels
contained in a box do not belong to the object, and small parts of the object may be outside
of the box. This is what image segmentation is trying to achieve: pixel-wise classification.
Figure 3 is perfectly illustrate this idea. We now have a clear delimitation of the detected
object.

We can easily understand that image segmentation is harder that object detection,
which is in turn harder than image classification. We will now present CNN, one method
used to solve those problems.

6

Figure 2: Object detection, done by one of our intermediate network. It successfully
located the cat face.

Figure 3: Image segmentation from [21], generated on their website. The users can upload
their own images, proving they are not cherry picking their results.

7

2.2 Convolutional Neural Networks (CNN)

Neural network are a combination of neurons, which are a simplified model of biological
neurons. A neuron (Figure 4) is composed of different scalar inputs, and only one scalar
output. It is doing two things: first, a linear combination of its inputs (equation (1)), and
then processing this combination through an activation function (equation (2)).

a =
∑
i

wixi (1)

z = h(a) (2)

xi are the neuron inputs, and wi are the weights for this particular input. They may evolve
overtime, and change how the neuron react to a specific input. h is the activation function.
According to the task the neuron is used for, different functions may be used (examples of
usual functions in Figure 5). For binary decision, we may want saturating functions: 0 or
1, -1 or 1. For regression, no function or reLU might be more useful.

Figure 4: The model of a neuron used.

Figure 5: Three widely used activation functions. Tanh and Sigmoid are saturating func-
tions: useful for classification. ReLU is useful for regression or for intermediate layers.

To build a network, we usually form layers of neurons: neurons are placed next to
each others, and their output are fed to the next layer input. We can see in Figure 6 a

8

network with two layers: the hidden layer and the output. This architecture is referred as
a multilayer Perceptron. We also say that the layers are fully connected: each neuron of a
given layer is connected to each neuron from the previous layer.

Figure 6: A multi layer perceptron, with one hidden layer. We can add as much hidden
layers (of various size) as we want.

Convolutional neural networks introduced a new notion : feature maps [12]. They are
a 2D array of neurons, feeding directly from the previous 2D layer (an image, or another
feature map). But each neuron doesn’t have their own set of weights: they all share the
same, and each neuron takes a subpart of the image as an input. This is illustrated in Figure
7: the neuron computes a function from a 5x5 pixels input, and stores it in the feature
map. The neuron next to it will do the same, but with a shifted input. Feature maps are
heatmaps of the function defined by the weights, and produce translation covariant results.
If the 0 in the figure shift on the left, then the feature map results will also shift on the
left.

Figure 7: The feature map [12]: in the middle is the set of neurons, acting as a function.
On the left its input, and on the right its output.

9

To build a CNN, feature maps are arranged in layers. The first layers will feed directly
on the input image, and the next layers will feed on the previous feature maps. In Figure
8, we have four convolutional layers. We can notice that in the third layer, feature maps
are feeding from two feature maps. This is actually the same: instead of having a 12× 12
input, they have a 12× 12× 2 input, and their weights are of size 5× 5× 2. The last layer
is fully connected: the network shown was used for digits recognition, and each neuron
represent the confidence for one number. Those confidence can then be sorted, and the
maximum one is the detected number.

Figure 8: Network architecture from [12], which introduced the concept of feature maps
and CNN. The neurons from a feature maps share the same weights, but each feature map
will have different weights: they will all detect different properties of the input image.

Training a network consist to adapt the weights so the network does the right pre-
dictions. This is an optimization problem: we feed an input to the network, and with
its output and the ground truth, we compute a loss that we want to minimize. The loss
function depends of the problem. For classification, subtracting each class output to its
corresponding ground truth (0 for all, except for one) might be sufficient. Then, we need to
back-propagate this error, and to adjust the weights accordingly. Since this is difficult to
know which weights are responsible for the misclassification (it can be at the last layer, or
somewhere in the middle of the network), the gradients of the weights are computed: this
is done by back-propagation. We first compute the gradient from the output units, and
then the previous layer will compute its own gradients using the previous layer gradient.
Figure 9 is useful for clarification, since we will reuse its notation. In it, the neuron is
computing its gradient δj from the already computed gradients δk...δ1. Equation (3) shows

10

how the gradient for a specific neuron is computed.

δj = h′(aj)
∑
k

wkjδk (3)

h′ is the derivative of the activation function, and aj is the linear combination of the neuron
inputs (equation (1). wkj are the weights between neuron j and neuron k, and δk is the
gradient from neuron k. We continue with this formula through all the network.

Once this is done, those gradient can be used to compute the error for each weight, as
in equation (4).

δE

δwji
= δjzi (4)

E is the error computed by the loss function, and zi is the input from neuron i. The value
computed will then be subtracted from the corresponding weight (in this case, wji), and
the network response should now be closer to the ground truth. This is the Stochastic
Gradient Descend (SGD).

The training is repeated many times. We use all training examples once (one epoch),
and then shuffle their orders before starting again. We measure the performances (accuracy,
loss, recall) over the number of epochs.

Figure 9: Figure illustrating the notation from 3 [2].

