
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

Masters Thesis

Self-supervised Metric Learning

Ioannis I. Misios

ATHENS

SEPTEMBER 2022

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

Διπλωματική Εργασία

Αυτο-επιβλεπόμενη Μάθηση Μετρικής

Ιωάννης Η. Μίσιος

ΑΘΗΝΑ

ΣΕΠΤΕΜΒΡΙΟΣ 2022

Masters Thesis

Self-supervised Metric Learning

Ioannis I. Misios
Α.Μ.:DS1200007

SUPERVISOR: Yannis Avrithis, Research Director, ATHENA Research and Innovation
Center

EXAMINATION COMMITTEE:
Yannis Avrithis, Research Director, ATHENA Research and Innovation Center

Ioannis Emiris, President and General Director, ATHENA Research and Innovation
Center

Vasileios Katsouros, Research Director, ATHENAResearch and Innovation Center

SEPTEMBER 2022

Διπλωματική Εργασία

Αυτο-επιβλεπόμενη Μάθηση Μετρικής

Ιωάννης Η. Μίσιος
Α.Μ.:DS1200007

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Γιάννης Αβρίθης, Διευθυντής Έρευνας, Ερευνητικό κέντρο
”ΑΘΗΝΑ”

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:
Γιάννης Αβρίθης, Διευθυντής Έρευνας, Ερευνητικό κέντρο ”ΑΘΗΝΑ”
Ιωάννης Εμίρης, Πρόεδρος και Γενικός Διευθυντής, Ερευνητικό κέντρο ”ΑΘΗΝΑ”
Βασίλειος Κατσούρος, Διευθυντής Έρευνας, Ερευνητικό Κέντρο ”ΑΘΗΝΑ”

ΣΕΠΤΕΜΒΡΙΟΣ 2022

ABSTRACT

Metric learning is an important paradigm for a variety of problems in machine learning
and computer vision. It has been successfully employed for fine-grained classification, re-
trieval, face recognition, person re-identification and few-shot learning, among other tasks.
Metric learning is an approach based on a distance metric that aims to determine similari-
ties or dissimilarities between samples. The goal is to reduce the distance between similar
samples and at the same time to increase the distance of dissimilar ones. Therefore, it is
crucial that the distance measure is learnable to adapt to data from different domains.

Training a Convolutional Neural Network to distinguish similar from dissimilar images re-
quires some kind of supervision. In the era of big data, due to limited human-powered
annotated data, deep learning methods are recently adapted to work without supervi-
sion. Self-supervised methods can be considered as a special form of unsupervised
learning methods with a supervised form, where supervision is induced by self-supervised
tasks rather than predetermined prior knowledge. Unlike a completely unsupervised set-
ting, self-supervised learning uses information from the dataset itself to generate pseudo-
labels.

In this work we consider some self-supervised metric learning methods which use different
sample mining techniques as well as loss functions to investigate its effectiveness in both
using pre-trained network on ImageNet and initialized from scratch. The evaluation is per-
formed on four benchmark metric learning and retrieval datasets. It appears that soft loss
functions that exploit contextual similarities between samples outperform hard ones that
use pairwise similarities. Furthermore, it seems that augmented versions of the original
images can be used as positive pairs to initiate the self-supervised training process.

SUBJECT AREA: Computer Vision, Deep Learning

KEYWORDS: Metric Learning, Neural Networks, Self-Supervised Learning

ΠΕΡΙΛΗΨΗ

H Μάθηση Μετρικής είναι ένα σημαντικό παράδειγμα για μία πληθώρα προβλημάτων της
Μηχανικής Μάθησης και της Όρασης Υπολογιστών. Έχει επιτυχημένα εφαρμοστεί σε ε-
φαρμογές όπως η λεπτομερής ταξινόμηση, ανάκτηση πληροφορίας, αναγνώριση προσώ-
που κ.α. Αφορά την εκμάθηση μιας μετρικής απόστασης που βασίζεται στον προσδιορι-
σμό ομοιοτήτων ή ανομοιοτήτων μεταξύ των δειγμάτων. Στόχος της είναι να μειωθεί η
απόσταση μεταξύ παρόμοιων δειγμάτων και ταυτόχρονα να αυξηθεί η απόσταση μεταξύ
ανόμοιων. Ως εκ τούτου, είναι σημαντικό η μάθηση μετρικής να είναι εκπαιδευόμενη ώστε
να προσαρμόζεται σε δεδομένα από διαφορετικούς τομείς.

Η εκπαίδευση ενός Συνελικτικού Νευρωνικού Δικτύου ώστε να διακρίνει παρόμοιες από
ανόμοιες εικόνες απαιτεί κάποιου είδους επίβλεψη. Στην εποχή του μεγάλου όγκου δεδο-
μένων, λόγω του περιορισμένου αριθμού των ανθρωπίνως επισημειωμένων δεδομένων,
οι μέθοδοι βαθιάς μάθησης προσαρμόστηκαν να λειτουργούν χωρίς επίβλεψη.

Οι αυτοεπιβλεπόμενες μέθοδοι μπορούν να θεωρηθούν ως μια ειδική μορφή μεθόδων
μάθησης χωρίς επίβλεψη με εποπτευόμενη μορφή, όπου η εποπτεία πηγάζει από αυτοε-
ποπτευόμενες εργασίες και όχι από προκαθορισμένη προηγούμενη γνώση. Σε αντίθεση
με μια εντελώς μη επιβλεπόμενη διεργασία, η αυτοεπιβλεπόμενη μάθηση χρησιμοποιεί
πληροφορίες από το ίδιο το σύνολο δεδομένων για να δημιουργήσει ψευδο-ετικέτες.

Στην παρούσα εργασία εξετάζουμε ορισμένες αυτοεπιβλεπόμενες μεθόδους μετρικής εκ-
μάθησης που χρησιμοποιούν διαφορετικές τεχνικές εξόρυξης δειγμάτων καθώς και συ-
ναρτήσεις κόστους με σκοπό τη διερεύνηση της αποτελεσματικότητάς τους τόσο στη χρή-
ση προεκπαιδευμένου δικτύου στο ImageNet όσο και στην χρήση τυχαία αρχικοποιημέ-
νου δικτύου. Η αξιολόγηση των μεθόδων πραγματοποιείται στα πιο διαδεδομένα σύνολα
δεδομένων ανάκτησης πληροφορίας και μάθησης μετρικής. Παρατηρείται πως οι ήπιες
συναρτήσεις κόστους εκμεταλλεύονται τις ομοιότητες μεταξύ των δειγμάτων λαμβάνοντας
υπόψιν τους γείτονές τους, έχουν καλύτερα αποτελέσματα σε σχέση με τις απόλυτες συ-
ναρτήσεις κόστους που χρησιμοποιούν τις ομοιότητες κατά ζεύγη. Επιπλέον, φαίνεται
πως η τεχνητή επάυξηση των αρχικών εικόνων του συνόλου δεδομένων για την δημιουρ-
γία θετικών ζευγών μπορεί να βοηθήσει την αυτοεπιβλεπόμενη μάθηση και ιδιαίτερα στο
ξεκίνημά της.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Όραση Υπολογιστών, Βαθιά Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Μετρική Μάθηση, Νευρωνικά Δίκτυα, Αυτο-επιβλεπόμενη Μάθηση

ACKNOWLEDGEMENTS

This work was supported in part by the Institute of Advanced Research in Artificial Intelli-
gence (IARAI). First and foremost, I would like to thank Yiannis Avrithis from the bottom
of my heart as a person and as a professor. Special thanks to postdoctoral students Bill
Psomas and Shashanka Venkataramanan for valuable guidance and assistance.

In addition, I would like to thank all the people at IARAI for creating a really pleasant and
warm working environment.

Finally, a big thank you to my family and Semina for all their love and support.

CONTENTS

1 INTRODUCTION 13
1.1 Motivation . 13
1.2 Structure . 15

2 BACKGROUND 16
2.1 The evolution of Deep Neural Networks . 16
2.2 Metric Learning . 17
2.3 Deep Metric Learning . 18

2.3.1 Sample mining . 18
2.3.2 Model structure . 19
2.3.3 Loss function . 20

Contrastive Loss . 20
Triplet Loss . 20
NPair Loss . 20
Lifted Structure Loss . 21
ProxyNCA Loss . 21
Multi-Similarity Loss . 21

2.4 Self-supervised Learning . 22
SimCLR . 22
MoCo . 23
SwAV . 24
BYOL . 24
SimSiam . 25
MOM . 25

3 SELF-SUPERVISED METRIC LEARNING 27
3.1 Contrastive learning with Instance Discrimination 27
3.2 Graph-based positive mining for contrastive learning 29

Positive Selection in Mini-batches: 30
Mining Positives from Memory Bank 31

3.3 Self-Distillation for contrastive learning . 33
3.4 Contributions . 35

4 EXPERIMENTAL SETUP 37
4.1 Datasets . 37

4.1.1 CUB200-2011 . 37
4.1.2 CARS196 . 38
4.1.3 SOP . 38
4.1.4 GLDv2 . 39

4.2 Implementation Details . 39
4.3 Evaluation Protocol . 40

5 EXPERIMENTAL RESULTS AND DISCUSSION 42
5.1 Results . 42

5.1.1 CUB200-2011 . 42
Imagenet Pre-trained GoogleNet 42

ResNet18 from scratch . 42
5.1.2 CARS196 . 43

Imagenet Pre-trained GoogleNet 43
ResNet18 from scratch . 44

5.1.3 SOP . 44
Imagenet Pre-trained GoogleNet 44
ResNet18 from scratch . 45

5.1.4 GLDv2 . 45
Imagenet Pre-trained ResNet101 45
ResNet18 from scratch . 46

5.1.5 Computational Cost . 47

6 CONCLUSIONS AND FUTURE WORK 48
6.1 Conclusions . 48
6.2 Future Work . 49

Split image into patches . 49
Instance localization . 49
Memory Bank use . 49
Semi-Supervised methods . 49

ABBREVIATIONS - ACRONYMS 50

REFERENCES 53

LIST OF FIGURES

Figure 1: a) Desired discriminated embedding space. b) Mean distance be-
tween the two digits while training progresses. 18

