
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

Masters Thesis

Metric Learning: A Deep Dive

Bill M. Psomas

ATHENS

September 2020

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

Διπλωματική Εργασία

Μάθηση Μετρικής: Μια Εμβάθυνση

Βασίλειος M. Ψωμάς

ΑΘΗΝΑ

Σεπτέμβριος 2020

Masters Thesis

Metric Learning: A Deep Dive

Bill M. Psomas

Α.Μ.: DS1180014

SUPERVISOR: Yannis Avrithis, Research Scientist, INRIA Rennes-Bretagne Atlantique

EXAMINATION COMMITTEE:

Yannis Avrithis, Research Scientist, INRIA Rennes-Bretagne Atlantique

Ioannis Emiris, Professor, National and Kapodistrian University of Athens

Vasileios Katsouros, Research Director, ATHENA Research and Innovation Cen-

ter

September 2020

Διπλωματική Εργασία

Μάθηση Μετρικής: Μια Εμβάθυνση

Βασίλειος M. Ψωμάς

Α.Μ.: DS1180014

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Γιάννης Αβρίθης, Ερευνητής, INRIA Rennes-Bretagne At-

lantique

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:

Γιάννης Αβρίθης, Ερευνητής, INRIA Rennes-Bretagne Atlantique

Ιωάννης Εμίρης, Καθηγητής, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Βασίλειος Κατσούρος, Διευθυντής Έρευνας, Ερευνητικό Κέντρο ”Αθηνά”

Σεπτέμβριος 2020

ABSTRACT

Metric Learning is an important task in Machine Learning. The objective of Metric Learn-

ing is to learn a distance metric that reduces the distance between similar objects and

increases the distance between dissimilar ones. Similarity and dissimilarity can be some-

how subjective and thus some kind of supervision is needed in order to define the ground-

truth. Learning such a distance metric can be proven to be really useful for many tasks,

such as classification, retrieval and clustering. The classification and retrieval tasks can

be simply reduced to class-level and instance-level nearest neighbor tasks respectively,

while the clustering task can be made easier given the similarity matrix.

Traditionally, before Deep Learning, Metric Learning approaches were based either on

linear transformations using the Mahalanobis or/and Euclidean distance, or on non-linear

transformations using kernel-based methods. Both of them, however, had drawbacks.

Linear transformations had a limited ability to capture nonlinear feature structure and thus

could not achieve high performance over the new representation of the data. Non-linear

transformations that carried the problem to a non-linear space could achieve optimum per-

formance, but often suffered from overfitting. Apart from that, both methods were limited

by their ability to process raw data and thus feature engineering was often needed.

With the remarkable success of Convolutional Neural Networks, Deep Metric Learning

was introduced. In this context, Neural Networks are discriminatively trained to learn the

non-linear mapping from input raw data to a lower dimensional and semantic embedding.

This is usually done in a supervised way, in which the label annotations are given and

thus these embeddings are optimized to pull samples with the same class label closer

and push samples with different class labels apart. The whole training process is done by

minimizing a loss function that should have exactly these properties. The great advantage

of Deep Metric Learning is that it jointly extracts the features and learns the embedding.

The contribution of this work is threefold. First, we conduct extensive experiments using

the most commonly used architectures (GoogLeNet, BNInception, ResNet50) on the most

commonly used datasets (CUB200-2011, CARS196, Stanford Online Products) using 10

different loss functions (Contrastive, Triplet, LiftedStructure, NPair, ProxyNCA, ArcFace,

Margin, MultiSimilarity, SoftTriple, ProxyAnchor) and four different embedding sizes (64,

128, 512, 1024). We make an ablation study and draw important conclusions using the

results. Second, we introduce and propose a new setup for training using a fixed validation

set. We conduct experiments using this and a 10-fold cross validation. Our setup seems

to balance perfectly between the computational complexity and retrieval quality trade-off.

Finally, we design, implement and experiment with a new loss function that is on a par

with the state-of-the-art.

SUBJECT AREA: Computer Vision, Deep Learning

KEYWORDS: Metric Learning, Neural Networks

ΠΕΡΙΛΗΨΗ

H Μάθηση Μετρικής είναι ένα σημαντικό πρόβλημα της Μηχανικής Μάθησης. Ο σκοπός

της είναι η εκμάθηση μιας μετρικής, η οποία έχει την ιδιότητα να μειώνει την απόσταση

μεταξύ όμοιων αντικειμένων και να αυξάνει την απόσταση μεταξύ ανόμοιων. Το τι είναι

όμοιο και τι ανόμοιο μπορεί να είναι κάπως υποκειμενικό και ως εκ τούτου κάποια μορφή

επίβλεψης είναι αναγκαία για να οριστούν. Η εκμάθηση μιας τέτοιας μετρικής μπορεί να

αποδειχθεί πραγματικά χρήσιμη και σε πολλά άλλαπροβλήματα, όπως είναι η ταξινόμηση,

η ανάκτηση και η ομαδοποίηση. Τα πρώτα δύο προβλήματα μπορούν να αναχθούν

σε προβλήματα κοντινού γείτονα σε επίπεδο κλάσης και οντότητας αντίστοιχα, ενώ το

πρόβλημα της ομαδοποίησης μπορεί να γίνει ευκολότερο δοθέντος του πίνακα ομοιότητας.

Παλαιότερα, πριν τη Βαθιά Μάθηση, οι μέθοδοι στη Μάθηση Μετρικής βασίζονταν είτε σε

γραμμικούς μετασχηματισμούς που χρησιμοποιούσαν τηνMahalanobis ή/και την Ευκλίδεια

απόσταση, είτε σε μη γραμμικούς μετασχηματισμούς που χρησιμοποιούσαν μεθόδους

πυρήνα. Και οι δύο, ωστόσο, είχαν μειονεκτήματα. Οι γραμμικοί μετασχηματισμοί είχαν

περιορισμένη ικανότητα σύλληψης μη γραμμικών δομών και έτσι δε μπορούσαν να πετύχουν

υψηλή απόδοση όσον αφορά τη νέα αναπαράσταση των δεδομένων, ενώ οι μη γραμμικοί

μετασχηματισμοί που μετέφεραν το πρόβλημα σε ένα μη γραμμικό χώρο μπορούσαν να

πετύχουν βέλτιση απόδοση, αλλά υπέφεραν από το πρόβλημα της υπερ-προσαρμογής.

Επιπρόσθετα, και οι δύο μέθοδοι είχαν περιορισμένη ικανότητα να επεξργαστούν πρωτογενή

δεδομένα και ως εκ τούτου συχνά χρειαζόταν ξεχωριστή εξαγωγή χαρακτηριστικών

Με την αξιοσημείωτη επιτυχία των Συνελικτικών Νευρωνικών Δικτύων, εμφανίστηκε η

Βαθιά Μάθηση Μετρικής. Στο πλαίσιο αυτής, τα Νευρωνικά Δίκτυα εκπαιδεύονται να

μάθουν τον μη γραμμικό μετασχηματισμό που συνδέει τα δεδομένα εκπαίδευσης με τις

τελικές εμβαπτίσεις, οι οποίες έχουν μικρότερη διαστησιμότητα και περισσότερη σημασιολογία.

Αυτό συνήθως συμβαίνει σε μια διαδικασία επιβλοπόμενης μάθησης, στην οποία οι κλάσεις

κάθε δείγματος είναι γνωστές, και έτσι οι εμβαπτίσεις βελτιστοποιούνται ώστε δείγματα

της ίδιας κλάσης να έρχονται κοντά και δείγματα διαφορετικής κλάσης να απωθούνται.

Η όλη διαδικασία γίνεται ελαχιστοποιώντας μια συνάρτηση κόστους που πρέπει να έχει

ακριβώς αυτές τις ιδιότητες. Το σημαντικό πλεονέκτημα της Βαθιάς Μετρικής Μάθησης

είναι ότι πραγματοποιεί από κοινού την εξαγωγή των χαρακτηριστικών και την εκμάθηση

των εμβαπτίσεων.

Η συνεισφορά αυτής της διπλωματικής εργασίας είναι τριπλή. Πρώτον, πραγματοποιούνται

εκτεταμμένα πειράματα χρησιμοποιώντας τις πιο διαδεδόμενες αρχιτεκτονικές (GoogLeNet,

BNInception, ResNet50) στα πιο διαδεδομένα σετ δεδομένων (CUB200-2011, CARS196,

StanfordOnline Products) χρησιμοποιώντας δέκα διαφορετικές συναρτήσεις κόστους (Con-

trastive, Triplet, LiftedStructure, NPair, ProxyNCA, ArcFace, Margin, MultiSimilarity, Soft-

Triple, ProxyAnchor) και τέσσερα διαφορετικά μεγέθη για τις εμβαπτίσεις (64, 128, 512,

1024). Πραγματοποιείται εις βάθος μελέτη των αποτελεσμάτων και εξάγονται σημαντικά

συμπεράσματα. Δεύτερον, παρουσιάζεται και προτείνεται μια νέα διαδικασία εκπαίδευσης

που χρησιμοποιεί σταθερό σετ δεδομένων επικύρωσης. Πραγματοποιούνται πειράματα

χρησιμοποιώντας αυτή και μια δεκαπλή διασταυρωμένη επικύρωση. Διαπιστώνεται ότι η

πρώτη ισορροπεί εξαιρετικά ανάμεσα στην υπολογιστική πολυπλοκότητα και στην ποιότητα

ανάκτησης. Τέλος, σχεδιάζεται, υλοποιείται και δοκιμάζεται μια νέα συνάρτηση κόστους,

η οποία είναι ισότιμη με τις σύγχρονες μεθόδους.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Όραση Υπολογιστών, Βαθιά Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μετρική Μάθηση, Νευρωνικά Δίκτυα

ACKNOWLEDGEMENTS

Half of this work was conducted in the Linkmedia Team of INRIA Rennes-Bretagne Atlan-

tique and the other half in Athens. I would like to thank my supervisor Yannis Avrithis from

the bottom of my heart for his valuable help, guidance and support, his endless motiva-

tion and the trust he showed me, as also the postdoctoral student Mateusz Budnik for the

technical knowledge he shared with me and his willingness to help.

Additionally, I would like to thank all the people of Linkmedia Team for creating a really

pleasant and warm work environment, especially given the fact that my stay in INRIA

coincided with the coronavirus quarantine. Being welcome and included as a newmember

of the group meant a lot to me.

Finally, I would like to thank my family and friends for the love and support they have

provided me throughout this project.

CONTENTS

1 INTRODUCTION 16

1.1 Motivation . 16

1.2 Challenges and Related Work . 17

1.3 Contributions . 18

1.4 Structure . 19

2 BACKGROUND 20

2.1 Metric Learning . 20

2.1.1 Linear Metric Learning . 20

2.1.2 Nonlinear Metric Learning . 22

2.2 The story of Neural Networks in fast forward . 23

2.2.1 Perceptron . 24

2.2.2 Multilayer Perceptrons . 25

2.2.3 LeNet . 26

2.2.4 AlexNet . 27

2.2.5 GoogLeNet (Inception v1) . 28

2.2.6 BNInception (Inception v2) . 29

2.2.7 ResNet . 30

2.3 Deep Metric Learning . 31

2.3.1 Embedding Loss Functions . 32

2.3.1.1 Contrastive . 32

2.3.1.2 Triplet . 33

2.3.1.3 LiftedStructure . 34

2.3.1.4 NPair . 34

2.3.1.5 Margin . 35

2.3.1.6 MultiSimilarity . 36

2.3.2 Classification Loss Functions . 37

2.3.2.1 SoftMax . 38

2.3.2.2 ProxyNCA . 38

2.3.2.3 ArcFace . 39

2.3.2.4 SoftTriple . 39

2.3.2.5 ProxyAnchor . 41

3 EXPERIMENTAL SETUP 43

3.1 Datasets . 43

3.2 Networks . 44

3.3 Evaluation Protocol . 45

3.4 Implementation Details . 45

3.5 Issues . 46

3.5.1 Unfair Comparisons . 46

3.5.2 Lack of Validation Set . 48

3.5.3 Benchmark and Ablation Study . 48

4 EXPERIMENTAL RESULTS AND DISCUSSION 50

4.1 Results . 50

4.1.1 CUB200-2011 ResNet50 . 50

4.1.2 CUB200-2011 BNInception . 52

4.1.3 CUB200-2011 GoogLeNet . 53

4.1.4 CARS196 BNInception . 53

4.1.5 SOP BNInception . 56

4.2 Discussion . 57

4.2.1 About Networks . 57

4.2.2 About Embeddings . 57

4.2.3 About Datasets . 58

4.2.4 About Loss Functions . 58

4.2.4.1 Embedding vs. Classification Loss Functions 58

4.2.4.2 Tournament of Loss Functions 58

4.2.5 About Setup . 60

5 OUR SETUP 61

5.1 Cross Validation . 61

5.2 Fixed Validation Set . 62

6 OUR METHOD 64

7 CONCLUSIONS AND FUTURE WORK 67

A APPENDIX 68

A.1 Remaining experiments . 68

A.1.1 CARS196 ResNet50 . 68

A.1.2 CARS196 GoogLeNet . 68

ABBREVIATIONS - ACRONYMS 70

REFERENCES 73

LIST OF FIGURES

Figure 1: Visualization of the embedding space on the test split of CARS196

using the LiftedStructure loss [1]. 17

Figure 2: Suppose that we would like red and green points to belong in the

same class, while black and blue to belong in another one. There is

no line or no linear transformation in this plane that could successfully

satisfy these constraints. Note that a linear transformation is equiva-

lent to stretching the axes and rotating the data. [2]. 22

Figure 3: The Perceptron architecture. Apart from the x1, ..., xn, there is also

a x0 = 1 constant term, which is added, so that the weight w0 plays

the role of bias and thus the model takes the generalized form of

y = f(x;w, b) = sgn(w>x+ b) [3]. 24

Figure 4: The Perceptron algorithm correctly classifies all data points. The de-

cision boundary w4 is the weight vector occurred after 4 iterations of

the algorithm [4]. 25

Figure 5: The general architecture of a Multilayer Perceptron. The hidden lay-

ers can be more than one and thus changing the overall depth of the

model. Each of the nodes is a Perceptron, exactly as described in

Fig. 3 [5]. 25

Figure 6: The LeNet architecture [6]. 27

Figure 7: ILSVRC top-5 error% per year in classification task [7]. 28

Figure 8: Example images of ILSVRC [8]. 28

Figure 9: The AlexNet architecture [9]. 29

Figure 10: The Inception modules [10]. 29

Figure 11: Batch Normalization applied to activation x over a batch [11]. 30

Figure 12: Training and test error of a 20-layer and 56-layer Network. Increasing

Network depth leads to worse performance [12]. 30

Figure 13: The residual block [12]. 31

Figure 14: The general Deep Metric Learning setup [13]. 32

Figure 15: The Siamese Architecture. 33

Figure 16: Triplet loss function makes the distance between an anchor and a

positive smaller than the distance between this anchor and a negative

[13]. 33

Figure 17: Illustration of a training batch with six samples x1, ..., x6. Red edges

represent positives, while blue edges represent negatives. Contrastive

loss function works using separate pairs, thus x1 and x2 represent a

positive pair, x3 and x4 represent a negative pair, etc. Triplet loss

function works using separate triplets, thus x2 represents an anchor

that has a positive x1 and a negative x3, etc. In general, a sample xi

of the training batch cannot be used more than once when computing

both the Contrastive and Triplet loss function. In contrast, LiftedStruc-

ture takes into account all pair wise samples within the batch, thus x1

and x2 represent a positive pair, while at the same time x1 and x3

represent a negative pair [1]. 35

Figure 18: In this illustration with 6 examples, x3 and x4 represent a randomly

sampled positive pair that independently compares against all other

negative pairs in order to mine the hardest one [1]. 35

Figure 19: The three types of similarity [14]. 36

Figure 20: Red circles and green stars represent points of two different classes

respectively. There are 48 triplets that can be formed from these

instances. Learning a proxy for each class results in only 8 compar-

isons [15]. 38

Figure 21: We first normalize the feature xi and weight w. Then we get the

cos θj logit for each class as wT
i xi. We calculate the arccos θyi and

get the angle between the feature xi and the ground truth weight wyi .

wj can be seen as a proxy for each class. Then, we add an angular

margin penalty λ on the target angle θyi . We calculate cos(θyi+λ) and
multiply all logits by the feature scale s. The logits finally go through

the SoftMax and CrossEntropy. [16] 40

Figure 22: In SoftMax loss, each class has only one corresponding proxy. Sam-

ples of the same class will be collapsed to the same proxy no matter

their possible variance (pose, color, viewpoint, etc.). In contrast, Soft-

Triple keeps multiple proxies and thus is more capable of modeling

the intra-class variability, as these samples will be assigned to differ-

ent proxies. [17] . 40

Figure 23: Nodes represent different samples in a batch. Different shapes repre-

sent different classes, black nodes represent proxies, red nodes rep-

resent positives, blue nodes represent negatives. The associations

defined by the losses are expressed by edges and thicker edges get

larger gradients. (a) Triplet loss associates each anchor with a posi-

tive and a negative without considering their hardness. (b) NPair loss

and (c) LiftedStructure loss reflect hardness of data, but do not utilize

all data in the batch. (d) ProxyNCA loss cannot exploit data-to-data

relations since it associates each data point only with proxies. (e)

ProxyAnchor handles entire data in the batch, and associates them

with each proxy with consideration of their relative hardness deter-

mined by data-to-data relations. See the text for more details [18]. . . 42

Figure 24: Random images of CUB200-2011 dataset [19]. 43

Figure 25: Random images of CARS196 dataset [20]. 43

Figure 26: Random images of SOP dataset. 44

Figure 27: Comparing the retrieval quality of loss functions on CUB200-2011

using ResNet50 with an embedding size of 128. 51

Figure 28: Comparing the retrieval quality of loss functions on CUB200-2011

using ResNet50 with different embedding sizes. 52

Figure 29: Comparing the retrieval quality of the loss functions on CUB200-2011

using BNInception with different embedding sizes. 54

Figure 30: Comparing the retrieval quality of the loss functions on CUB200-2011

using GoogLeNet with different embedding sizes. 55

Figure 31: Comparing the discriminative power of Networks. All loss functions

use an embedding size of 512. 57

Figure 32: Visualization of the way our loss function works. Different shapes

correspond to different classes. Black nodes represent proxies, while

blue nodes represent samples. Green edges represent positive asso-

ciations, while red nodes represent negative associations. Thickness

is analogous to gradients that samples or proxies get. For example,

let us examine the case of the star class that has two positive sam-

ples and two negative proxies. Concerning positives, star class is

pulling closer both samples, but with different degrees of strength

determined by their relative hardness. The star sample that is further

away gets larger gradient than the other one. Exactly the opposite is

happening concerning negatives, as the square proxy that is closer

gets larger gradient than the circle proxy. 64

LIST OF TABLES

Table 1: The types of similarity each embedding loss function utilizes. Multi-

Similarity takes advantage of all the similarities. 37

Table 2: The Networks and embedding sizes used in respective papers. 45

Table 3: The default values that were used for each experiment. The initial

learning rate shown in second column is multiplied by gamma after

step size epochs. The same procedure is repeated for the resulting

learning rate etc. 46

Table 4: The hyperparameters used in our experiments. 47

Table 5: The mining methods used in our experiments. 47

Table 6: CUB200-2011 ResNet50 experiments. 50

Table 7: CUB200-2011 BNInception experiments. 53

Table 8: CUB200-2011 GoogLeNet experiments. 54

Table 9: CARS196 BNInception experiments. 55

Table 10: SOP BNInception experiments. 56

Table 11: The Tournament of Loss Functions. 59

Table 12: The cross validation scores of MultiSimilarity, SoftTriple and ProxyAn-

chor using the BNInception with an embedding size of 512 onCUB200-

2011. 61

Table 13: MultiSimilarity R@1 scores on each fold of the 10-fold cross validation.

