
Filippos Bellos, BSc
A.M.: 2018511

Iterative label cleaning for
semi-supervised learning

Master’s Thesis
to achieve the university degree of

Master of Science
Master’s degree programme: Control and Computing

submitted to

National and Kapodistrian University of Athens
School of Sciences

Department of Physics

Supervisors
Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Dionysios Reisis
National and Kapodistrian University of Athens

Examination committee: Yannis Avrithis, Dionysios Reisis, Anna Tzanakaki

Athens, July 2021

Φίλιππος Μπέλλος, Πτυχιούχος

Α.Μ.: 2018511

Επαναληπτικός καθαρισμός

προβλέψεων για ημι-επιβλεπόμενη

μάθηση

Διπλωματική Εργασία

για να λάβει

Μεταπτυχιακό Δίπλωμα Ειδίκευσης

Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών: Ηλεκτρονικός

Αυτοματισμός

κατατέθηκε στο

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Σχολή Θετικών Επιστημών

Τμήμα Φυσικής

Επιβλέποντες

Γιάννης Αβρίθης

Inria Rennes-Bretagne Atlantique

Διονύσιος Ρεΐσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Εξεταστική επιτροπή: Γιάννης Αβρίθης, Διονύσιος Ρεΐσης, Άννα

Τζανακάκη

Αθήνα, Ιούλιος 2021

Abstract

Deep neural networks have become the de facto model for computer vision
applications. Their success is partially attributable to their scalability, i.e., the
empirical observation that training them on larger datasets produces better
performance. Deep networks often achieve their strong performance through
supervised learning, which requires a labeled dataset. The performance benefit
conferred by the use of a larger dataset can therefore come at a significant cost
since labeling data often requires human labor. This cost can be particularly
extreme when labeling must be done by an expert.

A powerful approach for training models on a large amount of data without
requiring a large amount of labels is semi-supervised learning (SSL). SSL
mitigates the requirement for labeled data by providing a means of leveraging
unlabeled data. Since unlabeled data can often be obtained with minimal human
labor, any performance boost conferred by SSL often comes with low cost. This
has led to a plethora of SSL methods that are designed for deep networks.

In this thesis, we propose two methods that combine successful ideas in
problems related to our task at hand. In particular, we propose CleanMatch and
WeightMatch, two new semi-supervised learning methods that unify dominant
approaches and address their limitations. CleanMatch consists of two stages: (1)
iterative selection of the most confident pseudo-labels provided by a combination
of consistency regularization and pseudo-labeling following FixMatch [96] and
(2) augmentation of the labeled set with the selected examples of the first
stage and semi-supervised training based on FixMatch on the augmented
dataset. WeightMatch estimates a weight reflecting the confidence of each
labeled example, forcing the model to rely more on the confident ones during
training.

Our methods improve the state-of-the-art by a large margin on CIFAR-10,
SVHN and CIFAR-100, especially on few label settings.

Subject area: Computer vision, Deep learning
Keywords: Semi-supervised learning, Noisy labels

v

Περίληψη

Τα βαθιά νευρωνικά δίκτυα έχουν γίνει το de facto μοντέλο για εφαρμογές όρασης
υπολογιστών. Η επιτυχία τους οφείλεται εν μέρει στη δυνάτοτητα κλιμάκωσης

τους, δηλαδή στην εμπειρική παρατήρηση ότι εκπαιδεύοντας τα σε μεγαλύτερα

σύνολα δεδομένων παράγουν καλύτερη απόδοση. Τα βαθιά δίκτυα επιτυγχάνουν

συχνά ισχυρή απόδοση μέσω επιβλεπόμενης μάθησης, η οποία απαιτεί ένα σύνο-

λο δεδομένων με ετικέτες. Το όφελος στην απόδοση που αποδίδεται στη χρήση

ενός μεγαλύτερου συνόλου δεδομένων μπορεί να έχει σημαντικό κόστος καθώς η

εμβάπτιση δεδομένων συχνά απαιτεί ανθρώπινη εργασία. Αυτό το κόστος μπορεί

να είναι ιδιαίτερα μεγάλο όταν πρέπει να γίνει εμβάπτιση από κάποιον ειδικό.

Μια ισχυρή προσέγγιση για την εκπαίδευση μοντέλων σε μεγάλο αριθμό δε-

δομένων χωρίς να απαιτείται μεγάλη ποσότητα ετικετών είναι η ημι-επιβλεπόμενη

μάθηση. Η ημι-επιβλεπόμενη μάθηση μετριάζει την απαίτηση για δεδομένα με

ετικέτες παρέχοντας ένα μέσο αξιοποίησης δεδομένων χωρίς εμβάπτιση. Δεδο-

μένου ότι τα δεδομένα χωρίς εμβάπτιση μπορούν να ληφθούν με την ελάχιστη

δυνατή ανθρώπινη εργασία, κάθε αύξηση της απόδοσης που παρέχεται από την

ημι-επιβλεπόμενη μάθηση έρχεται συχνά με χαμηλό κόστος. Αυτό οδήγησε σε μια

πληθώρα μεθόδων ημι-επιβλεπόμενης μάθησης που έχουν σχεδιαστεί για βαθιά

δίκτυα.

Σε αυτή τη διατριβή, προτείνουμε δύο μεθόδους που συνδυάζουν επιτυχημένες

ιδέες σε προβλήματα που σχετίζονται με το ζητούμενο που εξηγήθηκε προη-

γουμένως. Συγκεκριμένα, προτείνουμε το CleanMatch και το WeightMatch, δύο
νέες ημι-επιβλεπόμενες μεθόδους μάθησης που ενοποιούν κυρίαρχες προσεγγίσεις

και προτείνουν λύση στους περιορισμούς τους. Το CleanMatch αποτελείται από
δύο στάδια: (1) επαναληπτική επιλογή των πιο σίγουρων ψευδο-ετικετών που πα-

ρέχονται από ένα συνδυασμό κανονικοποίησης συνέπειας και ψευδο-εμβάπτισης

(consistency regularization and pseudo-labeling) ακολουθώντας το FixMatch
[96] και (2) αύξηση του σετ ετικετών με τα επιλεγμένα παραδείγματα του πρώτου

σταδίου και ημι-επιβλεπόμενη εκπαίδευση με βάση το FixMatch στο επαυξημένο
σύνολο δεδομένων. Το WeightMatch υπολογίζει ένα βάρος που αντικατοπτρίζει
την εμπιστοσύνη κάθε παραδείγματος, αναγκάζοντας το μοντέλο να βασίζεται

περισσότερο στα πιο σίγουρα απάυτά κατά τη διάρκεια της εκπαίδευσης.

Οι μέθοδοι μας επιτυγχάνουν την καλύτερη απόδοση σε πολλά σύνολα δε-

δομένων. Επιτυγχάνουν σημαντικές βελτιώσεις στην ακρίβεια στα CIFAR-10,
SVHN και CIFAR-100 σε σενάρια με λιγοστές ετικέτες.

Θεματική περιοχή: ΄Οραση υπολογιστών, Βαθιά μάθηση

vii

Λέξεις-κλειδιά: Ημι-επιβλεπόμενη μάθηση, Ετικέτες με θόρυβο

viii

Acknowledgements

Part of this work was conducted in the Linkmedia Team of INRIA Rennes-
Bretagne Atlantique. I would like to sincerely thank my supervisor Yannis
Avrithis for his invaluable guidance and support throughout this whole project.
His contribution goes beyond this thesis though, as through his lectures and the
way he communicated his knowledge, I discovered my passion for the field, and I
will always be grateful for that. I would also like to thank the Linkmedia Team
as a whole for creating a pleasant and warm work environment, but especially
Deniz Engin for her willingness to help me resolve whatever technical issue
occured and Michalis Lazarou for our interesting discussions on this work and
the field in general. Finally, I would like to thank my family for their endless
support throughout this work.

x

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation-limited supervision 5
1.3 Contributions . 7

2 Visual representations 9
2.1 Handcrafted representation . 9

2.1.1 Feature detection . 9
2.1.2 Feature description . 10

2.2 Learned representation . 14
2.2.1 Multi-Layer perceptrons 14
2.2.2 Convolutional networks 15
2.2.3 Gradient based optimization 20

3 Semi-supervised learning 25
3.1 Background . 25
3.2 Assumptions . 26
3.3 Approaches . 27

3.3.1 Consistency regularization 28
3.3.2 Pseudo-label methods 34
3.3.3 Hybrid methods . 40

3.4 Learning with noisy labels . 46
3.4.1 Noise-cleansing . 46
3.4.2 Noise-robust models . 47

4 Our Methods 48
4.1 Introduction . 48
4.2 Preliminaries . 48
4.3 CleanMatch . 50

4.3.1 Stage 1 . 51
4.3.2 Stage 2 . 54

4.4 WeightMatch . 54

5 Experiments 56
5.1 CIFAR-10 and SVHN . 56
5.2 CIFAR-100 . 57

xii

Contents

5.3 Ablation study . 59
5.3.1 Iterative cleaning . 59
5.3.2 Training . 59

6 Conclusion and Future work 61
6.1 Conclusion . 61
6.2 Future work . 61

Bibliography 63

xiii

List of Figures

1.1 Appearance Variations. Image Source: http://cs231n.github.io/. 2
1.2 Illustration of a deep learning model. It is difficult for a com-

puter to understand the meaning of raw sensory input data, such
as this image represented as a collection of pixel values. The
function mapping from a set of pixels to an object identity is
very complicated. Learning or evaluating this mapping seems
insurmountable if tackled directly. Deep learning resolves this
difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different
layer of the model. The input is presented at the visible layer,
so named because it contains the variables that we are able to
observe. Then a series of hidden layers extracts increasingly
abstract features from the image. These layers are called “hid-
den” because their values are not given in the data; instead the
model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are vi-
sualizations of the kind of feature represented by each hidden
unit. Given the pixels, the first layer can easily identify edges,
by comparing the brightness of neighboring pixels. Given the
first hidden layer’s description of the edges, the second hidden
layer can easily search for corners and extended contours, which
are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours,
the third hidden layer can detect entire parts of specific objects,
by finding specific collections of contours and corners. Finally,
this description of the image in terms of the object parts it con-
tains can be used to recognize the objects present in the image.
Image Source: [109] . 4

1.3 Imagenet. Contains in total 22k classes with 15M samples.
Image Source: [86]. 5

2.1 Difference-of-Gaussian (DoG) Pyramid and Extrema Selection.
Image source: . 11

2.2 SIFT. Part of the SIFT pipeline for keypoint descriptor extrac-
tion. Image Source: [68]. 12

2.3 The BoVW 4-step process. Image Source: [103] 13

xiv

List of Figures

2.4 Sigmoid function. 14

2.5 Rectified Linear Unit (ReLU). 15

2.6 Neocognitron. A biologically-inspired convolutional network.
Image Source: [32]. 15

2.7 LeNet-5. It represents the first-generation CNNs, and was ini-
tially developed to recognize handwritten digits. Image Source:
[62]. 17

2.8 AlexNet.Outperformed all previous models on ILSVRC by 10%
while it included in its implementation ReLU, data augmentation,
local response normalization and dropout. Image Source: [59]. . 17

2.9 VGGNets. VGG16, 16 layers. Image Source: [92]. 18

2.10 GoogLeNet. The network uses combinations of inception mod-
ules, each including some pooling, convolutions at different scales
and concatenation operations. It also uses 1x1 feature convolu-
tions that work like feature selectors. Increased depth to 22 layers
. It achieved 6.7% top-5 error on ILSVRC’14. Image Source: [100]. 19

2.11 Example of Residual Unit. Image Source: [43]. 19

2.12 ResNet. Residual units are used extensively in the networks
while at the end average pooling is used to aggregate global
feature representations. 3.57% top-5 error on ILSVRC’15. Won
first place on several ILSVRC and COCO 2015 tasks. Depth
increased to 152 layers. Image Source: [43]. 20

2.13 Various ResNets blocks. Image Source: [108]. 20

2.14 SGD fluctuation (Source: Wikipedia) 22

2.15 Source: Genevieve B. Orr . 23

a SGD without momentum 23

b SGD with momentum 23

2.16 Nesterov update (Source: G. Hinton’s lecture 6c) 24

3.1 The diverse range of architectures used for consistency regulariza-
tion semi-supervised methods. In addition to the identifiers in the
figure, denotes the perturbation noise, and R is the consistency
constraint. Image Source: [107]. 28

3.2 The diverse range of architectures used for pseudo-label semi-
supervised methods. Image Source: [107]. 35

3.3 MixMatch. The procedure of label guessing process used in
MixMatch, taking as input a batch of unlabeled examples, and
outputting a batch of K augmented version of each input, with
a corresponding sharpened proxy labels. Image Source: [9]. . . . 42

xv

 https://upload.wikimedia.org/wikipedia/commons/f/f3/Stogra.png
https://www.willamette.edu/~gorr/classes/cs449/momrate.html
 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

List of Figures

3.4 ReMixMatch. Left. Distribution alignment adjusts the guessed
labels distributions to match the ground-truth class distribution
divided by the average model predictions on Du. Right. Aug-
mentation anchoring uses the prediction obtained using a weakly
augmented image as targets for a strongly augmented version of
the same image. Image Source: [10]. 43

3.5 FixMatch. The model prediction on a weakly augmented input
is considered as target if the maximum output class probability
is above threshold, this target can then be used to train the
model on a strongly augmented version of the same input using
standard cross-entropy loss. Image Source: [10]. 44

3.6 SelfMatch. Overview of the method depicting the 2 stages
followed. Image Source: [55]. 45

3.7 CoMatch. Given a batch of unlabeled images, their weakly-
augmented images are used to produce memory-smoothed pseudo-
labels, which are used as targets to train the class prediction
on strongly-augmented images. A pseudo-label graph with self-
loop is constructed to measure the similarity between samples,
which is used to train an embedding graph such that images with
similar pseudo-labels have similar embeddings. Image Source: [66] 46

4.1 CleanMatch. Stage 1 : An example goes through weak(AW) and
strong augmentation(AS). The weakly-augmented version of the
example is fed into the encoder to obtain predictions produced
by a classifier head. If its maximum output class probability
assigned by the network is above a threshold τ1 (green dotted
line), then the example along with its pseudo-label ŷ contributes
to the training (the model is trained to make its prediction on
the strongly-augmented version match the pseudo-label via a
cross-entropy loss). The model prediction on a weakly augmented
input is considered as candidate for cleaning If the maximum
output class probability is above threshold τ2 (red dotted line),
then it is a candidate for selection through label cleaning. If it
is selected as clean(xc) then it will be added to a clean set XC,
and subtracted from the unlabeled set XU . Stage 2 : We augment
XL with XC and train as in Stage 1 without the iterative label
cleaning using the new XL. 55

xvi

List of Tables

5.1 Comparison of accuracy for CIFAR-10. All baseline methods use
Wide ResNet 28-2. 57

5.2 Comparison of accuracy for SVHN. All baseline methods use
Wide ResNet 28-2. 58

5.3 Comparison of accuracy for CIFAR-100. All baseline methods
use Wide ResNet 28-8. 59

xviii

1 Introduction

1.1 Context

Today, the field of computer vision has become ubiquitous in our society, with
applications in image understanding, image search, medicine, drones, and self
driving cars. In particular, visual recognition is a central problem to computer
vision research, and its goal is to automatically understand the contents of
images. From robotics to information retrieval, many desired applications
demand the ability to recognize objects, people, scenes, and activities. To
train machines that are able to interpret the visual content of an image, the
community has developed many algorithms and representations. The main tasks
of visual recognition are image classification, detection and segmentation.

In this thesis, we mainly focus on the image classification problem. The goal
is to predict if a semantic category is present in the image according to its
visual content. This is one of the fundamental problems in computer vision that
has a large variety of practical applications. The image classification problem
becomes crucial because image and video data are one of the largest and fastest
growing sources of information due to the popularization of digital photography
(smartphones, digital cameras, etc.) coupled with the expansion of many social
networks and mobile Internet access. For instance, there are 350 million photos
uploads per day to Facebook and 80 million to Instagram. There are also 300
hours of video uploaded to YouTube every minute. In 2020, Cisco estimates that
82% of all the web traffic will be video, and that every second, a million minutes
of video content will cross the network. To exploit that immense and increasing
collection of visual data, we need to annotate each image with semantically
rich terms, which is the purpose of image classification. Most of the major
technology companies, including Google, Facebook, Microsoft, IBM, Yahoo!,
Twitter and Adobe, as well as a quickly growing number of start-ups, initiate
research and development projects to deploy image understanding products
and services.

For a human, the image classification (or image annotation) problem is easy.
Unfortunately for a machine it is challenging, because the machine only “sees”
numbers, without semantic meaning. The goal is to map all these numbers (i.e.
the digital image) into one or several labels. This implies understanding complex
semantic meanings based on an image’s visual content. The main challenge
is that low-level image representations (i.e. the pixels) are not discriminative
enough to directly predict semantic-level concepts. Smeulders et al.. [94] calls this

1

1 Introduction

problem semantic gap. Bridging the semantic gap requires an image classification
model which is able to extract high-level representations from raw image pixels.
Moreover a good image classification model must be invariant to the intra-class
variations (i.e. appearance variations, see Figure 1.1), while simultaneously
retaining sensitivity to the inter-class variations.

Figure 1.1: Appearance Variations. Image Source: http://cs231n.github.io/.

In the 2000s, most of the image representation models were based on hand-
crafted features. This approach requires careful engineering and considerable
domain expertise to design a feature extractor that transforms the raw image
pixels into a feature vector, with an eye for overcoming specific issues like
occlusions and variations in scale and illumination. The design of handcrafted
features often involves finding the right trade-off between accuracy and compu-
tational efficiency while the computation of handcrafted features, is normally a
two-step process. First, a keypoint detector locates characteristic regions of an
image (e.g. corners), which are then characterized by calculating a descriptor
that is capable of distinguishing each particular keypoint from the others. The
set of cues considered for building the descriptor depends on the specific feature
being used. At a lower level, a descriptor is a vector of measurements that can
be used to train a classifier.

However, for many tasks, it is difficult to know what features should be
extracted. For example, suppose that we would like to write a program to detect
cars in photographs. We know that cars have wheels, so we might like to use
the presence of a wheel as a feature. Unfortunately, it is difficult to describe
exactly what a wheel looks like in terms of pixel values. A wheel has a simple
geometric shape but its image may be complicated by shadows falling on the
wheel, the sun glaring off the metal parts of the wheel, the fender of the car or
an object in the foreground obscuring part of the wheel, and so on.

One solution to this problem is to use machine learning to discover not only
the mapping from representation to output but also the representation itself.
This approach is known as representation learning. Learned representations
often result in much better performance than can be obtained with hand-

2

1 Introduction

designed representations. They also allow systems to rapidly adapt to new
tasks, with minimal human intervention.

A representation learning algorithm can discover a good set of features for
a simple task in minutes, or a complex task in hours to months. Manually
designing features for a complex task requires a great deal of human time
and effort; it can take decades for an entire community of researchers. The
quintessential example of a representation learning algorithm is the autoencoder.
An autoencoder is the combination of an encoder function that converts the
input data into a different representation, and a decoder function that converts
the new representation back into the original format. Autoencoders are trained
to preserve as much information as possible when an input is run through
the encoder and then the decoder, but are also trained to make the new
representation have various nice properties. Different kinds of autoencoders aim
to achieve different kinds of properties.

When designing features or algorithms for learning features, the goal is usually
to separate the factors of variation that explain the observed data. Such factors
are often not quantities that are directly observed. Instead, they may exist
either as unobserved objects or unobserved forces in the physical world that
affect observable quantities. They may also exist as constructs in the human
mind that provide useful simplifying explanations or inferred causes of the
observed data. They can be thought of as concepts or abstractions that help us
make sense of the rich variability in the data. When analyzing an image of a
car, the factors of variation include the position of the car, its color, and the
angle and brightness of the sun.

A major source of difficulty in many real-world artificial intelligence appli-
cations is that many of the factors of variation influence every single piece of
data that can be observed. The individual pixels in an image of a red car might
be very close to black at night. The shape of the car’s silhouette depends on
the viewing angle. Most applications require us to disentangle the factors of
variation and discard the ones that are not useful. Of course, it can be very
difficult to extract such high-level, abstract features from raw data. Many of
these factors of variation can be identified only using sophisticated, nearly
human-level understanding of the data. When it is nearly as difficult to obtain
a representation as to solve the original problem, representation learning does
not, at first glance, seem to help us.