Figure 2: Negative Mining. 19
Figure 3: The Siamese and Triplet Networks. 20
Figure 4: Different types of image augmentations constructing positive pairs. . 23
Figure 5: Momentum Contrast (MoCo) training method. 23
Figure 6: SwAV framework. 24
Figure 7: BYOL framework. 24
Figure 8: SimSiam framework. 25
Figure 9: MOM intuition. 26
Figure 10: Scheme of the proposed self-supervised method where the embed-

dings of positive pairs are close in the embedding space and nega-
tives are spread-out. 28

Figure 11: InsCLR framework where positive and negative mining is performed
withinMini-batch andMemory bankwithout data augmentations. Then
a Memory bank storing the augmented version of the mined positives
and negatives is used for the contastive loss computation. 29

Figure 12: Mini-batch construction from offline pre-constructed Candidate Pool
(CP) for each reference image (xr). 30

Figure 13: Positive mining for each reference (anchor) image from its Candidate
Pool. 31

Figure 14: STML framework where Teacher network is used to compute the
Contextualized Semantic Similarties (wij) between the samples of
the mini-batch. wij then is used as synthetic supervision to train the
Student model and then to update the Teacher model. 34

Figure 15: Random CUB200-2011 image samples. 37
Figure 16: Random CARS196 image samples. 38
Figure 17: Random SOP image samples. 38
Figure 18: Images from GLDv2. 39
Figure 19: Example of Mean Average Precision (mAP) calculation. 41
Figure 20: Visual assessment of ResNet18model trained from scratch onCUB200-

2011 plotting the 4 nearest neighbors of 2 randomly sampled images
placed in the first place of each row. The number, placed at the upper
side of each image, shows the class it belongs to. 43

Figure 21: Visual assessment of ResNet18model trained from scratch onCARS196
plotting the 4 nearest neighbors of 2 randomly sampled images placed
in the first place of each row. The number placed at the upper side
of each image shows the class it belongs to. 44

LIST OF TABLES

Table 1: Results (%) on CUB200-2011 using ImageNet pre-trained GoogLeNet. 42
Table 2: Results (%) on CUB200-2011 using ResNet18 from scratch. 43
Table 3: Results (%) on CARS196 using ImageNet pre-trained GoogLeNet. . . 43
Table 4: Results (%) on CARS196 using ResNet18 from scratch. 44
Table 5: Results (%) on SOP using ImageNet pre-trained GoogLeNet. 45
Table 6: Results (%) on SOP using ResNet18 from scratch. 45
Table 7: Results (%) on rOxford5k & rParis6k using ImageNet pre-trainedResNet101

fine-tuned on 6% GLDv2. 46
Table 8: Results (%) of InsCLRmethod training per cycle on rOxford5k & rParis6k

datasets using ImageNet pre-trainedResNet101 fine-tuned on 6%GLDv2. 46
Table 9: Results (%) on rOxford5k & rParis6k using ResNet18 trained on 6%

GLDv2. 47
Table 10: Computational cost of the experiments. 47

Self-supervised Metric Learning

1. INTRODUCTION

1.1 Motivation

Computer vision is a field of Artificial Intelligence (AI) that enables computers and systems
to obtain meaningful information from images, videos, and other visual inputs, and act or
provide recommendations based on that information. Computer Vision requires a lot of
data. It uses machine learning techniques to analyse the data multiple times until it can
discern the difference and eventually the image.

Machine Learning uses algorithmic models that allow computers to understand the context
of visual data on their own. If enough data is fed through the model, the computer can
”look” at the data and teach itself the ability to distinguish images. In the field of Machine
Learning, the concept of distance has been widely used since its inception. It provides a
measure of similarity between data, where the data that are close to each other should be
as similar as possible, and the data that are far away should be as different as possible.
An application of this idea of similarity learning to classification problems is the well-known
nearest neighbors (NN) classification, which assigns the class of the test sample to the
class of the training sample that is closest to it. This idea of nearest neighbor classification
gave birth to distance metric learning.

Euclidean distance is widely used by metric learning algorithms as a concise and effective
metric tool. However, a single form of distance metric cannot be universal to all practical
problems. Therefore, metric learning hopes to combine the characteristics of the data to
learn an effective metric to solve the target problem.

The emergence of metric learning algorithms has greatly improved the performance of
distance-based classifiers, distance-based clustering for unsupervised problems and fea-
ture dimensionality reduction. Then, with the rapid development of deep learning, metric
learning combined with the advantages of deep neural network in semantic feature ex-
traction and end-to-end training has gradually attracted people’s attention.

Compared with classical metric learning, deep metric learning can do nonlinear mapping
of input features, and has been widely used in the field of Computer Vision such as image
retrieval, face recognition, person re-identification, etc. Besides, for some extreme clas-
sification tasks (with a large number of categories, but only a few samples per category),
deep metric learning still performs well. For example, based on deep metric learning,
FaceNet [1] has surpassed human performance in the face recognition task of 8M individ-
uals and 260M images.

Standard deep metric learning constrains the intra-class distance and widens the between
classes distance by mining pairs or triplets of positive and negative samples. This brings
challenges to the sampling of training samples. Due to the extremely large number of
training samples, only meaningful samples can be mined to participate in training. If the
selection of negative samples is too difficult, the training will be unstable. If the selec-
tion is too simple, the loss function will have no gradient, which is not conducive to the
convergence of the model.

In the era of big data, typically a deep learning model is trained fully supervised for a
specific task using a large, manually labeled dataset that is randomly divided into training,
validation, and test sets.

However, supervised learning has its bottlenecks. Not only does it rely heavily on expen-

I. Misios 13

Self-supervised Metric Learning

sive manual labeling, but it also suffers from generalization errors, spurious correlations,
and adversarial attacks. Wewant the neural network to learn more with fewer labels, fewer
samples, or fewer trials. As a promising candidate, self-supervised learning has attracted
a lot of attention due to its excellent data efficiency and generalization ability.

Self-supervised learning can be generalized into two classical definitions:

• Obtain ”labels” from the data itself through a ”semi-automatic” process.

• Predict one part of the data from the other part of the data.

Specifically, the ”other parts” hereof may be incomplete, distorted and generally aug-
mented images. In other words, the machine learns to ”recover” all, some, or some fea-
tures of the original input image.

Self-supervised learning can be seen as a branch of unsupervised learning as it does not
involve manual labeling. However, in a narrow sense, unsupervised learning focuses on
detecting specific data patterns, such as clustering or anomaly detection, whereas self-
supervised learning aims to recover, which is still in the paradigm of a supervised setting.

A common feature between metric learning and self-supervised learning is the contrastive
part. In this work we focus on Contrastive self-supervised methods and especially to
context-context comparisons. Context-context contrastive learning investigates the rela-
tionship between global representations of different samples, like metric learning. At the
beginning, researchers were generating pseudo-labels through cluster-based discrimina-
tion and achieved fairly good performance on representation learning. An example of a
cluster-based method is the DeepCluster [2]. More recently, self-supervised contrastive
methods like MoCo [3], SimCLR [4], etc. through direct comparisons between contexts
and under linear classification, obtained results comparable to supervised methods.

The main challenge of Contrastive learning is the sample mining. Sample mining is the
process where we search either in the whole dataset or within the mini-batch to find pos-
itives or negatives of an anchor image. Those samples together with the anchor image
form pairs or triplets. Pairs or triplets are used to to train a DNN to learn a discriminative
embedding space where similar examples are closer and dissimilar examples are apart.
Taking into account that no-labels are available, sample mining becomes challenging.

A common idea to construct positive pairs is to randomly augment (crop, resize, flip, etc.)
the original input image. It is assumed that the embedding of the original image should
be close to that of the augmented. In addition, a simple proposal for negative mining
is to assume that every sample within the mini-batch belongs to a different class. This
technique is called instance discrimination. Finally, there are other proposals for positive
and negative mining which are based on graphs.

In this work we conduct an extensive search in three self-supervised contrastive learning
methods which use different sampling methods for positive and negative mining. The first
one [5] uses the augmenation process as well as instance discrimination technique for
sample mining. The second method [6] combines the instance discrimination technique
and graph search to mine informative positives and negatives. The latter [7] uses the
augmentation process to create positives and the self-distillation technique to mine more
positives and negatives by exploiting the contextual similarity between samples. They are
trained and then evaluated in four benchmark metric learning datasets. A common feature
of those datasets is that the predefined training classes are different from testing ones.
Therefore, we evaluate the ability of the methods to generalize not only to unseen data

I. Misios 14

Self-supervised Metric Learning

but also to unseen classes. Finally, all three methods will be evaluated in both tasks of
training a randomly initialized network and fine-tuning a pre-trained network on ImageNet.

1.2 Structure

In this work we attempt to make fair comparisons between the three self-supervised met-
ric learning methods in order to investigate the advantages and disadvantages of each
method in the tasks of training a randomly initialized CNN or fine-tuning a pre-trained
CNN on ImageNet.

• chapter 1 gives an introduction to how metric learning can be combined with self-
supervised learning for representation learning, while presenting the challenges and
contribution of this work.

• chapter 2 presents the evolution of metric learning alongside the development of
Deep Neural Networks as well as a detailed overview of Self-Supervised Learning.

• chapter 3 presents a detailed analysis of the selected Self-Supervised Metric Learn-
ing methods.

• chapter 4 presents the datasets, experimental setup and the evaluation protocol.

• chapter 5 presents the experimental results as well as a discussion of the findings.

• chapter 6 presents possible avenues of research in the area of Self-Supervised Met-
ric Learning.

I. Misios 15

Self-supervised Metric Learning

2. BACKGROUND

The goal of Metric Learning is to learn a distance metric or a similarity function, where the
data that are close to each other should be as similar as possible and the data that are far
away should be as different as possible. In this chapter we present the evolution of Metric
Learning into Deep Metric Learning alongside the development of Deep Learning models
and especially CNNs. Finally, we present the foundations of Self-Supervised Learning
and how it can be combined with Deep Metric Learning to perform unsupervised.