CNN, and neural network in general, are subject to overfitting: during training, the
error for the training set keeps improving, but it starts increasing for the validation set.
There is many ways to prevent this, but we won’t talk about it in this section. The rest
of the report will still be understandable, as we are not making use of those notions.

2.3 Related work

Using CNNs for object detection is not novel.

[7] used CNNs with a combination of region proposal system and SVM for it. The
initial system was extracting region of the image that may contain an object, and feeding
it to the CNN. The output of the last convolutional layer was fed to a SVM which was
doing the final classification. The box coordinates were the ones from the initial region.
This work was improved both by the same author [6] and other researchers [14]. The two

11

papers were published in a little time interval, and were doing similar things: instead of
extracting regions and then process them in the CNNs, it was much more efficient to process
the whole image and extract at the last convolutional layers the responses corresponding
to the region. Girshick also replaced the SVM by a softmax classifier, common in image
classification. More recently, [18] removed the region proposal mechanism by replacing it
by a dedicated CNNs, the Region Proposal Network. The clever part is to share the first
convolutional layers with the classifying network: this reduce a lot the overhead of having
a dedicated network for the regions.

[8] is using the spatial pyramid pooling from [11] to create CNNs that takes input of
arbitrary size. The architecture is simple: first, convolutional layers produce features for
the whole image. It is then fed to the Spatial Pyramid Pooling layer. Fully connected
layers then do the classification. To use it for object detection, SPP can be applied to
different regions of the last convolutional layers, as in [6].

[3] is similar to [18]. Region proposal is done by a RPN sharing the convolutional
layers. The difference is how the region is then classified. In this paper, the regions are
divided into k × k bins. The classification is then done with the content of each bin. This
is similar in some aspects to SPP.

But not all papers use a two stage processing (region proposal and then classification).
[19] threat the boxes as a regression problem. On top of fully connected layers that does
classification, they are predicting boxes coordinates. [17] is also using regression to predict
boxes. The input image is split in a grid, and each cell will predict B boxes with their
confidence and the classes probabilities. Some system will then suppress low probabilities
boxes and duplicates.

2.4 Hough transform

Hough transform [9], and its generalizations [1, 13], use a voting mechanism. When de-
tecting a part belonging to a bigger object, votes are cast (in a 2D or 3D space) to where
the object center could be. If many parts cast votes to the same area, we can conclude
that an object is centered there. By using the parts locations that casted the votes, we
can infer a bounding box.

Hough transform has several interesting properties. First, it is efficient. Once the
parts are detected, they are then processed only once. We don’t have to run the same
computations for each subwindow. Secondly, the voting space may take into account the
scale of the image. The first two dimensions are the x and the y of the image, but a third
dimension can be the scale. Now, to be detected, each part should correspond to the same
scale. A 3D voting space in illustrated in Figure 10. The voting space is splitted in cells,
and a threshold first select the ones with enough votes. Then, in the remaining cells, close
votes are regrouped. Each group represent one detected object.

We can also mention that it is resilient to partially hidden objects (for instance, a

12

Figure 10: A 3D voting space, and the grouping detecting the objects from [13].

person standing in front of a car), or with different exposure across its parts (shadows
overlapping a parked car). This is because we are detecting parts of the object, and we
don’t need to have all of them, but a sufficient number of votes.

2.5 Motivations

We didn’t talk about how the parts are detected in the Hough transform voluntarily, mostly
because it is specific to each application and method using it.

In our case, we want to use the power of CNNs to do it. After training, the convolutional
layers acts as features (or parts) detector (each feature map showing the location and
intensity of a specific feature). This is similar to vote, but in a dense fashion. Since
networks have thousands of feature maps as an output, it can be a great basis for the
Hough transform. We would only need to learn the scale on top of the location, and the
set of features defining an object.

Since we didn’t had a "Deep Hough Network" architecture already defined, we instead
started from existing architectures and added gradually what we needed. We will present
those steps in the next section. Since we didn’t had time to complete everything, we will
discuss in section 6 the future steps, trials and probably errors that we would need to try
to achieve it.

3 CNN: From classification to detection

3.1 Pre-trained networks

CNN training is very long (for instance, it takes 3 weeks of continuous training for the
AlexNet architecture [10]), even with modern GPUs. This is why many researchers [7, 6,
17, 19, 16] starts with standard architectures, or even pre-trained networks, and base their
work on those. The main advantage is to skip long training time, and to have a reliable

13

and proven basis for their work. Networks trained on the ImageNet dataset have learned
a huge number of features, usable for other purposes and datasets.

We started with the Caffenet architecture (shown in Figure 11), almost identical to
the AlexNet Architecture. The difference is mostly technical: back in 2012, GPUs did not
have sufficient memory to host the whole network, and Alex Krizhevsky had to split it in
two parallel GPUs, overcoming the limitation of the time. Today’s GPUs memory have
sufficiently increased, and can host much deeper and shallow networks.

Figure 11: The CaffeNet architecture, with the layers labels. As in AlexNet, it has five
convolutional layers, and three fully connected layers. The last layer has one prediction
per class, that can be sorted to have the top predictions.

Note that the selected network was trained for image classification, and not object
detection. The next section will explain how we make use of it.