Deep learning solves this central problem in representation learning by
introducing representations that are expressed in terms of other, simpler repre-
sentations. Deep learning allows the computer to build complex concepts out
of simpler concepts. Figure 1.2 shows how a deep learning system can represent
the concept of an image of a person by combining simpler concepts, such as
corners and contours, which are in turn defined in terms of edges.

The quintessential example of a deep learning model is the feedforward deep
network or multilayer perceptron (MLP). A multilayer perceptron is just a

3

1 Introduction

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand the
meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity
is very complicated. Learning or evaluating this mapping seems insurmountable
if tackled directly. Deep learning resolves this difficulty by breaking the desired
complicated mapping into a series of nested simple mappings, each described
by a different layer of the model. The input is presented at the visible layer,
so named because it contains the variables that we are able to observe. Then a
series of hidden layers extracts increasingly abstract features from the image.
These layers are called “hidden” because their values are not given in the data;
instead the model must determine which concepts are useful for explaining the
relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can
easily identify edges, by comparing the brightness of neighboring pixels. Given
the first hidden layer’s description of the edges, the second hidden layer can easily
search for corners and extended contours, which are recognizable as collections of
edges. Given the second hidden layer’s description of the image in terms of corners
and contours, the third hidden layer can detect entire parts of specific objects,
by finding specific collections of contours and corners. Finally, this description of
the image in terms of the object parts it contains can be used to recognize the
objects present in the image. Image Source: [109]

mathematical function mapping some set of input values to output values.
The function is formed by composing many simpler functions. We can think
of each application of a different mathematical function as providing a new
representation of the input. The idea of learning the right representation for

4

1 Introduction

the data provides one perspective on deep learning.
Another perspective on deep learning is that depth allows the computer to

learn a multi-step computer program. Each layer of the representation can
be thought of as the state of the computer’s memory after executing another
set of instructions in parallel. Networks with greater depth can execute more
instructions in sequence. Sequential instructions offer great power because later
instructions can refer back to the results of earlier instructions. According to this
view of deep learning, not all of the information in a layer’s activations necessarily
encodes factors of variation that explain the input. The representation also
stores state information that helps to execute a program that can make sense
of the input. This state information could be analogous to a counter or pointer
in a traditional computer program. It has nothing to do with the content of
the input specifically, but it helps the model to organize its processing.

But the big deep learning success was only possible around the 2010s, and
can be explained by two factors:

• a large amount of available labeled data to avoid over fitting. The ILSVRC
classification (figure 1.3) dataset has 1.2M training images distributed in
1,000 classes.

• the use of Graphics Processing Units (GPUs), which enables training
networks 10 or 20 times faster than with Central Processing Units (CPUs).

Figure 1.3: Imagenet. Contains in total 22k classes with 15M samples. Image Source: [86].

1.2 Motivation-limited supervision

As mentioned deep learning has achieved great successes in both theory and
practice, especially in supervised learning scenarios, due to two reasons: by

5

1 Introduction

leveraging a large amount of high-quality labeled data and by exploiting the
computational power provided by GPUs.

However, labeled samples are often difficult, expensive, or time-consuming to
obtain. The labeling process usually requires experts’ efforts, which is one of
the major limitations to train an excellent fully-supervised deep neural network.
If only a few labeled samples are available, it is challenging to build a successful
learning system. By contrast, the unlabeled data is usually abundant and can
be easily or inexpensively obtained.

So, to overcome that need for large hand-labeled and expensive training sets
and to leverage a large number of unlabeled data for improving the learning
performance, there are deep learning systems use some form of weak supervision
or some other related concept. These concepts are explained below:

Weakly-supervised learning In weakly-supervised learning, the objective is
the same as in supervised learning, however, instead of a ground-truth labeled
training set, we are provided with one or more weakly annotated examples,
that could come from crowd workers, be the output of heuristic rules, the
result of distant supervision, or the output of other classifiers. For example, in
weakly-supervised semantic segmentation, pixel-level labels, which are harder
and more expensive to acquire, are substituted for inexact annotations, e.g.
image labels, points, scribbles and bounding boxes.

Active learning In active learning, the learning algorithm is provided with
a large pool of unlabeled data points, with the ability to request the labeling
of any given examples from the unlabeled set in an interactive manner. As
opposed to classical passive learning, in which the examples to be labeled are
chosen randomly from the unlabeled pool, active learning aims to carefully
choose the examples to be labeled to achieve a higher accuracy while using as
few requests as possible, thereby minimizing the cost of obtaining labeled data.

Transfer learning Transfer learning is used to improve a learner on one
domain, called the target domain, by transferring the knowledge learned from a
related domain, referred to as the source domain. For instance, we may wish to
train the model on a synthetic, cheap to generate data, with the goal of using it
on real data. In this case, the source domain used to train the model is related
but different from the target domain used to test the model.

Meta-learning Meta-learning is also a useful paradigm. Meta-learning, also
known as “learning to learn”, aims to learn new skills or adapt to new tasks
rapidly with previous knowledge and a few training examples. It is well known
that a good machine learning model often requires a large number of samples
for training. The meta-learning model is expected to adapt and generalize to
new environments that have been encountered during the training process. The

6

1 Introduction

adaptation process is essentially a mini learning session that occurs during
the test but has limited exposure to new task configurations. Eventually, the
adapted model can be trained on various learning tasks and optimized on the
distribution of functions, including potentially unseen tasks.

Learning from noisy labels It can be challenging given the negative impact
label noise can have on the performance of deep learning methods if the noise
is significant. To overcome this, most existing methods for training deep neural
networks with noisy labels seek to correct the loss function. One type of
correction consists of treating all the examples as equal and relabeling the noisy
examples, where pseudo label methods can be used for the relabeling procedure.
Another type of correction applies a reweighing to the training examples to
distinguish between the clean and noisy samples.

Semi-supervised learning It is the field of research in between supervised and
unsupervised learning that studies the problem of learning from both labeled
and unlabeled data. In Semi-supervised learning (SSL), we are provided with a
dataset containing both labeled and unlabeled examples. The portion of labeled
examples is usually quite small compared to the unlabeled example (e.g., 1
to 10% of the total number of examples). So with a full dataset containing
a labeled subset and an unlabeled subset, the objective is to leverage the
unlabeled examples to train a better performing model than what can be
obtained using only the labeled portion. And hopefully, get closer to the desired
optimal performance, in which all of the (full) dataset is labeled.

1.3 Contributions

SSL is a learning paradigm associated with constructing models that use both
labeled and unlabeled data. SSL methods can improve learning performance by
using additional unlabeled instances compared to supervised learning algorithms,
which can use only labeled data. It is easy to obtain SSL algorithms by extending
supervised learning algorithms or unsupervised learning algorithms.

A popular class of SSL methods can be viewed as producing an artificial
label for unlabeled images and training the model to predict the artificial label
when fed unlabeled images as input. For example, pseudo-labeling [64] (also
called self-training [90, 105]) uses the model’s class prediction as a label to
train against. Similarly, consistency regularization [5, 87] obtains an artificial
label using the model’s predicted distribution after randomly modifying the
input or model function. However, with the representation being fixed, the
quality of these artificial labels (pseudo-labels) is critical in semi-supervised
learning. At the same time, in learning with noisy labels [1, 46, 97], it is com-
mon to clean labels based on the loss value statistics of a small-capacity classifier.

7

1 Introduction

In this thesis, we take advantage of these ideas to improve semi-supervised
learning. We use the state-of-the-art SSL algorithm FixMatch, which produces
artificial labels using both consistency regularization and pseudo-labeling. Cru-
cially, the artificial label is produced based on a weakly-augmented unlabeled
image (e.g., using only flip-and-shift data augmentation) which is used as a
target to train the model on a strongly augmented version of the same input
using standard cross-entropy loss. Inspired by UDA [106] and ReMixMatch [10],
it leverages Cutout [25], CTAugment [10] , and RandAugment [22] for strong
augmentation, which all produce heavily-distorted versions of a given image.
Following the approach of pseudo-labeling [64], it only retains an artificial label
if the model assigns a high probability to one of the possible classes. It is crucial
though, that the retained artificial labels are of high quality in order for the
performance of the network not to be tarnished. That is why, we clean those
artificial labels by following O2U-net [46]. O2U-net only requires adjusting
the hyper-parameters of the network to make it transfer from overfitting to
underfitting cyclically. By calculating and ranking the normalized average loss
of every sample, the mislabeled samples as well as the cleanest ones can be
identified. In general, the lower the loss of a sample, the higher the probability
of being a clean one.

In summary, in this work, we make the following contributions:

1. We combine the power of predicting pseudo-labels in semi-supervised
learning [96] with label cleaning in learning from noisy labels [46].

2. We leverage the same label cleaning process but on the labeled set, to
estimate a weight reflecting the importance of each labeled example on
the training.

3. We achieve new state of the art in semi-supervised image classification.

Our methods are explained in detail in Section 3.1

8

2 Visual representations

In this section, we present two strategies to extract image representations: Bag
of Words (BoW) and deep architectures. The BoW approach was the state-
of-the-art model for image classification in the 2000s. This is a handcrafted
representation, i.e. it is manually designed and relies on expert knowledge.
Since 2012, the Convolutional Network (CNN) is becoming the state-of-the-art
model for image classification. Contrary to the BoW representations, the CNN
representations are learned from training data.

2.1 Handcrafted representation

Before diving into the Bag of Words (BoW) model it is important to analyze
the process of extracting local features. Local feature representation aims to
particularly describe the images based on regions of interest while remaining
invariant to viewpoint and illumination changes. The images, therefore, are
represented according to the local property by the local feature descriptors.
The process of extracting local feature contains two primary stages that are
feature detection and feature description as following.

2.1.1 Feature detection

Computing of Laplacian-of-Gaussian (LoG) that is a linear combination of
second derivatives is a memory-dependent and time-consuming process. To speed
up the process, Lowe[68] proposed the state-of-the-art approach based on local
3D extrema in the scale-space pyramid, along with Difference of Gaussian (DoG)
filters. The DoG is an analogy to LoG. Hence, the type of features extracted by
DoG can be treated as the same type of features as LoG. However, they have
the typical limitation that is the local maxima can be detected by the area of
straight edges, leading to the issues of sensitivity on outliers or light changes [71].
Harris Corner Detector, was proposed by C. Harris and Stephens[41] is a corner
detection approach, which is commonly used in computer vision algorithms
to extract corners and infer features of an image. It takes into account the
difference between the corner point directly rather than using the displacement
block at every 45-degree angle, and is proved to be able to distinguish the
angle more accurately[26]. Furthermore, Harris-Laplace detector was proposed
as the scale invariant corner detector, and it is consist of the Harris corner
detector and the Gaussian scale space representation. In spite of the invariance

9

2 Visual representations

of rotation and illumination changes by Harris corner detector, the points are
not invariant to the scale. The Harris-Laplace approach significantly reduces the
number of redundant interest points compared to Multi-scale Harris. The points
are invariant to scale changes, rotation, illumination, and the addition of noise.
Moreover, the interest points are highly repeatable. However, the Harris-Laplace
detector returns the much smaller number of points compared to the LoG or
DoG detectors. The feature detectors, such as DoG and Harris-Laplace, present
the invariance of rotation, orientation, and consistent scaling. However, the scale
can be different in each direction rather than uniform scaling if the localization
and scale are useless for the affine transformation so that it leads to the fail of
the scale invariant detectors in affine transformations. With the development
of image processing, some features detectors have been extended to extract
features invariant to affine transformations. Schaffalitzky and Zisserman[89]
modified the Harris-Laplace detector by affine normalization as the extension.
And also, Mikolajczyk and Schmid[71] proposed the approach for scale and
affine invariant interest point detection.

2.1.2 Feature description

Scale-Invariant Feature Transform (SIFT) is an algorithm in computer vision
to detect and describe local features in images, proposed by Lowe. The SIFT
descriptor is invariant to consistent scaling, orientation, illumination changes,
and partially invariant to affine transformation. There are four main steps in
SIFT algorithm. The first step is scale-space extrema detection. As known,
it is impossible to use the same window to detect keypoints with different
scale. Therefore, SIFT makes use of DoG, which is obtained as the difference
of Gaussian blurring of an image with two different values. It is processed
for various octaves of the image in Gaussian Pyramid, shown in fig.2.1 After
obtaining DoG, the images can be found for local extrema through scale space.

After getting the potential locations for keypoints, SIFT is required to
acquire more precise results as refinement because scale-space extrema detection
generates few unstable keypoints. The aim of this step is to remove the low
contrast keypoints. Besides, the DoG is sensitive to edges so that it is necessary to
be removed according to the detector of Harris corner. After that, orientation is
assigned to each keypoint to keep invariance to image rotation. A neighborhood
is taken around the keypoint location depending on the scale, and the gradient
magnitude and direction is calculated in that region for all pixels around the
keypoint using equation 2.3. The most important gradient orientations are
identified using the histogram. Lastly, the keypoint descriptor is generated,
and a 16*16 neighborhood around the keypoint is taken. It is divided into
16 sub-blocks of 4*4 size. For each sub-block, 8 bin orientation histogram is
created. Therefore, a total of 128 bin values are generated. SIFT descriptor
representation is designed to avoid the problems of boundary changes in location,

10

2 Visual representations

Figure 2.1: Difference-of-Gaussian (DoG) Pyramid and Extrema Selection. Image source:

orientation and scale do not cause radical changes in the feature vector.

Speeded up robust feature (SURF), was proposed by Bay, Tuytelaars, and
Van Gool [6], is local feature descriptor inspired by SIFT descriptors. The
SURF descriptor is based on the same principles and steps as SIFT. However,
the details are different. The algorithm contains three critical steps, including
interest point detection, local neighborhood description, and matching. The
SURF was designed to the approximation to LoG with box filter, which is the
better to calculate the convolution using box filter for integral images. Besides,
the SURF depends on the determination of Hessian matrix for both scale and
location. During the step of orientation assignment, the SURF makes use of
wavelet responses in horizontal and vertical direction for a neighborhood, and
also, enough Gaussian weights are applied to it. The dominant orientation is
estimated by calculating the sum of all responses within a sliding orientation
window of angle 60 degrees. Then, a square region is extracted in order to
describe the region around the points. The point of interest is divided into 4x4
square sub-regions, and the Haar wavelet responses are extracted at 5x5 regularly
sample points. Compared to SIFT, the SURF can accelerate the calculation
process since it employs 64-dimensional feature vector to describe the local
feature as advantages rather than 128 dimensions in SIFT. Furthermore, the
Histogram of Oriented Gradient (HOG) was proposed to extract local features
in images, which is the variant of SIFT[24]. In this research, it indicated that
the HOG provides the excellent performance relative to other existing feature
sets including wavelets. Also, Ojala, Pietikainen, and Maenpaa proposed the
approach of Local Binary Patterns (LBP) [75] to extract the spatial information
of the texture with the invariant to monotonic transformations of the gray levels.
In a nutshell, the different approaches of feature extraction in image processing,

11

2 Visual representations

global feature and local feature, could deliver the different performance because
of the existence of various situations for images, such as scalability, illumination,
and rotation. Hence, the performance of each approach should be multiple
evaluated by different image datasets for image classification.

The BoW model is inspired from textual information retrieval [88]. The
concept is to represent a document as a histogram of occurrence rates of words
from a dictionary. Ma et al.[69] was the first to adapt BoW for visual recognition
in the NeTra toolbox, to represent an image as a bag of visual words. Then,
Fournier et al. [31] extended this approach with Gabor filters. This method was
popularized by [68], which employs Scale-Invariant Feature Transform (SIFT)
local features. The process of creating BoVW model is shown in figure 2.3,
which can be concluded to four key steps as follows. Firstly, it is to detect
regions or points of interest. Then, computing local descriptors over those
regions or points. After that, quantizing the descriptors into words to form the
visual vocabulary. Lastly, finding the occurrences for each specific word in the
vocabulary for constructing the BoVW model, namely the histogram of word
frequencies. The first two steps are already described, so the two final steps are
as follows:

Figure 2.2: SIFT. Part of the SIFT pipeline for keypoint descriptor extraction. Image Source:
[68].

• Coding-vector quantization. The coding step encodes the local
descriptors as a function of the dictionary visual words, and outputs
visual codes. To learn a visual dictionary, the most popular approach
for image categorization is the k-means clustering algorithm [67].
The historical coding function is the hard assignment coding. To
reduce the quantization errors and ambiguity resulting from the hard
quantization, Gemert et al. [33] proposes the soft assignment. To keep
more information, several methods propose to encode the distance in
vectorial form: Fisher Vectors (FV) [78], Super-Vector Coding (SVC)
[114], Vector of Locally Aggregated Descriptors (VLAD) method and
its generalization Vector of Locally Aggregated Tensors (VLAT) [51].

12

2 Visual representations

The visual dictionary contains visual words which are used to project
local descriptors into another feature space for the subsequent step
in the BoW pipeline.

• Pooling-BoW. The pooling step constructs a single vectorial repre-
sentation (or signature) from the set of local visual codes across the
whole image. The standard pooling function is the average pooling
(or sum pooling) [93]. Another popular method is the max pooling.
[14] observes that the best pooling function may be an operation be-
tween average and max pooling. To incorporate spatial information,
[61] introduces the Spatial Pyramid Matching (SPM). In another way,
[4] introduces BossaNova (BN), where the standard scalar pooling
is replace by a vectorial pooling to capture higher-order statistics.
The image representation has the same dimensionality across all the
images of possibly different sizes. Then, the final representation is
normalized.

Figure 2.3: The BoVW 4-step process. Image Source: [103]

The global aim is gaining invariance to nuisance factors (locations of the
objects, changes in the background, small changes in appearance, etc.), while
preserving the discriminating power of the local descriptors. To predict labels,
the common approach is to use these representations to train a classifier
with supervised learning algorithms. A classifier is a function that maps the
representations to one of the possible categories. The most popular classifiers
used in computer vision are k-Nearest Neighbors (k-NN) [99], Decision Trees [16],
Support Vector Machine (SVM) [13] and neural networks, which are presented
in the next section.

13

2 Visual representations

2.2 Learned representation

2.2.1 Multi-Layer perceptrons

Multi-Layer Perceptrons (MLPs) are among the most fundamental building
blocks in Artificial Neural Networks (ANNs). It refers to a set of computational
models that are loosely inspired by the human brain. In general, they consist
of two important elements, namely, artificial neurons (nodes) and synapses
(weights) that connect them (Figure) . Inspired by the natural world, MLPs
are designed to learn feature representations in an hierarchical manner, making
them so powerful that in theory they can fit an arbitrary function to arbitrary
accuracy. One way of thinking about feedforward neural networks is as a set of
nonlinear transformations, where hidden layers are stacked on top of previous
outputs. The hidden layer output h can be computed as:

y = fθ(x) (2.1)

where x refers to the inputs to the hidden layer, and fθ() is the nonlinear
activation function. Traditionally, a sigmoid (fig.2.4) is widely used for f :

f(x) =
1

1 + e−x
(2.2)

Figure 2.4: Sigmoid function.

More recent researches start using the Rectified Linear Units (fig.2.5):

f(x) =

{
x, x ≥ 0

0, otherwise

14

2 Visual representations

Figure 2.5: Rectified Linear Unit (ReLU).

2.2.2 Convolutional networks

In computer vision, one of the earliest types of convolutional networks dates
back to “Neocognition” (fig. 2.6) in the 1980s [32] as already briefly stated in
Section 1. Neocognition is a hierarchical network consisting of many layers, and
variable connections between nodes in adjacent layers. Local features of the
input are initially extracted by the lower level nodes, and gradually integrated
into more global features. With the pooling layers, the networks can tolerate
slight distortion at each stage, and eventually get robust to deformations, scales,
and translations in the position of the inputs. After training, the networks have
equipped the ability to perform simple pattern recognition.
Later on, inspired by the “Neocognition”, Convolutional Neural Networks

Figure 2.6: Neocognitron. A biologically-inspired convolutional network.
Image Source: [32].

(CNNs) were introduced and successfully trained with back-propagationn(explained
in next subsection). With the help of large-scale datasets and high-performance
Graphic Processing Units (GPUs), CNNs started taking off in 2012.

The CNN is a type of feedforward network that uses convolution in at least

15

2 Visual representations

one of its layers. This model is called feedforward because information flows
strictly in the forward direction, from the input units, through hidden units,
if any, and finally to output units. When feedforward neural networks are
extended to include feedback connections, they are called Recurrent Neural
Networks (RNNs).