2.1 The evolution of Deep Neural Networks

Ιn this section the chronological evolution of deep neural network architectures is pre-
sented.

Yann LeCun in 1998 proposed LeNet5 [8] which was one of the first convolutional neural
networks. The architecture of LeNet5 is fundamental, especially for two of its insights.
Image features are distributed over the entire image, and the introduction of convolution
learnable parameters which is an efficient way to extract similar features at multiple loca-
tions with fewer parameters. There was no GPU for training at the time and the CPUs
were slow. LeNet5 illustrates that since images are highly spatially correlated, these cor-
relations cannot be exploited using individual pixels of an image as individual input fea-
tures. The main contributions of LeNet5 were the use of convolutional layer in sequence
with pooling and non-linear activation function (tanh) as well as an Multi Layer Perceptron
(MLP) as a final classifier.

In 2012, Alex Krizhevsky published AlexNet [9], a deeper and wider version of LeNet5.
AlexNet extends the insights of LeNet to a much larger network that can be used to learn
more complex objects and object hierarchies. The contributions of this work are the use
of the ReLU activation function, the dropout technique to selectively ignore individual neu-
rons in training to avoid model overfitting and the max pooling to avoid the averaging
effects of the average pooling. At the time, GPUs provided more cores than CPUs, which
could speed up training by a factor of 10, allowing the use of larger datasets and larger
images.

Oxford’s VGG [10] network pioneered the use of smaller 3x3 kernels at each convolutional
layer. This seems to violate the principle of LeNet, where large convolutions were used
to extract image features. However, in VGG they discovered that multiple 3x3 convolution
layers can simulate larger, more receptive structures, such as 5x5 and 7x7 convolutions.

Google’s Christian Szegedy began to explore reducing the computational cost of deep
neural networks by proposing the first Inception architecture namedGoogLeNet [11]. The
great insight of Inception is to use 1×1 convolutional blocks to perform dimensionality
reduction. This is often referred to as the ”bottleneck”. Inception’s bottleneck layer reduces
the number of features in each layer, thereby reducing the amount of computation and
keeping the inference time low.

In December 2015, ResNet [12] was born sparking a revolution in network architecture.
The concept of ResNet (residual network) is simple; pass the output of two consecutive
convolutional layers plus the input that skips these two layers to the next layer. In this
way the vanishing gradient effect was mitigated, allowing the training of deeper network
architectures. It was also the first time a network with more than a hundred layers was

I. Misios 16

Self-supervised Metric Learning

trained.

2.2 Metric Learning

Different datasets have also different classification or clustering problems. Therefore, it
is crucial that the distance measure is learnable to adapt to data from different domains.
This demonstrated the need for metric learning. Metric learning is an approach based on a
distance metric that aims to determine similarities or dissimilarities between samples. The
goal is to reduce the distance between similar samples and at the same time to increase
the distance of dissimilar ones.

Mahalanobis distance is the common part of the fundamental studies on metric learning
[13], [14]. Formulating the problem, let a datasetX containing the samples x1, . . . , xN . The
distance between the samples xi and xj is calculated as: dM(xi, xj) =

√
(xi − xj)TM(xi − xj).

dM(xi, xj) is a metric (distance), therefore it should have the properties of non-negativity,
symmetry and triangle inequality. Furthermore, covariance matrixM should be symmetric
and positive semi-definite. We can decompose M as follows: M = W TW

dM(xi, xj) =
√

(xi − xj)TM(xi − xj)

=
√

(xi − xj)TM(xi − xj)

=
√

(xi − xj)TWTW (xi − xj)

= ∥Wxi −Wxj∥22.

(2.1)

Equation 2.1 shows that W matrix is linear transformable. With respect to this property,
the Euclidean distance of two samples in the transformed space is equal to Mahalanobis
distance in original space.

An example of a classical dimensionality reduction method which is highly correlated to
Mahalanobis distance is the Principal Component Analysis (PCA). PCA is a linear trans-
foration that attempts to map the data to a lower dimensional space while preserving the
highest possible variance of the data.

In general, linear metric learning approaches provide soft constraints in the transformed
data space improving learning performance. An advantage of these approaches is that
they avoid overfitting.

When the Mahalanobis distance is used as a metric, some linear features in the data
can be obtained due to the projection using the linear matrix W. But nonlinear features
in the data are also important when comparing distances between objects. Therefore,
some metric learning methods for nonlinear features have been proposed, such as kernel
methods [15] [16] . However, the main problem with these methods is that they easily lead
the model to overfit. With the introduction of deep metric learning, the problems of both
linear metric learning as well as kernel based non-linear metric learning were solved.

I. Misios 17

Self-supervised Metric Learning

2.3 Deep Metric Learning

For traditional metric learning, due to its limited ability to process raw data, it is neces-
sary to first use the knowledge of feature engineering to preprocess the data, and then
use the metric learning algorithm to learn. Some traditional metric learning methods can
only learn linear features. Although kernel methods that can extract nonlinear features
have been proposed, the learning effect is not significantly improved. With the advent of
deep learning, thanks to the excellent ability of activation functions to learn nonlinear fea-
tures, deep learning methods can automatically learn high-quality features from raw data.
More specifically, in Computer Vision applications, CNNs are mainly used to perform the
nonlinear mapping of input images into a lower dimensional space while preserving the
semantic information. Figure 1 illustrate the training process of a Siamese DNN with Con-
trastive loss where the distance between similar samples decreases while simultaneously
increasing the distance between heterogeneous samples.

Symmetry 2019, 11, 1066 5 of 26

data [21]. For this reason, the expected outcomes could not be obtained while using metric learning.
Although a solution with a kernel-based approach was provided to overcome this problem, there is no
obvious success due to some issues such as scaling [22]. Unlike traditional metric learning methods,
deep learning solves this problem using activation functions that have nonlinear structure.

Most of the existing deep learning approaches are based on the deep architectural background
rather than the distance metric in a new representation space of the data. However, distance-based
approaches have recently become one of the most interesting topics in deep learning [15,23–26]. While
decreasing the distance between dissimilar samples [27,28], deep metric learning, which aims to
increase the distance between similar samples, is directly related to the distance between samples.
To execute this process, the metric loss function has been benefited in deep learning. While aiming to
bring the samples from the same classes closer to each other, we pushed the samples from different
classes apart from each other (Figure 2a). To illustrate this process with a figure, some experiments on
the MNIST image dataset were conducted while using contrastive loss [29]. Distance values represent
the mean of distances among similar or dissimilar images in Figure 2b. As can be seen in the Figure,
the distance value for similar images decreased step by step after each epoch. On the other hand, the
distance value for dissimilar images also increased at the same. The distance relationship for Siamese
network has been successfully applied in each epoch for similar or dissimilar images (Figure 2b).
This experiment proves to us that the purpose of the approach can be successfully implemented.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 25

provided to overcome this problem, there is no obvious success due to some issues such as scaling
[22]. Unlike traditional metric learning methods, deep learning solves this problem using activation
functions that have nonlinear structure.

Most of the existing deep learning approaches are based on the deep architectural background
rather than the distance metric in a new representation space of the data. However, distance-based
approaches have recently become one of the most interesting topics in deep learning [15,23–26].
While decreasing the distance between dissimilar samples [27,28], deep metric learning, which aims
to increase the distance between similar samples, is directly related to the distance between samples.
To execute this process, the metric loss function has been benefited in deep learning. While aiming to
bring the samples from the same classes closer to each other, we pushed the samples from different
classes apart from each other (Figure 2a). To illustrate this process with a figure, some experiments
on the MNIST image dataset were conducted while using contrastive loss [29]. Distance values
represent the mean of distances among similar or dissimilar images in Figure 2b. As can be seen in
the Figure, the distance value for similar images decreased step by step after each epoch. On the
other hand, the distance value for dissimilar images also increased at the same. The distance
relationship for Siamese network has been successfully applied in each epoch for similar or
dissimilar images (Figure 2b). This experiment proves to us that the purpose of the approach can be
successfully implemented.

0

0,2

0,4

0,6

0,8

1

1,2

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Siamese Network

Dissimilar images Similar images

Th
e

di
st

an
ce

 m
ea

n
be

tw
ee

n
di

ss
im

ila
r i

m
ag

es The
distance m

ean
betw

een
sim

ilarim
ages

Epoch

Similar images
Dissimilar images

 (a) (b)

Figure 2. Distance Relationship for a Siamese Network (a) Desired handwritten data discrimination
for three and eight digits (b) after Siamese network applied to MNIST data for three and eight digits.

3.1. Deep Metric Learning Problems

Deep metric learning, which utilizes deep architectures by obtaining embedded feature
similarity through nonlinear subspace learning, develops problem-based solutions that are caused
by learning from raw data. When the scope of deep metric learning is considered, it has a wide range
from video understanding to others including person re-identification, medical problems,
three-dimensional (3D) modelling [23,30], face verification and recognition [27,31,32], and signature
verification [33].

There are many kinds of problems in understanding videos, including video annotation,
recommendation, and search. When encountered with such problems, it is possible to make use of a
metric space to come up with solutions. To illustrate, Lee et al. extracted audio and visual features
from videos to benefit from these useful contents at first [34]. After feature extraction, they presented
a deep neural network embedding model that is based on triplet learning, which is also a source of
inspiration for similar studies. The purpose of [35] is to learn a metric that is based on deep metric
learning for moving human localization in video surveillance where the authors conducted a deep
multi-channel residual networks-based metric learning for this task. When the method was

Figure 2. Distance Relationship for a Siamese Network (a) Desired handwritten data discrimination for
three and eight digits (b) after Siamese network applied to MNIST data for three and eight digits.

3.1. Deep Metric Learning Problems

Deep metric learning, which utilizes deep architectures by obtaining embedded feature similarity
through nonlinear subspace learning, develops problem-based solutions that are caused by learning
from raw data. When the scope of deep metric learning is considered, it has a wide range from video
understanding to others including person re-identification, medical problems, three-dimensional (3D)
modelling [23,30], face verification and recognition [27,31,32], and signature verification [33].