3.2 Convolutionify

To do its classification, the network takes as an input a resized image (in our case, 227×227)
and produce only one output, a vector of length n, n being the number of classes. From
there, we can (apply a softmax and) sort them to have the top predictions.

Now, if we think of the last layers as convolutional layers (i.e., sliding the same function
on subparts of an image), we can say that they are producing an array of dimensions
1×1×n. It just happens that their window (227×227) perfectly matches the input image
size (227× 227).

With convolutional layers we don’t have any limit for the image size, and we will
obtain more predictions for bigger images1, each one being the classification of a 227×227

1It wouldn’t work with smaller images, but it was always the case anyway.

14

window (with a stride2 of 32 pixels between each window). The result will now be an array
of dimension x× y × n, where x and y depends on the image dimension (equation (5)).

x = (image_length− kernel_size)/stride (5)

With Figure 12 as an input, we now have a heatmap for each class (Figure 13), or, the
other way around: a prediction for each subwindow of the image (Figure 14).

Figure 12: Input image for Figure 13 and 14

It is also quite straightforward to go from a prediction coordinates (the cell position in
the heatmap) to a box coordinates (actual pixels in the image): we need to multiply it by
the stride between each window (equation (6)) for the xmin, and to add the kernel size as
well for xmax (equation (7)).

xmin = i× stride (6)
xmax = i× stride+ kernel_size (7)

(i, j) are the cell from the predictions. i is only used when computing the xs, and j is used
for ys in a similar fashion. In our case, stride = 32 and kernel_size = 227.

By combining this network with a threshold Non Maxima Suppression from Section 4,
we can already obtain qualitative results, as shown in Figure 15. This proves the network
is already able to detect objects and suppress duplicates or low responses, but also shows

2The stride is the number of pixel between each tested window.

15

Figure 13: Heatmap of the tabby cat class. We can easily see that the higher responses
are located around the cat, or around the confusing dogs to a lesser extent.

two problems we will have to solve: classes for the classification, and scale. Classes from
object detection dataset (as the VOC2007 [5]) do not match the classes from the ImageNet,
and we cannot use right away the network predictions. The next section will focus on how
we solved this problem.

3.3 Retrain the last layer

The solution is to retrain the last layer (fc8, the one doing the predictions for the 1000
classes). We can see the first layers as a big feature generator, and the last layer is merely
aggregating the features for each class.

Since the ImageNet dataset has so many examples (1.2 million images in the training
set) and so many classes, we can expect to be able to reuse the features learned during the
initial training. Some of them may not be relevant, but we expect the training to ignore
them.

To do this fine tuning [6, 7], we load the network with the learned weights, and then
replace the last layer by a smaller one, with less outputs. We then use the same training

16

Figure 14: Top prediction for each subwindow. Knowing that the tabby cat ID is 281, it
explains the blue area in the middle of the image.

process, with our new dataset. We tried two methods: one with the 20 VOC2007 classes,
and one with 20+1 classes.

3.3.1 20: Object classes

Dataset To retrain the last layer, we first needed new dataset. We tried two methods.

First we retrained the network in the exact same manner as in its original training:
feeding the whole resized image, with the object class as a label. The network will figure out
by itself what actually define the label provided as ground truth. But this was problematic
for images with several objects 3 : we would give two different truths for the same image,
contradicting ourselves, and probably confusing the network.

This is why we decided to use the ground truth for pre-processing, and crop the objects
directly from the images. This way, each image would appear only once during training.
But since the image is resized to a square before being fed to the network, is would change

3That is, pretty much any image in the VOC2007 dataset.

17

Figure 15: Quick preview of a fully convolutional network with basic Non Maxima Sup-
pression. Due to scale problems and number of classes from the ImageNet dataset, some
results are not making much sense.

the aspect ratio of the object (Figure 16). This is usually not a concern for classification,
but since we intent to use this trained network for object detection later on, we want
the training samples to be closer to its future use case. Therefore, we cropped squares
matching the object maximal edge, centred on the object.

As expected, the second method, on top of making much more sense, had much better
results. We can see the loss and the accuracy of both methods in Figure 17.

Layers to retrain Then we wondered if it made a big difference between training only
the last layer and training every layers. We could expect the later to be as least a little bit
better, but maybe not that much, since the network contains already so much knowledge.

The results are shown in Figure 18. Training the previous layers indeed increase the
accuracy by 2/3%, which is not that negligible.

Confusion matrices We now have a dataset and a list of layers to retrain, and need
better metrics to analyse our results. We especially want to check if all classes are detected

18

Figure 16: We want to avoid deforming the objects, to match the aspect ratio of objects
during detection.

with similar scores. We know that the classes in the VOC2007 dataset are not balanced
(with much more persons than the rest combined), and don’t want to have a great accuracy
for this class and gibberish for the rest.

If we divide each number in the confusion matrices by the number of ground truth class
(so that each column adds to one), we obtain the probability of classification for each class.
In Figure 19, we can see that the results are consistent across all classes. The two weak
classes are 8 and 17, chair (1432 instances) and sofa (425 instances) respectively, of a total
of 15662 objects. We can see that most objects are misclassified as a person more than
anything else. It could be reduced by balancing the training set, but it does not invalidate
our model.