The convolution layer is the core layer of deep CNNs. The convolution exploits
spatially local correlation by enforcing a local connectivity pattern between
units of adjacent layers. Standard CNN architectures are built by stacking
convolutional layers followed by non-linearities, and possibly introducing pooling
layers to control the computational complexity of the architecture.

CNNs are typically represented by composing together many different func-
tions or layers. For example, a feedforward network with n layers can be written

fθ(x) = fθn(f − θn1(...fθ2(fθ1(x)))) (2.3)

where x is the input, θ = [θ1, ...,] is the vector of CNN parameters, fθk is the
kth layer and θk is the vector of parameters of the k-th layer. The model is
associated with a directed acyclic graph describing how the layers are composed
together. We note y the output of the network y = fθ(x), and hk = fθk(hk1)
the output of the kth layer, and h0 = x.

The goal of a CNN is to approximate some function f̂ . For example, for a
classification problem, the CNN maps an input to a category. In general, for
an input-output pair (x, y), a CNN defines a mapping y = fθ(x), and learns
the value of the parameters θ that results in the best function approximation
of f̂ with respect to a loss function L such that L(ŷ, y) > 0 measures the
disagreement between a ground-truth label ŷ and an output y.

We now present the most important CNN architectures.

LeNets

LeNets represent the first-generation CNNs, which was initially developed to
recognize handwritten digits. Through the architecture, convolutional layers
with sigmoid units alter with average pooling layers, where tiny invariance is
added and computational burden reduced. At the end of architecture, classifier
(fully connected layer) was appended and trained with the classification losses.
Although LeNets have achieved the state-of-the-art result on the MNIST dataset,
it was found difficult to generalize to real-world vision problems in the 1990s,
mainly for two reasons. First, to train the large-scale CNNs, it usually took
thousands of iterations to converge with stochastic gradient descent (SGD),
however, there was not enough computation power at that time. Second, even
by sharing convolutional kernels spatially, a typical CNNs still contains millions
of paramters that leads to overfiting the dataset (MNIST) easily.

16

2 Visual representations

Figure 2.7: LeNet-5. It represents the first-generation CNNs, and was initially developed to
recognize handwritten digits. Image Source: [62].

AlexNets

The first breakthrough of CNNs in computer vision happened in the year of
2012, AlexNets 2.8 was successfully trained to win the ImageNet Challenge
[86]. With the help of a large amount of labelled data and high-performance
GPUs, the large-scale CNNs were brought back to the stage. More specifically,
AlexNets includes 8 convolutional layers with rectified linear units (ReLUs),
max-poolings are used to downsample the feature maps and gradually add
tiny invariance. To avoid over-fitting, dropout [98] and data augmentation are
applied during training, e.g. color jitterings, random croppings, rotations.

Figure 2.8: AlexNet.Outperformed all previous models on ILSVRC by 10% while it included
in its implementation ReLU, data augmentation, local response normalization
and dropout. Image Source: [59].

VGGNets & GoogLeNets

Since then, a number of works started to further advance image classification
performance with CNNs. In 2014, both GoogleNets [100] and VGGNets [92]
achieved significant performance boost by using deeper architectures. Specifi-
cally, the VGGNets (Figure 2.9) is constructed with 16 convolutional layers of 3
× 3 kernels, maxpooling layers are used after every two or three convolutional

17

2 Visual representations

layers, at the end, two fully connected layers (4096 nodes) are attached to
summarize the global information. A downside of the VGG for example is that
it is more expensive to evaluate and uses a lot more memory and parameters
(138M). To reduce the number of parameters, Szegedy, Liu, et al. [100] intro-

Figure 2.9: VGGNets. VGG16, 16 layers. Image Source: [92].

duces the GoogLeNet, that won the ILSVRC 2014 classification challenge. The
main contribution is the development of the Inception module, where several 3
× 3 and 1 × 1 kernels are used within one module, that dramatically reduces
the number of parameters in the network (7M, compared to AlexNet with 60M).
Similar to [63], auxiliary supervisions are applied on several intermediate layers
to overcome the gradient vanishing issue. GoogLeNet (22 layers) is deeper than
VGGs and uses a Global Average Pooling (GAP) instead of fully-connected
layers at the top of the CNN, eliminating a large amount of parameters. Except
the fully-connected of the last layer used for classification, all the learned layers
are convolution layers. The next step is to learn deeper models than VGGs
and GoogLeNet by adding more layers. But this is not possible in practice
because of the vanishing/exploding gradients problem ([8, 35]. To overcome
this problem and to learn CNNs with several hundreds of layers, [43] builds
residual networks (ResNet) by using residual blocks. The residual block uses
shortcut connection that skips one or more layers (Figure 2.11). Each residual
block can be expresesed in a general form:

yl = h(xl) + Fθl(xl)xl+1 = f(yl) (2.4)

where xl and xl+1 are the input and output of the lth unit respectively, and F
is a residual function. It is generally conjectured that gradients are more easily
backpropagated with the help of residual units. The authors also show that

18

2 Visual representations

Figure 2.10: GoogLeNet. The network uses combinations of inception modules, each includ-
ing some pooling, convolutions at different scales and concatenation operations.
It also uses 1x1 feature convolutions that work like feature selectors. Increased
depth to 22 layers . It achieved 6.7% top-5 error on ILSVRC’14. Image Source:
[100].

Figure 2.11: Example of Residual Unit. Image Source: [43].

the residual blocks combined with batch normalization [48] make the training
easier. Like GoogLeNet, the only learned layers are convolution layers. The
ResNets won both ILSVRC MS COCO2 2015 competitions.

Wide ResNets

Deep residual networks were shown to be able to scale up to thousands of layers
and still have improving performance. However, these networks present a couple
of significant problems.

1. Circuit Complexity Theory: The circuit complexity theory literature
showing that: shallow circuits can require exponentially more components
than deeper circuits. The authors of residual networks tried to make
them as thin as possible in favor of increasing their depth and having
less parameters, and even introduced a �bottleneck� block which makes
ResNet blocks even thinner (see ??(b)).

2. Diminishing Feature Reuse: As gradient flows through the network there
is nothing to force it to go through residual block weights and it can avoid
learning anything during training, so it is possible that there is either only

19

2 Visual representations

Figure 2.12: ResNet. Residual units are used extensively in the networks while at the end
average pooling is used to aggregate global feature representations. 3.57% top-5
error on ILSVRC’15. Won first place on several ILSVRC and COCO 2015 tasks.
Depth increased to 152 layers. Image Source: [43].

a few blocks that learn useful representations, or many blocks share very
little information with small contribution to the final goal. This problem
was formulated as diminishing feature reuse.

To tackle these problems, in 2017 Sergey Zagoruyko and Nikos Komodakis
[108] conducted a detailed experimental study on the architecture of ResNet
blocks, based on which they proposed a novel architecture where they decreased
the depth and increased the width of residual networks (fig.??). They call the
resulting network structures wide residual networks (WRNs) and show that
these are far superior over their commonly used thin and very deep counterparts.

Figure 2.13: Various ResNets blocks. Image Source: [108].

2.2.3 Gradient based optimization

The problem of learning CNNs reduces to an optimization problem, that can be
solved by gradient descent. Gradient descent is a way to minimize an objective
function J(θ) parameterized by a model’s parameters θ ∈ Rd by updating the
parameters in the opposite direction of the gradient of the objective function
∇θJ(θ) w.r.t. to the parameters. The learning rate η determines the size of
the steps we take to reach a (local) minimum. In other words, we follow the
direction of the slope of the surface created by the objective function downhill
until we reach a valley.

20

2 Visual representations

Gradient descent variants

There are three variants of gradient descent, which differ in how much data
we use to compute the gradient of the objective function. Depending on the
amount of data, we make a trade-off between the accuracy of the parameter
update and the time it takes to perform an update.

Batch gradient descent Vanilla gradient descent, aka batch gradient descent,
computes the gradient of the cost function w.r.t. to the parameters θ for the
entire training dataset:

θ = θ − η · ∇θJ(θ) (2.5)

As we need to calculate the gradients for the whole dataset to perform just
one update, batch gradient descent can be very slow and is intractable for
datasets that do not fit in memory. Batch gradient descent also does not allow
us to update our model online, i.e. with new examples on-the-fly.

For a pre-defined number of epochs, we first compute the gradient vector of
the loss function for the whole dataset.

We then update our parameters in the direction of the gradients with the
learning rate determining how big of an update we perform. Batch gradient
descent is guaranteed to converge to the global minimum for convex error
surfaces and to a local minimum for non-convex surfaces.

Stochastic gradient descent Stochastic gradient descent (SGD) in contrast
performs a parameter update for each training example x(i) and label y(i):

θ = θ − η · ∇θJ(θ;x(i); y(i)) (2.6)

Batch gradient descent performs redundant computations for large datasets,
as it recomputes gradients for similar examples before each parameter update.
SGD does away with this redundancy by performing one update at a time.
It is therefore usually much faster and can also be used to learn online. SGD
performs frequent updates with a high variance that cause the objective function
to fluctuate heavily as in Figure 2.14.

While batch gradient descent converges to the minimum of the basin the
parameters are placed in, SGD’s fluctuation, on the one hand, enables it to jump
to new and potentially better local minima. On the other hand, this ultimately
complicates convergence to the exact minimum, as SGD will keep overshooting.
However, it has been shown that when we slowly decrease the learning rate,
SGD shows the same convergence behaviour as batch gradient descent, almost
certainly converging to a local or the global minimum for non-convex and
convex optimization respectively.

21

2 Visual representations

Figure 2.14: SGD fluctuation (Source: Wikipedia)

Mini-batch gradient descent Mini-batch gradient descent finally takes the
best of both worlds and performs an update for every mini-batch of n training
examples:

θ = θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n)) (2.7)

This way, it a) reduces the variance of the parameter updates, which can
lead to more stable convergence; and b) can make use of highly optimized
matrix optimizations common to state-of-the-art deep learning libraries that
make computing the gradient w.r.t. a mini-batch very efficient. Common mini-
batch sizes range between 50 and 256, but can vary for different applications.
Mini-batch gradient descent is typically the algorithm of choice when training a
neural network and the term SGD usually is employed also when mini-batches
are used.

Vanilla mini-batch gradient descent, however, does not guarantee good con-
vergence. There are although some optimization algorithms that are widely
used by the Deep Learning community to deal with that challenge. We will
only discuss algorithms that were used in the implementation of our methods.

Momentum SGD has trouble navigating ravines, i.e. areas where the surface
curves much more steeply in one dimension than in another, which are common
around local optima. In these scenarios, SGD oscillates across the slopes of the
ravine while only making hesitant progress along the bottom towards the local

22

 https://upload.wikimedia.org/wikipedia/commons/f/f3/Stogra.png

2 Visual representations

optimum as in Figure 2.15a.

a) SGD without momentum b) SGD with momentum

Figure 2.15: Source: Genevieve B. Orr

Momentum [80] is a method that helps accelerate SGD in the relevant
direction and dampens oscillations as can be seen in Figure 2.15b. It does this
by adding a fraction γ of the update vector of the past time step to the current
update vector.

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt
(2.8)

The momentum term γ is usually set to 0.9 or a similar value.
Essentially, when using momentum, we push a ball down a hill. The ball

accumulates momentum as it rolls downhill, becoming faster and faster on
the way (until it reaches its terminal velocity, if there is air resistance, i.e.
γ < 1). The same thing happens to our parameter updates: The momentum
term increases for dimensions whose gradients point in the same directions and
reduces updates for dimensions whose gradients change directions. As a result,
we gain faster convergence and reduced oscillation.

Nesterov accelerated gradient However, a ball that rolls down a hill, blindly
following the slope, is highly unsatisfactory. We would like to have a smarter
ball, a ball that has a notion of where it is going so that it knows to slow down
before the hill slopes up again.

Nesterov accelerated gradient (NAG) is a way to give our momentum term
this kind of prescience. We know that we will use our momentum term γ vt−1 to
move the parameters θ. Computing θ−γ vt−1 thus gives us an approximation of
the next position of the parameters (the gradient is missing for the full update),
a rough idea where our parameters are going to be. We can now effectively look
ahead by calculating the gradient not w.r.t. to our current parameters θ but
w.r.t. the approximate future position of our parameters:

vt = γ vt−1 + η∇θJ(θ − γvt−1)
θ = θ − vt

(2.9)

23

https://www.willamette.edu/~gorr/classes/cs449/momrate.html

2 Visual representations

Figure 2.16: Nesterov update (Source: G. Hinton’s lecture 6c)

Again, we set the momentum term γ to a value of around 0.9. While Momen-
tum first computes the current gradient (small blue vector in Figure 2.16) and
then takes a big jump in the direction of the updated accumulated gradient
(big blue vector), NAG first makes a big jump in the direction of the previous
accumulated gradient (brown vector), measures the gradient and then makes a
correction (green vector). This anticipatory update prevents us from going too
fast and results in increased responsiveness, which has significantly increased
the performance of RNNs on a number of tasks.

Now that we are able to adapt our updates to the slope of our error function
and speed up SGD in turn, we would also like to adapt our updates to each
individual parameter to perform larger or smaller updates depending on their
importance.

24

 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

3 Semi-supervised learning

Depending on the key objective function of the systems, one may have a semi-
supervised classification, a semi-supervised clustering, or a semi-supervised
regression. In this work, we focus on classification and its’ definition is as
follows:

Semi-supervised classification. Given a training dataset that consists of
both labeled instances and unlabeled instances, semi-supervised classification
aims to train a classifier from both the labeled and unlabeled data, such that it
is better than the supervised classifier trained only on the labeled data.

There have been a wide variety of SSL methods, including generative models ,
semi-supervised support vector machines, graph-based methods, and co-training,
which provide a comprehensive overview of traditional SSL methods. Nowadays,
deep neural networks have played a dominating role in many research areas. It is
important to adopt the classic SSL framework and develop novel SSL methods
for deep learning settings, which leads to deep semi-supervised learning (DSSL).
DSSL studies how to effectively utilize both labeled and unlabeled data by deep
neural networks. A considerable amount of DSSL methods have been proposed.
According to the most distinctive features in semi-supervised loss functions and
model designs, we classify DSSL into five categories, consistency regularization
methods, proxy-label methods, generative methods, graph-based methods, and
hybrid methods.

3.1 Background

In the following, we will present an overview of the techniques of SSL. Let
X = {XL, XU} denote the entire data set, including a small labeled data set
XL = {(xi, yi)}Li=1 with labels YL = (y1, y2, . . . , yL) and a large scale unlabeled
data set XU = {(xi)}Ui=1, and L� U . We assume that the data have K classes
and the first L examples within X are labeled by {yi}Li=1 ∈ (y1, y2, . . . , yK).
Formally, SSL aims to solve the following optimization problem,

min
θ

∑
(x,y)∈XL

Ls(x, y, θ)︸ ︷︷ ︸
supervised loss

+ α
∑

(x)∈XU

Lu(x, θ)︸ ︷︷ ︸
unsupervised loss

+ β
∑
(x)∈X

R(x, θ)︸ ︷︷ ︸
regularization loss

, (3.1)

where Ls denote the per-example supervised loss, , cross-entropy for classi-
fication, Lu denotes the per-example unsupervised loss, and R denotes the

25

3 Semi-supervised learning

per-example regularization loss, , consistency loss or a designed regularization
term. Note that unsupervised loss terms are often not strictly distinguished
from regularization terms, as normally regularization terms are also not guided
by label information. Lastly, θ denotes the model parameters and α, β ∈ R>0

denotes the scalar weight, which balances the loss terms. Different choices of
the unsupervised loss and regularization term lead to different semi-supervised
algorithms. Note that we do not make a clear distinction between unsupervised
loss and regularization terms in many cases.

SSL first appeared in the form of self-training, which is also known as
self-labeling or self-teaching. A model is first trained on labeled data. Then,
iteratively, a portion of the unlabeled data is annotated using the trained model
and added to the training set for the next training iteration. SSL took off in
the 1970s after its success with iterative algorithms such as the expectation-
maximization algorithm in which the labeled and unlabeled data are jointly
used to maximize the likelihood of the model.

3.2 Assumptions

SSL aims to predict more accurately with unlabeled points than supervised
learning that uses only labeled data. However, an essential prerequisite is that
the example distribution should be under some assumptions. If this is not the
case, SSL may not improve supervised learning and even degrade the prediction
accuracy by misleading inferences.. The main assumptions in SSL are:

• The Smoothness Assumption. If two points x1, x2 reside in a high-
density region are close, then so should be their corresponding outputs y1
y2 [17]. Meaning that if two inputs are of the same class and belong to
the same cluster, which is a high-density region of the input space, then
their corresponding outputs need to be close. The inverse also holds true;
if the two points are separated by a low-density region, the outputs must
be distant from each other. This assumption can be quite helpful in a
classification task, but not so much for regression.

• The Cluster Assumption. If points are in the same cluster, they are
likely to be of the same class [17]. In this particular case of the smoothness
assumption, we suppose that input data points form clusters, and each
cluster corresponds to one of the output classes. The cluster assumption
can also be seen as the low-density separation assumption: The decision
boundary should lie in the low-density regions. The relation between the
two assumptions is easy to see, if a given decision boundary lies in a
high-density region, it will likely cut a cluster into two different classes,
resulting in samples from different classes belonging to the same cluster,
which is a violation of the cluster assumption. In this case, we can restrict

26

3 Semi-supervised learning

our model to have consistent predictions on the unlabeled data over some
small perturbations pushing its decision boundary to low-density regions.

• The Manifold Assumption. The (high-dimensional) data lie (roughly)
on a low-dimensional manifold [17]. In high dimensional spaces, where
the volume grows exponentially with the number of dimensions, it can be
quite hard to estimate the true data distribution for generative tasks. For
discriminative tasks, the distances are similar regardless of the class type,
making classification quite challenging. However, if our input data lies on
some lower-dimensional manifold, we can try to find a low dimensional
representation using the unlabeled data and then use the labeled data to
solve the simplified task.

3.3 Approaches

There have been many SSL methods and approaches that have been introduced
over the years. These algorithms can be broadly divided into the following
categories:

• Consistency Regularization (a.k.a Consistency Training). Based
on the assumption that if a realistic perturbation was applied to the
unlabeled data points, the prediction should not change significantly. The
model can then be trained to have a consistent prediction on a given
unlabeled example and its perturbed version.

• Proxy-label Methods. Such methods leverage a trained model on the
labeled set to produce additional training examples by labeling instances
of the unlabeled set based on some heuristics. These approaches can also
be referred to as bootstrapping [11] algorithms. We follow Ruder [85] and
refer to them as proxy-label methods. Some examples of such methods
are Self-training, Co-training and Multi-View Learning.

• Generative Models. Similar to the supervised setting, where the learned
features on one task can be transferred to other downstream tasks. Gener-
ative models that are able to generate images from the data distribution
p(x) must learn transferable features to a supervised task p(y|x) for a
given task with targets y.

• Graph-Based Methods. The labeled and unlabeled data points can
be considered as nodes of a graph, and the objective is to propagate
the labels from the labeled nodes to the unlabeled ones by utilizing the
similarity of two nodes xi and xj, which is reflected by how strong the
edge eij between the two nodes.

In addition to these main categories, there is also some SSL work on entropy
minimization, where we force the model to make confident predictions by
minimizing the entropy of the predictions. Consistency training can also be

27

3 Semi-supervised learning

considered a proxy-label method, with a subtle difference, instead of considering
the predictions as ground-truths and compute the cross-entropy loss, we enforce
consistency of predictions by minimizing a given distance between the outputs.
In this section, we will focus on consistency regularization, proxy-label and
hybrid methods of those two.

SSL methods can also be categorized based on two dominant learning
paradigms, transductive learning and inductive learning. Transductive
learning aims to apply the trained classifier on the unlabeled instances observed
at training time; in this case, it does not generalize to unobserved instances.
This type of algorithm is mainly used on graphs, such as random walks for node
embedding, where the objective is to label the unlabeled nodes of the graph that
are present at training time. The more popular paradigm, inductive learning,
aims to learn a classifier capable of generalizing to unobserved instances at test
time.

3.3.1 Consistency regularization

In this section, we introduce the consistency regularization methods for semi-
supervised deep learning. In these methods, a consistency regularization term
is applied to the final loss function to specify the prior constraints assumed by
researchers. Consistency regularization is based on the manifold assumption
or the smoothness assumption, and describes a category of methods that the
realistic perturbations of the data points should not change the output of the
model [76]. Consequently, consistency regularization can be regarded to find a
smooth manifold on which the dataset lies by leveraging the unlabeled data [7].
An overview of the methods can be seen in the figure below.