We choose the model scored the best R@1 on each validation set and

report its R@1 on test set. 62

Table 14: Comparing the different fixed validation splits in order to find the one

with the best Recall@1 on test set. The values of R@1 on validation

set are greater than the respective ones on test set, as the validation

classes are only 10, while the test classes are 100. 62

Table 15: Hyperparameter search settings on fixed validation set. 63

Table 16: The R@1 scores of loss functions using the optimal values found using

our fixed validation setup. 63

Table 17: Comparing the retrieval quality of loss functions on CUB200-2011. . . 65

Table 18: Comparing the retrieval quality of loss functions on CARS196. 65

Table 19: Comparing the retrieval quality of loss functions on SOP. 66

Table 20: CARS196 ResNet50 experiments. 68

Table 21: CARS196 GoogLeNet experiments. 69

Metric Learning: A Deep Dive

1. INTRODUCTION

1.1 Motivation

The concepts of similarity and dissimilarity are fundamental for both the human cognitive

process, as also for artificial systems. They can be very useful for tasks as classification,

clustering, recognition, information retrieval etc. Similarity and dissimilarity, though, can

be somehow subjective and thus the questions that arise are what exactly is meant by

the term similarity, where exactly it refers and how to assess it. To make it more clear,

when comparing two faces with the goal of finding whether they are matching or not, then

the term similarity refers to a similarity function that should emphasize on appropriate

features, like the hair color, the shape of eyes, the size of nose etc. But when the goal

is to determine just the pose, then a function that captures pose similarity is required and

the term similarity refers only to this pose. This means that the notion of good similarity

function is problem-dependent, or in other words, each problem has its own semantic

notion of similarity, which often cannot be captured by standard functions or metrics (e.g.

Euclidean distance), and thus the problem arising is how exactly to chose this function or

metric.

A naive solution would be a handcrafted one, in which one would attempt to determine

by hand this function, by the combination of appropriate features. This solution would be

expensive in terms of effort and probably not so robust to changes in data. An alternative

would be to learn task-specific similarity functions and automate this process. The term

“learn” refers to Machine Learning, a definition of which is “a field of Computer Science

that aims to teach computers how to learn and act without being explicitly programmed”.

Machine Learning algorithms make use of data in order to build models that can later

predict or make decisions. Learning a similarity function or equivalently learning a distance

function (or metric) that reduces the distance between similar objects and increases the

distance between dissimilar ones is the scope of Metric Learning.

Before Deep Learning, Metric Learning approaches are either linear using distances as

the Euclidean, Mahalanobis etc., either non-linear using kernel-basedmethods. The linear

ones have difficulties in capturing non-linear feature structures and thus cannot achieve

high performance, while the non-linear ones are often suffering from overfitting. In 2012,

Alexnet [9], a deep Convolutional Neural Netowrk that combines a lot of existing ideas like

the utilization of GPUs during training and of the non-saturating ReLU [21] as an activation

function, is the winner of the ILSVRC [8] (ImageNet Large Scale Visual Recognition Com-

petition) achieving remarkably lower error rate than its competitors. This is considered

to be the starting point of the Deep Learning era, as after this the scientific community

gradually turns to Neural Networks in order to find better solutions to various tasks.

In this context, in 2015, authors of [1] introduce the setup for Deep Metric Learning, using

the GoogLeNet [10] architecture on 2 existing datasets (CUB200-2011 [19] and CARS196

[20]) and on 1 new they collect (SOP). All datsets are split in half, using half of the classes

for training and the other half for testing. This paper also introduces a new loss function,

LiftedStructure, with greater task-specific properties than the existing Contrastive [22,23]

and Triplet [13, 24]. This setup achieves significant improvement over existing feature

embedding methods and opens a new path full of challenges for Metric Learning.

B. Psomas 16

Metric Learning: A Deep Dive

1.2 Challenges and Related Work

In order to understand the challenges of Deep Metric Learning, it is firstly essential to de-

scribe the whole pipeline of it. A CNN initialized with the ImageNet weights takes as input

images from the dataset, extracts features through its layers and outputs a n-dimensional

embedding. This CNN is trained having available label annotations for each image and

using a loss function that should have the property to pull images with the same class

label (positives) closer and push images with different class labels (negatives) apart in the

embedding space. This means that the objective of the whole training of the Network is to

output embeddings that are dimensionally lower and semantically more meaningful than

the original images. For example, given a dataset of car images like the CARS196, the

embeddings of SUVs should live close each other and far away from the embeddings of

the roadsters, as shown in Fig. 1. Half of the classes of the dataset are used for training

and the other half for testing. This means that during test time the query image is an image

of a class that the Network has never seen before and this makes the task different from

classification.

Figure 1: Visualization of the embedding space on the test split of CARS196 using the

LiftedStructure loss [1].

So, how exactly should this loss function be? Can it be a classification one like the

CrossEntropy or should it be different? If CrossEntropy can really be used, then are there

any other changes to the rest of the setup needed? Losses like Contrastive and Triplet

introduce a new setup, in which the samples are examined in pairs and triplets respec-

tively. A pair consists of either two positives or two negatives, while a triplet consists of

an anchor, a positive and a negative. Contrastive attempts to make the distance between

positive pairs smaller than some threshold, and the distance between negative pairs larger

than this threshold. Triplet attempts to make the anchor-positive distance smaller than the

anchor-negative distance. The rationale of those two loss functions seems to be closer to

the Metric Learning objective, but do they truly give better results? And if they do, is there

enough space for improvements or is there enough space for something new at all? Lift-

edStructure introduces the idea of exploiting the whole batch during training, rather than

individual pairs or triplets of it and this gives a new direction that should be investigated.

To sum up, the design of the loss function is truly a challenge. In the next chapters, more

B. Psomas 17

Metric Learning: A Deep Dive

state-of-the-art loss functions will be examined and many of the aforementioned questions

will be answered.

The loss function can be computed using pairs, triplets or even the whole batch. Mining

is the process of finding the most informative samples and use those for training. So,

instead of having, for example, two easy positives (images of the same class that really

have great similarity) in a pair, which will not contribute so much to the loss function, one

can have two hard positives (images of the same class that should have great similarity,

but do not). This is called hard mining and a typical implementation of it can be found

in [25]. While hard mining contributes in consuming less memory and avoiding plateaus in

performance, it can produce noisy gradients and converge to bad local minima [26]. That

is why other types of mining have been introduced, as the semi-hard negative mining [13],

the distance-weighted mining [26] etc. All these approaches are in the direction of mining

within each batch, but the batch itself remains randomly selected. Loss functions like

LiftedStructure or MultiSimilarity [14] that make use of the whole batch during training

cannot really take advantage of it. For loss functions of this kind, it would be useful to

mine within the whole dataset in order to construct the batch using the most informative

images. Harwood et al. [27] propose doing a nearest neighbor search before each epoch

in order to mine semi-hard samples from the dataset, but they make use of a generalized

Triplet that probably cannot be fully benefited from it.

The Neural Network itself is surely another challenge. Which Network with which embed-

ding size is the most suitable? Having a ResNet50 [12] 512-dimensional embedding is for

sure richer in terms of information than having a GoogLeNet 64-dimensional embedding,

but is this extra information really needed? Chao-Yuan Wu et al. [26] make experiments

using the ResNet50 with an embedding size of 128 and compare their Margin loss with

other losses that are using other Networks and other embedding sizes. And this is some-

thing to be seen in a lot of other papers too. Are these comparisons fair? Fehervari et

al. [28] recently addressed this problem, but they mainly focused on making experiments

using former methods and did not achieve to create a real benchmark.

The last challenge to be mentioned is the setup of training. In almost all the Machine

Learning tasks the setup follows the pipeline of training, validation and testing. The data

are split in 3 different sets respectively and the significance of each is great. HyunOh Song

et al. [1] introduced a setup without a validation set and this makes the hyperparameter

tuning probably more difficult, unstable and not a good tactic. How sure can we be sure

that we have found the optimal hyperparameters, when we fine-tune using the test set?

How sure can we be that our model is able to generalize, when the selection of it is done

with direct feedback from the test set? And how correct can this be? This is something

that should also be investigated.

1.3 Contributions

Having outlined some of the most important challenges of Deep Metric Learning, the con-

tributions, which are greatly related with the challenges, are presented below:

• We conduct extensive experiments using themost commonCNNarchitectures (GoogLeNet,

BNInception, ResNet50) on themost common used datasets (CUB200-2011, CARS196,

SOP) using 10 different loss functions (Contrastive, Triplet, LiftedStructure, NPair,

ProxyNCA, ArcFace, Margin, MultiSimilarity, SoftTriple, ProxyAnchor) and 4 differ-

B. Psomas 18

Metric Learning: A Deep Dive

ent embedding sizes (64, 128, 512, 1024). This work can be considered as a bench-

mark for fair comparisons and a great ablation study.

• We propose a new setup for training, in which a fixed validation set is used. We

make experiments using this and a 10-fold cross validation and draw conclusions

about the performance vs. computational complexity trade-off.

• We design, implement and experiment with a new loss function that is proxy-based,

but it is in between the rationale of classification and embedding losses. It treats

proxies of different class as negatives that should be pushed away and samples of

the same class as positives that should be pulled by the corresponding proxy.

1.4 Structure

In this work we attempt tomake extensive experiments under equal terms in order to create

a benchmark that will help us gaining insight into Deep Metric Learning. The chapters of

this work are organized as follows:

• Chapter 1 makes an introduction and definition of Metric Learning while also pre-

senting the challenges, related work and contributions of this work.

• Chapter 2 presents the story of Metric Learning in detail, starting from former meth-

ods and ending with Deep Metric Learning. It highlights the most important loss

functions.

• Chapter 3 presents details about the experimental setup, as also some issues that

made us conduct the experiments.

• Chapter 4 presents the experimental results along with a discussion about the find-

ings

• Chapter 5 proposes a new setup using a fixed validation set, while also presenting

a cross validation alternative

• Chapter 6 proposes a new proxy-based loss function that performs on a par with

the state-of-the-art

• Chapter 7 outlines the findings and future research directions.

B. Psomas 19

Metric Learning: A Deep Dive

2. BACKGROUND

Metric Learning aims to learn a distance metric or a similarity function that reduces the

distance between similar samples and increases the distance between dissimilar ones. In

this chapter, we will study different approaches of Metric Learning that existed over the

years starting from the former ones and ending with the state-of-the-art. The remarkable

success of Convolutional Neural Networks that brought changes to almost all the domains

of Machine Learning and Computer Vision could not but have affected Metric Learning too.

In the first section we will have a quick look on the approaches before Deep Learning, in

the second one we will study the essentials of Neural Networks that will finally lead us to

Deep Metric Learning of the third section.

2.1 Metric Learning

Let us start by formulating the Metric Learning problem. Given an input distance function

d(x, y) or a similarity function s(x, y) between two objects x and y, along with supervised

information regarding the ideal distance or similarity, construct a new distance function

d′(x, y) or a similarity function s′(x, y) which is “better” than the original one. This new

distance function can be of the form d(f(x), f(y)), which means that we learn a mapping

f over data but utilize the original distance or similarity function. In this Chapter we will

have a look on this formulation of the problem, where the point is to learn this mapping f
having some kind of supervision, as this formulation is really close to the formulation of

the Deep Learning era that will be discussed afterwards.

The mapping f can be either linear or nonlinear. In both cases, the input distance function

can be the Euclidean, i.e. d(x, y) = ‖x − y‖2. In the linear case we aim to learn a linear

mapping based on supervision, which can be encoded as a matrixG such that the learned

distance is ‖Gx−Gy‖2, while in the nonlinear case the distance function has the general

form of ‖f(x)− f(y)‖2. This can be done by extending linear methods via kernelazation.

The basic idea is to learn a linear mapping in the feature space of some potentially non-

linear function φ; that is; the distance function may be written d(x, y) = ‖Gφ(x)−Gφ(y)‖2,
where φmay be a nonlinear function. Assuming that the kernel function (x, y) = φ(x)Tφ(y)
can be computed, it turns out that we may efficiently learn G in the input space using ex-

tensions of linear techniques. A quick overview of linear and nonlinear Metric Learning is

presented below.

2.1.1 Linear Metric Learning

Let us suppose that we have a set of data points x1, ..., xn. LetX = [x1, ..., xn] be thematrix

of all the data points. We will use the Euclidean distance ‖xi−xj‖2 =
√

(xi − xj)T (xi − xj)
as the canonical distance measure and the inner product xT

i xj as the canonical inner

product. The Mahalanobis distance is defined as dM (xi, xj) =
√

(xi − xj)TΣ−1(xi − xj)
where Σ is the covariance matrix of the data. The Mahalanobis distance is closely related

to data whitening, as it can be easily proven that the Euclidean distance between two

whitened variables is simply the Mahalanobis distance. A whitening transformation is a

decorrelation transformation that transforms a set of random variables into a set of new

random variables with identity covariance (uncorrelated with unit variances). This is very

useful in cases where there are outliers in data that would dominate the computation of the

B. Psomas 20

Metric Learning: A Deep Dive

Euclidean distance. Using Mahalanobis would avoid this, as the data would be implicitly

whitened.

In the Metric Learning literature, the term ”Mahalanobis distance” is often used to denote

the distance function of the form: dA(x, y) = (x − y)TA(x − y), where A is some positive

semi-definite matrix. We can view this distance simply as applying a linear transforma-

tion of the input data: since A is positive semi-definite, we factorize it as A = GTG and

simple algebraic manipulations show that dA(x, y) = ‖Gx − Gy‖22 and thus this general-

ized notion of Mahalanobis distance exactly captures the idea of learning a global linear

transformation.

Having said this, we will now form a generalized model for linear Metric Learning, which

is proposed by [2] and captures most of the techniques. Through this we will gain a good

insight of how most of the linear Metric Learning approaches were working before Deep

Learning, without having to delve deep into them. Recall that the aim of Metric Learning

is to learn a new distance function using supervision that is a function of the learned dis-

tance. Given the squared Euclidean as the original distance, the learned distance would

be again the squared Euclidean distance after applying the transformation G globally, as

already mentioned. To encode the supervision , we will assume that we are given a col-

lection ofm loss functions that we will denote as c1, ..., cm and we will make the assumption

that each loss function depends on the data only through the mapped inner product matrix

XTGTGX = XTAX. For example, one loss function might encode the squared loss be-

tween the target distance between xi and xj and the squared Euclidean distance between

xi and xj using the Mahalanobis distance with A. This forms the second part of Eq. 2.1,

while the first part is a regularizer on the model, which will be a function of A.

L(A) = r(A) + λ
m∑
i=1

ci(X
TAX). (2.1)

The λ term behaves as a trade-off between the regularizer and the loss. The goal is to

find the minimum of L(A) over the domain A, which we will denote as dom(A). Sometimes

this model will be specified as a constrained optimization problem. The two most popular

forms of constraints are the (a) similarity/dissimilarity constraints, and (b) relative distance

constraints. For similarity constraints, we are given a set of pairs (i, j) ∈ S of objects that

should be similar, and a set of pairs (i, j) ∈ D of objects that should be dissimilar and we

want to ensure that:

dA(xi, xj) ≤ u, (i, j) ∈ S (2.2)

dA(xi, xj) ≥ l, (i, j) ∈ D (2.3)

We can encode these as loss functions in various ways; for example, the Hinge loss would

encode the desired constraints as:

c(XTAY) = max(0, dA(xi, xj)− u), (i, j) ∈ S (2.4)

c(XTAY) = max(0, l − dA(xi, xj)), (i, j) ∈ D (2.5)

Note that the above losses rely on appropriate choice of u and l. The other popular form

of constraints is utilizing relative distances. These are specified via a triple (i, j, k) ∈ R

B. Psomas 21

Metric Learning: A Deep Dive

which denotes that xi should have a smaller distance to xj than xj to xk:

dA(xi, xj) < dA(xi, xk) (2.6)

Note that, unlike similarity and dissimilarity constraints, the relative distances do not re-

quire one to specify any parameters. However, typically one adds a margin to the above

constraint:

dA(xi, xj) < dA(xi, xk)−m (2.7)

These can be encoded into loss functions analogously to the similarity and dissimilarity

constraints. Regarding regularizers, some of the most popular are:

r(A) =
1

2
‖A‖2F (2.8)

r(A) = tr(AC) (2.9)

The regularizer of Eq. 2.8 is based on the squared Frobenius norm and can be found in

various models, as the Schultz and Joachims [29], the Kwok and Tsang [30], the Pseudo-

Metric Online Learning Algorithm (POLA) [31], etc. The regularizer of Eq. 2.9 is a linear

function with respect to the Mahalanobis matrix A and can be found in models like the

Large-Margin Nearest Neighbors (LMNN) [32], Neighborhood Component Analysis (NCA)

[33], Maximally Collapsing Metric Learning (MCML) [34], etc. Most of the times C =∑
xi,xj∈S(xi − xj)(xi − xj)

T , while C = I, where I is the identity matrix, can also be seen.

2.1.2 Nonlinear Metric Learning

Before discussing the nonlinear Metric Learning approaches, it is considered important to

mention the naive XOR example (Fig. 2), in order to demonstrate the limitations of linear

methods and motivate the need of nonlinear metrics.

Figure 2: Suppose that we would like red and green points to belong in the same class, while black

and blue to belong in another one. There is no line or no linear transformation in this plane that

could successfully satisfy these constraints. Note that a linear transformation is equivalent to

stretching the axes and rotating the data. [2].

B. Psomas 22

Metric Learning: A Deep Dive

The most common way to go from linear to nonlinear methods is via kernelazation. Recall

the linear model discussed previously:

min
A>0

r(A) + λ
m∑
i=1

ci(X
TAX), (2.10)

where r is the regularizer and ci are the loss functions. The algorithms discussed for op-

timizing this model generally require updating A iteratively, using the data points from X
directly. But we can also design algorithms that do not access the data directly; instead,

they only require access to inner products xT
i xj between data points. Then we can gen-

eralize the resulting algorithms to utilize kernel functions instead of inner products. Such

kernel functions represent inner products in a high or infinite dimensional space, and ap-

plying such algorithms will correspond to learning nonlinear transformations in the input

space.