There are many kinds of problems in understanding videos, including video annotation,
recommendation, and search. When encountered with such problems, it is possible to make use of a
metric space to come up with solutions. To illustrate, Lee et al. extracted audio and visual features from
videos to benefit from these useful contents at first [34]. After feature extraction, they presented a deep
neural network embedding model that is based on triplet learning, which is also a source of inspiration
for similar studies. The purpose of [35] is to learn a metric that is based on deep metric learning for
moving human localization in video surveillance where the authors conducted a deep multi-channel

Figure 1: a) Desired discriminated embedding space. b) Mean distance between the two digits
while training progresses.

Deep metric learning mainly consists of three aspects , which are:

• Sample mining

• Model structure

• Loss function

2.3.1 Sample mining

The easiest way to think of samplemining is to randomly sample pairs of positives and neg-
atives. However, the sample pairs collected by this method are not difficult to distinguish,
and the model cannot learn enough informative knowledge from these data. Therefore, it
is necessary to adopt some sample mining methods to find indistinguishable sample pairs
from the dataset.

A typical set of samples consists of anchors, negatives and positives. Positive is a positive
sample with the same class as the anchor, and negative is a sample different from the

I. Misios 18

Self-supervised Metric Learning

anchor class. According to the different distances between anchors, positive samples
and negative samples, sample mining can be divided into three categories as shown in
Figure 2. In Hard Negative Mining approach, we use the false positive samples obtained
after training on the training set as negative samples. Furtermore, in Semi-Hard Negative
Mining, we try to find negative samples within a margin range. Finally, in Easy Negative
Mining, we take as negatives the samples found outside a certain margin.

Symmetry 2019, 11, 1066 12 of 26

3.2. Sample Selection

Deep metric learning consists of three main parts, which are informative input samples, the
structure of the network model, and a metric loss function. Although deep metric learning especially
deals with metric loss function, informative sample selection also plays a very important role in
classification or clustering. Informative samples are one of the most substantial elements that increase
the success of deep metric learning. The sampling strategy is capable of increasing both the success of
the network and the training speed of the network. The easiest way to determine train samples in
contrastive loss is by means of randomly chosen positive or negative pairs of objects. In the beginning,
some papers tend to use easy sample pairs for the Siamese network in embedding learning [29,88].
However, the authors in [89] emphasized that the learning process could be slowed down and
negatively affected after the network reached an acceptable performance level. To address this problem,
more discriminative models were obtained while using hard negative mining [89,90]. Triplet network
uses an anchor, a positive, and a negative sample to train a network for classification. In [91], it was
observed that some easy triplets had no effect in updating a model due to their poor discriminative
power. These triplets cause a waste of time and resources. For this reason, to overcome these problems,
it is very convenient to use informative sample triplets, and more feasible train models with a better
sample strategy could be provided instead of selecting random samples [91,92].

Hard negative samples correspond to false-positive samples that are determined by training data.
Semi-hard negative mining used for the first time in [32] aims to find negative samples within the
margin. Negative samples are farther from the anchor sample when compared with hard negative
mining. There is also a softer transition between positive and negative samples in this approach.
The negative mining relationship according to the distance among anchor, positive, and negative
samples was illustrated for triplet mining [85], as seen in Figure 4. If the negative samples are too
close to the anchor, we can see that the gradient has a high variance and a low signal to the noise ratio,
according to [93]. Hence, distance weighted sampling was suggested to avoid noisy samples in [93].
Thanks to this method, a wider range of examples as compared with semi-hard negative mining was
also offered. Negative class mining can also be found in the literature instead of negative sample
mining [70]. This approach uses one of each class samples for a negative sample of the triple network.
To achieve this, the authors chose multiple negative samples with a greedy search strategy.

Symmetry 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/symmetry

3.2. Sample Selection

Deep metric learning consists of three main parts, which are informative input samples, the

structure of the network model, and a metric loss function. Although deep metric learning especially

deals with metric loss function, informative sample selection also plays a very important role in

classification or clustering. Informative samples are one of the most substantial elements that

increase the success of deep metric learning. The sampling strategy is capable of increasing both the

success of the network and the training speed of the network. The easiest way to determine train

samples in contrastive loss is by means of randomly chosen positive or negative pairs of objects. In

the beginning, some papers tend to use easy sample pairs for the Siamese network in embedding

learning [29,88]. However, the authors in [90] emphasized that the learning process could be slowed

down and negatively affected after the network reached an acceptable performance level. To address

this problem, more discriminative models were obtained while using hard negative mining [90,91].

Triplet network uses an anchor, a positive, and a negative sample to train a network for

classification. In [92], it was observed that some easy triplets had no effect in updating a model due

to their poor discriminative power. These triplets cause a waste of time and resources. For this

reason, to overcome these problems, it is very convenient to use informative sample triplets, and

more feasible train models with a better sample strategy could be provided instead of selecting

random samples [92,93].

Hard negative samples correspond to false-positive samples that are determined by training

data. Semi-hard negative mining used for the first time in [32] aims to find negative samples within

the margin. Negative samples are farther from the anchor sample when compared with hard

negative mining. There is also a softer transition between positive and negative samples in this

approach. The negative mining relationship according to the distance among anchor, positive, and

negative samples was illustrated for triplet mining [87], as seen in Figure 4. If the negative samples

are too close to the anchor, we can see that the gradient has a high variance and a low signal to the

noise ratio, according to [94]. Hence, distance weighted sampling was suggested to avoid noisy

samples in [94]. Thanks to this method, a wider range of examples as compared with semi-hard

negative mining was also offered. Negative class mining can also be found in the literature instead of

negative sample mining [81]. This approach uses one of each class samples for a negative sample of

the triple network. To achieve this, the authors chose multiple negative samples with a greedy

search strategy.

Hard Negative Mining

 (,) (,)d a n d a p

Semi-Hard Negative Mining

(,) (,) (,)d a p d a n d a p margin +

Easy Negative Mining

(,) (,)d a p margin d a n+

Figure 4. Negative Mining. Figure 4. Negative Mining.

To summarize, even if we create good mathematical models and architectures, the learning ability
of the network will be limited, depending on the discriminating power of the samples that are presented
to the network. Distinguishing training examples should be presented to the network so that the
network can learn better and gain better representation. For this reason, the effect of the relationship

Figure 2: Negative Mining.

There are a few advantages of sample mining. First of all, it is easier for the model to
learn useful knowledge, which helps to improve its discrimination ability. Furthermore, it
helps to avoid overfitting. If the model continues to see easily distinguishable samples,
it is easy to overfit and fall into a local maximum. Finally, It is beneficial to reduce the
time complexity of training process. Traversing all (anchor, positive, negative) triples in
the data requires O(n3) time complexity, and selecting a small amount of indistinguishable
data to train the model can achieve the same effect.

2.3.2 Model structure

Typical contrastive learning model structures are the Siamese and Triplet Networks. The
model structure diagram is shown in Figure 3. The structure of the Siamese network
consists of two identical networks that share the model weights. Each network is fed with
an image, and if the images belong to the same class then the distance between their
embeddings should be minimized. Ιν contrast, if the images belong to different classes,
the distance between their embedding vectors should be maximized. The Triplet network
structure is inspired by the Siamese structure. It consists of three identical networks with
shared weights. Each network is fed with an image, where one of them plays the role of
the anchor. The second image should belong to the same class as the anchor, while the
third one belongs to a different class. The goal is that the distanceD1 between the anchor
and the positive image differs from the distance D2, between the anchor and the negative
pair, by a margin a, where a > 0.

I. Misios 19

Self-supervised Metric Learning
Symmetry 2019, 11, 1066 14 of 26
Symmetry 2019, 11, x FOR PEER REVIEW 3 of 25

Figure 5. The Siamese network and Triplet network.

Figure 6. Metric loss functions.

Triplet network inspired by Siamese network contains three objects, which are formed positive,
negative, and anchor samples [85]. Triplet networks utilize Euclidean space to compare the objects in
the pattern recognition process, and this approach is directly related to metric learning. As can be
seen in Equation 6, triplet loss first focuses on the similarity between the pair samples of the same
and different classes using shared weights. The classification is carried out comparing the similarity
of pair samples (Figure 6b). Triplet networks provide a higher discrimination power while using
both in-class and inter-class relations. The authors in [72] proposed a new metric loss that is based on

Figure 5. The Siamese network and Triplet network.

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 25

Figure 5. The Siamese network and Triplet network.

Figure 6. Metric loss functions.

Triplet network inspired by Siamese network contains three objects, which are formed positive,
negative, and anchor samples [85]. Triplet networks utilize Euclidean space to compare the objects in
the pattern recognition process, and this approach is directly related to metric learning. As can be
seen in Equation 6, triplet loss first focuses on the similarity between the pair samples of the same
and different classes using shared weights. The classification is carried out comparing the similarity
of pair samples (Figure 6b). Triplet networks provide a higher discrimination power while using
both in-class and inter-class relations. The authors in [72] proposed a new metric loss that is based on

Figure 6. Metric loss functions.

Triplet network inspired by Siamese network contains three objects, which are formed positive,
negative, and anchor samples [85]. Triplet networks utilize Euclidean space to compare the objects in
the pattern recognition process, and this approach is directly related to metric learning. As can be seen
in Equation (6), triplet loss first focuses on the similarity between the pair samples of the same and
different classes using shared weights. The classification is carried out comparing the similarity of
pair samples (Figure 6b). Triplet networks provide a higher discrimination power while using both

Figure 3: The Siamese and Triplet Networks.

2.3.3 Loss function

In this section we introduce the most common embedding and classification loss functions.

Contrastive Loss [17]: The idea behind Contrastive loss is that the distance between
the positive sample and the anchor decreases, while the distance between the negative
sample and the anchor increases. It requires sampling one positive or one negative for
an anchor.

LContrastive = (1− Iij)[Sij − λ]+ − IijSij, (2.2)

where Iij = 1 indicates a positive pair, while Iij = 0 indicates a negative pair. Sij is the
cosine similarity between the embeddings of two samples xi and xj.