Figure 3.1: The diverse range of architectures used for consistency regularization semi-
supervised methods. In addition to the identifiers in the figure, denotes the
perturbation noise, and R is the consistency constraint. Image Source: [107].

The most common structure of consistency regularization SSL methods is
the Teacher-Student structure. As a student, the model learns as before, and

28

3 Semi-supervised learning

as a teacher, the model generates targets simultaneously. Since the model itself
generates targets, they may be incorrect and then used by themselves as students
for learning. In essence, the consistency regularization methods suffer from
confirmation bias [102], a risk that can be mitigated by improving the target’s
quality. Formally, following [53], we assume that dataset X consists of a labeled
subset Xl and an unlabeled subset Xu. Let θ′ denote the weight of the target,
and θ denote the weights of the basic student. Concretely, given an unlabeled
data point x ∈ XU and its perturbed version x̂, the objective is to minimize the
distance between the two outputs d(fθ(x), fθ(x̂)), where fθ(x) is the prediction
from model fθ for input x. The popular distance measures d are mean squared
error (MSE), Kullback-Leiber divergence (KL) and Jensen-Shannon divergence
(JS). For two outputs fθ(x) and fθ(x̂) in the form of a probability distribution
over the C classes, and m = 1

2
(fθ(x) + fθ(x̂)), we can compute these measures

as follows:

dMSE(fθ(x), fθ(x̂)) =
1

C

C∑
k=1

(fθ(x)k − fθ(x̂)k)
2 (3.2)

dKL(fθ(x), fθ(x̂)) =
1

C

C∑
k=1

fθ(x)k log
fθ(x)k
fθ(x̂)k

(3.3)

dJS(fθ(x), fθ(x̂)) =
1

2
dKL(fθ(x),m) +

1

2
dKL(fθ(x̂),m) (3.4)

Note that we can also enforce a consistency over two perturbed versions of x,
x̂1 and x̂2.

Ladder Network. Ladder Network [83] is the first successful attempt to-
wards using a Teacher-Student model that is inspired by a deep denoising
AutoEncoder. The structure of the Ladder Network is shown in Fig. 3.1(1). In
Encoder, noise ζ is injected into all hidden layers as the corrupted feedforward
path x+ ζ → Encoder

f(·) → z̃1 → z̃2 and shares the mappings f(·) with the clean

encoder feedforward path x → Encoder
f(·) → z1 → z2 → y. The decoder path

z̃1 → z̃2 → Decoder
g(·,·) → ẑ2 → ẑ1 consists of the denoising functions g(·, ·) and

the unsupervised denoising square error on each layer consider as consistency
loss between ẑi and zi. Through latent skip connections, the ladder network
is differentiated from regular denoising AutoEncoder. This feature allows the
higher layer features to focus on more abstract invariant features for the task.
The unsupervised training loss Lu is then computed as the MSE between the
activations of the clean encoder z and the reconstructed activations (after batch
normalization), computed over all layers, from the input to the last layer, with
a weighting λl for each layer’s contribution to the total loss:

Lu =
1

|X |
∑
x∈X

L∑
l=0

λldMSE(fθ(x), g(fθ(x+ ζ)) (3.5)

29

3 Semi-supervised learning

Π Model. Unlike the perturbation used in Ladder Network, Π Model [82] is
to create two random augmentations of a sample for both labeled and unlabeled
data. Some techniques with non-deterministic behavior, such as randomized
data augmentation, dropout, and random max-pooling, make an input sample
pass through the network several times, leading to different predictions. The
structure of the Π Model is shown in Fig. 3.1(2). In each epoch of the training
process for Π Model, the same unlabeled sample propagates forward twice,
while random perturbations are introduced by data augmentations and dropout.
The forward propagation of the same sample may result in different predictions,
and the Π Model expects the two predictions to be as consistent as possible.
Therefore, it provides an unsupervised consistency loss function,

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x+ ζ1), fθ(x+ ζ2)) (3.6)

which minimizes the difference between the two predictions, with w as a
weighting function, starting from 0 up to a fixed weight λ (30) after a given
number of epochs.

Temporal Ensembling. Temporal Ensembling [60] is similar to the Π
Model, which forms a consensus prediction under different regularization and
input augmentation conditions. It modifies the Π Model by leveraging the
Exponential Moving Average (EMA) of past epochs predictions. In other
words, while Π Model needs to forward a sample twice in each iteration,
Temporal Ensembling reduces this computational overhead by using EMA
to accumulate the predictions over epochs as Tx. Specifically, the ensemble
outputs Zi is updated with the network outputs zi after each training epoch,
Zi ← αZi + (1− α) zi, where α is a momentum term. During the training
process, the Z can be considered to contain an average ensemble of f(·) outputs
due to Dropout and stochastic augmentations. Thus, consistency loss is:

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x+ ζ1),EMA(fθ(x+ ζ2))) (3.7)

Mean Teacher. Mean Teacher [102] averages model weights using EMA
over training steps and tends to produce a more accurate model instead of
directly using output predictions. The structure of Mean Teacher is shown in
Fig. 3.1.

Mean Teacher consists of two models called Student and Teacher. The student
model is a regular model similar to the Π Model, and the teacher model has
the same architecture as the student model with exponential moving averaging
the student weights. A training iteration of Mean Teacher is very similar to
previous methods; the main difference is that Π-Model uses the same model
as a student and a teacher θ′ = θ, and Temporal Ensembling approximate a
stable teacher fθ′ as an ensemble function with a weighted average of successive

30

3 Semi-supervised learning

predictions. While Mean Teacher defines the weights θ′t of the teacher model
fθ′ at a training step t as an EMA of successive student’s weights θ:

θ′t = αθ′t−1 + (1− α)θt (3.8)

The loss computation in this case is the sum of the supervised and unsu-
pervised loss, where the teacher model is used to obtain the targets for the
unsupervised loss for a given input x:

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x+ ζ), fθ′(x+ ζ ′)) (3.9)

VAT. Virtual Adversarial Training [73] proposes the concept of adversar-
ial attack for consistency regularization. The structure of VAT is shown in
Fig. 3.1(5). This technique aims to generate an adversarial transformation of a
sample, which can change the model prediction. Specifically, the adversarial
training technique is used to find the optimal adversarial perturbation γ of a
real input instance x such that γ ≤ δ. Afterward, the consistency constraint
is applied between the model’s output of the original input sample and the
perturbed one, ,

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x), gθ(x+ γadv)), (3.10)

where γadv = argmaxγ;‖γ‖≤δdMSE(fθ(x), gθ(x+ γ)).
Dual Student. Dual Student [53] extends the Mean Teacher model by

replacing the teacher with another student. The structure of Dual Student is
shown in Fig. 3.1(6). One of the main drawbacks of using a Mean Teacher is
that given a large number of training iterations, the teacher model weights will
converge to that of the student model, and any biased and unstable predictions
will be carried over to the student.

To solve this, Ke et al.propose a dual students step-up. Two student models
with different initialization are simultaneously trained, and at a given iteration,
one of them provides the targets for the other. To choose which one, we test
for the most stable predictions that satisfy the following stability conditions:

• The predictions using two input versions, a clean x and a perturbed
version x̂ give the same results: f(x) = f(x̂).

• Both predictions are confident, are far from the decision boundary. This
can be tested by seeing if f(x) (resp. f(x̂)) is greater than a confidence
threshold ε, ε = 0.1.

Given two student models, f1̂ and f2̂, an unlabeled input x ∈ XU and its
perturbed version x̂. We compute four predictions: fθ1(x), fθ1(x̂), fθ2(x), and

31

3 Semi-supervised learning

fθ2(x̂) . In addition to training each model to minimize both the supervised
and unsupervised losses, where the unsupervised loss is defined as follows:

Lu = λ1
1

|XU |
∑
x∈XU

dMSE(fθi(x), fθi(x̂)) (3.11)

we also force one of the students to have similar predictions to its counterpart.
To chose which one to update its weights, we check for both models’ stability
constraint; if the predictions one of the models is unstable, we update its
weights. If both are stable, we update the model with the largest variation
E i = ‖fi(x) − fi(x̂)‖2, the least stable. In this case, the least stable model is
trained with an additional loss:

λ2
∑
x∈XU

dMSE(fθi(x), fθj(x)) (3.12)

where λ1 and λ2 are hyperparameters specifying the contribution of each loss
term.

SWA. Stochastic Weight Averaging (SWA) [50] improves generalization than
conventional training. The aim is to average multiple points along the trajectory
of stochastic gradient descent (SGD) with a cyclical learning rate and seek much
flatter solutions than SGD. The consistency-based SWA [3] observes that SGD
fails to converge on the consistency loss but continues to explore many solutions
with high distances apart in predictions on the test data. The structure of SWA
is shown in Fig. 3.1(7). The SWA procedure also approximates the Teacher-
Student approach, such as Π Model and Mean Teacher with a single model.
The authors propose fast-SWA, which adapts the SWA to increase the distance
between the averaged weights by using a longer cyclical learning rate schedule
and diversity of the corresponding predictions by averaging multiple network
weights within each cycle. Generally, the consistency loss can be rewritten as
follows:

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x), fθ′(x+ ζ)) (3.13)

where,
θ′ = SWA(θ) (3.14)

VAdD. In VAT, the adversarial perturbation is defined as an additive noise
unit vector applied to the input or embedding spaces, which has improved
the generalization performance of SSL. Similarly, Virtual Adversarial Dropout
(VAdD) [77] also employs adversarial training in addition to the Π Model. The
structure of VAdD is shown in Fig. 3.1(8). Following the design of Π Model,
the consistency constraint of VAdD is computed from two different dropped
networks: one dropped network uses a random dropout mask, and the other
applies adversarial training to the optimized dropout network. But first, we
have to find the dropout conditions that are most sensitive to the model’s

32

3 Semi-supervised learning

predictions. In a SSL setting, where we do not have access to the true labels,
we use the model’s predictions on the unlabeled data points to approximate
the adversarial dropout mask εadv, which is subject to the boundary condition:
‖εadv − ε‖2 ≤ δH with H as the dropout layer dimension and a hyperparameter
δ, which restricts adversarial dropout masks to be infinitesimally different from
the random dropout mask ε. Without this constraint, the adversarial dropout
might induce a layer without any connections. By restricting the adversarial
dropout to be similar to the random dropout, we prevent finding such an
irrational layer, which does not support backpropagation.

Similar to VAT, we start from a random dropout mask, we compute a KL-
divergence loss between the outputs, with and without dropout, and given the
gradients of the loss with respect to the activations before the dropout layer,
we update the random dropout mask in an adversarial manner. The prediction
function fθ is divided into two parts, fθ1 and fθ2 , where fθ(x, ε) = fθ2(fθ1(x)�ε),
we start by computing an approximation of the Jacobian matrix as follows:

J(x, ε) ≈ fθ1(x)�∇fθ1 (x)
dKL(fθ(x), fθ(x, ε)) (3.15)

Using J(x, ε), we can then update the random dropout mask ε to obtain εadv,
so that if ε(i) = 0 and J(x, ε)(i) > 0 or ε(i) = 1 and J(x, ε)(i) < 0 at a given
position i, we inverse the value of ε at that location. Resulting in εadv, which
can then be used to compute the unsupervised loss:

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x), fθ(x, ε
adv)) (3.16)

WCP. A novel regularization mechanism for training deep SSL by mini-
mizing the Worse-case Perturbation (WCP) is presented by Zhang et al.[111].
The structure of WCP is shown in Fig. 3.1(9). WCP considers two forms of
WCP regularizations – additive and DropConnect perturbations, which im-
pose additive perturbation on network weights and make structural changes
by dropping the network connections, respectively. Instead of generating an
ensemble of randomly corrupted networks, the WCP suggests enhancing the
most vulnerable part of a network by making the most resilient weights and
connections against the worst-case perturbations. It enforces an additive noise
on the model parameters ζ, along with a constraint on the norm of the noise.
In this case, the WCP regularization becomes,

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x), gθ′(x)) (3.17)

where θ′ = θ + ζ.
The second perturbation is at the network structure level by DropConnect,

which drops some network connections. Specifically, for parameters θ, the

33

3 Semi-supervised learning

perturbed version is θ′ = (1−α)θ, and the α = 1 denotes a dropped connection
while α = 0 indicates an intact one. By applying the consistency constraint, we
have

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x), fθ′(x)) (3.18)

UDA. UDA stands for Unsupervised Data Augmentation [106] for image clas-
sification and text classification. The structure of UDA is shown in Fig. 3.1(10).
This method investigates the role of noise injection in consistency training
and substitutes simple noise operations with high-quality data augmentation
methods, such as AutoAugment [23], RandAugment [22] for images, and Back-
Translation [30, 91] for text. Following the consistency regularization framework,
the UDA [106] extends the advancement in supervised data augmentation to
SSL. As discussed above, let fθ(x + ζ) be the augmentation transformation
from which one can draw an augmented example (x+ ζ) based on an original
example x. The consistency loss is:

Lu = w
1

|XU |
∑
x∈XU

dMSE(fθ(x), fθ(x+ ζ)) (3.19)

, where ζ represents the data augmentation operator to create an augmented
version of an input x.

Summary. The core idea of consistency regularization methods is that the
output of the model remains unchanged under realistic perturbation. Con-
sistency constraints can be considered at three levels: input dataset, neural
networks and training process. From the input dataset perspective, perturbations
are usually added to the input examples: additive noise, random augmentation,
or even adversarial training. We can drop some layers or connections for the
networks, as WCP [111]. From the training process, we can use SWA to make
the SGD fit the consistency training or EMA parameters of the model for some
training epochs as new parameters.

3.3.2 Pseudo-label methods

Pseudo-label methods are the class of SSL algorithms that produce pseudo-
labels on unlabeled data, using the prediction function itself or some variant of it
without any supervision. These pseudo-labels are then used as targets together
with the labeled data, providing some additional training information even if
the produced labels are often noisy or weak and do not reflect the ground truth.
These methods can be divided mainly into two groups: self-training, where the
model itself produces the pseudo-labels, and disagreement-based learning or
multi-view learning, where the pseudo-labels are produced by models trained
on different views of the data. An overview of some of these methods can be
seen below.

34

3 Semi-supervised learning

Figure 3.2: The diverse range of architectures used for pseudo-label semi-supervised methods.
Image Source: [107].

Self-training

Self-training algorithm leverages the model’s own confident predictions to
produce the pseudo labels for unlabeled data. In other words, it can add more
training data by using existing labeled data to predict the labels of unlabeled
data. Because of its simplicity and generality, self-training is successfully applied
in various tasks such as Named Entity Recognition [42], contour detection [113],
machine translation [47], and object detection [72]. Specifically, [42] chooses
the most confident named entity recognition predictions of the unlabeled data
as the additional targets to boost the performance. [47] first trains the neural
translation model on the parallel corpus and then uses the learned model
to translate a monolingual corpus, wherein the monolingual corpus and its
translations constitute an additional pseudo-parallel corpus.

EntMin Entropy Minimization (EntMin) [37] is a method of entropy regular-
ization, which can be used to realize SSL by encouraging the model to make
low-entropy predictions for unlabeled data and then using the unlabeled data
in a standard supervised learning setting. In theory, entropy minimization can
prevent the decision boundary from passing through a high-density data points
region, otherwise it would be forced to produce low-confidence predictions for
unlabeled data. The unsupervised is defined as follows:

Lu =
1

|XU |
∑
x∈XU

∑
y∈Y

−fθ(y|x) log fθ(y|x) (3.20)

Pseudo-label Pseudo-label [64] proposes a simple and efficient formulation of
training neural networks in a semi-supervised fashion, in which the network is
trained in a supervised way with labeled and unlabeled data simultaneously.
As illustrated in Fig. 3.2(3), the model is trained on labeled data in a usual
supervised manner with a cross-entropy loss. For unlabeled data, the same
model is used to get predictions for a batch of unlabeled samples. The maximum
confidence prediction is called a pseudo-label, which has the maximum predicted
probability.

35

3 Semi-supervised learning

That is, the pseudo-label model trains a neural network with the unsupervised
loss function Lu, where:

Lu = α(t)
1

n′

n′∑
m=1

K∑
i=1

H(y
′m
i , f

′m
i), (3.21)

where n is the number of mini-batch in labeled data for SGD, n′ for unlabeled
data, fmi is the output units of m’s sample in labeled data, ymi is the label of
that, y

′m
i for unlabeled data, y

′m
i is the pseudo-label of that for unlabeled data,

α(t) is a coefficient balancing the supervised and unsupervised loss terms.

Noisy student Noisy Student [105] proposes a semi-supervised method in-
spired by knowledge distillation [45] with equal-or-larger student models. The
framework is shown in Fig. 3.2(4). The teacher EfficientNet [101] model is first
trained on labeled images to generate pseudo labels for unlabeled examples.
Then a larger EfficientNet model as a student is trained on the combination of
labeled and pseudo-labeled examples. These combined instances are augmented
using data augmentation techniques such as RandAugment [22], and model
noise such as Dropout and stochastic depth are also incorporated in the student
model during training. After a few iterations of this algorithm, the student
model becomes the new teacher to relabel the unlabeled data and this process
is repeated. So, the unsupervised training objective is defined as follows:

Lu = w
1

|XU |
∑
x∈XU

H(ŷ, fθs(x+ ζ)) (3.22)

where θs denotes the student model, ŷ the pseudo-labels produced by a normal
(i.e. not noised) teacher model and ζ the added noise.

S4L Self-supervised Semi-supervised Learning (S4L) [110] tackles the problem
of SSL by employing self-supervised learning [57] techniques to learn useful
representations from the image databases. The architecture of S4L is shown in
Fig. 3.2(5). The conspicuous self-supervised techniques are predicting image
rotation [34] and exemplar [28, 29]. Predicting image rotation is a pretext
task that anticipates an angle of the rotation transformation applied to an
input example. In S4L, there are four rotation degrees {0◦, 90◦, 180◦, 270◦} to
rotate input images. The S4L-Rotation loss is the cross-entropy loss on outputs
predicted by those rotated images.

Lrot =
1

|R|
∑
r∈R

∑
x∈Xu

L(fθ(x
r), r) (3.23)

, where R is the set of the 4 rotation degrees {0, 90, 180, 270}, xr is the image
x rotated by r, fθ(·) is the model with parameters θ,L is the cross-entropy loss.

36

3 Semi-supervised learning

This results in a 4-class classification problem. S4L-Exemplar introduces an
exemplar loss which encourages the model to learn a representation that is
invariant to heavy image augmentations. Specifically, eight different instances
of each image are produced by inception cropping [100], random horizontal
mirroring, and HSV-space color randomization as in [28]. Following [57], the
loss term on unsupervised images uses the batch hard triplet loss [44] with a
soft margin.

MPL In the SSL, the target distributions are often generated on unlabeled
data by a shaped teacher model trained on labeled data. The constructions
for target distributions are heuristics that are designed prior to training, and
cannot adapt to the learning state of the network training. Meta Pseudo Labels
(MPL) [79] designs a teacher model that assigns distributions to input examples
to train the student model. Throughout the course of the student’s training,
the teacher observes the student’s performance on a held-out validation set,
and learns to generate target distributions so that if the student learns from
such distributions, the student will achieve good validation performance. The
training procedure of MPL involves two alternating processes. As shown in
Fig. 3.2(6), the teacher gφ(·) produces the conditional class distribution gφ(x)
to train the student. The pair (x, gφ(x)) is then fed into the student network
fθ(·) to update its parameters θ from the cross-entropy loss. After the student
network updates its parameters, the model evaluates the new parameters θ′

based on the samples from the held-out validation dataset. Since the new
parameters of the student depend on the teacher, the dependency allows us to
compute the gradient of the loss to update the teacher’s parameters.

Summary In general, self-training is a way to get more training data by a
series of operations to get pseudo-labels of unlabeled data. Both EntMin [37]
and Pseudo-label [64] use entropy minimization to get the pseudo-label with
the highest confidence as the ground truth for unlabeled data. Noisy Student
[105] utilizes a variety of techniques when training the student network, such as
data augmentation, dropout and stochastic depth. S4L [110] not only uses data
augmentation techniques, but also adds another 4-category task to improve
model performance. MPL [79] modifies Pseudo-label [64] by deriving the teacher
network’s update rule from the feedback of the student network. Emerging
techniques (eg, rich data augmentation strategies, meta-learning, self-supervised
learning) and network architecture (eg. EfficientNet [101]) provide powerful
support for the development of self-training methods.