More specifically, a kernel function can be written as κ(x, y) = φ(x)Tφ(y) for some non-

linear function φ. Applying linear metric learning algorithms with this inner product cor-

responds to learning a linear transformation in the space of φ function (i.e., the feature

space). Therefore, we can write these methods as learning distances of the form ‖Gφ(x)−
Gφ(y)‖2, which is a nonlinear transformation over the input data in general. In most cases,

using kernelization, algorithms for the linear case can easily be generated to algorithms

for the nonlinear case.

Let us have a quick look on an example of kernelization. Consider the task of Euclidean

nearest neighbor classification. For each query xq, we compute the distance to each point

x in the database via ‖xq − x‖2 and then classify xq based on the labels of the nearest

neighbors. Using the fact that ‖x − y‖22 = (x − y)T (x − y), we can write ‖xq − x‖2 =√
xT
q xq − 2xTxq + xTx. Replacing the inner products with a kernel function κ(xq, x) =

φ(xq)
Tφ(x), the distance function is expressed as

√
κ(xq, xq)− 2κ(xq, x) + κ(x, x). The

resulting distance is a “kernelized” distance between the query and a datapoint.

How do we choose the kernel function, though? In order for a kernel function to be valid,

it must represent an inner product between data points in a Hilbert space induced by the

mapping φ. One way to express this requirement is that any matrix K of kernel function

values defined over a set of datapoints x1, ..., xn must always be positive semi-definite. In

practise, one chooses a kernel from a set of known kernel functions. Two popular choices

are the polynomial kernel and the Gaussian kernel. The polynomial kernel is defined as

κ(x, y) = (xT y + c)d for positive reals c and d, while the Gaussian kernel is defined as

κ(x, y) = e
−‖x−y‖22

2σ2 .

2.2 The story of Neural Networks in fast forward

When telling a story, it is always better to start from the beginning. This beginning can go

back to 17th century, when the chain rule that underlies the back-propagation algorithm

of Neural Networks was invented [35], [36], or can go back to 19th century, when the

gradient descent was invented as an algorithm that can iteratively approximate the solution

of optimization problems. Both inventions proved to be essential for Neural Networks and

are highly used until now, but probably the most accurate beginning of this story is in 1962
and Frank Rosenblatt’s book “Principles of Neurodynamics” [37], in which the Perceptron

B. Psomas 23

Metric Learning: A Deep Dive

is for the first time introduced.

2.2.1 Perceptron

While the Perceptron originally refers to a wide range of Network architectures, learning

algorithms and hardware implementations, and can be seen as a great introduction to

Neural Networks, it was due to Marvin Minsky that Perceptron was considered as a binary

linear classifier and an algorithm.

Marvin Minsky with Seymour Papert wrote the book “Perceptrons” [38] in 1972 criticising

the work of Rosenblatt by highly focusing to the flaws of linear models, such as their

inability to learn the XOR function. While the Perceptron as a single layer Network with

only one node is only capable of learning linearly separable patterns (and thus truly cannot

learn the XOR function), the same does not hold for a Multilayer Perceptron. This book

somehow misguided the research community and is probably the center of controversy in

the history of AI, as it is often claimed that it had a great impact in discouraging research

on Neural Networks in 1970s and contributing to the so-called “AI Winter”.

But let us formulate mathematically the Perceptron as an algorithm. Given an input x ∈ Rd,

the Perceptron is a generalized linear model

y = f(x;w) = sgn(w>x) (2.11)

where w ∈ Rd is a weight vector to be learned, and

sgn(x) =

{
+1, x ≥ 0

−1, x < 0
(2.12)

is the step function. An input x with output y = f(x;w) = sgn(w>x) is classified to class

C1 if y = 1 and to C2 if y = −1. Given a training sample x ∈ Rd and a target variable

s ∈ {−1, 1}, x is correctly classified if the output y = f(x;w) equals s, i.e. sy > 0.

Figure 3: The Perceptron architecture. Apart from the x1, ..., xn, there is also a x0 = 1 constant term,

which is added, so that the weight w0 plays the role of bias and thus the model takes the

generalized form of y = f(x;w, b) = sgn(w>x+ b) [3].

In Fig. 3 training samples x1, ..., xn are given to a Perceptron, along with target variables

s1, ..., sn ∈ {−1, 1}. Starting from an initial weight vector w(0), the algorithm will learn

by iteratively choosing a random sample xi that is misclassified and updating the weight

vector following the rulew(t+1) ←− w(t)+εsixi, where ε is a learning rate. This will finally lead
to a weight vector (decision boundary) that correctly classifies all data points, as shown in

Fig. 4.

B. Psomas 24

Metric Learning: A Deep Dive

Figure 4: The Perceptron algorithm correctly classifies all data points. The decision boundary w4

is the weight vector occurred after 4 iterations of the algorithm [4].

2.2.2 Multilayer Perceptrons

While the Perceptron, as already mentioned, can be seen as a generalized linear model,

Multilayer Perceptrons or Feedforward Networks can be seen as efficient nonlinear func-

tion approximators. Let us denote the function to be approximated as f ∗ and then take

as an example a classifier y = f ∗(x) which maps an input x to a category y, as it was

happening in Perceptron. A Multilayer Perceptron defines a mapping y = f(x; θ) and
learns the value of the parameters θ that result in the best function approximation. The

function f is typically composed of many different functions and the model is associated

with a directed acyclic graph describing how the functions are computed together. This

can also be called the architecture of the Network. Each application of a different function

can be seen as a new representation of the input. A naive example would be a function

f(x) = f (2)(f (1)(x)), in which functions f (1) and f (2) are connected in chain and represent

respectively the first and the second layer of this Multilayer Perceptron. The overall length

of this chain gives the depth of the model. The first layer is called the input layer, while the

final layer is called the output layer. The intermediate layers are called hidden, and that

is because of the fact that the training data does not show the desired output for each of

these layers, but only for the output layer. This general architecture can be seen in Fig.

5.

Figure 5: The general architecture of a Multilayer Perceptron. The hidden layers can be more than

one and thus changing the overall depth of the model. Each of the nodes is a Perceptron, exactly

as described in Fig. 3 [5].

B. Psomas 25

Metric Learning: A Deep Dive

It is probably because of this terminology using the words ”layer” and ”depth” that the

name ”Deep Learning” arose. The objective of training is to drive f(x) to match f ∗(x).
The training data provides us with noisy, approximate examples of f ∗(x) evaluated at

different training points. Each example x is accompanied by a label y ≈ f ∗(x). The

training examples specify directly what the output layer must do at each point x, but do
not specify what the hidden layers should do. Instead, the learning algorithm must decide

decide how to use these layers to best implement an approximation of f ∗.

When dealing with MLPs, one will probably have to make some design decisions con-

cerning their width and depth. The width has to do with how many neurons there will be

in each hidden layer, while the depth has to do with how many hidden layers there will be

in the Network. Apart from that, in each neuron there is an activation function that intro-

duces the concept of nonlinearity in the Network and that should also be chosen wisely.

Examples of activation functions are: the step function that was used in Perceptron, the

sigmoid σ(x) = 1
1+exp−x , the hyperbolic tangent tahh(x) = expx − exp−x

expx + exp−x = 2σ(x) − 1, the

rectified linear unit relu(x) = [x]+ = max(0, x), etc. The last design decisions have to do

with the optimizer, the scheduler, the loss function, the form of the output units, etc. The

whole training process could not be done without the back-propagation algorithm and its

modern generalizations, as this algorithm is used to efficiently compute the gradients and

back-propagate them, so that all the weights of the Network are updated. Apart from the

loss functions, this work will not explicitly present any other design options, as they are

not crucial for its scope. The subsections that follow introduce some of the most popular

Network architectures that share something in common: convolutions.

2.2.3 LeNet

Before delving into the LeNet [6] architecture, we will firstly introduce the idea of convolu-

tion. In its most general form convolution is an operation on two functions of a real-valued

argument. Let us make an example to motivate the definition of convolution. Suppose we

are tracking a car using a sensor. The sensor provides a single output x(t), which is the

position of the car at time t. Both x and t are real-valued, as we are getting different read-

ings from the sensor at any instant time. Supposing that the laser is noisy and we want

to obtain less noisy estimates of car’s position, we could try to average together several

measurements. More recent measurements are probably more relevant, so we would

also like to introduce weights to this average. We can do this with a weighted function

w(a), where a is the age of measurement. Eq. 2.13 defines a smoothed estimate of the

position of the car and is called convolution.

s(t) =

∫
x(a)w(t− a)da (2.13)

Convolution is typically denoted with an asterisk and is used in discretized data, so Eq.

2.14 can be written as:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (2.14)

While LeNet is not the first Convolutional Neural Network to be introduced (Fukushima

in 1980 introduced neocognitron [39], a biologically-inspired Network that uses convolu-

tions), is the first one to combine different ideas in a learning scheme that was working, and

B. Psomas 26

Metric Learning: A Deep Dive

was implemented for a Computer Vision task as the document recognition. Convolutions

leverage three important ideas that can improve the performance of a Network: sparse

interactions, parameter sharing and equivariant representations. In order to understand

these, we first have to mention that for Computer Vision tasks (or in general tasks that deal

with images) the first argument x of Eq. 2.14 is the input image, the second argument w is

the kernel and the output is the feature map. Convolution can be seen as the procedure

of sliding a kernel (or equivalently a filter) over an image. Sliding different kernels pro-

duces different feature maps that contain different type of information and exploit different

underlying correlations/relations among the pixels.

Sparse connections are accomplished by making the kernel smaller than the input image.

For example, when processing an image, the input might have hundreds of millions of

pixels, but we can detect small, meaningful features such as edges that occupy only tens or

hundreds of pixels. This means that we store fewer parameters, as also that computing the

output requires fewer operations. Parameter sharing refers to using the same parameter

for more than one function in a model. In MLPs that we saw before, each element of the

weight matrix is used exactly once when computing the output of a layer. It is multiplied by

one element of the input and then never revisited. In the convolutional part of CNNs, each

member of the kernel is used at every position of the input. The parameter sharing used

by the convolution operation means that rather than learning a separate set of parameter

for every location, we learn the same one. As we will later see, CNNs are using both

convolutional layers and MLPs (that in this concept are commonly named fully connected

layers). Finally, the particular form of parameter sharing in convolution causes the layer

to have the property of equivariance to translation. This means that if the input changes,

the output changes in the same way.

Figure 6: The LeNet architecture [6].

Let us have a look on the LeNet architecture now in Fig. 6. LeNet has 2 convolutional and

3 fully-connected layers. The convolutional layer consists of three stages. In the first one,

the layer performs several convolutions in parallel to produce a set of linear activations.

In the second stage, each linear activation is run through a nonlinear activation function,

such as the rectified linear unit that we saw before. In the third stage, a pooling function

that replaces the output at a certain location with a summary statistic of the nearby outputs

is used.

2.2.4 AlexNet

AlexNet [9] is the first deep Convolutional Neural Network. It achieved great performance

(16.5% top-5 error) on ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of

2012, outperforming all its competitors by more than 10% as can be seen in Fig. 7.

B. Psomas 27

Metric Learning: A Deep Dive

Figure 7: ILSVRC top-5 error% per year in classification task [7].

ImageNet is a dataset of over 15 millions labeled high-resolution images of around 22000

classes. ILSVRC uses a subset of ImageNet of 1.2 million training images, 50 thousands

validation images and 150 thousands test images belonging to 1000 classes. Example

images of ILSVRC are shown in Fig. 8.

Figure 8: Example images of ILSVRC [8].

AlexNet has 8 layers; 5 convolutional and 3 fully connected. It is the first Network to use

the rectified linear unit as an activation function, as also the first to be implemented on two

GPUs running in parallel. Its architecture can be seen in Fig. 9.

2.2.5 GoogLeNet (Inception v1)

Two years after AlexNet, GoogLeNet [10] was the winner of ILSVRC 2014 scoring 6.7%

top-5 error. GoogLeNet motivated the need of going deeper, e.g. using more layers and

thus it increased the depth to 22 layers. It achieved that while having 25 times less param-

eters than AlexNet because of the inception module that it used. In its naive version of Fig.

10a, the inception module is simply a feature-wise concatenation of three different convo-

lutions and one max pooling. But this would be really expensive in terms of computation

B. Psomas 28

Metric Learning: A Deep Dive

Figure 9: The AlexNet architecture [9].

(a) The naive Inception module. (b) The Inception module with dimensionality reduction.

Figure 10: The Inception modules [10].

and would keep increasing the dimension. That is why 1 x 1 kernels were used as bot-

tlenecks for dimensionality reduction. The inception module with dimensionality reduction

can be seen in Fig. 10b.

2.2.6 BNInception (Inception v2)

The ILSVRC of 2015 was intense. Microsoft proposed PReLU-Net [40] which had an error

rate of 4.94% that surpasses the human error rate of 5.1%, while few days later Google

proposed a second version of the Inception (BNInception) [11] that was utilizing the batch

normalization transform previously introduced from Ioffe et al. [41]. BNInception scored a

top-5 error rate of 4.8%.

What exactly is batch normalization though and why do we need it? During training we

estimate the mean µ and variance σ2 of the batch as shown in Fig. 11. The input is

then normalized by subtracting the mean µ and dividing it by the standard deviation σ (the

epsilon ε is used in order to prevent denominator for being zero). The parameters γ and β
are used for scale and shift in order to have a better shape and position after normalization.

During testing the mean and the variance are calculated using the population. The batch

normalization transform can be added to any Network to manipulate any set of activation

functions. Ioffe et al. [41] propose that it enables higher learning rates, it prevents the

training from getting stuck in poor local minima, it makes training more resilient to the

parameter scale and regularizes the model.

BNInception was proposed in [11] along with the next version of it, Inception v3. BNIn-

ception also adopts another interesting idea, which is the factorization of 5 × 5 and 7 × 7
convolutions to two and three 3 × 3 convolutions respectively. This setup reduces the

B. Psomas 29

Metric Learning: A Deep Dive

Figure 11: Batch Normalization applied to activation x over a batch [11].

parameter count by sharing the weight between adjacent tiles.

2.2.7 ResNet

The last CNN to be presented is ResNet [12] or even better ResNets, as it is a family of

Networks. Before ResNets, the trend was to stackmore andmore layers going deeper and

deeper, as we saw in the examples of Alexnet, GoogLeNet and BNInception. However,

increasing Network depth does not work by simply stacking layers together, as there is the

notorious problem of vanishing gradients. As the gradient is back-propagated from the last

layers to the earlier ones, repeated multiplications maymake the gradient infinitively small.

This problem may not be visible in a 20-layer Network, but it is in an 56-layer Network as

Fig. 12 shows. As a result, as the Network goes deeper, its performance gets saturated

or even starts degrading rapidly.

Figure 12: Training and test error of a 20-layer and 56-layer Network. Increasing Network depth

leads to worse performance [12].

The core idea or ResNet is introducing the so called “identity shortcut connection” that

skips one or more layers, as shown in Fig. 13.

Kaiming He et al. argue that stacking layers should not degrade the Network performance,

because we could simply stack identity mappings (layers that do not do anything) upon

the current Network, and the resulting architecture would perform the same. This indi-

cates that the deeper model should not produce a training error higher than its shallower

B. Psomas 30

Metric Learning: A Deep Dive

Figure 13: The residual block [12].

counterparts. They hypothesize that letting the stacked layers fit a residual mapping is

easier than letting them directly fit the desired underlying mapping. And the residual block

above explicitly allows it to do precisely that. An ensemble of ResNets was the winner of

ILSVRC 2015 achieving 3.57% top-5 error.

2.3 Deep Metric Learning

Following the outstanding performance of CNNs in other tasks, such as classification [9]

and detection [10], Song et al. [1] introduce a new setup for Metric Learning. Previous

works from Bell et al. [42] and Schroff et al. [13] had already used Neural Networks to

learn the nonlinear mapping from the input image to a lower dimensional and semantically

meaningful embedding, but it was Song et al. that introduced the Deep Metric Learning

setup that became the standard till this day.

But which are the main contributions of this paper? First of all, a new loss function is

introduced that can take full advantage of every sample in the batch. Bell et al. [42] use

a Siamese Network [22, 43] trained on pairs of images using Contrastive loss function

[22, 23], while Schroff et al. [13] use a custom CNN named FaceNet trained on triplets

using the Triplet loss function [24]. These approaches sample random pairs or triplets in

order to construct the batch and compute the loss on these individuals pairs or triplets,

which means that some samples within the batch are never used. Apart from that, Song

et al. [1] collect a new dataset (Stanford Online Products) that together with CUB200-

2011 [19] and CARS196 [20] are the datasets that are being still used in Deep Metric

Learning. They also introduce a splitting setup, in which each dataset is cut in the middle

for training and testing respectively. Half of the classes are used for training and the other

half for testing. Finally, they propose an evaluation protocol using the F1 and NMI metrics

for clustering quality and the Recall@k scores for retrieval quality.

In this Section we will discuss about the evolution of loss functions, starting from Con-

trastive and ending with state-of-the-art ProxyAnchor [18], as well as about the sampling

and mining methods that go with some of them.

Let us first have a quick look at the Deep Metric Learning setup. The training set of the

dataset is cut into batches and fed into a CNN. The CNN learns the nonlinear mapping

from each input image to a lower dimensional and semantically meaningful embedding,

as shown in Fig. 14. This is done by minimizing a loss function that takes as input the

embeddings and iteratively tries to push embeddings that correspond to images of the

same class together and pull embeddings that correspond to images of different classes

apart.

B. Psomas 31

Metric Learning: A Deep Dive

Figure 14: The general Deep Metric Learning setup [13].

Loss functions can be split into two categories: embedding losses and classification losses.

Embedding losses usually work using pairs, triplets or tuples, while classification losses

are based on the inclusion of a weight matrix, where each column correspond to a partic-

ular class. Of course, this separation corresponds to the implementation of the respective

paper of each loss function. For example, we consider MultiSimilarity as an embedding

loss function because of the fact that authors introduced it in this context. However, Mul-

tiSimilarity can be considered as a classification loss once it uses proxies. Actually, Prox-

yAnchor is using MultiSimilarity’s equation combined with proxies and is considered a

classification loss.

Typical examples of embedding losses are: Contrastive [22, 23], Triplet [13, 24], Lifted-

Structure [1], MultiSimilarity [14] etc, while typical examples of classification losses are:

ArcFace [16], ProxyNCA [15], SoftTriple [17], etc.

2.3.1 Embedding Loss Functions

Let us formulate mathematically the aforementioned in order to take an exhaustive look

at the most commonly used loss functions. Let xi ∈ Rd be a real-value instance vector,

X ∈ Rm×d the corresponding instance matrix and y ∈ {1, 2, ..., C}m a label vector for the

m training samples respectively. Then an input xi is projected onto a unit sphere in a

l-dimensional space by f(·; θ) : Rd → Sl, where f is a Neural Network parameterized by

θ. We define the similarity of two samples as Sij = 〈f(xi; θ), f(xj ; θ)〉, where 〈·, ·〉 denotes
the dot product, resulting in an m × m similarity matrix S whose element at (i, j) is Sij .

We also mention that [·]+ indicates the Hinge function max(0, ·). Having said these, let us
present some common embedding loss functions.