Triplet Loss [18]: The idea behind Triplet loss is to create a distance α between positive
and negative samples , so that there is a certain degree of discrimination in the feature
space of positive and negative samples, which is convenient for the model to distinguish.
It requires sampling one positive and one negative for an anchor.

LTriplet = [San − Sap + α]+, (2.3)

where Sap indicates the cosine similarity between the embedding of the anchor with that
of the positive. Similarily, San indicates the cosine similarity between the anchor and the
negative. α is a positive user defined magrin.

NPair Loss [19]: During the process of updating the learning parameters, the Triplet
loss compares only one negative sample, while ignoring the negative samples of other
classes. Therefore, it can only encourage the query embedding vector to maintain a large

I. Misios 20

Self-supervised Metric Learning

distance from the selected negative sample, but cannot guarantee that it also maintains a
large distance from other unselected negative samples.

NPair loss improves the above problems of Triplet Loss. Unlike Triplet loss, which uses a
single positive and negative sample, theNPair loss function uses the structural information
between data to learn more discriminative representations. More specifically, it considers
the relationship between the query sample andmultiple other negative samples of different
classes at the same time, so as to maintain the distance between the query and all other
classes, which can speed up the convergence of the model.

LNPair =
1

m

m∑
i=1

log
(
1 +

∑
yk ̸=yi,yj=yi

eSik−Sij

)
, (2.4)

where m is the number of samples in the mini-batch.

Lifted Structure Loss [20]: Lifted Structure loss calculates the loss based on all positive
and negative sample pairs in the mini-batch.

LLiftedStructure =
m∑
i=1

[
log

∑
yk=yi

eλ−Sik + log
∑
yk ̸=yi

eSik

]
+

, (2.5)

where λ is a user defined margin. The difference between Lifted Structure loss and Triplet
loss is that the sample triplet of Triplet oss is determined in advance, while Lifted Structure
loss dynamically constructs the most difficult triplet for each positive sample pair. During
the construction process all negative samples within the mini-batch are considered.

ProxyNCA Loss [21]: The ProxyNCA loss assigns a proxy per class so that the number
of proxies is the same as the number of class labels. Given an input sample as an anchor,
the anchor together with the samples of the same class are considered positives while the
other anchors are considered as negatives. Let x denote the input embedding vector, p+
is a positive proxy, p− is a negative proxy. The loss is given by

LProxyNCA =
∑
x∈X

− log eS(x,p
+)∑

p−∈P− eS(x,p−)
, (2.6)

where X is a mini-batch of embedding vectors, P− is the set of negative anchors, and S
represents the cosine similarity between the two embedding vectors.

Multi-Similarity Loss [22]: Sample mining can be understood as assigning a weight to
each sample pair during the learning process. The core of assigning weight to samples
is to judge the local distribution of samples, that is, the similarity between them. The
distribution of samples does not only depend on the distance or similarity between the
current two samples, but also depends on the relationship between the current sample pair
and its surrounding sample pairs. Therefore, for each sample pair, we need to consider
not only the self-similarity of the sample pair itself, but also its relative similarity to the other
sample pairs. Relative similarity can be divided into positive relative similarity and negative
relative similarity. Self-similarity is the similarity calculated from the pair sample itself. In

I. Misios 21

Self-supervised Metric Learning

Positive relative similarity we consider not only the similarity of the current sample pair,
but also the relative similarity between positive sample pairs in the local neighborhood. In
Negative relative similarity we consider not only the similarity of the current sample pair,
but also the relative similarity between negative sample pairs in the local neighborhood.
Multi-Similarity Loss comprehensively considers all three similarities that generalize most
current sample pair-based loss functions

LMultiSimilarity =
1

m

m∑
i=1

{
1

α
log

[
1 +

∑
k∈Pi

e−α(Sik−λ)
]
+

1

β
log

[
1 +

∑
k∈Ni

eβ(Sik−λ)
]}

, (2.7)

where α, β, λ are hyper-parameters, Pi and Ni are the sets of positives and negatives
respectively.

2.4 Self-supervised Learning

Self-supervised methods can be considered as a special form of unsupervised learn-
ing methods with a supervised form, where supervision is induced by self-supervised
tasks rather than predetermined prior knowledge. Unlike a completely unsupervised set-
ting, self-supervised learning uses information from the dataset itself to generate pseudo-
labels. In terms of representation learning, self-supervised learning has great potential
to replace fully supervised learning. The nature of human learning tells us that large an-
notated datasets may not be necessary and we can learn spontaneously from unlabeled
datasets.

Self-supervised learning mainly uses auxiliary tasks (pretext) to mine its own supervision
information from large-scale unsupervised data, and trains the network through this con-
structed supervision information, so that it can learn valuable representations for down-
stream tasks.

Some well-known pretext tasks are: 1) predicting relative location of two patches [23] 2)
solving jigsaw puzzle [24] 3) colorizing an image [25] 4) rotation prediction [26]

In this work we focus mostly on the Contrastive Self-Supervised Learning (SSL) methods.

SimCLR A Simple Framework for Contrastive Learning of Visual Representations [4]

In an image classification task every image has a label. If two samples have the same label
they compose a positive pair, while if they have different labels they compose a negative
pair. However, label information defeats the purpose of SSL, so we have to find a solution
that deals with unlabeled data. SimCLR’s approach is to treat each image as a separate
class and augment it to generate samples of the same class. For example, each sample
in Figure 4 is a positive sample with respect to the original image.

Interestingly, data augmentation plays a important role in the accuracy of self-supervised
models. The authors experiment with various data augmentations and propose three aug-
mentation methods with the highest accuracy which are 1)the sequence of Crop, Resize,
Flip 2) Color Distortion and 3) Gaussian Blur.

These data augmentation techniques can generate different versions of an image that can
improve SSL performance. The concept of SimCLR is that first you can randomly sample

I. Misios 22

Self-supervised Metric Learning
A Simple Framework for Contrastive Learning of Visual Representations

(a) Original (b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90◦, 180◦, 270◦} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

2012; Hénaff et al., 2019; Bachman et al., 2019), it has
not been considered as a systematic way to define the con-
trastive prediction task. Many existing approaches define
contrastive prediction tasks by changing the architecture.
For example, Hjelm et al. (2018); Bachman et al. (2019)
achieve global-to-local view prediction via constraining the
receptive field in the network architecture, whereas Oord
et al. (2018); Hénaff et al. (2019) achieve neighboring view
prediction via a fixed image splitting procedure and a con-
text aggregation network. We show that this complexity can
be avoided by performing simple random cropping (with
resizing) of target images, which creates a family of predic-
tive tasks subsuming the above mentioned two, as shown in
Figure 3. This simple design choice conveniently decouples
the predictive task from other components such as the neural
network architecture. Broader contrastive prediction tasks
can be defined by extending the family of augmentations
and composing them stochastically.

3.1. Composition of data augmentation operations is
crucial for learning good representations

To systematically study the impact of data augmentation,
we consider several common augmentations here. One type
of augmentation involves spatial/geometric transformation
of data, such as cropping and resizing (with horizontal
flipping), rotation (Gidaris et al., 2018) and cutout (De-
Vries & Taylor, 2017). The other type of augmentation
involves appearance transformation, such as color distortion
(including color dropping, brightness, contrast, saturation,
hue) (Howard, 2013; Szegedy et al., 2015), Gaussian blur,
and Sobel filtering. Figure 4 visualizes the augmentations
that we study in this work.

Crop
Cutout

Color
Sobel

Noise Blur
Rotate

Average

2nd transformation

Crop

Cutout

Color

Sobel

Noise

Blur

Rotate

1s
t t

ra
ns

fo
rm

at
io

n
33.1 33.9 56.3 46.0 39.9 35.0 30.2 39.2

32.2 25.6 33.9 40.0 26.5 25.2 22.4 29.4

55.8 35.5 18.8 21.0 11.4 16.5 20.8 25.7

46.2 40.6 20.9 4.0 9.3 6.2 4.2 18.8

38.8 25.8 7.5 7.6 9.8 9.8 9.6 15.5

35.1 25.2 16.6 5.8 9.7 2.6 6.7 14.5

30.0 22.5 20.7 4.3 9.7 6.5 2.6 13.8
10

20

30

40

50

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

To understand the effects of individual data augmentations
and the importance of augmentation composition, we in-
vestigate the performance of our framework when applying
augmentations individually or in pairs. Since ImageNet
images are of different sizes, we always apply crop and re-
size images (Krizhevsky et al., 2012; Szegedy et al., 2015),
which makes it difficult to study other augmentations in
the absence of cropping. To eliminate this confound, we
consider an asymmetric data transformation setting for this
ablation. Specifically, we always first randomly crop im-
ages and resize them to the same resolution, and we then
apply the targeted transformation(s) only to one branch of
the framework in Figure 2, while leaving the other branch
as the identity (i.e. t(xi) = xi). Note that this asymmet-

Figure 4: Different types of image augmentations constructing positive pairs.

a mini-batch and augment each image twice. As a result, in the learned embedding space,
different views of the same image should be close while views of different images should
be far away.

MoCo Momentum Contrast for Unsupervised Visual Representation Learning [3]

The SimCLR method used large mini-batches during training which is computationally de-
manding. MoCo tried to solve this problem by introducing a dictionary which is treated as
a queue, and the size of the queue can be larger than the mini-batch, which is a hyper-
parameter. The queue is updated gradually. On each iteration, the current mini-batch is
enqueued, and the oldest mini-batch in the queue is dequeued.

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Abstract
We present Momentum Contrast (MoCo) for unsuper-

vised visual representation learning. From a perspective on
contrastive learning [29] as dictionary look-up, we build
a dynamic dictionary with a queue and a moving-averaged
encoder. This enables building a large and consistent dic-
tionary on-the-fly that facilitates contrastive unsupervised
learning. MoCo provides competitive results under the
common linear protocol on ImageNet classification. More
importantly, the representations learned by MoCo transfer
well to downstream tasks. MoCo can outperform its super-
vised pre-training counterpart in 7 detection/segmentation
tasks on PASCAL VOC, COCO, and other datasets, some-
times surpassing it by large margins. This suggests that
the gap between unsupervised and supervised representa-
tion learning has been largely closed in many vision tasks.