Disagreement-based learning

The idea of disagreement-based SSL is to train multiple learners for the task
and exploit the disagreement during the learning process [116]. In such model

37

3 Semi-supervised learning

designs, two or three different networks are trained simultaneously and label
unlabeled samples for each other. Disagreement-based methods differ in whether
the data has multiple views , Co-training [12, 81] for multiview data or Tri-Net
[18] for single-view data.

Co-training Co-training [12] requires that each data point x can be represented
using two conditionally independent views v1(x) and v2(x), and that each view
is sufficient to train a good model. After training two prediction functions fθ1
and fθ2 on a specific view on the labeled set Dl. We start the proxy labeling
procedure. At each iteration, an unlabeled data point is added to the training
set of the model fθi if the other model fθj outputs a confident prediction with
a probability higher than a threshold τ . This way, one of the models provides
newly labeled examples where the other model is uncertain. Co-training has been
combined with deep learning for some applications, such as object recognition
[20] by utilizing RGB-D data, with RGB and depth as the two views used to
train the two models, or for combining multi-modal data [2] (image and text)
by training each model on a given modality and use it to provide pseudo-labels
for other models. However, in many cases, the data have only one view rather
than two, in this instance, different learning algorithms or different parameter
configurations to learn two different classifiers can be employed. The two views
v1(x) and v2(x) can also be generated by injecting noise or by applying different
augmentations, for example, Qiao et al.[81] used adversarial perturbations to
produce new views for deep co-training for image classification, where the
models are encouraged to have the same predictions on Xl but make different
errors when they are exposed to adversarial attacks. Here, v1(x) and v2(x) are
convolutional representations of x before the final fully-connected layer fi()
that classifies vi(x) to one of the categories.

Lu = w
1

|XU |
∑
x∈XU

dJS(f1(v1(x)), f2(v2(x))) (3.24)

Democratic co-training [115]. An extension of Co-training, consists of re-
placing the different views of the input data with a number of models with
different architectures and learning algorithms, which are first trained on the
labeled examples. The trained models are then used to label a given example x
if a majority of models confidently agree on its label.

Tri-training Tri-training [117] tries to overcome the lack of data with multiple
views and reduce the bias of the predictions on unlabeled data produced with
self-training by utilizing the agreement of three independently trained models
instead of a single model. First, the labeled data Xl is used to train three
prediction functions: fθ1 , fθ2 and fθ3 . An unlabeled data point x ∈ Du is then
added to the supervised training set of the function fθi if the other two models

38

3 Semi-supervised learning

agree on its predicted label. The training stops if no data points are being added
to any of the models’ training sets. Tri-training requires neither the existence
of multiple views nor unique learning algorithms, making it more generally
applicable. Using Tri-training with neural networks can be very expensive,
requiring predictions for each one of the three models on all the unlabeled data.
Ruder et al.[85] propose to sample a limited number of unlabeled data points
at each training epoch, the candidate pool size is increased as the training
progresses and the models become more accurate.

Multi-task tri-training [85] can also be used to reduce the time and sample
complexity, where all three models share the same feature-extractor with model-
specific classification layers. This way, the models are trained jointly with an
additional orthogonality constraint on two of the three classification layers to
be added to loss term, to avoid learning similar models and falling back to
the standard case of self-training. Tri-Net [27] also falls in this category, with
a shared module for joint learning and three output modules for tri-training,
in addition to utilizing output smearing [15] to initialize these modules. After
the pseudo-labeling iteration, a fine-tuning stage is conducted on the labeled
data to augment diversity and eliminate unstable and suspicious pseudo-labeled
data.

Cross-view training Clark et al.[21] propose Cross-View Training, where the
model is trained to produce consistent predictions across different views of
the inputs. Instead of using a single model as a teacher and a student, they
propose to use a shared encoder, and then add auxiliary prediction modules
that transform the encoder representations into predictions, these modules are
then divided into auxiliary student modules and a primary teacher module. The
input to each student prediction module is a subset of the model’s intermediate
representations corresponding to a restricted view of the input, such as feeding
one of the student only the forward LSTM from a given Bi-LSTM layer, so it
makes predictions without seeing any tokens to the right of the current one
(fig:cvt). The primary teacher module in trained only on labeled examples, and
is responsible of generating the pseudo-labels taking as input the full view of the
unlabeled inputs, the students are trained to have consistent predictions with
the teacher module. Given an encoder f , a teacher module t and K student
modules si with i ∈ [0, K], where each student receives a limited view of the
input, the training unsupervised objective is written as follows:

Lu =
1

|XU |
∑
x∈XU

K∑
i=1

dMSE(t(e(x)), si(fθ(x))) (3.25)

Cross-view training takes advantage of unlabeled data by improving the
encoder’s representation learning. The student prediction modules can learn

39

3 Semi-supervised learning

from the teacher module predictions because this primary module has a better,
unrestricted view of the inputs. As the student modules learn to make accurate
predictions despite their restricted views of the input, they improve the quality
of the representations produced by the encoder. Which, in turn, improves the
full model, which uses the same shared representations.

Summary The disagreement-based SSL methods exploit the unlabeled data
by training multiple learners, and the “disagreement” among these learners
is crucial. When the data has two sufficient redundancy and conditional inde-
pendence views, Deep Co-training [81] improves the disagreement by designing
a View Difference Constraint. Tri-Net [18] obtains three labeled datasets by
bootstrap sampling and trains three different learners. These methods in this
category are less affected by model assumptions, non-convexity of the loss
function and the scalability of the learning algorithms.

3.3.3 Hybrid methods

An emerging line of work in SSL is a set of hybrid approaches that try to unify
the current dominant methods in SSL in a single framework, achieving better
performances.

MixMatch Berthelot et al.[9] propose a hybrid approach which gracefully
unifies ideas and components from the dominant paradigms for SSL, resulting
in an algorithm that is greater than the sum of its parts and surpasses the
performance of the traditional approaches.

MixMatch takes as input a batch from the labeled set Xl containing pairs
of inputs and their corresponding one-hot targets, a batch from the unlabeled
set Du containing only unlabeled data, and a set of hyperparameters: the
sharpening softmax temperature T , the number of augmentations K, and the
Beta distribution parameter α for MixUp. Producing a batch of augmented
labeled examples and a batch of augmented unlabeled examples with their
proxy labels. These augmented examples can then be used to compute the
losses and train the model. Precisely, MixMatch consists of the following steps:

• Step 1: Data Augmentation. Using a given transformation, a labeled
example x ∈ Xl from the labeled batch is transformed, producing its aug-
mented versions x̃. For an unlabeled example x ∈ XU , the augmentation
function is applied K times, resulting in K augmented versions of the
unlabeled examples x̃1, ..., x̃K .

• Step 2: Label Guessing. The second step consists of producing proxy
labels for the unlabeled examples. First, we generate the predictions for
the K augmented versions of each unlabeled example using the predictions
function fθ. The K predictions are then averaged together, obtaining a

40

3 Semi-supervised learning

pseudo-label ŷ = 1/K
∑K

k=1(ŷk) for each one of the augmentations of the
unlabeled example x: (x̃1, ŷ), ..., (x̃K , ŷ).

• Step 3: Sharpening. To push the model to produce confident predictions
and minimize the entropy of the output distribution, the generated proxy
labels ŷ in step 2 in the form of a probability distribution over C classes
are sharpened by adjusting the temperature of the categorical distribution,
computed as follows where (ŷu)k refers to the probability of class k out of
C classes:

(ŷ)k = (ŷ)
1
T
k /

C∑
k=1

(ŷ)
1
T
k (3.26)

• Step 4 MixUp. The previous steps resulted in two new augmented
batches, a batch L of augmented labeled examples and their target, and
a batch U of augmented unlabeled examples and their sharpened pseudo-
labels. Note that the size of U is K times larger than the original batch
given that each example x ∈ XU is replaced by its K augmented versions.
In the last step, we mix these two batches. First, a new batch merging
both batches is created W = Shuffle(Concat(L,U)). W is then divided
into two batches: W1 of the same size as L and W2 of the same size as
L. Using the Mixup operation that is slightly adjusted so that the mixed
example is closer the labeled examples, the final step is to create new
labeled and unlabeled batches by mixing the produced batches together
using Mixup as follows:

L′ = MixUp(L,W1) (3.27)

U ′ = MixUp(U ,W2) (3.28)

After creating two augmented batches L′ and U ′ using MixMatch, we can
then train the model using the standard SSL losses by computing the CE loss
for the supervised loss:

Ls =
1

|L′|
∑
x,y∈L′

H(y, fθ(x))) (3.29)

and the consistency loss for the unsupervised loss:

Lu = w
1

|U ′|
∑
x,ŷ∈U ′

dMSE(ŷ, fθ(x)) (3.30)

ReMixMatch Berthelot et al.[10] propose to improve MixMatch by introduc-
ing two new techniques: distribution alignment and augmentation anchor-
ing. Distribution alignment encourages the marginal distribution of predictions
on unlabeled data to be close to the marginal distribution of ground-truth

41

3 Semi-supervised learning

Figure 3.3: MixMatch. The procedure of label guessing process used in MixMatch, taking
as input a batch of unlabeled examples, and outputting a batch of K augmented
version of each input, with a corresponding sharpened proxy labels. Image Source:
[9].

labels. Augmentation anchoring feeds multiple strongly augmented versions of
the input into the model, encouraging each output to be close to the prediction
for a weakly-augmented version of the same input.

Distribution alignment. In order to force that the aggregate of predictions on
unlabeled data matches the distribution of the provided labeled data. Over the
course of training, a running average ỹ of the model’s predictions on unlabeled
data is maintained over the last 128 batches. For the marginal class distribution
p(y), it is estimated based on the labeled examples seen during training. Given a
prediction fθ(x) on the unlabeled example x, the output probability distribution
is aligned as follows: fθ(x) = Normalize (fθ(x)× p(y)/ỹ).

Augmentation Anchoring. MixMatch uses a simple flip-and-crop augmen-
tation strategy, ReMixMatch replaces the weak augmentations with strong
augmentations learned using a control theory based augmentation strategy
following AutoAugment. With such augmentations, the model’s prediction for
a weakly augmented unlabeled image is used as a proxy label for many strongly
augmented versions of the same image in a standard cross-entropy loss.

For training, MixMatch is applied to the unlabeled and labeled batches,
with the application of distribution alignment and replacing the K weakly
augmented example with a strongly augmented example, in addition to using
the weakly augmented examples for predicting proxy labels for the unlabeled
strongly augmented examples. With two augmented batches L′ and U ′, the
supervised and unsupervised losses are computed both using the cross-entropy
loss as follows:

L = Ls + wLu =
1

|L′|
∑
x,y∈L′

H(y, fθ(x))) + w
1

|U ′|
∑
x,ŷ∈U ′

H(ŷ, fθ(x))) (3.31)

In addition to these losses, the authors add a self-supervised loss. First, a
new unlabeled batch Û ′ of examples is created by rotating all of the examples
with an angle r ∼ {0, 90, 180, 270}. The rotated examples are then used to
compute a self-supervised loss, where the classification layer on top of the model
predicts the correct applied rotation, in addition to the cross-entropy loss over

42

3 Semi-supervised learning

the rotated examples:

LSL = w′
1

|Û ′|

∑
x,ŷ∈Û ′

H(ŷ, fθ(x))) + λ
1

|Û ′|

∑
x∈Û ′

H(r, fθ(x))) (3.32)

Figure 3.4: ReMixMatch. Left. Distribution alignment adjusts the guessed labels distribu-
tions to match the ground-truth class distribution divided by the average model
predictions on Du. Right. Augmentation anchoring uses the prediction obtained
using a weakly augmented image as targets for a strongly augmented version of
the same image. Image Source: [10].

FixMatch FixMatch [96] combines consistency regularization and pseudo-
labeling while vastly simplifying the overall method. In FixMatch (fig. 3.5),
both the supervised and unsupervised losses are computed using a cross-entropy
loss. For labeled examples, the provided targets are used. For unlabeled examples
x ∈ XU , a weakly augmented version is first computed using weak augmentation
function Aw. As in self-training, the predicted label is then considered as a
pseudo-label if the highest class probability is greater than a threshold τ . With
a pseudo-label, K strongly augmented examples are generated using a strong
augmentation function As. We then assign to these augmented versions the
pseudo-label obtained with the weakly labeled version. The unsupervised loss
can be written as follows:

Lu = w
1

K|XU |
∑
x∈XU

K∑
i=1

1(max(fθ(Aw(x))) ≥ τ)H(fθ(Aw(x)), fθ(As(x)))

(3.33)

In FixMatch, weak augmentation is a standard flip-and-shift augmentation
strategy, randomly flipping images horizontally with a probability. For strong
augmentation, there are two approaches which are based on [23], , RandAugment
[22] and CTAugment [10]. Moreover, Cutout [25] is followed by either of these
strategies. Since our method uses FixMatch as a base for our cleaning process,
it is better explained in the next section.

43

3 Semi-supervised learning

Figure 3.5: FixMatch. The model prediction on a weakly augmented input is considered as
target if the maximum output class probability is above threshold, this target
can then be used to train the model on a strongly augmented version of the same
input using standard cross-entropy loss. Image Source: [10].

SelfMatch SelfMatch [55] combines the power of contrastive self-supervised
learning and consistency regularization. It consists of two stages: (1) self-
supervised pre-training based on contrastive learning and (2) semi-supervised
finetuning based on augmentation consistency regularization. It adopts SimCLR
[19] for the first stage, and FixMatch [96] for the second. The second stage along
with its unsupervised loss Lu of the second stage is identical to Fixmatch’s.
For the second stage: SimCLR consists of four components: data augmentation
T (·), base encoder f(·), projection head g(·), and contrastive loss Lu2. For
data augmentation, SelfMatch uses random crop and color distortion. The base
encoder is a ResNet-34. For the projection head, a MLP consisting of two
layers with Dropout and ReLU activation is used. Finally, the contrastive loss
is formulated as follows:

Lu2 = − log
exp(sim(zi, zj)/τ)∑2K

k=1 1(k 6= i)exp(sim(zi, zk)/τ)
(3.34)

, where sim(·) is a similarity measure function, τ is a temperature parameter
scaling the similarity, 1(k 6= i) is an indicator function evaluating to 1 iff k 6= i.

By combining two closely related but complementary stages, SelfMatch
improves from other methods such as S4L [110] that also uses self-supervised
pre-training.

CoMatch In CoMatch [66], each image has two compact representations: a
class probability produced by the classification head and a low-dimensional
embedding produced by the projection head. The two representations interact
with each other and jointly evolve in a co-training framework. Specifically,
the classification head is trained using memory-smoothed pseudo-labels, where
pseudo-labels are refined by aggregating information from nearby samples in the

44

3 Semi-supervised learning

Figure 3.6: SelfMatch. Overview of the method depicting the 2 stages followed. Image
Source: [55].

embedding space. The projection head is trained using contrastive learning on
a pseudo-label graph, where samples with similar pseudo-labels are trained to
have similar embeddings. CoMatch unifies dominant ideas including consistency
regularization, entropy minimization, contrastive learning, and graph-based
SSL.
Different from most existing semi-supervised and self-supervised learning meth-
ods, CoMatch jointly learns the encoder f(·), the classification head h(·), and
the projection head g(·). g(·) is actually a non-linear projection head (a MLP),
which transforms a feature f(x) into a normalized low-dimensional embedding
z(x) = g(f(x)). CoMatch jointly optimizes three losses: (1) a supervised clas-
sification loss on labeled data Ls, (2) an unsupervised classification loss on
unlabeled data Lu1, and (3) a graph-based contrastive loss on unlabeled data
Lu2. Ls is defined as the cross-entropy between the ground-truth labels and the
model’s predictions, while the unsupervised classification loss Lu1 is defined
as the cross-entropy between the pseudo-labels qb and the model’s predictions,
and is the same as FixMatch’s.

Following FixMatch [96], CoMatch retains pseudo-labels whose largest class
probability are above a threshold τ . Different from FixMatch, its soft pseudo-
labels qb are not converted to hard labels for entropy minimization. Instead, it
achieves entropy minimization by optimizing the contrastive loss Lu2.

The overall unsupervised training objective is:

Lu = w1Lu1 + w2Lu2, (3.35)

where w1 and w2 are scalar hyperparameters to control the weight of the
unsupervised losses.

45

3 Semi-supervised learning

The contrastive unsupervised loss is defined as follows:

Lu2 = − log
exp(z(Aug(xi)) · z(Aug(xi))/t)∑N
j=1 exp(z(Aug(xi)) · z(Aug(xj))/t)

(3.36)

where Aug(·) is a stochastic transformation, t is a scalar temperature parameter,
and xj include xi and N − 1 other images (negative samples). Self-supervised
contrastive learning can be interpreted as a form of class-agnostic consistency
regularization, which enforces the same image with different augmentations to
have similar embeddings, while different images have different embeddings.

Aug$

unlabeled batch %

...

......

ℎ ∘ (...

)

* ∘ (

ℒ,-./

ℒ,-01

2
Memory Bank)3

2
DA(ℎ ∘ ()

* ∘ (

Pseudo-label graph

Embedding graph

Memory-smoothed pseudo-labeling

sg

sg

...

6

Aug7 ...

Aug′7

* ∘ (

...

6′

...

63

Figure 3.7: CoMatch. Given a batch of unlabeled images, their weakly-augmented images
are used to produce memory-smoothed pseudo-labels, which are used as targets
to train the class prediction on strongly-augmented images. A pseudo-label graph
with self-loop is constructed to measure the similarity between samples, which is
used to train an embedding graph such that images with similar pseudo-labels
have similar embeddings. Image Source: [66]

Summary As discussed above, the hybrid methods unifies the most successful
approaches in SSL, such as pseudo-labeling, entropy minimization and consis-
tency regularization, and adapt them to achieve state-of-the-art performance.

3.4 Learning with noisy labels

In the literature, the solutions of learning with noisy labels can be classified
into two types: 1) detecting noisy labels and then cleansing potential noisy
labels or reduce their impacts in the following training; 2) directly training
noise-robust models with noisy labels.

3.4.1 Noise-cleansing

Koh and Liang [56] propose an influence functions to measure which samples
are “harmful” to model training. As the proposed approach requires intensive

46

3 Semi-supervised learning

computation on the impact of every training sample on all the validation
samples, it is hardly implemented in industry. In [112], Zhang et al. propose an
approach to detect both outlier samples and hard training set bugs using a small
group of trusted data. As this approach requires a strong convex assumption
on the objective function, it cannot be applied to most of the deep models
because such an assumption can hardly hold. In [65], Lee et al. propose a joint
neural embedding network named Clean-Net. This approach summarizes the
knowledge of label noise from a fraction of manually verified classes. Transfer
learning is then conducted to transfer the knowledge to other classes to handle
label noise. The human verification lowers the applicability of this work. In [40],
Han et al. propose a noisy label detection approach, named Co- teaching, in
which two deep networks are trained simultaneously. Each network selects which
samples the other network uses for training. Either of the networks teaches each
other to identify noisy labels. Another similar work is proposed in [70]. In recent
studies, curriculum learning [39] is applied to learning with noisy labels. In
[38], Guo et al. propose CurriculumNet, in which training data are divided into
several subsets by ranking their complexity via distribution density. The subsets
are formed as a curriculum to teach the model in understanding label noise
gradually. A similar idea is proposed in [52]. In this work, a MentorNet is trained
to identify potential noisy labels. It then provides a data-driven curriculum for
a StudentNet which is trained on the relatively clean data samples.

3.4.2 Noise-robust models

In [36], label noise is modeled by additional softmax layers to estimate the
transition between correct labels and noisy labels. In [104], Xiao et al. propose
a probabilistic model to describe the relations among images, truth labels, noisy
labels and noise types. The probabilistic model requires a small set of verified
clean labels. In [84], Reed and Lee propose the notion consistent to model noisy
labels. Sample reconstruction errors are applied as the consistency objective to
estimate the noise distribution. All the above noise-transition-estimation-based
approaches aim at discovering the pattern of noise in data. Note that all the
prior work of learning with noisy labels requires either particular assumptions
(e.g., noise distribution estimation) or extra specifically designed loss functions
or networks (e.g., Co-teaching and MentorNet). Those limit their applicability
in practice. Our methods are based on O2U-net which is a more straightforward
but effective approach. Different from the prior work, it only requires only
appropriately adjusting the hyper-parameters of deep networks.