2.3.1.1 Contrastive

Hadsell et al. [23] proposed a Siamese Network, where Contrastive loss function was

designed to encourage positive pairs to be as close as possible, and negative pairs to be

apart from each other over a given margin λ:

LContrastive = (1− Iij)[Sij − λ]+ − IijSij (2.15)

where Iij = 1 indicates a positive pair, while Iij = 0 indicates a negative pair.

The Siamese Network was firstly introduced by Bromley et al. in [43], but without using

Contrastive as a loss function. That was done later in [22, 23]. Following the formulation

and notation previously mentioned, the Siamese architecture can be seen in Fig. 15.

Let x1, x2 be a pair of input vectors shown to the system. Let Iij be a binary label for the

pair, as mentioned before. Let θ be the shared parameter vector that is subject to learning,

B. Psomas 32

Metric Learning: A Deep Dive

Figure 15: The Siamese Architecture.

and let f(xi; θ) and f(xj ; θ) be two points in the l-dimensional space that are generated

by mapping x1 and x2. In [22], the system can be viewed as a scalar “energy function”

E(x1, x2) that measures the compatibility between x1, x2 using the Mahalanobis distance,

while in [23] the Euclidean distance is used. Here, following our formulation, we use the

cosine similarity Sij . The parameter θ can updated using an optimizer like the Stochastic

Gradient Descent (SGD) [44] or Adam [45,46]. The gradients can be computed by back-

propagation through the loss and the two instances of f(·; θ). The total gradient is the sum
of the contributions from the two instances.

2.3.1.2 Triplet

In [13,24,47], Triplet loss was proposed to learn a deep embedding that ensures that an

input vector xa
i , which is called an anchor, is more similar to all other vectors xp

i of the

same class (positives) than it is to any other vector xn
i of different class (negatives).

Figure 16: Triplet loss function makes the distance between an anchor and a positive smaller than

the distance between this anchor and a negative [13].

Thus, we want:

Sap > San + λ, ∀(xa
i , x

p
i , x

n
i) ∈ T (2.16)

where Sap and San denote the similarity of a positive pair xp
i and a negative pair x

n
i with an

anchor xa
i respectively. λ is a margin that is enforced between positives and negatives,

and T is the set of all possible triplets in the training set. The corresponding loss is:

L = [San − Sap + λ]+ (2.17)

B. Psomas 33

Metric Learning: A Deep Dive

Generating all the possible triplets would result in many triplets that easily fulfil the con-

straint of Eq. 2.16. These triplets would not contribute to training, as their gradients would

be really small or even zero, and thus they would result in slower convergence. Choosing

triplets that violate the triplet constraint of Eq. 2.16 is crucial for improving the model.

How exactly do we select these triplets, though? Given an anchor xa
i we would want to

select a positive xp
i that is called a hard positive, such that:

arg min
xp
i

〈f(xa
i), f(x

p
i)〉 (2.18)

and similarly a hard negative xn
i , such that:

arg max
xn
i

〈f(xa
i), f(x

n
i)〉 (2.19)

This is called hard mining and there are two ways to generate these hard triplets. The first

way is to generate them offline every n steps, using the most recent Network checkpoint.

The second way is to generate them online by selecting them from within the batch. Se-

lecting the hardest samples can lead to bad local minima early on during training or even

a collapsed model, i.e. all images have the same embedding. In order to mitigate this,

Scroff et al. propose a semi-hard negative mining such that:

nap = arg max
n:Sap>San

San, (2.20)

where nap is the mined semi-hard negative. This yields a violating sample that is fairly

hard but not too hard.

2.3.1.3 LiftedStructure

Song et al. propose a loss function that takes full advantage of each sample within the

batch by “lifting the vector of pairwise distances to the matrix of pairwise distances”. This

is probably the greatest advantage of this loss function and is explicitly explained in Fig.

17.

Following our notation and formulation, the LiftedStructure loss function can be written as:

LLiftedStructure =
m∑
i=1

[
log

∑
yk=yi

eλ−Sik + log
∑
yk 6=yi

eSik

]
+

(2.21)

where λ is a fixed margin. Taking full advantage of the training batch might have a draw-

back: randomly sampled negative pairs might carry limited information. In order to fight

this, Song et al. mine a few positive pairs at random and then actively add their difficult

neighbors to the batch. This is further explained in Fig. 18.

2.3.1.4 NPair

Highlighting the drawback of triplet embedding that was illustrated in Fig. 17, Sohn [48]

proposes a loss function that recruits multiple negatives for each anchor. He points out

B. Psomas 34

Metric Learning: A Deep Dive

Figure 17: Illustration of a training batch with six samples x1, ..., x6. Red edges represent positives,

while blue edges represent negatives. Contrastive loss function works using separate pairs, thus

x1 and x2 represent a positive pair, x3 and x4 represent a negative pair, etc. Triplet loss function

works using separate triplets, thus x2 represents an anchor that has a positive x1 and a negative

x3, etc. In general, a sample xi of the training batch cannot be used more than once when

computing both the Contrastive and Triplet loss function. In contrast, LiftedStructure takes into

account all pair wise samples within the batch, thus x1 and x2 represent a positive pair, while at the

same time x1 and x3 represent a negative pair [1].

Figure 18: In this illustration with 6 examples, x3 and x4 represent a randomly sampled positive pair

that independently compares against all other negative pairs in order to mine the hardest one [1].

that during an update Triplet loss function compares one anchor with one negative while

ignoring negatives from other classes. As a consequence, the embedding vector for a

sample is only guaranteed to be far from the selected negative class but not necessarily

the others. The hope is that after looping over sufficiently many randomly sampled triplets,

the final similarity will be balanced correctly. Of course, a way to fight this is using hard

mining in order to select samples that violate the triplet constraint, but this can be proven

to be expensive. Sohn proposes NPair loss function, which compares an anchor with

multiple negatives in order to make sure that it is distinguishable from all of them at the

same time. Following our formulation and notation, NPair loss function can be written as:

LNPair =
1

m

m∑
i=1

log
(
1 +

∑
yk 6=yi,yj=yi

eSik−Sij

)
(2.22)

2.3.1.5 Margin

Margin loss function is introduced in [26] as a simple extension to Contrastive loss. Wu

et al. highlight the significance of selecting training examples and propose a distance

weighted sampling that selects informative and stable examples. They show that sampling

might play equal or even more import role than the loss function, as different sampling

B. Psomas 35

Metric Learning: A Deep Dive

strategies can lead to drastically different solutions for the same loss function. Margin

loss function is defined as:

LMargin = [λ+ Iij(β − Sij)]+, (2.23)

where β is a variable that determines the boundary between positive and negative pairs,

λ controls the margin of separation, Iij = 1 indicates a positive pair, while Iij = 0 indicates
a negative one.

2.3.1.6 MultiSimilarity

Wang et al. [14] motivate the design of their loss function by establishing a General Pair

Weighting (GPW) framework, which casts the sampling task into a unified view of pair

weighting through gradient analysis. They express various existing embedding loss func-

tions using the GPW, compare them and make significant assumptions about their differ-

ences and limitations. For example, by computing the partial derivative with respect to

Sij of Eq. 2.15 they find that all positive pairs and hard negative pairs with Sij > λ are

assigned with an equal weight. Equal weights are also assigned by Triplet loss function on

valid triplets that fulfil the triplet constraint 2.7. They observe that most of the embedding

loss functions weight the pairs based on either self cosine similarities or relative similarities

compared with other pairs.

They define three different types of similarity:

• S: Self-similarity, which is the similarity computed from the pair itself. Contrastive

loss function is based on this similarity.

• N: Negative relative similarity, which is computed by considering the relationship

from neighboring negative pairs. LiftedStructure loss function is based on this rela-

tive similarity.

• P: Positive relative similarity, which is computed by considering the relationship from

neighboring positive pairs. Triplet loss function is based on this relative similarity.

Figure 19: The three types of similarity [14].

Illustration of these three different types of similarity can be seen in Fig. 19. A negative

pair is taken as an example to explain them. Blue and yellow dots represent two different

classes. The anchor is always the same. Case 1 represents the S:Self-similarity. We

examine the similarity between the anchor and the three negatives. As these three neg-

atives come closer to the anchor, the cosine similarity is increasing. Case 2 represents

B. Psomas 36

Metric Learning: A Deep Dive

Table 1: The types of similarity each embedding loss function utilizes. MultiSimilarity takes

advantage of all the similarities.

Contrastive Triplet LiftedStructure NPair MultiSimilarity

S 3 7 7 7 3

N 7 7 3 3 3

P 7 3 7 7 3

the N:Negative relative similarity. We examine the similarity between the anchor and the

negative, but this time the negative itself is not moving. The samples with the same class

as the negative are moving and especially they are coming closer to the negative and

closer to each other. Thus the cosine similarities of the yellow class is increasing and thus

the relative similarity of the anchor with them is decreasing. Case 3 represents the oppo-

site of Case 2: Positive relative similarity. We examine again the similarity between the

anchor and the negative. The negative itself is not moving, but this time the positives of

the anchor are moving and especially they are coming closer to the anchor and closer to

each other. Thus the cosine similarity of the blue class is increasing and thus the relative

similarity of the anchor with the negatives is decreasing.

Having said these, Wang et al. analyze various existing embedding loss functions and

propose a new one called MultiSimilarity that takes advantage of all the three types of

similarity. Table 1 shows the types of similarity that each loss function we previously

presented utilize.

Following our formulation and notation, Eq. 2.24 shows MultiSimilarity loss:

LMultiSimilarity =
1

m

m∑
i=1

{
1

α
log

[
1 +

∑
k∈Pi

e−α(Sik−λ)
]
+

1

β
log

[
1 +

∑
k∈Ni

eβ(Sik−λ)
]}

, (2.24)

where α, β, λ are hyper-parameters, Pi and Ni are the sets of positives and negatives

respectively.

2.3.2 Classification Loss Functions

Asmentioned in 2.3, loss functions can be split into two categories: embedding losses and

classification losses. The ones presented so far belong to the first category. These losses

enjoy rich and fine-grained data-to-data relations, but constructing all the possible tuples

(pairs or triplets) may be expensive in terms of computational complexity and may lead to

slow convergence. In addition, a large amount of tuples are not informative and sometimes

even degrade the quality of the learned embedding space. To address this issue, most

embedding losses entail some kind of mining in order to select and utilize tuples that will

contribute the most to training. However, these techniques involve hyper-parameters that

have to be tuned carefully and may increase the risk of overfitting. Classification losses

resolve this complexity by adopting some kind of proxies, which enable faster and more

reliable convergence. A proxy is a learnable representative of a subset of training data.

In general, classification losses also demand less hyper-parameter fine-tuning, enable

faster convergence and are more robust against label noises and outliers. We will start

our journey on classification losses from the well-known SoftMax loss, as it has somehow

inspired all the other ones we are going to present.

B. Psomas 37

Metric Learning: A Deep Dive

2.3.2.1 SoftMax

Extending our notation for classification losses, let us denote the embedding of the i-th
sample as xi and the corresponding label as yi, then the conditional probability output by

a Neural Network can be estimated via SoftMax operator:

Pr(Y = yi|xi) =
ew

T
yi
xi∑C

j ew
T
j xi

, (2.25)

where {w1, ..., wC} ∈ Rd×C is the last fully connected layer, C denotes the number of

classes and d is the dimension of embeddings. The corresponding SoftMax loss is:

LSoftMax = − log ew
T
yi
xi∑

j e
wT

j xi
(2.26)

2.3.2.2 ProxyNCA

Movshovitz-Attias et al. motivate the use of proxies by highlighting the aforementioned

fact that when using embedding losses only a specific subset of all possible tuples is

taken into consideration when computing the loss. They propose to learn a small set of

data points (the set of proxies) that is way smaller than the whole training set, but still a

great approximation of it, so that Triplet loss over the proxies is a tight upper bound of the

original loss. To make it more clear, they propose to optimize Triplet loss function, but on

a different space of triplets consisting of an anchor data, a learnable positive proxy and

a learnable negative proxy. These proxies serve as a concise representation for each

semantic concept and by this way less triplets are formed, but ideally without losing any

semantic information. This is further explained in Fig. 20.

Figure 20: Red circles and green stars represent points of two different classes respectively. There

are 48 triplets that can be formed from these instances. Learning a proxy for each class results in

only 8 comparisons [15].

ProxyNCA loss assigns a proxy to each class, so that the number of proxies is the same

with the number of classes C. Given an input embedding vector xi ∈ Rd with label yi as
an anchor, the proxy of the same class of the input is regarded as positive and the other

proxies are regarded as negatives. Let wj ∈ Rd be a real-value weight (proxy) vector. The

loss can then be written as:

LProxyNCA =
m∑
i=1

− log ew
T
yi
xi∑

j 6=yi
ew

T
j xi

, (2.27)

B. Psomas 38

Metric Learning: A Deep Dive

The gradient of ProxyNCA loss with respect to wTx is given by:

∂L
∂(wTx)

=

−1, ifw = wyi

ew
Txi∑

j 6=yi

ew
T
j xi

, otherwise (2.28)

Eq. 2.28 shows that minimizing the loss encourages the anchor to be close to the positive

proxy, but far away from negative proxies. The anchor and the positive proxy are pulled

together by a constant force, while negative proxies that are closer to the anchor are more

strongly pushed away.

ProxyNCA enables faster convergence thanks to its low training complexity,O(mC), where
m is the number of training samples and C the number of classes. This complexity is way

lower than the O(m2) complexity of pair-based embedding losses or O(m3) complexity of

triplet-based ones, since C � m. Proxies are also more robust against outliers since they

are trained to represent groups of data. However, since the loss associates each anchor

only with proxies, it can not exploit fine-grained data-to-data relations.

2.3.2.3 ArcFace

Jiankang et al. [16] highlight that the traditional SoftMax loss of Eq. 2.26 does not explicitly

optimise the feature embedding to enforce higher similarity for intra-class samples and

diversity for inter-class samples, which results in a performance gap. They transform the

logit wT
j xi to ‖wj‖‖xi‖ cos θj , where θj is the angle between the weight wj and the feature

xi. They fix the individual weight ‖wj‖ = 1 by l2 normalization and the embedding feature

‖xi‖ by l2 normalization and rescale it to s. The normalization step on features and weights

makes the predictions only depend on the angle between the feature and the weight. The

learned embedding features are thus distributed on a hypersphere with a radius of s. They

also add an additive angular margin λ between xi and wyi to simultaneously enhance the

intra-class compactness and inter-class discrepancy. ArcFace loss can then formulated

as:

LArcFace =
m∑
i=1

− log es cos(θyi+λ)

es cos(θyi+λ) +
∑

j 6=yi e
s cos θj

(2.29)

ArcFace is proposed to improve the discriminative power of models and to stabilise the

training process. Its main idea is the fact that the dot product between the CNN feature

and the last fully connected layer is equal to the cosine distance after feature and weight

normalisation. This is further illustrated and explained in Fig. 21.

2.3.2.4 SoftTriple

Qian et al. [17] highlight the fact that optimizing using embedding losses that utilize only

an anchor and its neighbors (e.g. the active set of pairs or triplets) is sub-optimal, as the

samples in a batch may not be able to capture the overall neighborhood well, especially for

relatively large datasets. In contrast, SoftMax loss, which does not work this way, seems

to perform well on similar distance based tasks. This motivates them to investigate the

formulation of SoftMax loss. Their analysis demonstrates that SoftMax loss is equivalent

B. Psomas 39

Metric Learning: A Deep Dive

Figure 21: We first normalize the feature xi and weight w. Then we get the cos θj logit for each class

as wT
i xi. We calculate the arccos θyi

and get the angle between the feature xi and the ground truth

weight wyi
. wj can be seen as a proxy for each class. Then, we add an angular margin penalty λ on

the target angle θyi
. We calculate cos(θyi

+ λ) and multiply all logits by the feature scale s. The
logits finally go through the SoftMax and CrossEntropy. [16]

to a smooth Triplet loss: by providing a single proxy for each class in the last fully con-

nected layer, the triplet constraint derived by SoftMax loss can be defined on an anchor,

its corresponding proxy and a proxy from a different class. However, since a class in a

real-world data can consist of multiple local clusters, a single proxy might not be able to

capture the inherent structure of data and thus they propose the use of multiple proxies

as shown in Fig. 22.

Figure 22: In SoftMax loss, each class has only one corresponding proxy. Samples of the same

class will be collapsed to the same proxy no matter their possible variance (pose, color, viewpoint,

etc.). In contrast, SoftTriple keeps multiple proxies and thus is more capable of modeling the

intra-class variability, as these samples will be assigned to different proxies. [17]

SoftTriple loss can be written as:

LSoftTriple =
m∑
i=1

− log eα(w
T
yi
xi−λ)

eα(w
T
yi
xi−λ) +

∑
j 6=yi

eαw
T
j xi

, (2.30)

where α is a scaling factor and λ a fixed margin. Compared with other losses, the number

of triplets in SoftTriple is linear in the number of anchors and SoftTriple can learn the

embeddings without any sampling phase to be needed; just a mild increase in the size of

the last fully connected layer which corresponds to proxies. Apparently, SoftTriple has to

determine the number of proxies for each class. The strategy authors propose is to set a

sufficiently large number of proxies at the beginning and then to decrease it applying the

L2,1 norm.

B. Psomas 40

Metric Learning: A Deep Dive

2.3.2.5 ProxyAnchor

Kim et al. [18] underline the advantages and disadvantages of embedding and classifi-

cation losses and then propose a novel loss function called ProxyAnchor, which takes

good points of both of them while correcting their defects. Unlike the other proxy-based

losses, ProxyAnchor utilizes each proxy as an anchor and associates it with all samples

in a batch. Specifically, for each proxy, the loss aims to pull samples of the same class

closer and to push samples of other classes away. On the one hand, as a classification

loss, it demands no hyper-parameter for tuple sampling, it has fast convergence and is

more robust against noisy labels and outliers. On the other hand, it can take data-to-data

relations into account by associating all data in a batch with each proxy so that the gradi-

ents with respect to a sample are weighted by its relative proximity to the proxy affected

by other data in the batch. ProxyAnchor loss is formulated as:

LProxyAnchor =
1

|W+|
∑

w∈W+

log
(
1 +

∑
x∈X+

w

e−α(wTx−λ)

)
+

1

|W |
∑
w∈W

log
(
1 +

∑
x∈X−

w

eα(w
Tx+λ)

)
,

(2.31)

where λ > 0 is a margin, α > 0 is a scaling factor, W indicates the set of all proxies, W+

denotes the set of positive proxies in the batch. For each proxy w, a batch of embedding

vectors X is divided into two sets: X+
w , the set of positive embedding vectors of w and

X−
w , the set of negative embedding vectors of w. It is easy to notice that the loss aims to

pull w and its most dissimilar positive sample (i.e. hardest positive) closer, and to push

w and its most similar negative samples (i.e. hardest negative) apart. The formulation of

this loss looks a lot like Eq. 2.24. Indeed, due to the nature of Log-Sum-Exp, it pulls and

pushes embedding vectors with different degrees of strength that are determined by their

relative hardness. That’s something that makes this loss different from ProxyNCA, since

the gradient of Eq. 2.32 showed that the anchor and the positive proxy are pulled together

by a constant force when using ProxyNCA. Having said these, let us take a look at the

gradient of ProxyAnchor with respect to wTx:

∂L
∂(wTx)

=

1

|W+|
−α(wTx− λ)

1 +
∑

x′∈X+
w

e−α(wTx′−λ)
for x ∈ X+

w

1

|W |
α(wTx+ λ)

1 +
∑

x′∈X−
w

eα(wTx′+λ)
otherwise

(2.32)

This gradient is not only affected by the anchor, but also other embedding vectors in the

batch; the gradient becomes larger when the anchor is harder than the others. In this way,

ProxyAnchor loss enables embedding vectors in the batch to interact with each other and

reflects their relative hardness through the gradients, which helps enhance the quality of

the learned embedding space.