3.3.2 21: With backgrounds

Image classification must always find a label. However, when it comes to object detection,
most of the time there is nothing to detect, and we want our network to be able to say so.
To ease our future steps, we can add a background class (hence the 20 + 1 classes). This
way, the network will have a way to say explicitly that there is nothing 4.

4On the network point of view, the background class is no different than any other, it is only our
post-processing that differs.

19

Figure 17: Isolating the objects greatly improve our results, because we stopped contra-
dicting ourselves by giving several ground truths for the same image.

Background definition Backgrounds are random patches of images not containing or
overlapping objects. We consider the objects overlap the patch if at least one object has a
IoU 5 over a threshold t. We tried different thresholds: 0.5, 0.25 and 0.0. Figure 20 shows
the accuracy over epoch when training a network 20 + 1 classes.

Lowering the overlap between background examples and objects doesn’t change much
in terms of accuracy. However, it makes less and less sense considering what we want to
do with the trained network: when doing object detection on an image, we will have a lot
of overlap between the object and the rest of the image. Therefore, we will keep the 0.5
value for the threshold definition.

Positive and negative balance Positive examples are patches containing an object,
and negative examples are background patches. We now need to define how many positive
and negative examples we want to use. What is actually relevant is not their sheer number,
but the ratio between the two. We tried three values: 90/10, 80/20, 50/50. The results
are shown on Figure 21.

5Intersection over Union, a widely used metric for box matching. The area of the boxes intersection is
divided by the area of their union.

20

Figure 18: Loss and accuracy for the training and validation set. Accuracy for the training
set is unfortunately not available.

We can see that the 90/10 and 80/20 ratios are really similar in term of accuracy. The
50/50 ratio is doing a little bit better, even if it takes quite some time to achieve it. The
50% accuracy for its first epochs could be misclassification for most objects as background,
before the predictions finally improves. Since the results are similar for each ratio, we will
keep the 50/50 one: it is closer to the future use case, where most subparts of an image
are background.

Training parameters Once the backgrounds and ratio were defined, we had to tweak
the learning parameters. Starting from the original network parameters, we tried to lower
the learning rate6, lower the momentum7 and increase the weight decay8. The results are
shown on Figure 22.

We can see that our instinct was right about the parameters, and really improved the
training. However, we didn’t had time to continue tweaking those parameters. Nonetheless,
it shows how we must not overlook small differences in configuration files, and still provide

6How much we take the gradient into account during each weight update.
7When a weight start increasing or decreasing, it gains momentum in this direction.
8Weights that are not often updated lose their value over time.

21

Figure 19: We can clearly see the bias for the class 14 ("person" in the dataset). The
results for the other classes remains acceptable.

really satisfactory results.

Confusion matrices We now have every parameters we want for our network, and we
can check the confusion matrix, to ensure once again that the results are consistent for all
classes. As we can see in Figure 23, it remains acceptable. As in Figure 19, most classes
are misclassified as a background, the most present class in the training set. But there is
no way to fix the balance between classes, as we explained earlier. The results still remains
completely acceptable, and should be a good basis for object detection.

Now that we have defined, created and fine-tuned our base network, we can explain
how we are selecting boxes.

4 Non-Maxima Suppression

We now have a network producing heatmaps of different classes, we need to select the
responses that correspond to an object. There is actually two different things to do: filter
the low responses (that would produce false positives), and regroup close cells (to avoid
duplicates).

22

Figure 20: The difference between the different threshold is negligible.

4.1 Filtering step

Sometimes there is nothing to detect (for a given class). What we want to do is to discard
the low responses of the heatmap (Figure 13). There is two common solutions to tackle
this problem.

Threshold We defined a minimal value (that we found experimentally) of the network
response, that each cell should attain or exceed. If not, its response is set to zero. Finding a
good threshold value is difficult, and is not subject to any learning. Instead, the responses
would have to adapt around this threshold. It works, but it is difficult to find a good value
for the threshold.

Background class Having a background class solve this problem: if the background
class is higher in a given cell, then we can say that there is nothing in this cell. The
learning is much easier, since the background class is treated by the network as a regular
class.

23

Figure 21: Although starting painfully, the 50/50 ratio yield noticeable improvements over
time.

4.2 Regrouping

The other thing to do is to go from a set of neighbour responses to only one response:
we don’t want to have many boxes that correspond in fact to the same object. Figure 24
illustrate the problem: several boxes are indicating the same cats.

The solution is to compare a response to its neighbourhood. Usually, a neighbour is a
box with an IoU superior to a certain threshold, usually 0.5. In our case, neighbours are
the close cells on the x, y axis (position in the image), regardless of the value on the c axis
(classes for a given position).

If a response is the maximum one among its neighbourhood, we keep it. If not, we set
it to zero. Figure 25 shows the result that we can obtain.

4.3 Testing

To test the NMS layer plus the fine tuning, without taking into account the scale problem
(when an object is bigger or smaller from the network kernel), we decided to resize images

24

Figure 22: Our new parameters greatly improve the results from the original parameters.

so the objects can fit the detection window. Dealing with the scale is left for future work,
and section 6 explains different approach that could be tried.