47

4 Our Methods

4.1 Introduction

Modern approaches to many computer vision problems exploit deep neural
networks. These are popular for being very efficient and providing great perfor-
mance at test time. The downside is a requirement of large amounts of training
examples, which are labeled either by humans or automatically on proxy tasks.

Visual data are available in large quantities, however, data reliably annotated
by humans are still very scarce. Obtaining large amounts of annotated training
data for every single task is not only impractical, potentially costly, but it also
turns out to be error prone. The low quality of crowd-sourced annotation is a
common motivation to minimize the need of annotation.

Since labeling a large number of examples requires considerable time and
cost, label efficient learning algorithms are in high demand. Semi-supervised
learning is one of the attractive approaches that addresses the label inefficiency
problem. Semi-supervised learning enables a deep neural network to learn with
small labeled data by making use of large unlabeled data.

In this work, we introduce the two semi-superviesd methods we designed,
implemented and experimented on. CleanMatch and WeightMatch are a com-
bination of three components: consistency regularization, pseudo-labeling and
learning from noisy data.

Their main novelty comes from the combination of the two first as used in
FixMatch as well as the use of label cleaning to make the best use of them.

CleanMatch combines the power of predicting pseudo-labels in semi-supervised
learning with label cleaning in order to expand the labeled dataset and ulti-
mately train on the new split of labeled-unlabeled examples.

WeightMatch leverages the same label cleaning process but solely on the
labeled set, to estimate a weight reflecting the importance of each labeled
example on the training.

4.2 Preliminaries

In this section we formulate the semi-supervised learning problem and then we
discuss the classifier, different loss functions that are commonly used in prior
work, and finally a transductive learning approach that our method is based on.
In our experiments we use a convolutional neural network (CNN) to perform

48

4 Our Methods

image classification, but this formulation applies to any network architecture in
any domain.

Problem formulation We assume a collection of n examples comprising the
dataset X = (x1, . . . , xl, xl+1, . . . , xn) with xi ∈ X . The first l examples xi for
i ∈ L = {1, . . . , l}, denoted by XL = {(xi, yi)}Li=1, where YL = (y1, y2, . . . , yL)
are the corresponding labels. where mathcalC = {1, . . . , c} is a discrete label
set for c classes. The remaining u = n− l examples xi for i ∈ U = {l+1, . . . , n},
denoted by XU , are unlabeled. The goal in SSL is to use all examples X and
labels YL to train a classifier that maps previously unseen samples to class
labels.

Classifier The network takes an input example from X and produces a vector
of class confidence scores. We denote it by fθ : X → Rc, where θ are the
network parameters. It is conceptually divided in two parts. The first is a
feature extraction network φθ : X → Rd mapping the input to a feature vector,
or descriptor. The second typically consists of a fully connected (FC) layer
applied on top of φθ and followed by softmax, producing a vector of confidence
scores. Function fθ is the mapping from input space directly to confidence scores.
The output of the network for the i-th example is fθ(xi) and the prediction is
the one of maximum confidence score

ŷi = arg max
j
fθ(xi)j, (4.1)

where subscript j denotes the j-th dimension of the vector.

Consistency regularization It is an important component of recent state-of-
the-art SSL algorithms. Consistency regularization utilizes unlabeled data by
relying on the assumption that the model should output similar predictions
when fed perturbed versions of the same image. The model is trained both
via a standard supervised classification loss and on unlabeled data via the loss
function

‖p(y|a1(x))− p(y|a2(x))‖22 (4.2)

Note that in this work p implies the function fθ. Extensions to this idea include
using an adversarial transformation in place of a1 and a2 using a running
average or past model predictions for one invocation of p, using a cross-entropy
loss in place of the squared l2 loss, using stronger forms of augmentation, and
using consistency regularization as a component in a larger SSL pipeline.

Pseudo-labeling It is a common method in many SSL algorithms, which
encourages the classifier’s decision boundary to pass through low-density regions

49

4 Our Methods

of the data distribution. It is either achieved explicitly by minimizing the entropy
of p(y|x) on unlabeled samples, or implicitly by constructing low-entropy pseudo-
labels on unlabeled samples and using them as training targets in a cross-entropy
loss.

In our case, it is the process of assigning a pseudo-label ŷi to each example
xi for i ∈ U . Denoting by YU = (ŷl+1, . . . , ŷn) the collection of pseudo-labels for
XU , the following additional pseudo-label loss term applies

Lp(XU ,YU ; θ) =
n∑

i=l+1

H (ŷi, fθ(xi)) , (4.3)

where again H is the cross-entropy. An example is the approach proposed by
Lee [64], who first train network fθ with losuper and then assign pseudo-labels
according to (4.1) for i ∈ U .

Label cleaning It leverages the idea of identifying true-labeled examples from
noisy training data via multi-network or multi-round learning. Let Ct ⊆ Xt be
the selected clean examples at time t. Therefore, the network is updated only
for the selected clean examples Ct,

θt+1 = θt − ηt∇
(1

|Ct|
∑

(x,ŷ)∈Ct

`
(
ŷ, fθt(x))

)
. (4.4)

This training scheme is well motivated and works well in general, but it still
suffers from accumulated error caused by incorrect selection. Hence, recent
approaches often take advantage multiple networks to cooperate with one an-
other or run multiple training rounds. In order to avoid the need of maintaining
additional networks, multi-round learning iteratively refines the selected set of
clean examples by repeating the training round. Thus, the selected set keeps
improved as the number of rounds increases. In particular, O2U-Net [46] repeats
the whole training process with the cyclical learning rate until enough loss
statistics of every examples are gathered. Next, the network is re-trained from
scratch only for the clean data where false-labeled examples have been detected
and removed based on statistics.

4.3 CleanMatch

An overview of CleanMatch is shown in Figure 4.1. CleanMatch consists of two
stages:

1. Selection of the most confident unlabeled examples via a cleaning process
based on O2U-Net applied iteratively on the pseudolabels provided by
FixMatch

2. Expansion of the labeled set XL with the extracted clean examples, and
semi-supervised training based on FixMatch on the expanded labeled set.

50

4 Our Methods

4.3.1 Stage 1

Semi-supervised training based on augmentation consistency For labeled
examples, the provided targets are used. So, the supervised loss can be written
as follows:

Ls =
1

|XL|
∑

x,y∈XL

H(y, fθ(Aw(x))), (4.5)

For unlabeled examples x ∈ XU , a weakly augmented version is first computed
using weak augmentation function Aw. Weak augmentations consist of a stan-
dard flip-and-shift augmentation strategy. Specifically, the images are flipped
horizontally with a probability of 50% on all datasets except SVHN, in addition
to randomly translating images by up to 12.5% vertically and horizontally.

Given an instance, only when the model predicts a high-confidence label
can the predicted pseudo-label be identified as ground-truth. In particular, the
predicted label is considered as a pseudo-label if the highest class probability is
greater than a threshold τ1. So, in order to obtain an artificial label, we first
compute the model’s predicted class distribution given a weakly-augmented
version of a given unlabeled image: q = fθ(Aw(x)). Then, with a pseudo-label
ŷ = arg max q, K strongly augmented examples are generated using a strong
augmentation function As. For the strong augmentations, we use only Ran-
dAugment (the authors also use CTAugment) [10] where a given transformation
(color inversion, translation, contrast adjustment, etc.) is randomly selected
for each sample in a batch of training examples, and the amplitude of the
transformation is a hyperparameter that is optimized during training. We then
assign to these augmented versions the proxy label obtained with the weakly
labeled version. The unsupervised loss can be written as follows:

Lu = w
1

K|X̂U |

∑
x∈X̂U

K∑
i=1

H(ŷ, fθ(As(x))), (4.6)

where

X̂U = {x ∈ XU : max
j

(q)j ≥ τ1)} (4.7)

We continue by setting a second threshold τ2, where τ2>τ1, to select an
even more confident subset CU containing examples with their corresponding
pseudolabels,

CU = {(x ∈ XU , ŷ ∈ YU) : max
j

(q)j ≥ τ2)} (4.8)

to pass in the cleaning process. For an unlabeled example with a pseudo-label
to be selected for the subset, its’ highest class probability has to be greater
than threshold τ2. We wait for the model to train till it has 50% of augmented

51

4 Our Methods

images’ predictions over the threshold τ2, before we start the iterative cleaning
process in order to extract the most confident unlabeled examples.

Iterative cleaning

To overcome this issue, we follow O2U-Net which introduces multiple rounds
of status transfer in training. We adjust the hyper-parameters of a classifier
to make its status transferring from overfitting to underfitting cyclically. A
straightforward way is to apply the cyclical learning rate. At the beginning
of training, a large learning rate is set. The learning rate linearly decreases
to some extent during training and is then reset to the original learning rate.
This whole process repeats for multiple rounds until enough loss statistics are
gathered. The idea behind is that, when the network almost converges to some
minimum (nearly overfitting), a large learning rate makes the network jump out
of the minimum. As a result, the network would abruptly become underfitting.

We repeat this process and track the loss of every sample. In learning with
noisy labels, it is common to detect noisy labels based on statistics of this loss
value for clean and noisy labels [3, 56]. However, this does not work well with
predicted pseudo-labels [1], hence we select the unlabeled examples from CU
having the least average loss [20, 1]. In particular, given the labeled set XL and
the confident pseudo-labeled set CU , which contains the unlabeled examples
that have a highest class probability greater than threshold τ2, we train an
N -way classifier g using the following losses for labeled and pseudo-labeled
examples:

`L =
1

|XL|
∑

xi,yi∈XL

H(yi, g(xi))), (4.9)

`C =
1

|CU |
∑

xi,ŷi∈CU

H(ŷi, g(xi))) (4.10)

The loss term `Ci = H(ŷi, g(xi)), corresponding to the pseudo-labeled example
xi ∈ CU , is used for selection. Following O2U-Net, we use a cyclical schedule of
learning rate and collect the average loss ¯̀

Ci over all epochs.
A smaller batch size than training is chosen to make the network more

easily transfer from overfitting to underfitting. The network is then trained for
multiple rounds based on the cyclical learning rate. The loss of every sample
is recorded during the cyclical training. For a training epoch, we subtract the
average loss of all the samples in this epoch from the loss of every sample
to normalize the losses in different epochs. In the cyclical train, suppose the
maximum cyclical learning rate is ηmax, and the minimum learning rate is ηmin,
where ηmax>ηmin. The equation for learning rate adjustment during the cyclical
training is as follows:

st = (1 + ((t− 1))c (4.11)

52

4 Our Methods

ηt = (1− st)ηmax + stηmin (4.12)

where t refers to the tth epoch in the cyclical training, c is the total number
of epochs in each cyclical round and ηt is the learning rate applied at t. After
the whole cyclical training, the average of the normalized losses of every sample
is computed. All the average losses are then ranked in descending order. Since
we shall iterate the process and to be more confident for our selection, we take
the extreme approach of selecting one unlabeled example:

C =

{
(xi, ŷi) ∈ CU : arg min

j
(¯̀
Ci)j

}
. (4.13)

So, C will contain only one example xc, that with the least average loss, along
with its pseudo-label ŷc. Finally, we augment, the initially empty, clean set
XC with the selected example and its’ pseudo-label, while at the same time
removing the selected example from XU :

XC ← XC ∪ {(xc, ŷc)} (4.14)

XU ← XU \ {xc} (4.15)

Discussion The predicted pseudo-labels are not necessarily correct, yet a
classifier can be robust to such noise. This is the case when enough data is
available to adapt the representation, such that the quality of pseudo-labels
improves with training. Since data is limited here, we would like to select
pseudo-labeled examples in XU that are most likely to be correct, treat them
as truly labeled and add them to the labeled set XL to be used on the next
stage. Iterating this process is an alternative way of improving the quality of
pseudo-labels.

We interpret this problem as learning with noisy labels, leveraging recent
advances in label cleaning [1, 46, 97]. Assuming that the classifier does not
overfit the data, with small capacity, high learning rate or few iterations, the
principle is that examples with clean labels exhibit less loss than examples with
noisy labels.

Particularly, by observing the whole training procedure on a given dataset
including label noise, it is found that noisy labels are usually memorized at the
late stage of training as the “hard” samples. At the beginning of the training,
the losses of noisy labels are larger than those of clean samples because clean
samples quickly get fit at that beginning. At the late stage of training, the losses
generated from noisy labels and clean labels are indistinguishable because both
of them are memorized by the network. Therefore, by tracking the variation of
loss of every sample at the different stages of training, it is possible to detect
noisy labels to some extent. However, in an ordinary training process, the status
of the network would change from underfitting to overfitting only once. Once

53

4 Our Methods

the noisy labels are memorized, their losses would fast decrease. Moreover, when
the noisy labels are overfitted is unknown. As a result, the loss tracking for
every sample may not be reliable because of the lack of sufficient statistics. That
is the reason we follow a multi-round learning approach as explained above.

4.3.2 Stage 2

Stage 2 expands the labeled set with the selected examples, and uses it for the
semi-supervised training. First, we augment XL with XC. However, because we
chose to be selecting only one unlabeled example, XC will be unbalanced. In
order to avoid transferring that imbalance to XL we compute the number of new
clean examples per class in XC. We are interested in the least amount (min) of
new examples among the classes. Finally, we randomly only keep min examples
per class to preserve balance. Now that XC is a balanced set we proceed with
the augmentation of XL:

XL ← XL ∪ XC (4.16)

Then we train FixMatch with the augmented XL. The benefits from this
augmentation are obvious. Assuming that XC contains only clean examples,
meaning that their corresponding predicted labels are true, FixMatch setup
of k labeled examples will be converted to k+l labeled examples, with l being
the size of XC. Therefore, it will be trained with a bigger ratio of labeled to
unlabeled examples, yielding better final results.

4.4 WeightMatch

With WeightMatch we aim to derive an importance weight for each training
labeled example to adapt its effect on model training.In particular,via a variant
of the iterative cleaning process we force the minibatches FixMatch is trained
on to contain the most confident labelled samples. In particular, In particular,
given the labeled set XL = {(xi, yi)}Li=1 we train an N -way classifier g using a
cross-entropy loss

` =
1

|XL|
∑

x,y∈XL

H(y, g(x))), (4.17)

The classifier follows the previous cyclical training while the selection of the
most confident labeled examples is based on the importance weight ranking,
which is inversely proportional to the computed average loss ranking. For this
method, we take the approach of selecting one example per class to preserve
class balance.

54

4 Our Methods

Stage 1

Stage 2

minH(y,fθ(AS(x))

ΧC ΧU

ΧC U {xc,yc}
ΧU \ {xc}

Pseudo-label

Label cleaning

PredictionClassification
headEncoder

ΧUΧL

1
2
3

xc

Aw

AS

Aw

AS

^

^

minH(y,fθ(AS(x))^

θ

θ

Figure 4.1: CleanMatch. Stage 1 : An example goes through weak(AW) and strong
augmentation(AS). The weakly-augmented version of the example is fed into
the encoder to obtain predictions produced by a classifier head. If its maximum
output class probability assigned by the network is above a threshold τ1 (green
dotted line), then the example along with its pseudo-label ŷ contributes to the
training (the model is trained to make its prediction on the strongly-augmented
version match the pseudo-label via a cross-entropy loss). The model prediction on
a weakly augmented input is considered as candidate for cleaning If the maximum
output class probability is above threshold τ2 (red dotted line), then it is a
candidate for selection through label cleaning. If it is selected as clean(xc) then it
will be added to a clean set XC , and subtracted from the unlabeled set XU . Stage
2 : We augment XL with XC and train as in Stage 1 without the iterative label
cleaning using the new XL.

55

5 Experiments

We evaluate the efficacy of CleanMatch and WeightMatch on several SSL image
classification benchmarks. Specifically, we perform experiments with varying
amounts of labeled data on CIFAR10, CIFAR100 [58] and SVHN [74] following
standard SSL evaluation protocols [76]. In many cases, we perform experiments
with fewer labels than usually considered since our methods are the most
promising in extremely label-scarce settings.

5.1 CIFAR-10 and SVHN

First, we conduct experiments on CIFAR-10, CIFAR-100 and SVHN datasets.
CIFAR-10 consists of 60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images. SVHN is a
digit classification benchmark dataset that contains 600000 32×32 RGB images
of printed digits (from 0 to 9) cropped from pictures of house number plates.
We vary the amount of labeled data and focus on the label-scarce scenario
where few labels are available. We evaluate on 5 runs with different random
seeds.

Baseline methods For CIFAR-10 and SVHN we compare our methods with
the original FixMatch, ReMixMatch, SelfMatch and CoMatch. We omit previous
methods such as MixMatch, -model, PseudoLabeling, and Mean Teacher due
to their poorer performance as reported in [96]. Following [76], we performed
all experiments using the same model architecture and the same codebase.
However, we did not reimplement all the baselines due to computational power
limitations, but they are reported as presented in the competitors’ works.

Implementation details Following [76], in order to train with FixMatch for
stage 1 and 2 of CleanMatch but also WeightMatch we used a Wide ResNet-28-2
[108] with 1.5M parameters for CIFAR-10 and SVHN. The model is trained
using SGD with a momentum of 0.9 and a weight decay of 0.0005. We follow
the original papers and train CleanMatch and WeightMatch for 1024 epochs,
using a learning rate of 0.03 with cosine learning rate decay with a decay of
η cos(7πt

16T
), where η is the initial learning rate, t is the current training step,

and T is the total number of training iterations. For the hyperparameters in

56

5 Experiments

our methods that also exist in [34], we follow [34] and set = 1, τ1 = 0.95, µ =
7, B = 64 while the threshold τ2 is set at 0.999

For the cleaning process based on O2U-net we test a 2 linear layer network
and a 9-layer network. The batch size is set to 16. The cyclical learning rate is
linearly adjusted from 0.01 to 0 in a cycle round, but the variation that starts
from 0.1 seems to work better. In a cycle round, we adopt three different cycle
lengths, 10, 30 and 50. The number of epochs is set from 10 to 300. We apply the
SGD optimizer with the momentum factor set to 0.9 and weight decay to 0.0005.
Further explanation on the label cleaning’s parameters is provided in Section 4.3.

Results Tables 5.1 and 5.2 show the results on CIFAR-10 and SVHN. Clean-
Match and WeightMatch outperform the best baseline across all settings. The
improvement is more substantial when fewer labeled samples are available. For
example, CleanMatch achieves an average accuracy of 93.41% on CIFAR-10
with only 1 label per class, whereas FixMatch (w. DA) has a lower accuracy of
73.64%.It has to be noted that WeightMatch does not offer any improvements for
the setting of 1 label per class since the weighting applies to 1 sample per class,
meaning in this setting all the labeled samples. With 2 labels per class, Clean-
Match achieves 93.98% average accuracy while WeightMatch 91.40%, whereas
CoMatch reaches 87.67%. On SVHN, we can see similar improvements (e.g.
CleanMatch achieves 95.98% with 2 labels per class while our implementation
of FixMatch achieves 88.27%).

Dataset CIFAR-10

Nb. labeled images 10 20 40 250 1000 4000

Supervised 96.30

ReMixMatch[10] - - 80.90±9.64 94.56±0.05 94.27±0.10 95.28±0.13

SelfMatch[55] - - 93.19±1.08 95.13±0.26 - 95.94±0.08

CoMatch[66] - 87.67±8.47 93.09±1.39 95.09±0.33 - -
FixMatch(Pytorch)[54] 73.64±7.51 82.11±9.05 93.38±2.15 95.31±1.08 95.39±0.64 95.77±0.13

FixMatch(official)[96] - 82.32±9.77 88.61±3.35 94.93±0.33 - 95.74±0.15

WeightMatch(ours) - 91.40±4.12 93.88±3.91 95.45±1.07 95.47±0.82 95.82±0.18

CleanMatch(ours) 93.41±1.54 93.98±0.79 95.17±0.55 95.62±0.42 - 95.85±0.12

Table 5.1: Comparison of accuracy for CIFAR-10. All baseline methods use Wide ResNet
28-2.