Finally, Kim et al. present a comparison between some popular loss functions, which is

considered important to be presented. This is illustrated in Fig. 23.

B. Psomas 41

Metric Learning: A Deep Dive

Figure 23: Nodes represent different samples in a batch. Different shapes represent different

classes, black nodes represent proxies, red nodes represent positives, blue nodes represent

negatives. The associations defined by the losses are expressed by edges and thicker edges get

larger gradients. (a) Triplet loss associates each anchor with a positive and a negative without

considering their hardness. (b) NPair loss and (c) LiftedStructure loss reflect hardness of data, but

do not utilize all data in the batch. (d) ProxyNCA loss cannot exploit data-to-data relations since it

associates each data point only with proxies. (e) ProxyAnchor handles entire data in the batch,

and associates them with each proxy with consideration of their relative hardness determined by

data-to-data relations. See the text for more details [18].

B. Psomas 42

Metric Learning: A Deep Dive

3. EXPERIMENTAL SETUP

This Chapter is dedicated to experimental setup and is organized as follows: we first

present the datasets, Networks and evaluation protocol used in Deep Metric Learning, we

underline the implementation details of our experiments and highlight the issues that led

us conducting them.

3.1 Datasets

Let us have a look at the Deep Metric Learning datasets: CUB200-2011, CARS196 and

SOP.

Figure 24: Random images of CUB200-2011 dataset [19].

The CUB200-2011 dataset [19] has 200 classes of birds with 11788 images. Following

the setup of [1], the 100 classes (5864 images) are used for training and the rest of classes

(5924 images) for testing. Example images of CUB200-2011 dataset can be seen in Fig.

24

Figure 25: Random images of CARS196 dataset [20].

The CARS196 dataset [20] has 196 classes of cars with 16185 images. Following the

setup of [1] again, the 96 classes (8054 images) are used for training, while the other 96

classes (8131 images) for testing. Example images of CARS196 dataset can be seen in

Fig. 25

The SOP dataset was collected from [1] and has 22634 classes of online products with

120053 images. This means that each product has approximately 5.3 images. Following

B. Psomas 43

Metric Learning: A Deep Dive

Figure 26: Random images of SOP dataset.

the same setup again, the 11318 classes (59551 images) are used for training, while the

other 11316 classes (60502 images) for testing. Example images of SOP dataset can be

seen in Fig. 26

3.2 Networks

Before delving into the details of our experiments, let us first have a look at the Networks

and the embedding sizes that are used in papers. In [22], Contrastive is using both a 2-

layer CNN and five 5-layer CNNs. The exact architecture of the first one is not mentioned,

so the embedding size is not known, while the embedding size of the second ones is set

to 50. A 2-layer CNN is also used in [23], but the embedding size is set to 2, so that the

Contrastive embeddings can be easily visualized. We implement the Triplet loss function

with semi-hard negative mining as introduced in [13], where a 22-layer CNN based on [49]

and [50] is used, along with some GoogLeNet variations. It is important to mention that

both Contrastive and Triplet papers do not report any results on the Deep Metric Learning

datasets (CUB200-2011, CARS196, SOP), as these papers were published before the

Deep Metric Learning problem formulation. Experiments using Contrastive and Triplet on

these datasets were later conducted by papers like [1].

LiftedStructure reports F1 and NMI scores using embedding sizes of 64, 128, 256, 512

and 1024, but reports Recall@k using only embedding size of 64. Once Recall@k is the

metric we use to evaluate our experiments, we only consider the last size. NPair uses

GoogLeNet with a 64-dimensional embedding for CUB200-2011 and CARS196 experi-

ments and a 512-dimensional embedding for SOP. ProxyNCA mentions that it uses the

Inception architecture with batch normalization, but without citing the corresponding paper

of this Network [11]. Instead, it cites the previous papers [10] and [41] and thus is not clear

if the BNInception architecture or a variant of it is used. Margin uses ResNet50 with an

embedding size of 128, ArcFace uses both ResNet50 and ResNet100 with an embedding

size of 512. Finally, MultiSimilarity and SoftTriple use BNInception with both a 64 and a

512-dimensional embedding, while ProxyAnchor uses the same Network but only with a

512-dimensional embedding. The Networks and the embedding sizes used in the papers

can be seen in Table 2.

We conduct extensive experiments on all 3 datasets of Deep Metric Learning (CUB200-

2011, CARS196, SOP) using the most common architectures (GoogLeNet, BNInception,

ResNet50) and 10 different loss functions (Contrastive, Triplet, LiftedStructure, NPair,

ProxyNCA, ArcFace, Margin, MultiSimilarity, SoftTriple, ProxyAnchor). These loss func-

B. Psomas 44

Metric Learning: A Deep Dive

Table 2: The Networks and embedding sizes used in respective papers.

Loss Function Network Embedding Size

Contrastive 2-layer CNN [22,23], 5-layer CNN [22] 2 [23], 50 [22]

Triplet 22-layer CNN, GoogLeNet 128

LiftedStructure GoogLeNet 64

NPair GoogLeNet 64, 512

ProxyNCA BNInception 64

Margin ResNet50 128

ArcFace ResNet50, ResNet100 512

MultiSimilarity BNInception 64, 512

SoftTriple BNInception 64, 512

ProxyAnchor BNInception 512

tions cover a wide range from older to the state-of-the-art. Some of them are embed-

ding loss functions (i.e. pair-based or triplet-based), while other are classification ones

(proxy-based). We also use 4 different embedding sizes (64, 128, 512, 1024) for each

experiment.

3.3 Evaluation Protocol

We evaluate our models using the Recall@k metric [51], which shows the retrieval quality.

We first compute the embeddings of every image in the test set. Each test image (query)

first retrieves k nearest neighbors from the test set and receives score 1 if an image of the

same class is retrieved among the k nearest neighbors, otherwise 0. Recall@k averages

this score over all the images of the test set. For example, when calculating the Recall@4,

we first retrieve the 4 nearest neighbors of the query and then we assign score equal to 1 if

one image of the same class is retrieved among these 4 neighbors. This is done iteratively

for all the queries and is finally averaged over all the images of the test set.

3.4 Implementation Details

In order to have an unbiased evaluation of Deep Metric Learning methods, we conduct

our experiments under the same conditions and following the same pipeline. We want to

make sure that no method is favored. We train our models for 100 epochs, which is found

to be enough for convergence. We use the AdamW [52] variant of Adam as an optimizer

and the StepLR as a scheduler. StepLR decays the learning rate of each parameter group

by gamma every step size epochs. The learning rate and the scheduling are taken from

papers once they are available. In case they are not, we conduct a small search around

the default values. The default values that were used for each experiments are shown in

Table 3.

The hyperparameters of loss functions like margins, scales, weights learning rates etc. are

taken from papers, as we assume that authors have made an exhaustive search in order

to optimize their values. Table 4 presents the hyperparameters that were used for each

loss function. We use a batch size of 100 for ResNet50 runs and a batch size of 180 for

GoogLeNet and BNInception runs. Concerning sampling, when a method implies using

balanced sampling like [14], we sample 5 images per class. Otherwise, we use random

B. Psomas 45

Metric Learning: A Deep Dive

Table 3: The default values that were used for each experiment. The initial learning rate shown in

second column is multiplied by gamma after step size epochs. The same procedure is repeated for

the resulting learning rate etc.

Experiment Learning Rate Step Size Gamma

CUB200-2011 ResNet50 0.0001 5 0.1

CUB200-2011 BNInception 0.0001 10 0.1

CUB200-2011 GoogLeNet 0.0001 10 0.1

CARS196 ResNet50 0.0001 10 0.1

CARS196 BNInception 0.0001 20 0.1

CARS196 GoogLeNet 0.0001 20 0.1

SOP ResNet50 0.0006 10 0.25

SOP BNInception 0.0006 20 0.25

SOP GoogLeNet 0.0006 20 0.25

sampling. Concerningmining, when amethod comeswith a specific type ofmining like [26]

with distance weighted, we use this mining. Otherwise, we use random mining. Table

5 presents the mining methods used in our experiments for each loss function. All the

experiments are made using either the NVIDIA V100 or the NVIDIA GeForce RTX 2080

Ti.

3.5 Issues

Why do we make these experiments, though?

3.5.1 Unfair Comparisons

First of all, while delving into the bibliography of Deep Metric Learning, we noticed that

a lot of papers seem to introduce new loss functions that outperform the existing ones,

but the comparisons are not made fairly. For example, some papers use a better Net-

work than their competitors. As long as the Networks are pretrained on ImageNet and

then finetuned on smaller datasets, the choice of the Network is important, as the initial

accuracy on the smaller datasets varies depending on the chosen Network. Apart from

that, shallower Networks like GoogLeNet will probably have less discriminative power than

deeper Networks like ResNet50 and thus their embeddings are more likely to be less pow-

erful or semantically meaningful. Let us highlight some examples of unfair comparisons

concerning the choice of the Network:

• Chao-Yuan Wu et al. [26] make experiments using ResNet50 and compare their

Margin Loss with other losses that use GoogLeNet.

• Wang et al. [14] use BNInception and claim better performance that the ensemble

methods that use GoogLeNet.

• Cakir et al. [53] use ResNet50, while their competitors use either GoogLeNet or

BNInception. They also claim better performance than the ensemble methods that

use GoogLeNet.

• Qian et al. [17] use BNInception and compare with N-Pair [48] and HDC [54] that

use GoogLeNet.

B. Psomas 46

Metric Learning: A Deep Dive

Table 4: The hyperparameters used in our experiments.

Loss Function Hyperparameter Value

Contrastive margin λ 0.5

Triplet margin λ 0.1

LiftedStructure margin λ 0.5

NPair l2 0.02

ProxyNCA proxy lr 0.00001

Margin

margin λ 0.5

beta 1.2

beta lr 0.00005

ArcFace

margin λ 28.6

scale s 64

weights lr 0.0001

MultiSimilarity

margin λ 0.5

scale α 2

scale β 50

epsilon 0.1

SoftTriple

margin λ 0.1

scale α 20

weights lr 0.0001

gamma 10

tau 0.2

ProxyAnchor
margin λ 0.1

scale α 32

Table 5: The mining methods used in our experiments.

Loss Function Mining Method

Contrastive -

Triplet semi-hard

LiftedStructure hard

NPair -

ProxyNCA -

Margin distance weighted

ArcFace -

MultiSimilarity hard

SoftTriple -

ProxyAnchor -

B. Psomas 47

Metric Learning: A Deep Dive

• Yu et al. [55] use ResNet50, while their competitors use either GoogLeNet or BNIn-

ception. They also claim better performance than the ensemble methods that use

GoogLeNet.

Using an embedding of higher dimensionality will probably lead to an increased accuracy.

Comparing methods that use different embedding sizes cannot be considered fair. Let us

also highlight some examples of unfair comparisons concerning the dimensionality of the

embedding:

• Chao-Yuan Wu et al. [26] use an embedding size 128, while more than half of their

competitors use size 64.

• Wang et al. [56] use size 512, while most of its competitors use size 64.

• Yu et al. [55] use size 512, while the only competing architecture that uses the same

architecture, uses size 128.

Moreover, some unfair comparisons have to do with details that are crucial, but are either

not highlighted or omitted at all. For example, MultiSimilarity loss freezes batch normaliza-

tion parameters in their official code, but this is not mentioned in the paper. ProxyAnchor

loss, which has a superior performance, uses the sum of Global Average Pooling (GAP)

and Global Max Pooling (GMP), but this is also not mentioned in the paper. Additionally,

some official implementations of papers tend to use greater learning rate for the fully con-

nected layer than the rest of the Network. Finally, there are some cases that claim to

do a simple 256 resize and 227 or 224 random crop, but in their code are actually doing

more sophisticated and advanced methods like the RandomResizedCrop method of Py-

Torch [57]. Having mentioned these, it is somehow clear that the apparent hype of last

years is to be questioned. How can someone be sure that Deep Metric Learning has an

increasing tendency, when the comparisons are not made fairly?

3.5.2 Lack of Validation Set

Apart from that, the general setup of Deep Metric Learning missing a validation set should

also be questioned. As already mentioned, this setup was introduced by [1] and it is still

the standard one. This setup implies splitting each dataset so that half of the classes are

used for training, while the other half are used for testing. During training, the test accuracy

of the model is checked at regular intervals and the model with the best test accuracy is

finally chosen. This means that the hyperparameter tuning and the model selection are

done with direct feedback from the test set. This breaks one of the most basic rules of

Machine Learning. Some papers do not even check performance at regular intervals, but

instead report accuracy after training for a predetermined number of iterations, which is

unclear how exactly is chosen. Training with test set feedback is a bad practice and thus

it is clear that this setup has to be further studied and questioned.

3.5.3 Benchmark and Ablation Study

We make these experiments in order to create a real benchmark. A benchmark includ-

ing all the Networks, all the datasets and a lot of loss functions starting from the classic

B. Psomas 48

Metric Learning: A Deep Dive

ones and ending with the state-of-the-art. We aim to make an ablation study using this

benchmark that will give us some deeper insight into Deep Metric Learning.

Our experiments are expected to answer questions like:

• how difficult or how stable is the training process without a validation set?

• is there a true convergence using this setup or most of the methods just report the

best accuracy found on test set, which is just a random peak?

• does this setup gives models that can truly generalize well?

• are the hyperparameters found using this setup the optimal?

The last 2 questions cannot be answered only by these experiments, because of the fact

that they also need a comparison with other setups. We will later see that indeed we

compare these results with the results of another setup that includes a validation set.

B. Psomas 49

Metric Learning: A Deep Dive

4. EXPERIMENTAL RESULTS AND DISCUSSION

This Chapter is dedicated to experimental results and is organized as follows: we present

all the CUB200-2011 results, as also the CARS196 and SOP results using BNInception.

We then make a discussion about our findings: Networks, embeddings, datasets, loss

functions and finally about the setup.

4.1 Results

4.1.1 CUB200-2011 ResNet50

Table 6: CUB200-2011 ResNet50 experiments.

(a) embedding size = 64.

R@1 R@2 R@4 R@8

Contrastive 60.28 71.49 80.77 87.07

Triplet 57.56 69.62 80.22 87.44

LiftedStructure 58.36 70.41 79.25 87.20

NPair 57.28 68.54 78.92 87.29

ProxyNCA 60.25 71.51 80.71 87.68

Margin 59.66 71.10 81.06 88.40

ArcFace 58.32 69.23 78.38 85.84

MultiSimilarity 60.84 72.15 81.67 88.86

SoftTriple 61.28 73.11 82.58 89.37

ProxyAnchor 62.93 74.00 83.13 89.62

(b) embedding size = 128.

R@1 R@2 R@4 R@8

Contrastive 62.64 73.66 82.55 89.03

Triplet 60.48 72.13 82.11 89.03

LiftedStructure 60.16 72.35 81.88 88,44

NPair 58.91 70.66 79.98 87.74

ProxyNCA 62.76 73.13 82.17 88.50

Margin 63.00 74.00 83.59 90.41

ArcFace 61.33 71.84 80.13 87.36

MultiSimilarity 63.96 74.85 83.63 90.31

SoftTriple 64.16 75.59 84.01 90.21

ProxyAnchor 66.71 76.79 85.18 90.63

(c) embedding size = 512.

R@1 R@2 R@4 R@8

Contrastive 64.87 75.41 83.27 89.67

Triplet 63.52 75.62 84.38 90.50

LiftedStructure 65.92 75.81 84.50 90.41

NPair 61.36 72.81 82.08 89.01

ProxyNCA 65.22 75.55 83.76 89.60

Margin 64.99 76.15 84.60 90.46

ArcFace 64.40 74.68 83.20 89.60

MultiSimilarity 68.69 78.56 86.75 92.08

SoftTriple 67.27 77.73 86.19 92.00

ProxyAnchor 69.48 79.27 86.95 92.37

(d) embedding size = 1024.

R@1 R@2 R@4 R@8

Contrastive 66.51 76.50 85.15 90.73

Triplet 63.55 75.35 84.03 90.36

LiftedStructure 66.34 76.67 84.47 90.36

NPair 61.83 72.60 82.07 89.01

ProxyNCA 65.12 74.78 83.56 89.60

Margin 65.48 76.54 84.53 91.15

ArcFace 65.82 76.71 84.18 89.70

MultiSimilarity 68.72 79.17 87.15 92.29

SoftTriple 67.42 78.16 86.02 91.64

ProxyAnchor 69.82 79.86 87.12 92.69

We first present the CUB200-2011 experiments made using ResNet50. These can be

seen in Table 6. The order is chronological, so that it is easy to track the progress (or

the lack of it). As already mentioned, these experiments are made using 4 different em-

bedding sizes: 64, 128, 512 and 1024. From a quick look it is easy to see that the worst

performance is made by NPair and Triplet, while MultiSimilarity, SoftTriple and ProxyAn-

chor have consistently the best performance. Contrastive seems to perform way better

than it is presented in papers. LiftedStructure performs better than Triplet and NPair and

sometimes it even performs better than later losses like ProxyNCA, Margin and ArcFace

that seem to be ranked somewhere in the middle concerning their performance. We ob-

serve that apart from NPair and Triplet that are consistently ranked in the worst positions

and MultiSimilarity, SoftTriple and ProxyAnchor that are consistently ranked in the best

B. Psomas 50

Metric Learning: A Deep Dive

positions, the other losses have significant variation. Of course we now compare their

performance in relation to embedding size, but if this behaviour continues when using

different Networks, this is something that we should further investigate.

At this point it is crucial to highlight some unfair comparisons that were confirmed. In [26],

Margin seems to outperform LiftedStructure by 20% and NPair by more than 12%, but

while Margin uses ResNet50, LiftedStructure and NPair use GoogLeNet. In Table 6b it

is easy to see that when the the comparison is made under equal conditions the true

differences are less than 3% and less than 4% respectively.

Fig. 27 presents the results of Table 6b in a graphical way. Recall@1 has been been

highlighted, as it is considered to be the most informative metric. The order is again

chronological and thus if the papers really reflected the reality, metrics of this Fig. should

be constantly increasing. While Contrastive is the oldest loss function, its performance

seems to be really competitive. NPair is introduced in [48] as an improved version of

Triplet with multiple negatives, but this is not reflected in our results. The reason for this

is probably the fact that while Triplet follows its most sophisticated implementation in our

experiments and uses semi-hardmining (Eq. 2.20), NPair does not use any kind of mining,

as in [48] is mentioned that when the number of output classes is not too large, hard

negative mining is not necessary.