We can now compare the results between the two kinds of NMS. The one with the
threshold use a network trained on 20 classes, whereas the background one use a network
trained with 21 classes. Figure 26 shows an image with a threshold filtering: we can see
that the labeled object are detected, but there is many false positives in the image. On
the contrary, Figure 27 produce much less false positive. We left the background boxes
(although in another color) to help understand what is happening.

5 End-to-end training

Now that we have a complete network for detection, we can try to train it, and improve
its performance. Since this is still an optimization problem, we need to define a function
minimize: the loss function. First, we will explain how the loss function we chose works,
and then we will explain how back-propagation works in our network.

25

Figure 23: Confusion matrix of the trained network we we used for the next step.

Figure 24: Boxes kept after a low threshold filtering: each remaining box is true, but they
are duplicates of each others.

26

Figure 25: After regrouping, the whole NMS keeps only one box per cat.

Figure 26: By having low threshold, the filtering step produce too many false positives.

27

Figure 27: We can see that there is much less false detection when using a background
filtering.

5.1 Loss function

We use the function defined in [20]. Their motivation was to take into account the NMS
layer when computing the loss. In Figure 28, three boxes are detected for the same person.
The blue one is of course closer to the ground truth, but if the red or green boxes have
higher responses, it would be suppressed. To fix this, the network must be trained so that
the blue response is the highest one.

Instead of using only the boxes selected by the NMS layer (A), they use the predictions
from fc8 (B) as well. Figure 29 shows our network architecture with such loss function.
A′ is the set of boxes before NMS that match the ground truth, with only one box per
ground truth. Algorithm 1 develops how to compute it. overlapping_boxes compute the

Algorithm 1 The algorithm used to compute A′.
A’ = empty_set
for box in ground_truth do

neighbours = overlapping_boxes(box, B)
best_box = argmaxbox(neighbours)
A’.add(best_box)

end for

set of boxes that overlap the box given as first argument. The argmax will then select the

28

Figure 28: If the responses from the green and red boxes are higher than the blue box, the
NMS layer would keep them and not the blue one.

Figure 29: A temporary illustration of the architecture for the loss layer.

neighbour with the highest response. In the end, we have one box per ground truth.

Then, the cost of each set A and A′ is computed, and we want to minimize the difference

29

between the two costs. C(A) is computed in (8).

C(A) =
∑

(bi,yi,ri)∈A

H(ri, yi) +
∑

(bj ,yj ,rj)∈S(A)

H(rj , 0) (8)

H(r, y) = Iy=0max(0, r + 1)2 (9)

+ Iy>0max(0, 1− r)2

S(A) = B\neighbours(A) (10)

b, y, r are the box coordinate, its class and its response. y = 0 correspond to the background
class. I is equal to 1 if its boolean is true, 0 otherwise. C(A′) is computed similarly. The
idea of this cost is to measure not only the cost induced by the boxes, but also by the
background.

Ideally, A and A′ will match: they will therefore have the same values, and cancel each
other. Since we are subtracting the two costs, the final loss can be simplified to (11).

L(A,A′) =
∑
A′

H(r′, y′)−
∑
A

H(r, y) (11)

+
∑
N\N ′

H(r, 0)−
∑
N ′\N

H(r′, 0)

N and N ′ are respectively A and A′ neighbours. Figure 30 gives an example of the sets
used in this formula. Because of the loss, we can expect the responses from A to lower
during training, and the responses from A′ to increase. If it is successful, NMS will now
produce a set A identical to A′, and the loss will be zero.

Figure 30: In this example, A and A′ do not match, and we expect to have a high loss.
Moreover, using N and N ′ instead of S(A) to compute the cost greatly reduce the com-
plexity.

30

5.2 Back-propagation and derivatives

To be able to back-propagate the error, and therefore train the network, we need first need
to compute the gradients. Gradients from the loss layer are fairly straightforward: it is the
loss derivative wrt the network response. From (11) and (9), we can write easily (12) and
(13).

dL(A,A′)

dr
=
∑
A′

dH(r′, y′)

dr
−
∑
A

dH(r, y)

dr
(12)

+
∑
N\N ′

dH(r, 0)

dr
−

∑
N ′\N

dH(r′, 0)

dr

dH(r, y)

dr
=Iy=0max(0, 2(r + 1)) (13)

+ Iy>0max(0, 2(r − 1))

The network responses that the loss function is using are actually a x × y × c tensor,
where x and y are the grid size, and c the number of class. What we call a box is actually
the response r from a specific cell, with coordinates (in pixels) inferred from the x and y
values ((i, j)). The gradients are stored in a similar way, in a x× y × c tensor. To fill this
gradient tensor, we do not need to test if each cell belongs to A, A′, N or N ′. It would be
really long, and pretty wasteful since most responses belong to none of them.

What we can do instead is to initialize the gradient tensor with zeros, and when using
a response in the forward pass, append its derivative to the corresponding gradient cell.
Appending, and not setting, because some responses may be used twice: in A and A′, or
in A and N ′ for instance. Algorithm 2 shows an (uncomplete) forward pass algorithm to
do it. zeros create a new tensor filled with zeros with the specified shape.