Code: https://github.com/facebookresearch/moco

1. Introduction
Unsupervised representation learning is highly success-

ful in natural language processing, e.g., as shown by GPT
[50, 51] and BERT [12]. But supervised pre-training is still
dominant in computer vision, where unsupervised meth-
ods generally lag behind. The reason may stem from dif-
ferences in their respective signal spaces. Language tasks
have discrete signal spaces (words, sub-word units, etc.)
for building tokenized dictionaries, on which unsupervised
learning can be based. Computer vision, in contrast, further
concerns dictionary building [54, 9, 5], as the raw signal is
in a continuous, high-dimensional space and is not struc-
tured for human communication (e.g., unlike words).

Several recent studies [61, 46, 36, 66, 35, 56, 2] present
promising results on unsupervised visual representation
learning using approaches related to the contrastive loss
[29]. Though driven by various motivations, these methods
can be thought of as building dynamic dictionaries. The
“keys” (tokens) in the dictionary are sampled from data
(e.g., images or patches) and are represented by an encoder
network. Unsupervised learning trains encoders to perform
dictionary look-up: an encoded “query” should be similar
to its matching key and dissimilar to others. Learning is
formulated as minimizing a contrastive loss [29].

encoder momentum
encoder

q

contrastive loss

similarity

queue

k0 k1 k2 ...

xquery xkey
0 xkey

1 xkey
2 ...

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query q to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{k0, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.

From this perspective, we hypothesize that it is desirable
to build dictionaries that are: (i) large and (ii) consistent
as they evolve during training. Intuitively, a larger dictio-
nary may better sample the underlying continuous, high-
dimensional visual space, while the keys in the dictionary
should be represented by the same or similar encoder so that
their comparisons to the query are consistent. However, ex-
isting methods that use contrastive losses can be limited in
one of these two aspects (discussed later in context).

We present Momentum Contrast (MoCo) as a way of
building large and consistent dictionaries for unsupervised
learning with a contrastive loss (Figure 1). We maintain the
dictionary as a queue of data samples: the encoded repre-
sentations of the current mini-batch are enqueued, and the
oldest are dequeued. The queue decouples the dictionary
size from the mini-batch size, allowing it to be large. More-
over, as the dictionary keys come from the preceding sev-
eral mini-batches, a slowly progressing key encoder, imple-
mented as a momentum-based moving average of the query
encoder, is proposed to maintain consistency.

1

ar
X

iv
:1

91
1.

05
72

2v
3

 [
cs

.C
V

]
 2

3
M

ar
 2

02
0

Figure 5: Momentum Contrast (MoCo) training method.

The use of queues can make the dictionary very large, like memory banks, and it is difficult
to update the encoder through backpropagation. The simplest way is to share the query
encoder and key encoder, however in this way the consistency of the keys in the dictionary
would be poor, because the encoder would be updated quickly after each iteration. MoCo
proposed the momentum update strategy to solve this problem (see Figure 5.

I. Misios 23

Self-supervised Metric Learning

SwAV Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
[27]

Contrastive learning methods before SwAV generally require pairwise comparisons, which
require a large amount of computation. SwAV does not require pairwise comparisons. It
compares cluster assignments under different views instead of directly comparing fea-
tures. Two views are obtained from the same image after data augmentations. Then
SwAV predicts the representation of view B through the code of view A (the ”code” here
refers to cluster assignment), and predicts representation of A through the code of view
B.

t~T

t~T

t~T

t~T
fθ

Comparison

Z1

Z2X2

fθX1

X

Features

Features
Q1

Q2

Prototypes C

Z2

Z1
t~T

t~T

t~T

t~T
fθX2

fθX1

X
Swapped
Prediction

Codes

Codes

Contrastive instance learning Swapping Assignments between Views (Ours)

Figure 1: Contrastive instance learning (left) vs. SwAV (right). In contrastive learning methods
applied to instance classification, the features from different transformations of the same images are
compared directly to each other. In SwAV, we first obtain “codes” by assigning features to prototype
vectors. We then solve a “swapped” prediction problem wherein the codes obtained from one data
augmented view are predicted using the other view. Thus, SwAV does not directly compare image
features. Prototype vectors are learned along with the ConvNet parameters by backpropragation.

products of zi and all prototypes in C, i.e.,

`(zt,qs) = −
∑
k

q(k)
s logp

(k)
t , where p

(k)
t =

exp
(
1
τ z
>
t ck

)∑
k′ exp

(
1
τ z
>
t ck′

) . (2)

where τ is a temperature parameter [58]. Taking this loss over all the images and pairs of data
augmentations leads to the following loss function for the swapped prediction problem:

− 1

N

N∑
n=1

∑
s,t∼T

[
1

τ
z>ntCqns +

1

τ
z>nsCqnt − log

K∑
k=1

exp

(
z>ntck
τ

)
− log

K∑
k=1

exp

(
z>nsck
τ

)]
.

This loss function is jointly minimized with respect to the prototypes C and the parameters θ of the
image encoder fθ used to produce the features (znt)n,t.

Computing codes online. In order to make our method online, we compute the codes using only
the image features within a batch. Intuitively, as the prototypes C are used across different batches,
SwAV clusters multiple instances to the prototypes. We compute codes using the prototypes C
such that all the examples in a batch are equally partitioned by the prototypes. This equipartition
constraint ensures that the codes for different images in a batch are distinct, thus preventing the
trivial solution where every image has the same code. Given B feature vectors Z = [z1, . . . , zB],
we are interested in mapping them to the prototypes C = [c1, . . . , cK]. We denote this mapping or
codes by Q = [q1, . . . ,qB], and optimize Q to maximize the similarity between the features and the
prototypes , i.e.,

max
Q∈Q

Tr
(
Q>C>Z

)
+ εH(Q), (3)

where H is the entropy function, H(Q) = −
∑
ijQij logQij and ε is a parameter that controls the

smoothness of the mapping. We observe that a strong entropy regularization (i.e. using a high ε)
generally leads to a trivial solution where all samples collapse into an unique representation and are
all assigned uniformely to all prototypes. Hence, in practice we keep ε low. Asano et al. [2] enforce
an equal partition by constraining the matrix Q to belong to the transportation polytope. They work
on the full dataset, and we propose to adapt their solution to work on minibatches by restricting the
transportation polytope to the minibatch:

Q =

{
Q ∈ RK×B+ |Q1B =

1

K
1K ,Q

>1K =
1

B
1B

}
, (4)

where 1K denotes the vector of ones in dimension K. These constraints enforce that on average each
prototype is selected at least BK times in the batch.

Once a continuous solution Q∗ to Prob. (3) is found, a discrete code can be obtained by using a
rounding procedure [2]. Empirically, we found that discrete codes work well when computing codes
in an offline manner on the full dataset as in Asano et al. [2]. However, in the online setting where

4

Figure 6: SwAV framework.

Before SwAV, there were also deep unsupervised learning methods based on clustering
such as Deep Cluster [28] , but Deep Cluster required the calculation of cluster assignment
for the entire dataset as labels for model training, which was computationally expensive.
SwAV calculates the codes online, and then maintains the same codes within a mini-batch
of images.

In addition to introducing clustering, SwAV also proposes a ”multi-crop” image transforma-
tion method, which further improves the effect. It is shown that more views can improve
the performance of self-supervised learning models, andmulti-crop uses smaller-sized im-
ages to increase the number of views without increasing the computational requirements.

BYOL Bootstrap your own latent: A new approach to self-supervised Learning [29]

x

v yθ zθ qθ(zθ)

v′ y′ξ z′ξ sg(z′ξ)

view

input
image

representation projection prediction

t

fθ gθ qθ

t′

fξ gξ sg

loss

online

target

Figure 2: BYOL’s architecture. BYOL minimizes a similarity loss between qθ(zθ) and sg(z′ξ), where θ are the trained
weights, ξ are an exponential moving average of θ and sg means stop-gradient. At the end of training, everything
but fθ is discarded, and yθ is used as the image representation.

augmentations t ∼ T and t′ ∼ T ′. From the first augmented view v, the online network outputs a representation
yθ =∆ fθ(v) and a projection zθ =∆ gθ(y). The target network outputs y′ξ =∆ fξ(v

′) and the target projection
z′ξ =

∆ gξ(y
′) from the second augmented view v′. We then output a prediction qθ(zθ) of z′ξ and `2-normalize both

qθ(zθ) and z′ξ to qθ(zθ) =
∆ qθ(zθ)/‖qθ(zθ)‖2 and z′ξ =∆ z′ξ/‖z′ξ‖2. Note that this predictor is only applied to the

online branch, making the architecture asymmetric between the online and target pipeline. Finally we define the
following mean squared error between the normalized predictions and target projections,5

Lθ,ξ =∆
∥∥qθ(zθ)− z′ξ∥∥22 = 2− 2 ·

〈qθ(zθ), z′ξ〉∥∥qθ(zθ)∥∥2 · ∥∥z′ξ∥∥2 · (2)

We symmetrize the loss Lθ,ξ in Eq. 2 by separately feeding v′ to the online network and v to the target network to
compute L̃θ,ξ. At each training step, we perform a stochastic optimization step to minimize LBYOL

θ,ξ = Lθ,ξ + L̃θ,ξ
with respect to θ only, but not ξ, as depicted by the stop-gradient in Figure 2. BYOL’s dynamics are summarized as

θ ← optimizer
(
θ,∇θLBYOL

θ,ξ , η
)
, (3)

ξ ← τξ + (1− τ)θ, (1)

where optimizer is an optimizer and η is a learning rate.

At the end of training, we only keep the encoder fθ; as in [9]. When comparing to other methods, we consider the
number of inference-time weights only in the final representation fθ. The full training procedure is summarized in
Appendix A, and python pseudo-code based on the libraries JAX [64] and Haiku [65] is provided in in Appendix J.