Figure 27: Comparing the retrieval quality of loss functions on CUB200-2011 using ResNet50 with

an embedding size of 128.

Except for the results themselves, there are some other aspects concerning training that

have to be mentioned. Classification loss functions like ProxyNCA, SoftTriple and Prox-

yAnchor seem to converge way faster than embedding loss functions. This is really im-

pressive with ProxyAnchor, which most of the times achieves to reach its greatest accu-

racy in less than 20 epochs. Embedding loss functions seem to be trapped sometimes in

local minima and while most of the times achieve to exceed them, this delays the whole

training. Of course, there is a trade off here between the ability to capture data-to-data

relations and the convergence speed. While classification losses converge faster, their

ability to capture the inherent structure of data is limited and this is reflected in their per-

formance. Exception to this are SoftTriple and ProxyAnchor, as the first one uses multiple

proxies for each class, while the second one associates all data in a batch with each proxy.

Let us now have a closer look at the retrieval quality of the losses using different embed-

B. Psomas 51

Metric Learning: A Deep Dive

Figure 28: Comparing the retrieval quality of loss functions on CUB200-2011 using ResNet50 with

different embedding sizes.

ding sizes. Figure 28 shows that in almost all the cases embeddings of size 1024 have

very similar retrieval quality as embeddings of size 512. This means that the size of 512

is the optimal for ResNet50 and there is no need to use 1024, especially when this entails

more computational complexity.

4.1.2 CUB200-2011 BNInception

The next experiments we are presenting are the CUB200-2011 experiments made using

BNInception. These can be seen in Table 7. All the losses seem to perform a little worse

when using BNInception, but this is something to be expected, as BNInception is a shal-

lower Network with less discriminative power compared to ResNet50. BNInception is the

Network that has been used in a lot of recent papers as can be seen in Table 2, so this

makes the comparison between our results and the official results of papers plausible.

SoftTriple reports R@1 equal to 65.40 using an embedding size of 512 in [17], while we

report R@1 equal to 66.76. Moreover, SoftTriple seems to be the only loss function ap-

proaching the accuracy of ProxyAnchor, while sometimes it even exceeds it. Contrastive’s

performance is again better than expected and reported on papers. The performance of

LiftedStructure is really impressive too. It is ranked on the third and fourth position man-

aging to even pass MultiSimilarity and SoftTriple when using an embedding size of 64.

NPair has again the worst performance.

Of course, there are again a lot of unfair comparisons that we can highlight. In [14], Mul-

tiSimilarity is compared to ProxyNCA. They are both using a 64-dimensional embedding,

but as already mentioned, it is not clear whether ProxyNCA uses the BNInception archi-

tecture or a GoogLeNet architecture with batch normalization. Table 7a probably confirms

this reflection, as we report a R@1 equal to 56.98% for ProxyNCA, which is more than

7% greater than the one reported in the paper. In turn, in [15], ProxyNCA is compared

with Triplet, LiftedStructure and NPair that are all using GoogLeNet without batch nor-

malization. Our results can be seen in Table 7a. When using the BNInception with an

embedding of size 64, LiftedStructure performs better than ProxyNCA which in turn really

performs better than Triplet and NPair.

B. Psomas 52

Metric Learning: A Deep Dive

Table 7: CUB200-2011 BNInception experiments.

(a) embedding size = 64.

R@1 R@2 R@4 R@8

Contrastive 58.88 69.70 78.53 86.12

Triplet 55.82 67.13 77.11 83.95

LiftedStructure 58.29 68.96 79.43 87.22

NPair 54.17 65.98 76.87 83.80

ProxyNCA 56.98 67.10 77.08 85.14

Margin 56.80 68.08 78.00 85.24

ArcFace 55.77 67.92 77.92 85.50

MultiSimilarity 57.24 69.31 79.49 86.92

SoftTriple 58.07 69.42 79.42 87.39

ProxyAnchor 61.06 72.67 82.05 88.67

(b) embedding size = 128.

R@1 R@2 R@4 R@8

Contrastive 61.24 71.79 80.40 87.62

Triplet 58.56 70.12 79.10 86.45

LiftedStructure 61.60 73.36 81.97 88.61

NPair 56.90 69.02 78.02 84.98

ProxyNCA 60.15 71.08 81.15 85.80

Margin 60.80 71.45 81.90 86.24

ArcFace 59.94 71.08 80.57 87.63

MultiSimilarity 61.92 73.28 82.99 89.21

SoftTriple 63.44 74.29 83.27 89.96

ProxyAnchor 63.88 74.51 83.86 89.92

(c) embedding size = 512.

R@1 R@2 R@4 R@8

Contrastive 63.28 74.51 82.83 89.50

Triplet 61.98 73.59 83.80 88.87

LiftedStructure 64.28 75.47 83.91 89.89

NPair 59.90 71.98 80.47 87.25

ProxyNCA 63.84 74.02 82.98 89.54

Margin 63.48 75.86 83.90 89.78

ArcFace 62.36 73.48 81.67 88.08

MultiSimilarity 65.24 75.76 84.69 90.48

SoftTriple 66.76 77.09 85.36 91.21

ProxyAnchor 68.11 78.63 85.77 91.12

(d) embedding size = 1024.

R@1 R@2 R@4 R@8

Contrastive 64.43 74.48 82.88 89.47

Triplet 62.45 73.80 83.10 89.20

LiftedStructure 64.86 75.68 84.00 90.01

NPair 60.76 71.89 81.67 88.40

ProxyNCA 64.10 74.40 82.80 89.14

Margin 64.08 75.40 83.01 89.90

ArcFace 63.07 73.94 83.04 88.93

MultiSimilarity 66.22 77.62 85.40 90.94

SoftTriple 67.44 78.11 85.91 91.28

ProxyAnchor 68.47 78.41 85.75 91.36

Concerning different embedding sizes, Fig. 29 shows that unlike ResNet50, BNInception

seems to improve its retrieval quality by little when using an embedding size of 1024.

4.1.3 CUB200-2011 GoogLeNet

Finally, CUB200-2011 experiments usingGoogLeNet are presented in Table 8. GoogLeNet

is the shallowest of all the 3 Networks and this is reflected in the retrieval quality of it, as

the average Recall@1 is about 3,5% lower than the corresponding one when using BN-

Inception and 5% lower than the corresponding one when using ResNet50. ProxyAnchor

is again the winner among all the loss functions, while SoftTriple and MultiSimilarity seem

to perform worse than in previous experiments. Contrastive, LiftedStructure and ArcFace

have an impressive performance and are ranked in the very first positions. In fact, ArcFace

seems to exceed the performance of almost all the loss functions except of ProxyAnchor

when using an embedding size of 512 and 1024. The performance of Triplet, NPair and

ProxyNCA is the worst.

Concerning different embedding sizes, Fig. 30 shows that GoogLeNet seems to improve

its retrieval quality by little when using an embedding size of 1024.

4.1.4 CARS196 BNInception

The next dataset on which we conduct experiments is the CARS196. In this Chapter,

we present the CARS196 experiments made using BNInception. The rest of them us-

B. Psomas 53

Metric Learning: A Deep Dive

Figure 29: Comparing the retrieval quality of the loss functions on CUB200-2011 using

BNInception with different embedding sizes.

Table 8: CUB200-2011 GoogLeNet experiments.

(a) embedding size = 64.

R@1 R@2 R@4 R@8

Contrastive 56.36 67.94 78.41 86.19

Triplet 52.12 63.69 75.08 84.37

LiftedStructure 55.18 67.76 77.51 86.02

NPair 48.76 60.38 71.78 81.36

ProxyNCA 51.01 61.93 73.07 82.56

Margin 54.27 66.48 77.13 85.69

ArcFace 52.92 63.52 74.31 82.77

MultiSimilarity 53.47 65.69 76.33 85.07

SoftTriple 55.00 67.51 77.95 85.96

ProxyAnchor 58.07 69.23 79.37 87.05

(b) embedding size = 128.

R@1 R@2 R@4 R@8

Contrastive 57.73 69.04 79.51 87.29

Triplet 55.06 67.22 77.80 85.62

LiftedStructure 58.07 69.78 79.56 87.14

NPair 50.30 61.19 72.99 81.79

ProxyNCA 55.77 66.88 76.90 85.16

Margin 57.88 69.54 79.29 86.99

ArcFace 56.94 68.01 77.97 85.67

MultiSimilarity 55.66 68.37 78.87 86.95

SoftTriple 57.00 68.91 79.61 87.61

ProxyAnchor 60.23 71.89 82.26 88.86

(c) embedding size = 512.

R@1 R@2 R@4 R@8

Contrastive 61.01 72.79 82.07 88.20

Triplet 57.60 69.35 79.60 87.56

LiftedStructure 60.89 72.37 81.20 88.67

NPair 54.22 67.10 77.29 85.05

ProxyNCA 57.46 69.09 78.40 86.30

Margin 60.61 71.51 80.77 87.90

ArcFace 61.60 72.67 81.95 88.62

MultiSimilarity 59.57 72.42 82.42 89.76

SoftTriple 60.90 71.62 81.67 88.71

ProxyAnchor 63.84 75.25 84.05 90.29

(d) embedding size = 1024.

R@1 R@2 R@4 R@8

Contrastive 62.05 73.14 82.14 88.78

Triplet 58.54 69.68 80.22 87.84

LiftedStructure 61.77 72.74 82.19 89.08

NPair 55.40 67.58 77.86 85.75

ProxyNCA 57.60 69.02 78.61 86.34

Margin 59.55 71.49 80.96 88.08

ArcFace 62.24 73.57 82.38 88.42

MultiSimilarity 61.16 72.92 82.51 89.18

SoftTriple 61.55 73.09 82.49 89.61

ProxyAnchor 64.47 75.96 84.61 90.63

ing ResNet50 and GoogLeNet are presented in Appendix A. We choose to present the

CARS196 BNInception experiments here, as BNInception is the Network that has been

used the most in recent papers.

NPair and Triplet seem to have the worst performance. ArcFace seems to improve its per-

formance as the embedding size is increased, but still does not manage to get to the first

B. Psomas 54

Metric Learning: A Deep Dive

Figure 30: Comparing the retrieval quality of the loss functions on CUB200-2011 using GoogLeNet

with different embedding sizes.

Table 9: CARS196 BNInception experiments.

(a) embedding size = 64.

R@1 R@2 R@4 R@8

Contrastive 73.39 81.98 88.14 92.61

Triplet 70.02 79.12 85.98 91.01

LiftedStructure 73.53 82.51 88.40 92.81

NPair 68.54 78.21 84.90 89.87

ProxyNCA 72.52 81.20 86.05 91.20

Margin 72.94 81.48 87.09 91.68

ArcFace 69.33 78.82 85.62 90.74

MultiSimilarity 76.25 84.60 90.30 94.50

SoftTriple 77.70 86.11 91.33 95.02

ProxyAnchor 79.79 87.27 92.44 95.52

(b) embedding size = 128.

R@1 R@2 R@4 R@8

Contrastive 75.52 84.12 89.35 93.17

Triplet 72.48 81.80 87.90 92.02

LiftedStructure 77.68 85.27 90.47 94.12

NPair 70.56 80.18 86.50 90.46

ProxyNCA 76.10 84.98 90.03 94.24

Margin 78.12 86.03 91.24 94.45

ArcFace 75.19 83.34 88.86 92.71

MultiSimilarity 80.69 87.75 92.29 95.53

SoftTriple 81.44 89.08 93.68 96.35

ProxyAnchor 83.11 89.53 93.46 95.99

(c) embedding size = 512.

R@1 R@2 R@4 R@8

Contrastive 79.09 86.36 91.69 95.06

Triplet 77.02 84.12 89.79 93.56

LiftedStructure 79.82 86.79 91.86 94.92

NPair 73.25 81.86 86.58 90.45

ProxyNCA 81.02 86.97 92.47 95.12

Margin 81.98 87.75 91.75 94.85

ArcFace 79.42 86.77 91.71 94.70

MultiSimilarity 83.75 89.84 93.75 96.53

SoftTriple 85.29 91.10 94.78 97.10

ProxyAnchor 86.21 91.71 94.70 96.95

(d) embedding size = 1024.

R@1 R@2 R@4 R@8

Contrastive 78.86 86.37 91.72 94.93

Triplet 77.40 84.23 89.98 93.47

LiftedStructure 79.46 86.70 91.39 95.00

NPair 74.28 81.98 86.79 90.63

ProxyNCA 81.90 87.70 91.66 94.45

Margin 81.78 87.60 91.78 94.90

ArcFace 79.74 86.57 91.24 94.50

MultiSimilarity 84.38 90.64 94.34 96.64

SoftTriple 86.20 91.88 95.41 97.40

ProxyAnchor 86.41 91.70 94.90 97.12

positions. Contrastive performs better than expected, but not as good as in the CUB200-

2011 experiments. LiftedStructure, ProxyNCA and Margin are ranked somewhere in the

middle. Finally, MultiSimilarity, SoftTriple and ProxyAnchor achieve the best performance

once again.

As shown in Table 9, SoftTriple manages to get better R@2, R@4 and R@8 scores than

B. Psomas 55

Metric Learning: A Deep Dive

ProxyAnchor in some experiments. Actually, SoftTriple manages to get better scores than

the ones officially reported in the corresponding paper [17], as authors report a R@1 equal

to 84.5% using the BNInception with 512-dimensional embedding, while we report 85.29%

(7c. Moreover, another unfair comparison is confirmed in this paper, as authors compare

SoftTriple with Margin, but Margin uses ResNet50 with a 128-dimensional embedding and

thus achieves a R@1 equal to 79.6%. In Table 9c we can see that when the comparison

is made fairly with Margin using BNInception with 512-dimensional embedding, its perfor-

mance is increased by more than 2% reaching a R@1 equal to 81.98%.

In the same paper, SoftTriple using BNInception with an embedding size of 64 is com-

pared with other loss functions like Triplet, LiftedStructure and NPair that use GoogLeNet.

In Table 9a we can see that when the comparison is made fairly with Triplet and Lifted-

Structure using BNInception, their performance is increased by more than 20% and while

they again fail to surpass SoftTriple, they achieve to get really closer than presented in the

paper. As long as NPair is concerned, it is worth mentioning that this seems to perform

worse in our experiments than what it is reported in papers. This is something that will be

discussed in the next section.

4.1.5 SOP BNInception

Finally, we present the SOP experiments made using BNInception. The rest of them using

ResNet50 and GoogLeNet are presented in Appendix A. We choose to present the SOP

BNInception experiments here, as BNInception is the Network that has been used the

most in recent papers.

Table 10: SOP BNInception experiments.

(a) embedding size = 64.

R@1 R@10 R@100 R@1000

Contrastive 73.90 86.97 93.02 96.40

Triplet 70.00 83.74 88.17 91.20

LiftedStructure 74.88 88.22 95.16 98.57

NPair 68.11 81.10 87.13 90.85

ProxyNCA 73.66 86.11 92.44 95.81

Margin 73.80 86.65 92.57 95.63

ArcFace 71.85 83.68 89.10 92.54

MultiSimilarity 74.76 88.27 94.89 98.42

SoftTriple 76.82 89.04 95.01 98.21

ProxyAnchor 76.56 89.05 95.12 98.12

(b) embedding size = 128.

R@1 R@10 R@100 R@1000

Contrastive 76.00 89.01 95.41 97.78

Triplet 72.27 84.79 90.11 93.14

LiftedStructure 76.10 88.85 95.36 98.67

NPair 70.23 82.47 87.98 90.71

ProxyNCA 75.40 87.89 92.78 95.45

Margin 75.74 87.92 93.24 95.28

ArcFace 73.14 64.56 75.04 84.51

MultiSimilarity 76.43 89.04 95.32 98.56

SoftTriple 78.43 90.11 95.61 98.38

ProxyAnchor 78.42 90.22 95.64 98.42

(c) embedding size = 512.

R@1 R@10 R@100 R@1000

Contrastive 77.10 89.01 95.23 97.85

Triplet 73.85 84.93 90.11 92.45

LiftedStructure 77.14 89.62 95.73 98.75

NPair 71.45 82.88 87.99 90.58

ProxyNCA 76.15 88.02 93.14 95.47

Margin 76.54 87.98 92.51 94.89

ArcFace 74.91 85.29 90.81 93.39

MultiSimilarity 77.73 89.88 95.77 98.69

SoftTriple 79.29 90.70 95.85 98.53

ProxyAnchor 79.42 90.66 96.05 98.62

(d) embedding size = 1024.

R@1 R@10 R@100 R@1000

Contrastive 77.98 88.90 95.11 97.90

Triplet 73.47 84.78 90.12 92.81

LiftedStructure 76.94 89.37 95.71 98.70

NPair 70.98 81.57 87.59 90.11

ProxyNCA 76.85 86.78 92.49 94.68

Margin 76.15 87.11 92.89 94.97

ArcFace 75.48 85.48 91.34 34.27

MultiSimilarity 78.20 89.82 95.75 98.69

SoftTriple 79.51 90.64 95.96 98.57

ProxyAnchor 79.35 90.89 96.10 98.63

B. Psomas 56

Metric Learning: A Deep Dive

4.2 Discussion

Βoth while conducting the experiments, as also after they were over, we observed some

aspects that should be discussed.

Figure 31: Comparing the discriminative power of Networks. All loss functions use an embedding

size of 512.

4.2.1 About Networks

First of all, let us have a comparison between the different Networks that were used in our

experiments. Fig. 31 shows the Recall@1 scores of each loss function when trained using

each of the 3 Networks on CUB200-2011. It is obvious that ResNet50 is the undisputed

winner followed by BNInception and finally GoogLeNet. ResNet50’s representations are

surely more powerful than those of the other 2 Networks. This means that a loss func-

tion that uses ResNet50 cannot be compared with a loss function using another Network,

as this comparison is not made under equal terms. When having an equally sized em-

bedding, it is sure that the loss function using ResNet50 will have a better performance.

This performance is not due to the superiority of the loss function, but rather due to the

superiority of the Network.

4.2.2 About Embeddings

Let us now have a discussion about the retrieval quality of loss functions using different

embedding sizes. Figures 28, 29, 30 show that while the increase in retrieval quality is

great when going from 64 to 128 and from 128 to 512-dimensional embeddings, this does

not happen when going from 512 to 1024. Of course, there are some exceptions to this

like the more than 1% increase of MultiSimilarity when using GoogLeNet with 512 and

1024 embeddings on CUB200-2011, as can be seen in Tables 21c and 21d, but again

this increase can not be considered so significant. Moreover, taking into consideration

the computational cost of a 1024-dimensional embedding, the conclusion to be drawn is

that given these Networks, the 512-dimensional embedding is the optimal solution.

B. Psomas 57

Metric Learning: A Deep Dive

4.2.3 About Datasets

CUB200-2011 andCARS196 have almost the same number of classes, but while CUB200-

2011 has 11788 images, CARS196 has 16815, whichmeans that while CUB200-2011 has

an average of almost 59 images per class, CARS196 has an average of more than 82.