Algorithm 2 Compute the loss derivatives wrt the network responses.
A’ = closest_responses(B, labels) . As shown in Algorithm 1
derivatives = zeros(B.shape) . B.shape is x, y, c.
for r,(i,j,y) in A do . (i, j, y) being the indexes of the responses tensor, and r the
actual response.

Loss += H(r, y)
derivatives(i,j,y) += dH(r,y)

dr . This is new.
end for . Similar For loops for A′, N and N ′

Once we have all the gradient computed for the loss layer, they can now be back-
propagated in the network. The NMS layer won’t have any use of it, and it will be fed
directly to the last convolutional layer, fc8. From fc8, the SGD will behave as usual, and
the learning process will take place.

31

5.3 Evaluation and training

As we are writing this report, measurements and training are still ongoing, so we (unfortu-
nately) do not have any result to present for this part. We, however, expect to have them
for the final presentation in September.

6 Further developments

As stated several times, the next step would be to manage the scale of the objects. Several
methods can be investigated.

6.1 Voting space

In section 2.4, we highlighted the difference between 2D and 3D voting space. At the
moment, fc7 is the last convolutional layer producing features, and is acting similarly to a
2D vote with its heatmap. We can consider that all of them are casted on the same scale.

We could add additional feature maps to fc7. For instance, another feature map for
each existing one. The current is predicting the intensity of the object, and the second
one could predict the scale. We would only need to change the activation function of the
new feature maps, depending on how we want to represent the scale values (continuous,
between 0 and 1 ?).

Also, we could add two other predictions per existing one: dx and dy. We are voting
for the object center, and not the object positions. dx will represent the offset in the grid
to the center for the x axis, and dy for the y axis. For those layers, we would need another
activation function, that produce positive and negative integers.

Then, fc8 would act as a mask: it selects a subset of features (r, s, dx and dy) and
cast them in the 3D voting space (class, x, y, scale). Of course, would have n voting space
(one per class), so we end up with a 4D voting space. The NMS layer could be updated
to take into account the scale, and work in a similar way as in Figure 10.

The loss layer wouldn’t need to be updated, apart from the minor tweaks in the way
we represent the boxes internally. This architecture is summarized in Figure 31

6.2 Multiple images and aggregating

Another solution would be to feed the same image to the network with different sizes, and
then aggregate the different outputs.

For instance, we could decide that a big box on top of smaller boxes would cancel

32

Figure 31: The architecture proposed to reproduce the Hough Transform after the CNN.

the small ones, depending on the responses difference, or that a set of small boxes can be
regrouped as one big box.

The work in [15] could be a good basis for this, were the authors are merging boxes
instead of using Non Maxima Suppression. [15] is even closer to our work, since in this
work, objects are split is square that are merged at the last stage of the detection.

6.3 Box regression

A third solution would be to add four numbers for the predicting cells. At the moment,
we only have square boxes, and we could use those numbers to deform this original square.
We already talked about several papers [19, 17] that are doing boxes regression, and could
be used as insights to our work.

7 Experiment reproducibility

This section will be more about the engineering side of my internship. It was motivated by
some difficulties I faced in the past, during my previous internships in research, and that
are never easily resolvable. Good science is sometimes difficult to define, depending of the
field, but it usually rests on the following properties:

33

Predictability A good theory can explain the current measurements, but can also pre-
dict future results. If future measurements are in accordance with the predictions, the
theory hold, otherwise, it is wrong. Some theories may hold a very long time (Newton’s
law of universal gravitation for instance) before being proven wrong. New theories arises
(in this case, the general relativity) to explain the new data, but the old theory may still
be kept for simplicity in some particular cases.

Falsifiability Results from an experiment could potentially invalidate the theory or the
hypothesis tested. For instance, if I say that a giant undetectable Spaghetti Monster flies
in the sky, we wouldn’t be able to discard this theory ("Of course you cannot detect it, it’s
undetectable"), and wouldn’t have a great value on a Scientific standpoint.

Reproducibility When doing the same experiment in the same initial conditions, we
must obtain the same results. If not, it would mean there is some parameters that have
not been identified, and it wouldn’t be possible to formulate a reliable hypothesis based on
the experiment. It can also mean that with new data, we should be able to have the same
conclusion (this is especially true in epistemology, but often difficult due to the prohibitive
cost to collect new data). In computer vision, in means that using a new dataset with the
same properties should produce similar performances.

I will focus on how I tried to attain a good reproducibility of my experiments during
this internship. I will first explain how I managed the experiment/data acquisition phase,
and then I will talk about the data analysis. The solutions I will present are not universal.
Computer vision has some particular requirements: dataset can be extremely huge (138
GB for the ImageNet training set), making archiving slightly more difficult than language
processing, for instance. Machine learning is also specific: training data need to be stored
somewhere, but not on the code repository using them. Simulation, for instance, may not
have this problem: experiments configurations files are all that is needed, and their size
are negligible.

My code is available on https://gitlab.irisa.fr/00008A4G/ouf-networks. You are
invited to check it out while reading the next sections, to have a better overview of my
work.