3.2 Intuitions on BYOL’s behavior

As BYOL does not use an explicit term to prevent collapse (such as negative examples [10]) while minimizing
LBYOL
θ,ξ with respect to θ, it may seem that BYOL should converge to a minimum of this loss with respect to (θ, ξ)

(e.g., a collapsed constant representation). However BYOL’s target parameters ξ updates are not in the direction of
∇ξLBYOL

θ,ξ . More generally, we hypothesize that there is no loss Lθ,ξ such that BYOL’s dynamics is a gradient descent
on L jointly over θ, ξ. This is similar to GANs [66], where there is no loss that is jointly minimized w.r.t. both
the discriminator and generator parameters. There is therefore no a priori reason why BYOL’s parameters would
converge to a minimum of LBYOL

θ,ξ .

While BYOL’s dynamics still admit undesirable equilibria, we did not observe convergence to such equilibria in our
experiments. In addition, when assuming BYOL’s predictor to be optimal6 i.e., qθ = q? with

q? =∆ argmin
q

E
[∥∥q(zθ)− z′ξ∥∥22], where q?(zθ) = E

[
z′ξ|zθ

]
, (4)

5While we could directly predict the representation y and not a projection z, previous work [8] have empirically shown that
using this projection improves performance.

6For simplicity we also consider BYOL without normalization (which performs reasonably close to BYOL, see Appendix F.6)
nor symmetrization

4

Figure 7: BYOL framework.

I. Misios 24

Self-supervised Metric Learning

The goal of BYOL is to learn an image representation yθ , which is then used for down-
stream tasks. As shown in Figure 7, BYOL uses two neural networks for learning, the
online network and the target network. The online network is defined by a set of weight
values θ and consists of three parts: encoder fθ, Projector gθ, and predictor qθ. The tar-
get network has the same architecture as the online network, however it uses a different
set of weights ξ. The target network provides a regression target for the online network
training, and its parameters are updated as exponential moving averages of the online
network parameters. BYOL aims to minimize the similarity loss between qθ(zθ) and sg(z′ξ),
where θ is the training weight value, ξ is the exponential moving average of θ , and sg is
the stopping gradient.

SimSiam Exploring Simple Siamese Representation Learning [30]

SimSiam is equivalent to BYOL if we set to zero the moving average parameter, which
means that the moving average of BYOL is not necessary. SimSiam method can even
work without negative sample pairs, large mini-batch size and momentum encoders. Sim-
Siam authors also did a lot of comparative experiments, which confirmed that the stop
gradient (sg) operator plays an important role in avoiding the trivial solution.

Exploring Simple Siamese Representation Learning

Xinlei Chen Kaiming He

Facebook AI Research (FAIR)

Abstract

Siamese networks have become a common structure in
various recent models for unsupervised visual representa-
tion learning. These models maximize the similarity be-
tween two augmentations of one image, subject to certain
conditions for avoiding collapsing solutions. In this paper,
we report surprising empirical results that simple Siamese
networks can learn meaningful representations even using
none of the following: (i) negative sample pairs, (ii) large
batches, (iii) momentum encoders. Our experiments show
that collapsing solutions do exist for the loss and structure,
but a stop-gradient operation plays an essential role in pre-
venting collapsing. We provide a hypothesis on the impli-
cation of stop-gradient, and further show proof-of-concept
experiments verifying it. Our “SimSiam” method achieves
competitive results on ImageNet and downstream tasks. We
hope this simple baseline will motivate people to rethink the
roles of Siamese architectures for unsupervised representa-
tion learning. Code will be made available.

1. Introduction

Recently there has been steady progress in un-/self-
supervised representation learning, with encouraging re-
sults on multiple visual tasks (e.g., [2, 17, 8, 15, 7]). Despite
various original motivations, these methods generally in-
volve certain forms of Siamese networks [4]. Siamese net-
works are weight-sharing neural networks applied on two or
more inputs. They are natural tools for comparing (includ-
ing but not limited to “contrasting”) entities. Recent meth-
ods define the inputs as two augmentations of one image,
and maximize the similarity subject to different conditions.

An undesired trivial solution to Siamese networks is
all outputs “collapsing” to a constant. There have been
several general strategies for preventing Siamese networks
from collapsing. Contrastive learning [16], e.g., instantiated
in SimCLR [8], repulses different images (negative pairs)
while attracting the same image’s two views (positive pairs).
The negative pairs preclude constant outputs from the solu-
tion space. Clustering [5] is another way of avoiding con-
stant output, and SwAV [7] incorporates online clustering
into Siamese networks. Beyond contrastive learning and

encoder f

similarity

encoder f

predictor h stop-grad

image x

x1 x2

Figure 1. SimSiam architecture. Two augmented views of one
image are processed by the same encoder network f (a backbone
plus a projection MLP). Then a prediction MLP h is applied on one
side, and a stop-gradient operation is applied on the other side. The
model maximizes the similarity between both sides. It uses neither
negative pairs nor a momentum encoder.

clustering, BYOL [15] relies only on positive pairs but it
does not collapse in case a momentum encoder is used.

In this paper, we report that simple Siamese networks
can work surprisingly well with none of the above strategies
for preventing collapsing. Our model directly maximizes
the similarity of one image’s two views, using neither neg-
ative pairs nor a momentum encoder. It works with typical
batch sizes and does not rely on large-batch training. We
illustrate this “SimSiam” method in Figure 1.

Thanks to the conceptual simplicity, SimSiam can serve
as a hub that relates several existing methods. In a nut-
shell, our method can be thought of as “BYOL without the
momentum encoder”. Unlike BYOL but like SimCLR and
SwAV, our method directly shares the weights between the
two branches, so it can also be thought of as “SimCLR
without negative pairs”, and “SwAV without online cluster-
ing”. Interestingly, SimSiam is related to each method by
removing one of its core components. Even so, SimSiam
does not cause collapsing and can perform competitively.

We empirically show that collapsing solutions do exist,
but a stop-gradient operation (Figure 1) is critical to pre-
vent such solutions. The importance of stop-gradient sug-
gests that there should be a different underlying optimiza-
tion problem that is being solved. We hypothesize that there
are implicitly two sets of variables, and SimSiam behaves
like alternating between optimizing each set. We provide
proof-of-concept experiments to verify this hypothesis.

1

ar
X

iv
:2

01
1.

10
56

6v
1

 [
cs

.C
V

]
 2

0
N

ov
 2

02
0

Figure 8: SimSiam framework.

Figure 8 shows the schematic diagram of the SimSiam method. It takes as input two
augmented versions x1 and x2 of the input image x that pass through the same encoding
network f . In addition, the author also defines an MLP prediction head module h, which
transforms the embedding of the one branch and matches the result of the other branch.

MOM Mining on Manifolds: Metric Learning without Labels [31]

Two distances are used in the paper, the Euclidean distance and the Manifold distance.
The authors believe that for a certain anchor point, positive samples should be distributed
on the samemanifold, while negative samples should be distributed on different manifolds.
In the newly learned embedding space, positive samples should be attracted by anchors,
while negative samples should be repelled.

A pre-trained CNN is used to extract the image features and defines hard positive samples
and hard negative samples based on the extracted features. Finally, it forms triplets and
training is achieved by minimizing the triplet loss.

Positive pool P+ and negative pool P− for an anchor xr are constructed using equations
Equation 2.8 and Equation 2.9 respectively.

I. Misios 25

Self-supervised Metric Learning

Mining on Manifolds: Metric Learning without Labels

Ahmet Iscen1 Giorgos Tolias1 Yannis Avrithis2 Ondřej Chum1

1VRG, FEE, CTU in Prague 2Inria Rennes

Abstract

In this work we present a novel unsupervised framework
for hard training example mining. The only input to the
method is a collection of images relevant to the target appli-
cation and a meaningful initial representation, provided e.g.
by pre-trained CNN. Positive examples are distant points
on a single manifold, while negative examples are nearby
points on different manifolds. Both types of examples are
revealed by disagreements between Euclidean and manifold
similarities. The discovered examples can be used in train-
ing with any discriminative loss.

The method is applied to unsupervised fine-tuning of pre-
trained networks for fine-grained classification and partic-
ular object retrieval. Our models are on par or are outper-
forming prior models that are fully or partially supervised.

1. Introduction
The success of deep neural networks on large-scale prob-

lems has been first demonstrated on the task of super-
vised classification [26]. It was shown that embeddings,
typically provided by the convolutional layers of a net-
work, are applicable beyond classification tasks. These
tasks include particular object retrieval [15], local descrip-
tor learning [17], ranking [62], and nearest-neighbor regres-
sion [6]. A common practice is to start with a pre-trained
network [50, 55, 19] and apply metric learning [9, 62, 18]
to fine-tune the network for a particular task.

To improve over the initial network, novel training sam-
ples are sought for which the initial network performs
poorly. Such training samples are used to re-train the net-
work using loss functions alternative to cross-entropy (e.g.
contrastive [9], triplet [62] or batch-level [36]). The ap-
proaches to obtain relevant training data range from further
human supervision [3, 36] to instance clustering [44, 32, 5],
exploiting the temporal dimension in video [64, 65], pre-
dicting the spatial layout of image patches [11], or using
existing computer vision pipelines to match unstructured
image collections pairwise [15, 42].

Most recent deep metric learning approaches can learn
powerful embeddings but still use class labels. This is
unsatisfying not only because we miss the opportunity of

(a) Euclidean NN (orange) (b) Manifold NN (purple)

(c) Hard positives (green) (d) Hard negatives (red)

Figure 1. Given an anchor point (black) and its k nearest Euclidean
(NNe

k) and manifold (NNm
k) neighbors in a dataset, we choose pos-

itive samples as NNm
k \ NNe

k, and negative as NNe
k \ NNm

k . Data
is unlabeled and the selection is fully unsupervised, including an-
chors.

learning from unlabeled data, but learned representations
of each class are unimodal [44]. Therefore, whatever the
loss function [62, 36]) or sampling [18, 34], the problem re-
mains supervised classification. On the other hand, conven-
tional nonlinear dimension reduction or manifold learning
methods exploit the manifold structure of the data starting
from nearest neighbor graphs and are otherwise unsuper-
vised [56, 45, 7]. However, most do not learn an explicit
mapping from the input to the embedding space and have
difficulties in generalizing to new data.