5.2 CIFAR-100

We want to evaluate CleanMatch and WeightMatch on CIFAR100 to verify their
efficacy on a more challenging dataset. CIFAR-100 is just like the CIFAR-10,

57

5 Experiments

Dataset SVHN

Nb. labeled images 20 40 250 1000

Supervised 97.98

ReMixMatch[10] - 96.66±2.17 97.08±0.38 97.35±0.11

SelfMatch[55] - 96.58±1.02 97.37±0.43 97.49±0.07

FixMatch(Pytorch)[54] 88.27±5.74 96.09±2.43 97.49±0.29 97.78±0.09

FixMatch(official)[96] - 96.04±2.17 97.52±0.38 97.72±0.11

WeightMatch(ours) 92.49±2.59 96.14±2.10 97.52±0.26 97.78±0.07

CleanMatch(ours) 95.98±2.38 97.36±2.03 97.60±0.68 97.81±0.15

Table 5.2: Comparison of accuracy for SVHN. All baseline methods use Wide ResNet 28-2.

except it has 100 classes containing 600 images each. There are 500 training
images and 100 testing images per class. We again vary the amount of labeled
data and we evaluate on 5 runs with different random seeds.

Baseline methods For CIFAR-100 we compare our methods with ReMix-
Match and FixMatch since they remain the state-of-the-art. Again, we followed
[76] and performed all experiments using the same model architecture and the
same codebase, but did not reimplement all the baseline experiments ourselves.

Implementation details For the training of our two methods we again fol-
lowed [76] and used Wide ResNet-28-8 [108] for CIFAR-100. The model is
again trained using SGD with a momentum of 0.9 but now a weight decay
of 0.001 is selected. All the other hyperparameters remain the same with the
exception of the batch size B which is set at 16. For the label cleaning the same
implementation as before is followed, just with a batch size of 8.

Results In CIFAR-100 CleanMatch does not work. This is the result of failure
in the iterative label cleaning process, since a small amount of the selected
confident unlabeled samples that will augment the labeled set turn out to have
false predicted pseudo-labels. However, WeightMatch works and as it can be
seen in Table 5.3 that it achieves an average accuracy of 63.21% with 4 labels
per class, whereas our reimplementation of FixMatch (w. DA) has a lower
accuracy of 57.50%.

58

5 Experiments

Dataset CIFAR-100

Nb. labeled images 400 2500 10000

Fully supervised 80.96

ReMixMatch[10] 55.72±2.06 72.57±0.31 76.97±0.56

FixMatch(Pytorch)[54] 57.50±2.76 72.93±0.50 78.12±0.23

FixMatch(official)[96] 51.15±1.75 71.71±0.24 77.40±0.11

WeightMatch(ours) 63.21±1.01 75.80±0.17 79.57±0.09

Table 5.3: Comparison of accuracy for CIFAR-100. All baseline methods use Wide ResNet
28-8.

5.3 Ablation study

We perform extensive ablation study to examine the effect of different com-
ponents in our two methods. We use CIFAR-10 with 4 labels per class as the
main experiment.

5.3.1 Iterative cleaning

Architectures We tested two classifier variants on which our label cleaning
is based, a 2 linear layer network and a 9-layer CNN used in [40](we slightly
modify its structure to fit it to different image sizes). The 9-layer CNN was
proven to be the most efficient in terms of percentage of clean pseudo-labels
selected. In particular, the 9-layer CNN was 100% accurate in its selection,
while the 2 linear layer classifier was 94% accurate.

Hyperparameters We experimented with two different batch samplers, train-
ing with a mini-batch of size B = BL and a mini batch with mini-batch size
B = BU+BL, whereBL images are labeled andBU images are unlabeled/pseudo-
labeled. The most effective when it comes to cleaning was the second sampler.
We also experimented with the cyclical learning rate, setting ηmax between 0.1
and 0.01. The accuracy of cleaning was best with ηmax = 0.1. Finally for a cycle
round, we adopted three different cycle lengths, 10, 30 and 50. The number of
epochs is set from 10 to 300. The best combination was proven to be the one
with cycle length of 30 and 300 epochs.

5.3.2 Training

Method We tested a version of CleanMatch where the semi-supervised train-
ing based on augmentation consistency regularization (FixMatch) and the
iterative cleaning occurs in one stage. In particular, we let the model train for

59

5 Experiments

a number of epochs and then start the cleaning process. By selecting only one
sample with its pseudo-label and adding it to the labeled set, we observe that
the training and testing accuracy stops improving. This is probably the result
of the model focusing on certain classes, the majority classes. This is a problem
because typically, the minority classes are more important since they are the
most challenging and therefore the problem is more sensitive to classification
errors for those classes than the majority ones.

Then, we tried selecting one label per class to preserve the balance of our
dataset. However, this approach led to a few selected samples to be falsely
pseudo-labeled, hindering once again the accuracy improvement of our model.

For the threshold τ2 setting it at 0.999 works better in terms of retaining
the most confident samples with correct pseudo-labels. When it was set lower,
a few false pseudo-labels occured. Also, we experimented with the starting
point of the cleaning process. Starting from the first epochs didn’t work. What
finally worked was letting the network train till 50% of all the predictions on
the augmented images are equal or above the threshold τ2. It happens around
the 200th epoch.

60

6 Conclusion and Future work

6.1 Conclusion

Our solutions are conceptually simple and combine in a unique way ideas that
have been successful in problems related to our task at hand. Semi-supervised
learning based on a combination of augmentation consistency regularization
and pseudo-labeling uses only standard cross-entropy losses on both labeled and
unlabeled data, yielding remarkable results. Label cleaning, originally introduced
for learning with noisy labels, is also very successful in cleaning predicted pseudo-
labels. Iterative selection of just a few pseudo-labels as true labels bypasses
the difficulty of single-shot detection of clean examples. Weighting based on
confidence steers the semi-supervised training towards relying on the most
discriminative examples per class.

Importantly, we empirically demonstrate that our methods outperform the
state-of-the-art methods and can contribute to closing the gap between su-
pervised learning and semi-supervised learning using only a few labels. In
particular, our methods yield the most significant improvements in extremely
label-scarce settings: below 1% of all the labeled examples for all the datasets.
CleanMatch offers the greatest improvements on CIFAR-10 and SVHN but fails
on CIFAR-100, while WeightMatch works on all datasets.

Finally, reasonable baselines, like predicting pseudo-labels by a classifier or
iteratively re-using pseudo-labels without cleaning, fail completely.

6.2 Future work

This research only concentrates on inductive semi-supervised learning, where the
goal is generalization to new unseen data, while the original training data are
discarded. This is achieved e.g. by combining classification loss on labeled data
with unsupervised objectives on all data, where the latter act as regularization.
Or, as seen in this work, an existing classifier can be used to assign pseudo-labels,
which is another form of algorithmic supervision.

However, there are efficient transductive learning algorithms such as label
propagation [49] that infer pseudo-labels for unlabeled data, which are used to
train the classifier. Label propagation is a graph-based method, and in [49] the
graph is constructed exploiting the embeddings obtained by the classification
network itself. This method has been proven to provide high-quality pseudo-

61

6 Conclusion and Future work

labels. Therefore, it would be useful to experiment and draw comparisons
between our methods and that of label propagation. In particular, we would
like to investigate the quality of pseudo-labels provided by label propagation
and how they compare to the ones provided directly from a network (as used
in this work). If they are proven to be of higher quality, label propagation can
be adjusted to work complementary to our methods.

The aforementioned transductive approach could address the limitation of
CleanMatch when tested on CIFAR-100. The potential higher quality pseudo-
labels may enable the label cleaning process to work as intended. One other
alternative that is worth investigating is applying the label cleaning more
sparsely.

Regardless of the improvements on our existing methods we would like
to experiment with other related tasks. In general, SSL methods have been
mostly applied to image classification, whose labeling cost is relatively cheaper
compared to other important problems in computer vision, such as object
detection. Due to its expensive labeling cost, object detection demands a higher
level of label efficiency, necessitating the development of strong SSL methods.
That is why we want to apply our iterative label cleaning idea to improve existing
SSL methods for object detection, like STAC [95]. STAC is an extension of
FixMatch and it deploys highly confident pseudo labels of localized objects
from an unlabeled image and updates the model by enforcing consistency via
strong augmentations.

One other interesting direction, since SSL is such a realistic scenario, would be
to combine it with other ones that are based on full supervision. In particular, it
can be coupled with incremental learning, metric learning, long tail recognition
and learning from noisy labels.

Finally, in representation learning, and particularly in self-supervised learning,
it is a common practice to include a small percentage of a large-scale dataset(e.g.
Imagenet) during training. Due to the fact that the datasets used for this purpose
are curated, our label cleaning idea can turn out to be useful.

62

Bibliography

[1] Eric Arazo et al. “Unsupervised Label Noise Modeling and Loss Correc-
tion.” In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, Sept. 2019, pp. 312–
321. url: http://proceedings.mlr.press/v97/arazo19a.html (cit.
on pp. 7, 53).

[2] Ehsan Mohammady Ardehaly and Aron Culotta. “Co-training for de-
mographic classification using deep learning from label proportions.”
In: 2017 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE. 2017, pp. 1017–1024 (cit. on p. 38).

[3] Ben Athiwaratkun et al. There Are Many Consistent Explanations of
Unlabeled Data: Why You Should Average. 2019. arXiv: 1806.05594
[cs.LG] (cit. on p. 32).

[4] Sandra Avila et al. “Pooling in Image Representation: The Visual Code-
word Point of View.” In: Comput. Vis. Image Underst. 117.5 (May 2013),
pp. 453–465. issn: 1077-3142. doi: 10.1016/j.cviu.2012.09.007.
url: https://doi.org/10.1016/j.cviu.2012.09.007 (cit. on p. 13).

[5] Philip Bachman, Ouais Alsharif, and Doina Precup. “Learning with
Pseudo-Ensembles.” In: Advances in Neural Information Processing
Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc.,
2014. url: https://proceedings.neurips.cc/paper/2014/file/
66be31e4c40d676991f2405aaecc6934-Paper.pdf (cit. on p. 7).

[6] Herbert Bay et al. “Speeded-Up Robust Features (SURF).” In: Computer
Vision and Image Understanding 110.3 (2008). Similarity Matching in
Computer Vision and Multimedia, pp. 346–359. issn: 1077-3142. doi:
10.1016/j.cviu.2007.09.014. url: http://www.sciencedirect.
com/science/article/pii/S1077314207001555 (cit. on p. 11).

[7] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering.” In: Proceedings of the 14th
International Conference on Neural Information Processing Systems:
Natural and Synthetic. NIPS’01. Vancouver, British Columbia, Canada:
MIT Press, 2001, pp. 585–591 (cit. on p. 28).

63

http://proceedings.mlr.press/v97/arazo19a.html
https://arxiv.org/abs/1806.05594
https://arxiv.org/abs/1806.05594
https://doi.org/10.1016/j.cviu.2012.09.007
https://doi.org/10.1016/j.cviu.2012.09.007
https://proceedings.neurips.cc/paper/2014/file/66be31e4c40d676991f2405aaecc6934-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/66be31e4c40d676991f2405aaecc6934-Paper.pdf
https://doi.org/10.1016/j.cviu.2007.09.014
http://www.sciencedirect.com/science/article/pii/S1077314207001555
http://www.sciencedirect.com/science/article/pii/S1077314207001555

Bibliography

[8] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies
with gradient descent is difficult.” In: IEEE Transactions on Neural
Networks 5.2 (1994), pp. 157–166. doi: 10.1109/72.279181 (cit. on
p. 18).

[9] David Berthelot et al. “Mixmatch: A holistic approach to semi-supervised
learning.” In: Advances in Neural Information Processing Systems. 2019,
pp. 5050–5060 (cit. on pp. 40, 42).

[10] David Berthelot et al. “ReMixMatch: Semi-Supervised Learning with Dis-
tribution Alignment and Augmentation Anchoring.” In: arXiv preprint
arXiv:1911.09785 (2019) (cit. on pp. 8, 41, 43, 44, 51, 57–59).

[11] Christian Biemann. “Unsupervised and knowledge-free natural language
processing in the structure discovery paradigm.” Doctoral dissertation.
Leipzig University, Germany, 2007 (cit. on p. 27).

[12] Avrim Blum and Tom Mitchell. “Combining labeled and unlabeled data
with co-training.” In: COLT’ 98: Proceedings of the eleventh annual
conference on Computational learning theory. 1998, pp. 92–100 (cit. on
p. 38).

[13] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A
Training Algorithm for Optimal Margin Classifiers.” In: Proceedings
of the 5th Annual ACM Workshop on Computational Learning Theory.
ACM Press, 1992, pp. 144–152 (cit. on p. 13).

[14] Y-Lan Boureau et al. “Learning mid-level features for recognition.”
In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 2010, pp. 2559–2566. doi: 10.1109/CVPR.2010.
5539963 (cit. on p. 13).

[15] Leo Breiman. “Randomizing outputs to increase prediction accuracy.”
In: Machine Learning 40.3 (2000), pp. 229–242 (cit. on p. 39).

[16] Leo Breiman et al. Classification and regression trees. CRC press, 1984
(cit. on p. 13).

[17] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. “Semi-
supervised learning (chapelle, o. et al., eds.; 2006)[book reviews].” In:
IEEE Transactions on Neural Networks 20.3 (2009), pp. 542–542 (cit. on
pp. 26, 27).

[18] Dong-Dong Chen et al. “Tri-Net for Semi-Supervised Deep Learning.”
In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence. IJCAI’18. Stockholm, Sweden: AAAI Press, 2018, pp. 2014–
2020. isbn: 9780999241127 (cit. on pp. 38, 40).

[19] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual
Representations.” In: CoRR abs/2002.05709 (2020). arXiv: 2002.05709.
url: https://arxiv.org/abs/2002.05709 (cit. on p. 44).

64

https://doi.org/10.1109/72.279181
https://doi.org/10.1109/CVPR.2010.5539963
https://doi.org/10.1109/CVPR.2010.5539963
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709

Bibliography

[20] Yanhua Cheng et al. “Semi-supervised multimodal deep learning for
RGB-D object recognition.” In: (2016) (cit. on p. 38).

[21] Kevin Clark et al. “Semi-supervised sequence modeling with cross-view
training.” In: arXiv preprint arXiv:1809.08370 (2018) (cit. on p. 39).

[22] Ekin D Cubuk et al. “Randaugment: Practical automated data aug-
mentation with a reduced search space.” In: CVPR Workshops. 2020,
pp. 702–703 (cit. on pp. 8, 34, 36, 43).

[23] Ekin Dogus Cubuk et al. “AutoAugment: Learning Augmentation Poli-
cies from Data.” In: CoRR abs/1805.09501 (2018). arXiv: 1805.09501.
url: http://arxiv.org/abs/1805.09501 (cit. on pp. 34, 43).

[24] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human
Detection.” In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on 1 (2005), pp. 886–893.
url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1467360 (cit. on p. 11).

[25] Terrance Devries and Graham W. Taylor. “Improved Regularization of
Convolutional Neural Networks with Cutout.” In: CoRR abs/1708.04552
(2017). arXiv: 1708.04552. url: http://arxiv.org/abs/1708.04552
(cit. on pp. 8, 43).

[26] N. Dey et al. “A Comparative Study between Moravec and Harris
Corner Detection of Noisy Images Using Adaptive Wavelet Thresholding
Technique.” In: ArXiv abs/1209.1558 (2012) (cit. on p. 9).

[27] WeiWang Dong-DongChen and Zhi-HuaZhou WeiGao. “Tri-net for semi-
supervised deep learning.” In: Proceedings of Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence. 2018, pp. 2014–2020
(cit. on p. 39).

[28] Alexey Dosovitskiy et al. “Discriminative Unsupervised Feature Learning
with Convolutional Neural Networks.” In: CoRR abs/1406.6909 (2014).
arXiv: 1406.6909. url: http://arxiv.org/abs/1406.6909 (cit. on
pp. 36, 37).

[29] Alexey Dosovitskiy et al. “Discriminative Unsupervised Feature Learning
with Exemplar Convolutional Neural Networks.” In: IEEE Trans. Pattern
Anal. Mach. Intell. 38.9 (2016), pp. 1734–1747. url: http://dblp.uni-
trier.de/db/journals/pami/pami38.html#DosovitskiyFSRB16 (cit.
on p. 36).

[30] Sergey Edunov et al. “Understanding Back-Translation at Scale.” In:
CoRR abs/1808.09381 (2018). arXiv: 1808.09381. url: http://arxiv.
org/abs/1808.09381 (cit. on p. 34).

65

https://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1805.09501
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467360
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467360
https://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1406.6909
http://arxiv.org/abs/1406.6909
http://dblp.uni-trier.de/db/journals/pami/pami38.html#DosovitskiyFSRB16
http://dblp.uni-trier.de/db/journals/pami/pami38.html#DosovitskiyFSRB16
https://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381

Bibliography

[31] J. Fournier, M. Cord, and S. Philipp-Foliguet. “RETIN: A Content-
Based Image Indexing and Retrieval System.” In: Pattern Analysis &
Applications 4 (2001), pp. 153–173 (cit. on p. 12).

[32] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position.” In: Biological Cybernetics 36.4 (Apr. 1980), pp. 193–202. doi:
10.1007/bf00344251. url: https://doi.org/10.10072Fbf00344251
(cit. on p. 15).

[33] J. V. Gemert et al. “Visual Word Ambiguity.” In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 32 (2010), pp. 1271–1283
(cit. on p. 12).

[34] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised
Representation Learning by Predicting Image Rotations.” In: 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. url: https://openreview.net/forum?id=
S1v4N2l0- (cit. on p. 36).

[35] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks.” In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. Ed. by
Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine
Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15
May 2010, pp. 249–256. url: http://proceedings.mlr.press/v9/
glorot10a.html (cit. on p. 18).

[36] J. Goldberger and E. Ben-Reuven. “Training deep neural-networks using
a noise adaptation layer.” In: ICLR. 2017 (cit. on p. 47).

[37] Yves Grandvalet and Yoshua Bengio. “Semi-supervised Learning by
Entropy Minimization.” In: NIPS. 2004, pp. 529–536 (cit. on pp. 35, 37).

[38] Sheng Guo et al. CurriculumNet: Weakly Supervised Learning from
Large-Scale Web Images. 2018. arXiv: 1808.01097 [cs.CV] (cit. on
p. 47).

[39] Guy Hacohen and Daphna Weinshall. On The Power of Curriculum
Learning in Training Deep Networks. 2019. arXiv: 1904.03626 [cs.LG]

(cit. on p. 47).

[40] Bo Han et al. “Co-sampling: Training Robust Networks for Extremely
Noisy Supervision.” In: CoRR abs/1804.06872 (2018). arXiv: 1804.

06872. url: http://arxiv.org/abs/1804.06872 (cit. on pp. 47, 59).

[41] C. G. Harris and M. Stephens. “A Combined Corner and Edge Detector.”
In: Alvey Vision Conference. 1988 (cit. on p. 9).

66

https://doi.org/10.1007/bf00344251
https://doi.org/10.10072Fbf00344251
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1808.01097
https://arxiv.org/abs/1904.03626
https://arxiv.org/abs/1804.06872
https://arxiv.org/abs/1804.06872
http://arxiv.org/abs/1804.06872

Bibliography

[42] Hangfeng He and Xu Sun. “A Unified Model for Cross-Domain and
Semi-Supervised Named Entity Recognition in Chinese Social Media.”
In: Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence. AAAI’17. San Francisco, California, USA: AAAI Press, 2017,
pp. 3216–3222 (cit. on p. 35).

[43] Kaiming He et al. “Deep Residual Learning for Image Recognition.” In:
CVPR. 2016, pp. 770–778 (cit. on pp. 18–20).

[44] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In Defense of
the Triplet Loss for Person Re-Identification.” In: CoRR abs/1703.07737
(2017). arXiv: 1703.07737. url: http://arxiv.org/abs/1703.07737
(cit. on p. 37).

[45] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the
Knowledge in a Neural Network.” In: CoRR abs/1503.02531 (2015).
arXiv: 1503.02531. url: http://arxiv.org/abs/1503.02531 (cit. on
p. 36).

[46] Jinchi Huang et al. “O2U-Net: A Simple Noisy Label Detection Ap-
proach for Deep Neural Networks.” In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). Oct. 2019 (cit. on
pp. 7, 8, 50, 53).

[47] Alexander G. Ororbia II, C. Lee Giles, and David Reitter. “Learning
a Deep Hybrid Model for Semi-Supervised Text Classification.” In:
Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015. Ed. by Lluıs Màrquez et al. The Association for Computational
Linguistics, 2015, pp. 471–481. doi: 10.18653/v1/d15-1053. url:
https://doi.org/10.18653/v1/d15-1053 (cit. on p. 35).

[48] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift.” In:
Proceedings of the 32nd International Conference on Machine Learning.
Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine
Learning Research. Lille, France: PMLR, July 2015, pp. 448–456. url:
http://proceedings.mlr.press/v37/ioffe15.html (cit. on p. 19).