7.1 Datasets

We had to pre-process our datasets on a regular basis, sometimes with little difference
between iterations (Changing the threshold for the overlapping, testing different mix ratios,
among others). To avoid confusion 9 , I first wrote completely automated scripts to generate
the data from a vanilla dataset. Hardcoding parameters could work, but it would then be
harder to compare different datasets, especially when only a tiny parameter is changed.

9For instance: Which parameters I used to generate this dataset I used to train this network ? And is
it the same used for this other network ?

34

https://gitlab.irisa.fr/00008A4G/ouf-networks

Also, forking a dataset would be error prone, since it would be easy to forget one parameter
in the script.

The solution was to put everything as script parameters, provided when calling the
script. I then used wrapper scripts (in the form of Makefiles) to make those calls in a
reliable fashion. Most of the work was made by a common script, and the Makefiles
contained every parameters: the dataset definition was now a few lines in lengths, and are
now easier to compare. Mistakes are also more easily avoided. Since everything is stored
in the header, is it harder to forget to change one parameter that was defined elsewhere in
the script.

I also tried to have a clear and non-ambiguous naming convention for my datasets
iteration: <dataset_name>_<iteration>. For instance, we have class_voc_20_001 to
fine-tune with 20 classes, and class_voc_21_xxx to finetune with 20+1 classes.

7.2 Experiments

I used similar makefiles for my experiments: parameters were either specified in the make-
file, or in other configuration files (such as Caffe configuration files). Either way, they are
easily tracked by Git.

I tried to have as little code as possible in the experiment directories. Common utilities
were stored elsewhere, and in our case, most layers were standard Caffe layers that didn’t
needed specific code. For our layers development, however, it was better to save them into
the directory itself. Otherwise, we would have difficulties to maintain back-compatibility
when tweaking their behaviour, and would compromise the whole reproducibility thing.

Experiment results were stored in two places. Log files, and small text files were saved
directly in the folder, but ignored by Git. Is was therefore easy to avoid confusion. For
bigger files, such as the network weights snapshots, folders were automatically created in a
dedicated drive based on the experiment name. This prevented confusion, and overwriting
as well.

The naming convention was similar as the one for the datasets:
<date>_<network_name>_<iteration>. Our networks for fine-tuning were named caffenet_20
and caffenet_21, while our network was named ouf_networks. Future experiments on
the Deep Hough network architecture could include the tested property as well:
ouf_networks_ETE_training or oufnetworks_new_NMS for instance.

7.3 Results analysis

Even with properly named results, it can sometimes get confusing to know how we gener-
ated some diagrams. Which code was used, which results ? If we are not entirely sure, we
have to redo everything from scratch.

35

To solve this simple yet tricky problem, I used the Jupyter software. It is a webserver
running "notebooks": they contains cells of code, and display after them their output.
Markdown10 can also be used to explain the experiments, the analysis done and comment
the results. Figure 32 shows a screenshot of a notebook, and my notebook HTML exports
are available at http://oufnetworks.gforge.inria.fr.

We therefore have the inputs and outputs of the analysis, in a readable way. If we want
to update the graph with new data, we just need to rerun each cells.

7.4 Improvements

There still is plenty of room for improvement to my workflow. Those solution were de-
vised on the fly, since I didn’t had much time to go back and refactor my previous work.
For instance, I could have added a file generated by the Makefile, tracking each software
installed and its version, with as well the commit hash of the code when the experiment
was run. It can be especially useful for the far future, if some libraries introduce or fix
bugs in new releases. It would then be feasible to reinstall the exact same environment,
and ensure the difference was due to some third party dependency.

But in any case, I’ve really seen the difference with this workflow, compared to my
first research internship three years ago, where I literally had to rerun a whole bunch of
simulations because I had lost track of the parameters producing them.

Future work will allow my to add more automation in my scripts and makefile, and
reduce the room for human errors and genuine mistakes. I think this is a continuous
work throughout the whole life of a researcher, as new problem arises when tools, field or
solutions evolves.

10A minimalist markup language.

36

http://oufnetworks.gforge.inria.fr

Figure 32: A screenshot of a notebook used to analyze object size in the VOC2007 dataset.

37

8 Conclusion

We presented how we transformed a CNNs made for classification to a CNNs for object
detection, and how to train it. We also explained different methods that could be used to
deal with the scale problem.

Although the results are not as satisfactory as I would have liked (because of reasons),
we still have obtained valuable work. Not the kind of valuable that can be published right
away, but the kind of valuable that can be extended, pursued and may be published if it
isn’t a dead end.

This is why I really tried to produce reusable code and experiment: it became clear
pretty quickly that we wouldn’t be able to complete everything, and I didn’t wanted Yannis
to restart from scratch, and struggle as I did sometimes.

On a personal level, I liked the past six months, and want to pursue in this field. I
don’t know how exactly yet, since I don’t want to rush a Ph.D The field is quite big, and
I want to have a better overview before choosing a thesis subject. Working in the as an
engineer in computer vision for a while might be a good middle-ground to sharpen my
technical skills and improve my knowledge.