Images of CUB200-2011 seem to have more intraclass variance, as birds can be seen

in very different angles and poses, but also sometimes there are images of chicks that

differ a lot from adult birds of the same class. CUB200-2011 dataset is considered to be

the most difficult of the 3 and this is reflected in the retrieval scores of loss functions. It is

even more difficult than the SOP, which is a huge dataset of 22634 classes with 120053

images. Let us highlight the fact that SOP has an average of only 5.3 images per class.

Concerning complexity it is obvious that SOP is way more expensive and thus makes

finetuning a lot more difficult.

4.2.4 About Loss Functions

4.2.4.1 Embedding vs. Classification Loss Functions

Embedding loss functions like Contrastive, Triplet, Margin, etc. are able to capture data-

to-data relations, but because of this property they are also sensitive to noisy labels and

outliers. Their constraints can often be easily fulfilled and thus mining informative tuples

is necessary. The gradients of tuples that fulfil their constraints are really small and thus

they do not contribute significantly to training, thus making the convergence slower or

even impossible. Mining tuples that violate their constraints is crucial and this is reflected

in trivial mining methods like the semi-hard mining of Triplet and the distance weighted

mining of Margin. Margin is a very simple loss function that is mostly based on its mining

method. In contrast, MultiSimilarity is a powerful loss function that improves even more

its performance using hard mining.

Classification loss functions are based on the idea of adopting some kind of proxies, which

enable faster and more reliable convergence. A proxy is a learnable representative of a

subset of data. Classification loss functions demand less hyperparameter finetuning and

are more robust again outliers. SoftTriple adopts the idea of multiple proxies per class in

order to capture better the intraclass variance. ProxyAnchor is using the Log-Sum-Exp of

MultiSimilarity in order to treat positives and negatives different, but this is done under a

classification scheme of having proxies as anchors.

4.2.4.2 Tournament of Loss Functions

Our experiments show that some loss functions perform consistently better than others.

This can be easily observed qualitatively, but we need something more than this, we need

a quantitatively process that will help us confirm this observation and draw important con-

clusions. Under this context, we introduce a Tournament of Loss Functions on CUB200-

2011. We choose to run this tournament on CUB200-2011, as it is the dataset that we

have experimented with the most and we have presented its results in more detail.

We collect the ranking of each loss function in each experiment, where the total number

of experiments is 12, as there are 4 different embedding sizes for each of the 3 different

Networks. For example, given the experiment of Table 8a, ProxyAnchor is assigned with

a ranking equal to 1, while NPair with a ranking equal to 10. We sum these rankings for

B. Psomas 58

Metric Learning: A Deep Dive

Table 11: The Tournament of Loss Functions.

Loss Function Total Rankings Average Ranking Standard Deviation

ProxyAnchor 12 1 0

SoftTriple 38 3.16 1.19

MultiSimilarity 51 4.25 2.05

Contrastive 52 4.33 1.72

LiftedStructure 54 4.5 1.89

Margin 70 5.83 1.27

ArcFace 79 6.58 2.31

ProxyNCA 81 6.75 1.66

Triplet 103 8.85 0.51

NPair 120 10 0

each loss function and this results in total rankings. The smaller this number, the better the

performance of the corresponding loss function in our experiments. Then, we divide this

number by 12 in order to get the average ranking. We calculate the standard deviation

of each loss function taking into account the average ranking and the ranking in each

corresponding experiment. A loss function with standard deviation equal to 0 is a loss

function that was consistently ranked in the same position across all the CUB200-2011

experiments, while a loss function with great standard deviation is a loss function whose

position varied the most.

Gold Medal Table 11 shows that ProxyAnchor is consistently the winner across all the

CUB200-2011 experiments. ProxyAnchor is a loss function combining interesting ideas

that seem to also work on their own. This combination probably results in its superior

performance. Ideas like:

• the Log-Sum-Exp of Eq. 2.31 that pulls and pushes embedding vectors with different

degrees of strength that are determined by their relative hardness

• the utilization of proxies that will enable a faster, reliable and stable convergence

• the utilization of proxies as anchors and the association of them with each sample

in a batch, so that data-to-data relations can be indirectly taken into account

SoftTriple is ranked in the second position and has a standard deviation of 1.19, which

means that in the worst case scenario is ranked a little bit more than one place lower than

its average ranking. SoftTriple’s performance is sometimes surpassing this of ProxyAn-

chor and is even better than presented in the official paper.

Silver Medal SoftTriple is also based in proxies, but its main idea is that of using multiple

proxies that can capture the inherent structure of data. Each anchor is associated with

proxies of the same class and proxies of different classes. Finding the appropriate number

of proxies per class is challenging and trades between efficiency and effectiveness. In the

extreme case where this number is equal to the number of original examples, it results

in the common Triplet formulation of cubic complexity, while in the naive case where this

number is equal to one, it results in the common SoftMax formulation of linear complexity.

SoftTriple’s solution is using the L2,1 norm in order to find an optimal and adaptive number

of proxies per class.

B. Psomas 59

Metric Learning: A Deep Dive

Bronze Medal MultiSimilarity is ranked third and is really close to the unexpectedly good

Contrastive. However, MultiSimilarity ranks lower than expected in GoogLeNet experi-

ments and this is the reason why its average ranking is 4.25. As long as there is no other

obvious reason for its bad performance using GoogLeNet, this raises some questions

about the hyperparameter finetuning. We remind that in our experiments we only finetune

the learning rate and the scheduling; the hyperparameters of loss functions are generally

not finetuned and thus there is a chance that MultiSimilarity’s hyperparameters were not

the optimal for GoogLeNet.

MultiSimilarity is a pure embedding loss function that fully exploits data-to-data relations

and similarities. It takes advantage of every sample in the batch. Its formulation has

clearly affected ProxyAnchor. Moreover, if we take a look at Eq. 2.24, 2.30, 2.31, we will

see that MultiSimilarity, SoftTriple and ProxyAnchor have some aspects in common and

once these loss functions perform the best, one should take into account these aspects

when formulating a new loss function.

Honors Contrastive’s performance is impressive and especially if one considers its for-

mulation simplicity and the fact that is utilizes no mining. LiftedStructure’s performance

is better than expected and seems to be relatively consistent. Margin is performing as

expected. ArcFace is the only loss function that does not come from Deep Metric Learn-

ing, but from the face verification task. Its standard deviation is the greatest among all the

loss functions and this raises again the same questions about hyperparameter finetun-

ing as MultiSimilarity. ProxyNCA has one of the worst performances among all the loss

functions, while NPair has always the worst performance.

This ranking of NPair is something that worries us, as its performance is sometimes even

worse than presented in papers. Let us recall the fact that NPair is a Triplet with more

than one negatives and thus it is expected to have better performance than Triplet. How-

ever, while Triplet uses semi-hard negative mining in our experiments, NPair does not use

any kind of mining. Apart from that, authors of NPair apply multiscale transformations in

images, while we just apply the singe crop transformation of the official setup.

4.2.5 About Setup

Let us now have a discussion about the setup. As already mentioned, in general, we only

finetune the learning rate and the scheduling, not the hyperparameters of loss functions.

Exception to this is ArcFace, which is a loss function designed for face verification and

thus we finetune its parameters for the Deep Metric Learning task. We notice that minor

changes in hyperparameters are able to affect dramatically the performance of methods.

This is making the whole finetuning a lot more difficult and somehow uncertain. There are

cases in which we are not 100% sure if the hyperparameters found are the optimal, both

the ones found by authors and the ones found by us. Concerning convergence, most of

the times loss functions achieve to reach a minimum, which is not sure, though, if it is a

local or a global.

Concerning the lack of validation set, one cannot really claim that methods might overfit

the test set because of this, as the classes of the test set are different from the ones of

training set. One can claim, though, that finetuning using the test set is not a good tactic

and can also question the generalization ability of this setup to unseen data. All these

motivate us to experiment with and design a new setup.

B. Psomas 60

Metric Learning: A Deep Dive

5. OUR SETUP

5.1 Cross Validation

The first idea we experiment with is the utilization of a 10-fold cross validation. We want

to keep the classes of the test set the same, so that our results are comparable with

bibliography. We use the classes of training set of default setup for cross validation: for

the first fold we randomly select the 9/10 of the training classes for training and the rest

1/10 for validation. As default setup is meant the one introduced by [1] and described

in the first Section of this Chapter. We choose to make a random selection rather than

a deterministic one, as we notice that consecutive classes might be semantically similar,

e.g. the first 3 classes of CUB200-2011 are species of the Albatross family. For each next

fold we repeat the same process, but each time the random selection is more limited, as

the same classes cannot be used twice for validation. This means that by the end of the

cross validation all the classes will have been included exactly once in validation set.

The metric we choose to report at each epoch is the Recall@1 on validation set. Once

the training of 1 fold is over, we save and load the model that scored the best Recall@1

on validation set for testing. We compute the Recall@1 on test set of this model. By the

end of cross validation, we have 10 different models. We compute and report the average

and the standard deviation of their respective Recall@1 on test set.

We conduct experiments using the BNInception with a 512-dimensional embedding on

CUB200-2011. The choice of Network and embedding size is in line with the respective

choice of the state-of-the-art papers. The choice of dataset is purely determined by size.

We choose to make experiments using the top-3 loss functions of our Tournament of Loss

Functions, i.e. ProxyAnchor, SoftTriple and MultiSimilarity. Table 12 shows the results.

We also report the best Recall@1 on validation set of each fold for MultiSimilarity loss, as

well as the Recall@1 on test set of each respective model. These results can be seen in

Table 13.

These experiments are using the same hyperparameters as the ones conducted with the

default setup. We remind that these parameters can be seen in Table 4. We do not

conduct any hyperparameter search using the cross validation setup, as this proved to be

too expensive computationally. Let us consider the fact that while in default setup we only

train 1 model per experiment, in the 10-fold cross validation setup we train 10models. This

led us to design a different setup that is balancing between the computational complexity

and the need of a validation set.

Table 12: The cross validation scores of MultiSimilarity, SoftTriple and ProxyAnchor using the

BNInception with an embedding size of 512 on CUB200-2011.

Loss Function R@1

MultiSimilarity 63.61 ±0.59
SoftTriple 64.09 ±0.48

ProxyAnchor 66.32 ±0.44

B. Psomas 61

Metric Learning: A Deep Dive

Table 13: MultiSimilarity R@1 scores on each fold of the 10-fold cross validation. We choose the

model scored the best R@1 on each validation set and report its R@1 on test set.

Fold Best R@1 on Validation Set R@1 on Test Set

1 94.07 64.25

2 94.39 63.67

3 99.15 63.60

4 98.21 63.76

5 97.63 64.28

6 98.49 64.24

7 99.00 63.35

8 99.50 63.33

9 99.50 63.23

10 97.92 62.34

Table 14: Comparing the different fixed validation splits in order to find the one with the best

Recall@1 on test set. The values of R@1 on validation set are greater than the respective ones on

test set, as the validation classes are only 10, while the test classes are 100.

Split Ratio

(Training Classes/ Best R@1 on Validation Set R@1 on Test Set

Validation Classes)

70/30 86.13 61.28

80/20 92.53 62.74

90/10 91.49 64.38

95/5 93.31 62.92

5.2 Fixed Validation Set

The idea behind the fixed validation set is that we want to train just 1 model, exactly as in

the default setup, but we want to split the classes of training set in training and validation

classes. We choose to randomly select qualitatively which classes will be included in train-

ing set and which in validation set for the same reason as before. Quantitatively, we want

to find the split ratio that gives the best R@1 on test set. We conduct experiments using

the MultiSimilarity loss in different split schemes on CUB200-2011. For all the fixed vali-

dation set experiments we choose to use again the BNInception with a 512-dimensional

embedding. Table 14 shows that the optimal split ratio is the 90/10.

We use the 90 classes of the default training set for training and the rest 10 for valida-

tion. We conduct extensive hyperparameter search on validation set using MultiSimilarity,

SoftTriple and ProxyAnchor. The search is done as follows: we define a range within we

search using a specific step for the optimal value of each hyperparameter. For example,

we define the range [0,1] with a search step of 0.1 for MultiSimilarity’s margin λ. We con-

duct consecutive experiments starting from λ = 0 and ending with λ = 1. We keep the

value of λ that gives the best R@1 on validation set. For the sake of time, we do not

train each model till full convergence, as the impact of the value can be seen early in the

training. Table 15 shows the hyperparameters we finetune, the range within we search,

the search step for each hyperparameter, as also the optimal value we find.

Let us highlight the fact that while the optimal values of MultiSimilarity’s and SoftTriple’s

hyperparameters we find differ a lot from the ones authors report in papers, the optimal

values of ProxyAnchor’s hyperparameters are exactly the same.

B. Psomas 62

Metric Learning: A Deep Dive

Table 15: Hyperparameter search settings on fixed validation set.

Loss Function Hyperparameter Range of Search Search Step Optimal Value

MultiSimilarity

margin λ [0,1] 0.1 0.8

scale α (0,100] 2 18

scale β (0,100] 2 76

epsilon [0,1] 0.1 0.4

SoftTriple

margin λ [0,1] 0.1 0.4

scale α (0,100] 2 78

weights lr [0.00001, 0.0001] 0.00001 0.00005

gamma (0,100] 10 58

tau [0,1] 0.1 0.4

ProxyAnchor
margin λ [0,1] 0.1 0.1

scale α (0,100] 2 32

Table 16: The R@1 scores of loss functions using the optimal values found using our fixed

validation setup.

Loss Function R@1

MultiSimilarity 65.61

SoftTriple 66.12

ProxyAnchor 66.56

We report the R@1 on test set that these 3 loss functions score using optimal hyperpa-

rameters on Table 16. Concerning MultiSimilarity and SoftTriple, these scores surpass

the respective ones using the default setup. Considering the fact that we train using only

the 90 out of the 100 classes of the default setup, this is not what we expected to get.

Our speculation is that authors avoid to conduct extensive finetuning using the default

setup, as they know that finetuning on test set is not a good practice. This speculation be-

comes even more powerful if one takes a look at the values of hyperparameters proposed

by authors. These values can be seen in Table 4. Most of the loss functions use the

same ”standard” values, e.g. 0.5 or 0.1 for margin, etc. that can be more easily justified.

Concerning ProxyAnchor, the R@1 on test set is about 1,5% lower, but this is something

expected, as ProxyAnchor’s official hyperparameters were already the optimal, so it is not

benefited from our searching.

The fixed validation set seems to balance perfectly between the computational complexity

and retrieval quality trade-off. In contrast with k-fold cross validation, it demands no extra

computations, while it also gives the opportunity of an exhaustive hyperparameter search

that results in optimal parameters. We thus propose not only as an alternative to default

setup, but moreover as the new default setup of Deep Metric Learning.

B. Psomas 63

Metric Learning: A Deep Dive

6. OUR METHOD

Having studied thoroughly the most important loss functions of Deep Metric Learning, we

design, implement and experiment with a new loss function that is proxy-based, but is in

between the rationale of classification and embedding losses. It is crucial to highlight the

fact that this loss function was designed before the ProxyAnchor paper publication. The

fact that these two loss functions share a lot of common aspects show that we move in

the right direction.

How exactly is this function working, though? There are two different variations of it. In

the naive one, we assign one proxy to each class. We take advantage of the full batch

during training and associate each sample with its corresponding positive proxy (proxy of

the same class). We make use of the Log-Sum-Exp of MultiSimilarity in order to ensure

that the relative hardness between each proxy and sample is taken into consideration.

The samples of the batch are not associated with negative proxies. However, the proxies

themselves are treated as negatives that should be pushed away. Iteratively, our loss

function aims to pull samples of the same class close to their corresponding proxy, while

also pushes proxies away. This can be seen in Fig. 32

Figure 32: Visualization of the way our loss function works. Different shapes correspond to

different classes. Black nodes represent proxies, while blue nodes represent samples. Green

edges represent positive associations, while red nodes represent negative associations.

Thickness is analogous to gradients that samples or proxies get. For example, let us examine the

case of the star class that has two positive samples and two negative proxies. Concerning

positives, star class is pulling closer both samples, but with different degrees of strength

determined by their relative hardness. The star sample that is further away gets larger gradient

than the other one. Exactly the opposite is happening concerning negatives, as the square proxy

that is closer gets larger gradient than the circle proxy.

Let us formulate our loss function as:

LOurLoss1 =
1

|W+|
∑

w∈W+

log
(
1 +

∑
x∈X+

w

e−α(wTx−λ)

)
+

1

|W |
∑
w∈W

log
(
1 +

∑
w−∈W−

eα(w
Tw−+λ)

)
,

(6.1)

B. Psomas 64

Metric Learning: A Deep Dive

Table 17: Comparing the retrieval quality of loss functions on CUB200-2011.

R@1 R@2 R@4 R@8

Contrastive 63.28 74.51 82.83 89.50

Triplet 61.98 73.59 83.80 88.87

LiftedStructure 64.28 75.47 83.91 89.89

NPair 59.90 71.98 80.47 87.25

ProxyNCA 63.84 74.02 82.98 89.54

Margin 63.48 75.86 83.90 89.78

ArcFace 62.36 73.48 81.67 88.08

MultiSimilarity 65.24 75.76 84.69 90.48

SoftTriple 66.76 77.09 85.36 91.21

OurLoss 65.42 75.89 84.99 90.52

ProxyAnchor 68.11 78.63 85.77 91.12

Table 18: Comparing the retrieval quality of loss functions on CARS196.

R@1 R@2 R@4 R@8

Contrastive 79.09 86.36 91.69 95.06

Triplet 77.02 84.12 89.79 93.56

LiftedStructure 79.82 86.79 91.86 94.92

NPair 73.25 81.86 86.58 90.45

ProxyNCA 81.02 86.97 92.47 95.12

Margin 81.98 87.75 91.75 94.85

ArcFace 79.42 86.77 91.71 94.70

MultiSimilarity 83.75 89.84 93.75 96.53

SoftTriple 85.29 91.10 94.78 97.10

OurLoss 84.12 90.12 94.00 96.97

ProxyAnchor 86.21 91.71 94.70 96.95

where λ > 0 is a margin, α > 0 is a scaling factor, W = W+ + W− indicates the set of

all proxies, X = X+
w + X−

w indicates the batch of embedding vectors and w− a negative

proxy to w.

In its second variation, our loss function utilizes a small trick in order to exploit more data-

to-data relations. In its first variation, our loss is able to capture indirectly data-to-data

relations only concerning positives. This happens due to the nature of the Log-Sum-Exp

that takes into consideration the relative hardness of positive samples when associating

them with their corresponding proxy. However, proxies themselves are treated as neg-

atives and are not associated anyhow with other samples. Our idea is to replace wTw−

with
∑

x∈X(w
Tx)(xTw−), so that the similarity between proxies is computed by taking into

consideration the samples of the batch too. The second variation of our loss function can

be formulated as:

LOurLoss2 =
1

|W+|
∑

w∈W+

log
(
1+

∑
x∈X+

w

e−α(wTx−λ)

)
+

1

|W |
∑
w∈W

log
(
1+

∑
w−∈W−

eα
(∑

x∈X(wTx)(xTw−)+λ
))

,

(6.2)

We conduct experiments with the second variation of our loss function using the BNIncep-

tion with a 512-dimensional embedding on CUB200-2011, CARS196 and SOP datasets.