[49] Ahmet Iscen et al. “Label Propagation for Deep Semi-supervised Learn-
ing.” In: CoRR abs/1904.04717 (2019). arXiv: 1904.04717. url: http:
//arxiv.org/abs/1904.04717 (cit. on p. 61).

[50] Pavel Izmailov et al. Averaging Weights Leads to Wider Optima and
Better Generalization. 2019. arXiv: 1803.05407 [cs.LG] (cit. on p. 32).

[51] Hervé Jégou et al. “Aggregating local descriptors into a compact im-
age representation.” In: 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. 2010, pp. 3304–3311. doi:
10.1109/CVPR.2010.5540039 (cit. on p. 12).

67

https://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1703.07737
https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/d15-1053
https://doi.org/10.18653/v1/d15-1053
http://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1904.04717
http://arxiv.org/abs/1904.04717
http://arxiv.org/abs/1904.04717
https://arxiv.org/abs/1803.05407
https://doi.org/10.1109/CVPR.2010.5540039

Bibliography

[52] Lu Jiang et al. “MentorNet: Regularizing Very Deep Neural Networks
on Corrupted Labels.” In: CoRR abs/1712.05055 (2017). arXiv: 1712.
05055. url: http://arxiv.org/abs/1712.05055 (cit. on p. 47).

[53] Zhanghan Ke et al. “Dual Student: Breaking the Limits of the Teacher
in Semi-supervised Learning.” In: CoRR abs/1909.01804 (2019). arXiv:
1909.01804. url: http://arxiv.org/abs/1909.01804 (cit. on pp. 29,
31).

[54] kekmodel. url: https://github.com/kekmodel/FixMatch-pytorch
(cit. on pp. 57–59).

[55] Byoungjip Kim et al. “SelfMatch: Combining Contrastive Self-Supervision
and Consistency for Semi-Supervised Learning.” In: CoRR abs/2101.06480
(2021). arXiv: 2101.06480. url: https://arxiv.org/abs/2101.06480
(cit. on pp. 44, 45, 57, 58).

[56] Pang Wei Koh and Percy Liang. Understanding Black-box Predictions
via Influence Functions. 2020. arXiv: 1703.04730 [stat.ML] (cit. on
p. 46).

[57] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting Self-
Supervised Visual Representation Learning.” In: CoRR abs/1901.09005
(2019). arXiv: 1901.09005. url: http://arxiv.org/abs/1901.09005
(cit. on pp. 36, 37).

[58] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of
Features from Tiny Images. Mater’s thesis. University of Toronto, 2009
(cit. on p. 56).

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks.” In: Commun.
ACM 60.6 (May 2017), pp. 84–90. issn: 0001-0782. doi: 10.1145/

3065386. url: https://doi.org/10.1145/3065386 (cit. on p. 17).

[60] Samuli Laine and Timo Aila. “Temporal Ensembling for Semi-Supervised
Learning.” In: ICLR (Poster). OpenReview.net, 2017. url: http://
dblp.uni-trier.de/db/conf/iclr/iclr2017.html#LaineA17 (cit.
on p. 30).

[61] S. Lazebnik, C. Schmid, and J. Ponce. “Beyond Bags of Features: Spatial
Pyramid Matching for Recognizing Natural Scene Categories.” In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06). Vol. 2. 2006, pp. 2169–2178. doi: 10.1109/
CVPR.2006.68 (cit. on p. 13).

[62] Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi:
10.1109/5.726791 (cit. on p. 17).

68

https://arxiv.org/abs/1712.05055
https://arxiv.org/abs/1712.05055
http://arxiv.org/abs/1712.05055
https://arxiv.org/abs/1909.01804
http://arxiv.org/abs/1909.01804
https://github.com/kekmodel/FixMatch-pytorch
https://arxiv.org/abs/2101.06480
https://arxiv.org/abs/2101.06480
https://arxiv.org/abs/1703.04730
https://arxiv.org/abs/1901.09005
http://arxiv.org/abs/1901.09005
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#LaineA17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#LaineA17
https://doi.org/10.1109/CVPR.2006.68
https://doi.org/10.1109/CVPR.2006.68
https://doi.org/10.1109/5.726791

Bibliography

[63] Chen-Yu Lee et al. Deeply-Supervised Nets. 2014. arXiv: 1409.5185
[stat.ML] (cit. on p. 18).

[64] Dong-Hyun Lee. “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks.” In: Workshop on challenges
in representation learning, ICML. Vol. 3. 2013, p. 2 (cit. on pp. 7, 8, 35,
37, 50).

[65] Kuang-Huei Lee et al. “CleanNet: Transfer Learning for Scalable Image
Classifier Training with Label Noise.” In: CoRR abs/1711.07131 (2017).
arXiv: 1711.07131. url: http://arxiv.org/abs/1711.07131 (cit. on
p. 47).

[66] Junnan Li, Caiming Xiong, and Steven C. H. Hoi. “CoMatch: Semi-
supervised Learning with Contrastive Graph Regularization.” In: CoRR
abs/2011.11183 (2020). arXiv: 2011.11183. url: https://arxiv.org/
abs/2011.11183 (cit. on pp. 44, 46, 57).

[67] S. P. Lloyd. “Least squares quantization in PCM.” In: IEEE Trans. Inf.
Theory 28 (1982), pp. 129–136 (cit. on p. 12).

[68] G. LoweDavid. “Distinctive Image Features from Scale-Invariant Key-
points.” In: International Journal of Computer Vision (2004) (cit. on
pp. 9, 12).

[69] Wei-Ying Ma and B. S. Manjunath. “NeTra: A Toolbox for Navigating
Large Image Databases.” In: Multimedia Syst. 7.3 (May 1999), pp. 184–
198. issn: 0942-4962. doi: 10.1007/s005300050121. url: https://
doi.org/10.1007/s005300050121 (cit. on p. 12).

[70] Eran Malach and Shai Shalev-Shwartz. “Decoupling ”when to update”
from ”how to update”.” In: CoRR abs/1706.02613 (2017). arXiv: 1706.
02613. url: http://arxiv.org/abs/1706.02613 (cit. on p. 47).

[71] Krystian Mikolajczyk and Cordelia Schmid. “Scale Affine Invariant
Interest Point Detectors.” In: Int. J. Comput. Vision 60.1 (Oct. 2004),
pp. 63–86. issn: 0920-5691. doi: 10.1023/B:VISI.0000027790.02288.
f2. url: https://doi.org/10.1023/B:VISI.0000027790.02288.f2
(cit. on pp. 9, 10).

[72] Ishan Misra, Abhinav Shrivastava, and Martial Hebert. “Watch and
Learn: Semi-Supervised Learning of Object Detectors from Videos.” In:
CoRR abs/1505.05769 (2015). arXiv: 1505.05769. url: http://arxiv.
org/abs/1505.05769 (cit. on p. 35).

[73] Takeru Miyato et al. Virtual Adversarial Training: A Regularization
Method for Supervised and Semi-Supervised Learning. 2018. arXiv: 1704.
03976 [stat.ML] (cit. on p. 31).

69

https://arxiv.org/abs/1409.5185
https://arxiv.org/abs/1409.5185
https://arxiv.org/abs/1711.07131
http://arxiv.org/abs/1711.07131
https://arxiv.org/abs/2011.11183
https://arxiv.org/abs/2011.11183
https://arxiv.org/abs/2011.11183
https://doi.org/10.1007/s005300050121
https://doi.org/10.1007/s005300050121
https://doi.org/10.1007/s005300050121
https://arxiv.org/abs/1706.02613
https://arxiv.org/abs/1706.02613
http://arxiv.org/abs/1706.02613
https://doi.org/10.1023/B:VISI.0000027790.02288.f2
https://doi.org/10.1023/B:VISI.0000027790.02288.f2
https://doi.org/10.1023/B:VISI.0000027790.02288.f2
https://arxiv.org/abs/1505.05769
http://arxiv.org/abs/1505.05769
http://arxiv.org/abs/1505.05769
https://arxiv.org/abs/1704.03976
https://arxiv.org/abs/1704.03976

Bibliography

[74] Yuval Netzer et al. “Reading digits in natural images with unsupervised
feature learning.” In: NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning. 2011 (cit. on p. 56).

[75] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. “Multiresolution
Gray-Scale and Rotation Invariant Texture Classification with Local
Binary Patterns.” In: IEEE Trans. Pattern Anal. Mach. Intell. 24.7
(July 2002), pp. 971–987. issn: 0162-8828. doi: 10.1109/TPAMI.2002.
1017623. url: https://doi.org/10.1109/TPAMI.2002.1017623

(cit. on p. 11).

[76] Avital Oliver et al. “Realistic Evaluation of Deep Semi-Supervised
Learning Algorithms.” In: NeurIPS. Ed. by Samy Bengio et al. 2018,
pp. 3239–3250 (cit. on pp. 28, 56, 58).

[77] Sungrae Park et al. “Adversarial Dropout for Supervised and Semi-
supervised Learning.” In: CoRR abs/1707.03631 (2017). arXiv: 1707.
03631. url: http://arxiv.org/abs/1707.03631 (cit. on p. 32).

[78] Florent Perronnin and Christopher Dance. “Fisher Kernels on Visual
Vocabularies for Image Categorization.” In: 2007 IEEE Conference on
Computer Vision and Pattern Recognition. 2007, pp. 1–8. doi: 10.1109/
CVPR.2007.383266 (cit. on p. 12).

[79] Hieu Pham et al. “Meta Pseudo Labels.” In: CoRR abs/2003.10580
(2020). arXiv: 2003.10580. url: https://arxiv.org/abs/2003.10580
(cit. on p. 37).

[80] N. Qian. “On the momentum term in gradient descent learning algo-
rithms.” In: Neural networks : the official journal of the International
Neural Network Society 12 1 (1999), pp. 145–151 (cit. on p. 23).

[81] Siyuan Qiao et al. “Deep Co-Training for Semi-Supervised Image Recog-
nition.” In: CoRR abs/1803.05984 (2018). arXiv: 1803.05984. url:
http://arxiv.org/abs/1803.05984 (cit. on pp. 38, 40).

[82] Antti Rasmus et al. “Semi-supervised Learning with Ladder Networks.”
In: NIPS. Ed. by Corinna Cortes et al. 2015, pp. 3546–3554 (cit. on
p. 30).

[83] Antti Rasmus et al. “Semi-supervised learning with Ladder networks.”
English. In: Advances in Neural Information Processing Systems. Vol. 2015-
January. VK: Raiko, T.; COIN; IEEE Conference on Neural Informa-
tion Processing Systems, NIPS ; Conference date: 07-12-2015 Through
12-12-2015. Neural Information Processing Systems Foundation, 2015,
pp. 3546–3554 (cit. on p. 29).

[84] Scott E. Reed et al. “Training Deep Neural Networks on Noisy Labels
with Bootstrapping.” In: CoRR abs/1412.6596 (2015) (cit. on p. 47).

70

https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://arxiv.org/abs/1707.03631
https://arxiv.org/abs/1707.03631
http://arxiv.org/abs/1707.03631
https://doi.org/10.1109/CVPR.2007.383266
https://doi.org/10.1109/CVPR.2007.383266
https://arxiv.org/abs/2003.10580
https://arxiv.org/abs/2003.10580
https://arxiv.org/abs/1803.05984
http://arxiv.org/abs/1803.05984

Bibliography

[85] Sebastian Ruder and Barbara Plank. “Strong baselines for neural semi-
supervised learning under domain shift.” In: arXiv preprint arXiv:1804.09530
(2018) (cit. on pp. 27, 39).

[86] Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Chal-
lenge. 2015. arXiv: 1409.0575 [cs.CV] (cit. on pp. 5, 17).

[87] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. “Regular-
ization With Stochastic Transformations and Perturbations for Deep
Semi-Supervised Learning.” In: Advances in Neural Information Pro-
cessing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc.,
2016. url: https://proceedings.neurips.cc/paper/2016/file/
30ef30b64204a3088a26bc2e6ecf7602-Paper.pdf (cit. on p. 7).

[88] Gerard Salton. “Another Look at Automatic Text-Retrieval Systems.”
In: Commun. ACM 29.7 (July 1986), pp. 648–656. issn: 0001-0782. doi:
10.1145/6138.6149. url: https://doi.org/10.1145/6138.6149
(cit. on p. 12).

[89] Frederik Schaffalitzky and Andrew Zisserman. “Viewpoint invariant
texture matching and wide baseline stereo.” In: Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001 2
(2001), 636–643 vol.2 (cit. on p. 10).

[90] H Scudder. “Probability of error of some adaptive pattern-recognition
machines.” In: IEEE Transactions on Information Theory 11.3 (1965),
pp. 363–371 (cit. on p. 7).

[91] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Improving Neu-
ral Machine Translation Models with Monolingual Data.” In: CoRR
abs/1511.06709 (2015). arXiv: 1511.06709. url: http://arxiv.org/
abs/1511.06709 (cit. on p. 34).

[92] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional
Networks for Large-Scale Image Recognition.” In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2015. url: http://arxiv.org/abs/1409.
1556 (cit. on pp. 17, 18).

[93] Sivic and Zisserman. “Video Google: a text retrieval approach to object
matching in videos.” In: Proceedings Ninth IEEE International Confer-
ence on Computer Vision. 2003, 1470–1477 vol.2. doi: 10.1109/ICCV.
2003.1238663 (cit. on p. 13).

[94] A. Smeulders et al. “Content-Based Image Retrieval at the End of the
Early Years.” In: IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000),
pp. 1349–1380 (cit. on p. 1).

71

https://arxiv.org/abs/1409.0575
https://proceedings.neurips.cc/paper/2016/file/30ef30b64204a3088a26bc2e6ecf7602-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/30ef30b64204a3088a26bc2e6ecf7602-Paper.pdf
https://doi.org/10.1145/6138.6149
https://doi.org/10.1145/6138.6149
https://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1511.06709
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/ICCV.2003.1238663

Bibliography

[95] Kihyuk Sohn et al. “A Simple Semi-Supervised Learning Framework for
Object Detection.” In: CoRR abs/2005.04757 (2020). arXiv: 2005.04757.
url: https://arxiv.org/abs/2005.04757 (cit. on p. 62).

[96] Kihyuk Sohn et al. “Fixmatch: Simplifying semi-supervised learning
with consistency and confidence.” In: arXiv preprint arXiv:2001.07685
(2020) (cit. on pp. v, vii, 8, 43–45, 56–59).

[97] Jiaming Song et al. “Robust and On-the-fly Dataset Denoising for Image
Classification.” In: CoRR abs/2003.10647 (2020). arXiv: 2003.10647.
url: https://arxiv.org/abs/2003.10647 (cit. on pp. 7, 53).

[98] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting.” In: J. Mach. Learn. Res. 15.1 (Jan. 2014),
pp. 1929–1958. issn: 1532-4435 (cit. on p. 17).

[99] K. N. Stevens et al. Nearest Neighbor Pattern Classification. 1953 (cit. on
p. 13).

[100] Christian Szegedy et al. “Going deeper with convolutions.” In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 2015,
pp. 1–9. doi: 10.1109/CVPR.2015.7298594. url: https://doi.org/
10.1109/CVPR.2015.7298594 (cit. on pp. 17–19, 37).

[101] Mingxing Tan and Quoc V Le. “Efficientnet: Rethinking model scaling
for convolutional neural networks.” In: arXiv preprint arXiv:1905.11946
(2019) (cit. on pp. 36, 37).

[102] Antti Tarvainen and Harri Valpola. “Mean teachers are better role
models: Weight-averaged consistency targets improve semi-supervised
deep learning results.” In: NIPS. 2017, pp. 1195–1204 (cit. on pp. 29,
30).

[103] Chih-Fong Tsai. “Bag-of-Words Representation in Image Annotation:
A Review.” In: International Scholarly Research Notices 2012 (2012),
pp. 1–19 (cit. on p. 13).

[104] Tong Xiao et al. “Learning from massive noisy labeled data for image
classification.” In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015, pp. 2691–2699. doi: 10.1109/CVPR.
2015.7298885 (cit. on p. 47).

[105] Qizhe Xie et al. “Self-training with Noisy Student improves ImageNet
classification.” In: arXiv preprint arXiv:1911.04252 (2019) (cit. on pp. 7,
36, 37).

[106] Qizhe Xie et al. “Unsupervised Data Augmentation.” In: CoRR abs/1904.12848
(2019). arXiv: 1904.12848. url: http://arxiv.org/abs/1904.12848
(cit. on pp. 8, 34).

72

https://arxiv.org/abs/2005.04757
https://arxiv.org/abs/2005.04757
https://arxiv.org/abs/2003.10647
https://arxiv.org/abs/2003.10647
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298885
https://doi.org/10.1109/CVPR.2015.7298885
https://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1904.12848

Bibliography

[107] Xiangli Yang et al. “A Survey on Deep Semi-supervised Learning.”
In: CoRR abs/2103.00550 (2021). arXiv: 2103.00550. url: https:

//arxiv.org/abs/2103.00550 (cit. on pp. 28, 35).

[108] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks.”
In: BMVC. Ed. by Richard C. Wilson, Edwin R. Hancock, and William
A. P. Smith. 2016 (cit. on pp. 20, 56, 58).

[109] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding
Convolutional Networks.” In: CoRR abs/1311.2901 (2013). arXiv: 1311.
2901. url: http://arxiv.org/abs/1311.2901 (cit. on p. 4).

[110] Xiaohua Zhai et al. “S4L: Self-Supervised Semi-Supervised Learning.”
In: CoRR abs/1905.03670 (2019). arXiv: 1905.03670. url: http://
arxiv.org/abs/1905.03670 (cit. on pp. 36, 37, 44).

[111] Liheng Zhang and Guo-Jun Qi. “WCP: Worst-Case Perturbations for
Semi-Supervised Deep Learning.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). June
2020 (cit. on pp. 33, 34).

[112] Xuezhou Zhang, Xiaojin Zhu, and Stephen J. Wright. “Training Set
Debugging Using Trusted Items.” In: CoRR abs/1801.08019 (2018).
arXiv: 1801.08019. url: http://arxiv.org/abs/1801.08019 (cit. on
p. 47).

[113] Zizhao Zhang et al. “SemiContour: A Semi-Supervised Learning Ap-
proach for Contour Detection.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). June 2016 (cit.
on p. 35).

[114] Xi Zhou et al. “Image Classification Using Super-Vector Coding of Local
Image Descriptors.” In: ECCV. 2010 (cit. on p. 12).

[115] Yan Zhou and Sally Goldman. “Democratic co-learning.” In: 16th IEEE
International Conference on Tools with Artificial Intelligence. IEEE.
2004, pp. 594–602 (cit. on p. 38).

[116] Zhi-Hua Zhou and Ming Li. “Semi-supervised learning by disagreement.”
In: Knowl. Inf. Syst. 24.3 (2010), pp. 415–439. doi: 10.1007/s10115-
009-0209-z. url: https://doi.org/10.1007/s10115-009-0209-z
(cit. on p. 37).

[117] Zhi-Hua Zhou and Ming Li. “Tri-training: Exploiting unlabeled data
using three classifiers.” In: IEEE Transactions on knowledge and Data
Engineering 17.11 (2005), pp. 1529–1541 (cit. on p. 38).

73

https://arxiv.org/abs/2103.00550
https://arxiv.org/abs/2103.00550
https://arxiv.org/abs/2103.00550
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1905.03670
http://arxiv.org/abs/1905.03670
http://arxiv.org/abs/1905.03670
https://arxiv.org/abs/1801.08019
http://arxiv.org/abs/1801.08019
https://doi.org/10.1007/s10115-009-0209-z
https://doi.org/10.1007/s10115-009-0209-z
https://doi.org/10.1007/s10115-009-0209-z

	Introduction
	Context
	Motivation-limited supervision
	Contributions

	Visual representations
	Handcrafted representation
	Feature detection
	Feature description

	Learned representation
	Multi-Layer perceptrons
	Convolutional networks
	Gradient based optimization

	Semi-supervised learning
	Background
	Assumptions
	Approaches
	Consistency regularization
	Pseudo-label methods
	Hybrid methods

	Learning with noisy labels
	Noise-cleansing
	Noise-robust models

	Our Methods
	Introduction
	Preliminaries
	CleanMatch
	Stage 1
	Stage 2

	WeightMatch

	Experiments
	CIFAR-10 and SVHN
	CIFAR-100
	Ablation study
	Iterative cleaning
	Training

	Conclusion and Future work
	Conclusion
	Future work

	Bibliography