A Schedule

February Setup, bibliography
March Installed Caffe framework on local machine, learned to use it
April Convolutionify and NMS
May Medical leave due to health issues
June Installed GPU, fine tuning
July Loss layer, back-propagation, report

References

[1] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern
recognition, 13(2):111–122, 1981.

[2] Christopher M Bishop. Pattern recognition. Machine Learning, 2006.

[3] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. arXiv preprint arXiv:1605.06409, 2016.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

38

[5] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal of
computer vision, 88(2):303–338, 2010.

[6] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1440–1448, 2015.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 37(9):1904–1916, 2015.

[9] Paul VC Hough. Machine analysis of bubble chamber pictures. In International
Conference on High Energy Accelerators and Instrumentation, volume 73, 1959.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[11] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Computer Vision and
Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages
2169–2178. IEEE, 2006.

[12] B Boser Le Cun, John S Denker, D Henderson, Richard E Howard, W Hubbard, and
Lawrence D Jackel. Handwritten digit recognition with a back-propagation network.
In Advances in neural information processing systems. Citeseer, 1990.

[13] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust object detection with in-
terleaved categorization and segmentation. International journal of computer vision,
77(1-3):259–289, 2008.

[14] Karel Lenc and Andrea Vedaldi. R-cnn minus r. arXiv preprint arXiv:1506.06981,
2015.

[15] Shu Liu, Cewu Lu, and Jiaya Jia. Box aggregation for proposal decimation: Last mile
of object detection. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2569–2577, 2015.

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3431–3440, 2015.

[17] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640, 2015.

39

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems, pages 91–99, 2015.

[19] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann
LeCun. Overfeat: Integrated recognition, localization and detection using convolu-
tional networks. arXiv preprint arXiv:1312.6229, 2013.

[20] Li Wan, David Eigen, and Rob Fergus. End-to-end integration of a convolution net-
work, deformable parts model and non-maximum suppression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 851–859, 2015.

[21] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,
Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr. Conditional random
fields as recurrent neural networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1529–1537, 2015.

40

Résumé

Pendant les six derniers mois, j’ai effectué un stage de
recherche à l’Inria Rennes, un institut de recherche
public. Notre objectif était de tester des nouvelles mé-
thodes de détection d’objets, combinant des réseaux
de neurones à la transformée de Hough.

Les réseaux neuronaux convolutionnels (CNN en
anglais) sont courants en apprentissage profond appli-
qué à la classification d’images. Ils sont aussi de plus
en plus utilisés en détection d’objets. La transformée
de Hough est une catégorie d’algorithmes, qui utilise
des votes pour prédire où un object pourrait se situer
dans l’image.

Afin de faciliter la lecture de ce rapport, nous
commencerons par présenter les notions utiles à sa
compréhension. Nous en profiterons par ailleurs pour
parler de travaux similaires à notre objectif. Nous
présenterons ensuite ce que nous avons réalisé, étape
par étape. Nous sommes partis d’une architecture
de réseau de neurones standard, et avons ajouté de
nouvelles fonctions, de nouvelles couches pour nous
rapprocher de notre objectif. Le réseau a d’abord été
re-entrainé afin de correspondre à notre nouveau jeu
de test. Puis, nous avons transformé le réseau afin
qu’il puisse considérer des sous-parties d’une image,
et non l’image dans sa globalité. Ensuite, nous avons
rajouté des couches pour supprimer les faux positifs
et les duplicats lors de la détection. Enfin, nous
présenterons le méthode que nous allons utiliser pour
entrainer le réseau de bout en bout. Ce travail n’étant
pas terminé, nous parlerons ensuite de différentes
méthodes qui doivent être testées dans le futur afin
de continuer nos recherches.

Abstract

During the past six months, I’ve been working at
the Inria Rennes, a public research institution in
computer science. Our goal was to try new methods
for object detections combining already existing
tools and algorithms, Convolutional Neural Networks
(CNN) and the Hough transform.

CNNs are a standard tool in deep learning for
image classification, and is increasingly used for
object detection as well. The Hough transform is
a category of algorithms that uses votes to predict
where potential objects could be.

We will start with some background to help to
understand this report, and will discuss related works.
Then, we will present our work, step by step. Starting
with a neural network standard architecture, we
gradually added new functions, layers that would
get us closer to our goal. We first retrained parts of
the network to fit our new training data. Then, we
changed the network so it would consider subparts of
images and not images as a whole. Next, we added
layers to limit false positive and duplicates during
detection. At last, we created a end-to-end method to
train the network. Since this is still an ongoing work,
we finally discuss methods that will be tested in the
future.

	Introduction
	Context
	On the difference between detection and classification
	Convolutional Neural Networks (CNN)
	Related work
	Hough transform
	Motivations

	CNN: From classification to detection
	Pre-trained networks
	Convolutionify
	Retrain the last layer
	20: Object classes
	21: With backgrounds

	Non-Maxima Suppression
	Filtering step
	Regrouping
	Testing

	End-to-end training
	Loss function
	Back-propagation and derivatives
	Evaluation and training

	Further developments
	Voting space
	Multiple images and aggregating
	Box regression

	Experiment reproducibility
	Datasets
	Experiments
	Results analysis
	Improvements

	Conclusion
	Schedule