The results are shown in Tables 17, 18, 19 respectively.

B. Psomas 65

Metric Learning: A Deep Dive

Table 19: Comparing the retrieval quality of loss functions on SOP.

R@1 R@10 R@100 R@1000

Contrastive 77.10 89.01 95.23 97.85

Triplet 73.85 84.93 90.11 92.45

LiftedStructure 77.14 89.62 95.73 98.75

NPair 71.45 82.88 87.99 90.58

ProxyNCA 76.15 88.02 93.14 95.47

Margin 76.54 87.98 92.51 94.89

ArcFace 74.91 85.29 90.81 93.39

MultiSimilarity 77.73 89.88 95.77 98.69

SoftTriple 79.29 90.70 95.85 98.53

OurLoss 77.92 90.01 95.89 98.99

ProxyAnchor 79.42 90.66 96.05 98.62

B. Psomas 66

Metric Learning: A Deep Dive

7. CONCLUSIONS AND FUTURE WORK

The remarkable success of Convolutional Neural Networks that brought changes to almost

all the domains of Machine Learning and Computer Vision could not but have affected

Metric Learning too. Deep Metric Learning, which is introduced by the authors of [1],

succeeds Linear and Nonlinear Metric Learning.

While delving into bibliography, we realize that there are a lot of issues related to the Deep

Metric Learning setup: unfair comparisons, lack of validation set, etc. This motivates us to

conduct extensive experiments using the most common CNN architectures (GoogLeNet,

BNInception, ResNet50) on the most common used datasets (CUB200-2011, CARS196,

SOP) using 10 different loss functions (Contrastive, Triplet, LiftedStructure, NPair, Prox-

yNCA, ArcFace, Margin, MultiSimilarity, SoftTriple, ProxyAnchor) and 4 different embed-

ding sizes (64, 128, 512, 1024). This work can be considered as a benchmark for fair

comparisons and ablation study.

We present an extensive discussion about our results: Networks, embeddings, datasets,

loss functions and finally the setup itself. The observed drawbacks lead us to design and

propose:

• A new setup using a fixed validation set that seems to balance perfectly between the

computational complexity and retrieval quality trade-off. Moreover, it is indicated for

exhaustive hyperparameter search.

• A new loss function that is proxy-based, but is in between the rationale of classifi-

cation and embedding losses. It treats proxies of different class as negatives that

should be pushed away and samples of the same class as positives that should be

pulled by the corresponding proxy.

Concerning future work and future directions, we propose:

• The conduction of extensive experiments using our fixed validation setup for all the

losses. The optimal hyperparameters found by this setup may significantly improve

their retrieval quality.

• Redesigning our loss function to capture more data-to-data relations.

• The utilization of some kind of memory and/or offline mining for our loss function.

• Experimenting with a semi-supervised or even unsupervised setup for Deep Metric

Learning. This is something that has not been studied and would be interesting.

Code of this work is available in GitHub repository: https://github.com/billpsoma
s/metric-learning

B. Psomas 67

https://github.com/billpsomas/metric-learning
https://github.com/billpsomas/metric-learning

Metric Learning: A Deep Dive

A. APPENDIX

A.1 Remaining experiments

Let us present the results of experiments that were not included in Chapter 4.

A.1.1 CARS196 ResNet50

Table 20: CARS196 ResNet50 experiments.

(a) embedding size = 64.

R@1 R@2 R@4 R@8

Contrastive 73.83 82.73 88.83 92.90

Triplet 71.11 80.76 87.57 92.40

LiftedStructure 75.48 83.89 89.68 93.57

NPair 69.10 79.18 86.53 91.80

ProxyNCA 73.20 81.70 88.03 92.33

Margin 75.88 84.44 90.30 94.39

ArcFace 73.55 81.84 87.30 91.91

MultiSimilarity 79.26 87.11 92.08 95.73

SoftTriple 79.81 87.76 92.94 96.05

ProxyAnchor 81.63 88.54 93.14 95.88

(b) embedding size = 128.

R@1 R@2 R@4 R@8

Contrastive 77.11 85.54 90.95 94.51

Triplet 74.84 83.82 89.98 94.05

LiftedStructure 78.15 86.03 90.78 94.45

NPair 72.49 82.23 88.51 92.60

ProxyNCA 78.42 85.59 90.76 94.55

Margin 79.60 86.75 91.49 94.81

ArcFace 77.78 85.14 89.76 93.42

MultiSimilarity 84.09 90.16 94.37 96.99

SoftTriple 83.09 89.64 93.47 96.46

ProxyAnchor 84.77 90.53 94.01 96.42

(c) embedding size = 512.

R@1 R@2 R@4 R@8

Contrastive 82.17 88.63 93.17 95.98

Triplet 77.27 85.38 90.78 94.33

LiftedStructure 81.40 88.28 92.37 95.03

NPair 75.23 83.94 88.57 92.34

ProxyNCA 81.18 87.92 92.58 95.43

Margin 82.09 88.67 92.71 95.68

ArcFace 79.18 86.45 91.12 94.53

MultiSimilarity 89.21 93.56 96.40 97.87

SoftTriple 86.50 91.93 95.29 97.29

ProxyAnchor 87.59 92.26 95.53 97.37

(d) embedding size = 1024.

R@1 R@2 R@4 R@8

Contrastive 83.79 90.00 94.00 96.66

Triplet 77.64 85.62 90.83 94.33

LiftedStructure 82.52 88.75 92.89 95.39

NPair 75.98 83.62 88.37 92.14

ProxyNCA 81.02 87.87 92.59 95.77

Margin 80.63 87.58 92.39 95.30

ArcFace 80.80 87.39 92.11 95.18

MultiSimilarity 88.80 93.32 96.11 97.82

SoftTriple 87.28 92.34 95.73 97.74

ProxyAnchor 87.86 92.57 95.47 97.36

We present the CARS196 experiments made using ResNet50. NPair and Triplet have

the worst performance. ArcFace, Margin, ProxyNCA, LiftedStructure and Contrastive are

in general ranked in the middle. SoftTriple, MultiSimilarity and ProxyAnchor have the

best performance. It is worth mentioning that MultiSimilarity exceeds the performance of

ProxyAnchor by more than 1% when using an embedding size of 512 and 1024 as can be

seen in 20c and 20d.

A.1.2 CARS196 GoogLeNet

We also present the CARS196 experiments made using GoogLeNet. NPair and Triplet

perform the worst for one more time. ProxyNCA and Margin are ranked close to them

in most of the experiments. ArcFace’s ranking seems to vary a lot, as it has the third

worst performance when using an embedding size of 64 (Table 21a), but the third best

B. Psomas 68

Metric Learning: A Deep Dive

performance when using an embedding size of 1024 (Table 21d). Contrastive and Lifted-

Structure are performing way better than expected and what is presented in papers and

they even surpass MultiSimilarity in some experiments. Finally, SoftTriple and ProxyAn-

chor have the best performance among all the loss functions.

Table 21: CARS196 GoogLeNet experiments.

(a) embedding size = 64.

R@1 R@2 R@4 R@8

Contrastive 71.71 81.14 87.85 92.40

Triplet 67.89 76.87 83.68 88.74

LiftedStructure 72.67 81.33 87.98 92.78

NPair 66.99 76.01 82.89 87.77

ProxyNCA 69.09 77.68 84.02 90.37

Margin 71.82 80.88 87.15 91.87

ArcFace 68.60 77.80 84.93 90.49

MultiSimilarity 72.18 81.74 88.69 93.35

SoftTriple 74.87 83.85 90.23 94.16

ProxyAnchor 77.54 85.68 91.23 94.75

(b) embedding size = 128.

R@1 R@2 R@4 R@8

Contrastive 76.69 85.17 90.46 94.06

Triplet 71.13 80.78 86.04 91.82

LiftedStructure 77.36 84.95 90.67 94.22

NPair 69.26 78.13 84.38 90.03

ProxyNCA 74.12 82.78 88.16 92.87

Margin 74.76 83.10 89.19 93.67

ArcFace 76.03 83.83 89.25 93.29

MultiSimilarity 76.42 84.66 90.37 94.29

SoftTriple 78.16 86.52 92.07 95.29

ProxyAnchor 81.61 88.06 92.68 95.62

(c) embedding size = 512.

R@1 R@2 R@4 R@8

Contrastive 80.61 87.54 92.15 95.22

Triplet 73.46 80.59 84.50 91.63

LiftedStructure 80.21 87.11 91.87 94.85

NPair 71.93 78.11 82.27 89.30

ProxyNCA 76.13 82.31 87.81 92.59

Margin 78.46 85.68 90.90 94.11

ArcFace 81.81 88.14 92.40 95.63

MultiSimilarity 81.69 88.60 93.06 95.92

SoftTriple 82.31 89.23 93.54 96.32

ProxyAnchor 85.48 90.76 94.55 96.90

(d) embedding size = 1024.

R@1 R@2 R@4 R@8

Contrastive 80.96 87.92 92.24 95.15

Triplet 74.21 82.62 86.35 92.25

LiftedStructure 81.05 88.10 92.44 95.49

NPair 72.78 80.81 83.42 88.68

ProxyNCA 76.49 85.47 91.03 94.22

Margin 78.93 85.31 91.25 94.08

ArcFace 80.53 87.40 91.80 95.18

MultiSimilarity 82.20 88.96 93.14 96.08

SoftTriple 83.04 89.69 93.96 96.69

ProxyAnchor 85.97 91.51 94.85 97.04

B. Psomas 69

Metric Learning: A Deep Dive

ABBREVIATIONS - ACRONYMS

GPU Graphical Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

ReLU Rectified Linear Unit

CNN Convolutional Neural Networks

SUV Sport Utility Vehicle

POLA Pseudo-Metric Online Learning Algorithm

LMNN Large-Margin Nearest Neighbors

NCA Neighborhood Component Analysis

MCML Maximally Collapsing Metric Learning

MLP Multi-layer Perceptron

B. Psomas 70

Metric Learning: A Deep Dive

REFERENCES

[1] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via lifted structured fea-

ture embedding,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[2] B. Kulis et al., “Metric learning: A survey,” Foundations and trends in machine learning, vol. 5, no. 4,

pp. 287–364, 2012.

[3] Y. Mahdid, “Perceptron algorithm from scratch in python,” 2020. https://yacinemahdid.com/stat-

ic/7c425dc2a439bb4bcc6e627eb549b010/6c315/thumbnail.jpg.

[4] Y. Avrithis, “Lecture 5: Learning,” 2019. https://sif-dlv.github.io/slides/learn.pdf.

[5] A. Mohanty, “Multi layer perceptron (mlp) models on real world banking data,” 2019.

https://miro.medium.com/max/700/1*-IPQlOd46dlsutIbUq1Zcw.png.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-

tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[7] Y. Avrithis, “Lecture 7: Convolution and network architectures,” 2019. https://sif-dlv.github.io/slides/-

conv.pdf.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. Berg, and L. Fei-Fei, “Imagenet large scale visual recognition challenge,” International

Journal of Computer Vision, vol. 115, 09 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” in Advances in Neural Information Processing Systems 25 (F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[10] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 1–9, 2015.

[11] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture

for computer vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 2818–2826, 2016.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition

and clustering,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 815–823, 2015.

[14] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-similarity loss with general pair weighting

for deepmetric learning,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2019.

[15] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh, “No fuss distance metric learning

using proxies,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 360–368,

2017.

[16] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face

recognition,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 4685–4694, 2019.

[17] Q. Qian, L. Shang, B. Sun, J. Hu, T. Tacoma, H. Li, and R. Jin, “Softtriple loss: Deep metric learn-

ing without triplet sampling,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV),

pp. 6449–6457, 2019.

[18] S. Kim, D. Kim, M. Cho, and S. Kwak, “Proxy anchor loss for deep metric learning,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3238–3247, 2020.

[19] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-UCSD Birds-200-2011

Dataset,” tech. rep., 2011.

B. Psomas 71

Metric Learning: A Deep Dive

[20] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained categorization,”

2013 IEEE International Conference on Computer Vision Workshops, pp. 554–561, 2013.

[21] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines.,” in ICML

(J. Fürnkranz and T. Joachims, eds.), pp. 807–814, Omnipress, 2010.

[22] S. Chopra, R. Hadsell, and Y. Lecun, “Learning a similarity metric discriminatively, with application to

face verification,” vol. 1, pp. 539– 546 vol. 1, 07 2005.

[23] R. Hadsell, S. Chopra, and Y. Lecun, “Dimensionality reduction by learning an invariant mapping,”

pp. 1735 – 1742, 02 2006.

[24] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for large margin nearest neighbor

classification,” in In NIPS, MIT Press, 2006.

[25] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person re-identification,” CoRR,

vol. abs/1703.07737, 2017.

[26] C.Wu, R. Manmatha, A. J. Smola, and P. Krähenbühl, “Sampling matters in deep embedding learning,”

in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2859–2867, 2017.

[27] B. Harwood, V. K. B G, G. Carneiro, I. Reid, and T. Drummond, “Smart mining for deepmetric learning,”

pp. 2840–2848, 10 2017.

[28] I. Fehérvári, A. Ravichandran, and S. Appalaraju, “Unbiased evaluation of deep metric learning algo-

rithms,” ArXiv, vol. abs/1911.12528, 2019.

[29] M. Schultz and T. Joachims, “Learning a distance metric from relative comparisons,” in Advances in

Neural Information Processing Systems 16 (S. Thrun, L. K. Saul, and B. Schölkopf, eds.), pp. 41–48,

MIT Press, 2004.

[30] J. T. Kwok and I. W. Tsang, “Learning with idealized kernels,” in Proceedings of the Twentieth Interna-

tional Conference on International Conference on Machine Learning, ICML’03, p. 400–407, AAAI Press,

2003.

[31] S. Shalev-Shwartz, Y. Singer, and A. Ng, “Online and batch learning of pseudo-metrics,” 01 2004.

[32] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest neighbor classifi-

cation,” J. Mach. Learn. Res., vol. 10, p. 207–244, June 2009.

[33] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest neighbor classifi-

cation,” J. Mach. Learn. Res., vol. 10, p. 207–244, June 2009.

[34] A. Globerson and S. Roweis, “Metric learning by collapsing classes,” in Proceedings of the 18th In-

ternational Conference on Neural Information Processing Systems, NIPS’05, (Cambridge, MA, USA),

p. 451–458, MIT Press, 2005.

[35] G. W. Leibniz, “Memoir using the chain rule (cited in TMME 7:2&3 p 321-332, 2010),” 1676.

[36] G. de L’Hospital, Analyse des infiniment petits pour l’intelligence des lignes courbes. de L‘Imprimerie

royale, 1696.

[37] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Cornell

Aeronautical Laboratory. Report no. VG-1196-G-8, Spartan Books, 1962.

[38] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry. Mit Press, 1972.

[39] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, pp. 193–202, 1980.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification,” in 2015 IEEE International Conference on Computer Vision (ICCV),

pp. 1026–1034, 2015.

[41] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” vol. 37 of Proceedings of Machine Learning Research, (Lille, France), pp. 448–456,

PMLR, 07–09 Jul 2015.

[42] S. Bell and K. Bala, “Learning visual similarity for product design with convolutional neural networks,”

ACM Trans. Graph., vol. 34, July 2015.

B. Psomas 72

Metric Learning: A Deep Dive

[43] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a ”siamese”

time delay neural network,” in Proceedings of the 6th International Conference on Neural Information

Processing Systems, NIPS’93, (San Francisco, CA, USA), p. 737–744, Morgan Kaufmann Publishers

Inc., 1993.

[44] H. Robbins, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22,

pp. 400–407, 2007.

[45] M. Massie, F. A. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. Joseph, and D. Patterson, “Adam:

Genomics formats and processing patterns for cloud scale computing,” 2013.

[46] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksigian, J. Kottalam, A. Ahuja,

J. Hammerbacher, M. Linderman, M. Franklin, A. D. Joseph, and D. A. Patterson, “Rethinking data-

intensive science using scalable analytics systems,” in Proceedings of the 2015 International Confer-

ence on Management of Data (SIGMOD ’15), ACM, 2015.

[47] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in International Workshop on

Similarity-Based Pattern Recognition, pp. 84–92, Springer, 2015.

[48] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,” in Advances in Neural

Information Processing Systems 29 (D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,

eds.), pp. 1857–1865, Curran Associates, Inc., 2016.

[49] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in European con-

ference on computer vision, pp. 818–833, Springer, 2014.

[50] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013.

[51] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[52] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization. arxiv 2017,” arXiv preprint

arXiv:1711.05101.

[53] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, “Deep metric learning to rank,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1861–1870, 2019.

[54] Y. Yuan, K. Yang, and C. Zhang, “Hard-aware deeply cascaded embedding,” in Proceedings of the

IEEE international conference on computer vision, pp. 814–823, 2017.

[55] B. Yu and D. Tao, “Deep metric learning with tuplet margin loss,” in 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pp. 6489–6498, 2019.

[56] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N. Robertson, “Ranked list loss for deep metric

learning. arxiv 2019,” arXiv preprint arXiv:1903.03238.

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,”

in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

B. Psomas 73

	Contents
	INTRODUCTION
	Motivation
	Challenges and Related Work
	Contributions
	Structure

	BACKGROUND
	Metric Learning
	Linear Metric Learning
	Nonlinear Metric Learning

	The story of Neural Networks in fast forward
	Perceptron
	Multilayer Perceptrons
	LeNet
	AlexNet
	GoogLeNet (Inception v1)
	BNInception (Inception v2)
	ResNet

	Deep Metric Learning
	Embedding Loss Functions
	Contrastive
	Triplet
	LiftedStructure
	NPair
	Margin
	MultiSimilarity

	Classification Loss Functions
	SoftMax
	ProxyNCA
	ArcFace
	SoftTriple
	ProxyAnchor

	EXPERIMENTAL SETUP
	Datasets
	Networks
	Evaluation Protocol
	Implementation Details
	Issues
	Unfair Comparisons
	Lack of Validation Set
	Benchmark and Ablation Study

	EXPERIMENTAL RESULTS AND DISCUSSION
	Results
	CUB200-2011 ResNet50
	CUB200-2011 BNInception
	CUB200-2011 GoogLeNet
	CARS196 BNInception
	SOP BNInception

	Discussion
	About Networks
	About Embeddings
	About Datasets
	About Loss Functions
	Embedding vs. Classification Loss Functions
	Tournament of Loss Functions

	About Setup

	OUR SETUP
	Cross Validation
	Fixed Validation Set

	OUR METHOD
	CONCLUSIONS AND FUTURE WORK
	APPENDIX
	Remaining experiments
	CARS196 ResNet50
	CARS196 GoogLeNet

	ABBREVIATIONS - ACRONYMS
	REFERENCES