We attempt to bridge this gap in this work. In particular,
we propose a novel method of hard training sample mining
in a fully unsupervised manner, simply from an unordered
collection of images relevant to the final task. We observe
that a similarity between two images is improved by con-
sidering all, even unlabelled, available data. In particular,
we exploit similarity measured on a manifold estimated by
a random walk process [21].

The learning starts from the initial representation space
of unlabeled data. Given an anchor point that is part of
the data, neighbors on the manifold that are not Euclidean
neighbors are considered positive samples. In the new
learned representation space, the positive sample should be
attracted to the anchor to reflect the similarity measured
on the manifold. Conversely, Euclidean neighbors that are
not neighbors on the manifold are considered negative and
should be repelled. The idea is illustrated in Figure 1.

1

ar
X

iv
:1

80
3.

11
09

5v
1

 [
cs

.C
V

]
 2

9
M

ar
 2

01
8

Figure 9: MOM intuition.

P+(xr) = {x ∈ X : g(x) ∈ NNm
k (yr) \NN e

k(y
r)}, (2.8)

P−(xr) = {x ∈ X : g(x) ∈ NN e
k(y

r) \NNm
k (yr)}, (2.9)

where NNm
k denotes the k Manifold nearest neighbors, while NN e

k denotes the k Eu-
clidean nearest neighbors.

I. Misios 26

Self-supervised Metric Learning

3. SELF-SUPERVISED METRIC LEARNING

3.1 Contrastive learning with Instance Discrimination

The first paper [5] proposes a contrastive learning method combined with the instance
discrimination technique for the embedding learning problem. More specifically, it pro-
poses a self-supervised method for learning discriminative embeddings without human
annotated labels.The goal is to train a Deep Neural Network (DNN) on a huge number of
unlabeled images, which is capable of extracting discriminative embeddings, such that vi-
sually similar samples are close to each other (positive concentration) and dissimilar ones
are too far (negative separation) in the learned embedding space. The main challenge
of unsupervised metric learning is to mine visually similar images from unlabelled ones.
An instance-wise method was introduced to estimate the relationship between samples
(images) . Positive pairs are generated as augmented versions of the original sample.
It is assumed that the embeddings of augmented versions of the same sample should
be close to the embedding space while embeddings from different samples belonging to
different classes should be spread-out.

According to instance discrimination approach, it is assumed that all samples within mini-
batch belong to different classes. As a result each sample within mini-batch should belong
to different class. It can be seen that a mini-batch may contain samples of the same class
that would be characterized wrongly as negatives. However, comparing the number of
positive samples within the dataset to the negatives alongside a small mini-batch selection,
minimizes the probability of false-negatives within the mini-batch.

Without label information, it is impossible to mine positive pairs, especially without a pre-
trained network. Therefore, the mini-batch was doubled containing the randomly sampled
images as well as an augmentation of each image. In this way, each image in the mini-
batch has one positive pair meaning that the embedding of each image should have high
cosine similarity with its augmented version and low similarity to all other images of the
mini-batch.

The mini-batch is constructed by randomly samplingm images {x1, . . . , xm} from the train-
ing set. Each sample is randomly augmented applying transformation function T , resulting
in x′

i, where i ∈ [1,m]. The mini-batch contains the original samples as well as their aug-
mentations, i.e., {x1, . . . , xm, x

′
1, . . . , x

′
m}.

By applying the embedding function g to each sample of the mini-batch, we obtain the
embedding, or feature, yi and y′i for sample xi and x′

i respectively. Considering that each
sample in the mini-batch has only one positive sample, the problem is transformed into
classification and solved using maximum likelihood estimation. More specifically, each
original sample xi is treated as a class and each original sample xi or its augmented
version x′

i should be classified as xi and not as xj for j ̸= i.

The probability of the augmented sample x′
i being classified as xi is

P (i|x′
i) =

exp(yTi y′i/τ)∑m
k=1 exp(yTk y′i/τ)

. (3.1)

The probability of the original sample xj for j ̸= i being classified as xi is

P (i|xj) =
exp(yTi yj/τ)∑m
k=1 exp(yTk yj/τ)

, j ̸= i. (3.2)

I. Misios 27

Self-supervised Metric Learning

Accordingly, the probability of sample xj not being classified as xi is 1− P (i|xj).

Assuming different samples are independent, the joint probability of x′
i being classified as

xi and xj for j ̸= i not being classified as xi is

Pi = P (i|x′
i)
∏
j ̸=i

(1− P (i|xj)). (3.3)

The negative log likelihood is then given by

Ji = − logP (i|x′
i)−

∑
j ̸=i

log(1− P (i|xj)). (3.4)

The loss function is defined as the sum of the negative log likelihood over all the samples
in the mini-batch:

J = −
∑
i

logP (i|x′
i)−

∑
i

∑
j ̸=i

log(1− P (i|xj)). (3.5)

The first term of (3.5) refers to positive pairs and the second term to negative pairs. The
first term is minimized by maximizing the numerator of (3.1), that is, maximizing the cosine
similarity between the embeddings yi and y′i. This means that the original and augmented
versions of the same sample must be close to each other in the embedding space. The
second term is minimized by minimizing the numerator of (3.2), that is, minimizing the
cosine similarity between the embeddings yi and yj for i ̸= j. This achieves the spread-
out property that embeddings of different samples are far away from each other in the
embedding space.

CNN FC

L2
 N

o
rm

FC

L2
 N

o
rm

CNN

Low-dim

Low-dim
Embedding Space

f1

f2

f3

 f1

 f2

 f3

𝐱1 𝐱2 𝐱3

 𝐱1 𝐱2 𝐱3

Data
Augmentation

Share Weights

Figure 2: The framework of the proposed unsupervised learning method with Siamese network. The input images are projected into
low-dimensional normalized embedding features with the CNN backbone. Image features of the same image instance with different data
augmentations are invariant, while embedding features of different image instances are spread-out.

On the other hand, the probability of xj being recognized
as instance i is defined by

P (i|xj) =
exp(fTi fj/τ)∑m
k=1 exp(f

T
k fj/τ)

, j 6= i (4)

Correspondingly, the probability of xj not being recognized
as instance i is 1− P (i|xj).

Assuming different instances being recognized as in-
stance i are independent, the joint probability of x̂i being
recognized as instance i and xj , j 6= i not being classified
into instance i is

Pi = P (i|x̂i)
∏
j 6=i

(1− P (i|xj)) (5)

The negative log likelihood is given by

Ji = − logP (i|x̂i)−
∑
j 6=i

log(1− P (i|xj)) (6)

We solve this problem by minimizing the sum of the neg-
ative log likelihood over all the instances within the batch,
which is denoted by

J = −
∑
i

logP (i|x̂i)−
∑
i

∑
j 6=i

log(1− P (i|xj)). (7)

3.3. Rationale Analysis

This section gives a detailed rationale analysis about why
minimizing Eq. (6) could achieve the augmentation invari-
ant and instance spread-out feature. Minimizing Eq. (6) can
be viewed as maximizing Eq. (3) and minimizing Eq. (4).

Considering Eq. (3), it can be rewritten as

P (i|x̂i) =
exp(fTi f̂i/τ)

exp(fTi f̂i/τ) +
∑
k 6=i exp(f

T
k f̂i/τ)

, (8)

Maximizing Eq. (3) requires maximizing exp(fTi f̂i/τ) and
minimizing exp(fTk f̂i/τ), k 6= i. Since all the features are
`2 normalized, maximizing exp(fTi f̂i/τ) requires increas-
ing the inner product (cosine similarity) between fi and f̂i,
resulting in a feature that is invariant to data augmentation.
On the other hand, minimizing exp(fTk f̂i/τ) ensures f̂i and
other instances {fk} are separated. Considering all the in-
stances within the batch, the instances are forced to be sep-
arated from each other, resulting in the spread-out property.

Similarly, Eq. (4) can be rewritten as,

P (i|xj) =
exp(fTi fj/τ)

exp(fTj fj/τ) +
∑
k 6=j exp(f

T
k fj/τ)

, (9)

Note that the inner product fTj fj is 1 and the value of τ
is generally small (say 0.1 in the experiment). Therefore,
exp(fTj fj/τ) generally determines the value of the whole
denominator. Minimizing Eq. (4) means that exp(fTi fj/τ)
should be minimized, which aims at separating fj from fi.
Thus, it further enhances the spread-out property.

3.4. Training with Siamese Network

We proposed a Siamese network to implement the pro-
posed algorithm as shown in Fig. 2. At each iteration, m
randomly selected image instances are fed into in the first
branch, and the corresponding augmented samples are fed
into the second branch. Note that data augmentation is also
be used in the first branch to enrich the training samples. For
implementation, each sample has one randomly augmented
positive sample and 2N − 2 negative samples to compute
Eq. (7), where N is the batch size. The proposed train-
ing strategy greatly reduces the computational cost. Mean-
while, this training strategy also takes full advantage of rela-
tionships among all instances sampled in a mini-batch [32].
Theoretically, we could also use a multi-branch network by
considering multiple augmented images for each instance in
the batch.

Figure 10: Scheme of the proposed self-supervised method where the embeddings of positive
pairs are close in the embedding space and negatives are spread-out.

The proposed contrastive method was implemented using a Siamese network architec-
ture. The first branch was fed with the original samples of the mini-batch and the second
with the corresponding augmented. Within a mini-batch containing m (here m = 64) sam-
ples there is 1 positive and 2N − 2 negatives to compute the loss via (3.5). So, in every
iteration there is a comparison of each image with the rest of the mini-batch. During train-
ing, the SGD optimizer modifies the weights of the Siamese network after each iteration.
Note that both networks share the same architecture and weights as shown in Figure 10.

Experiments performed on CUB200-2011, CARS196, SOP and 6% GLDv2 datasets with
two different setups. The first setup used the GoogleNet pre-trained on ImageNet, while

I. Misios 28

Self-supervised Metric Learning

the second used a randomly initialized ResNet18. For more details on experiments and
datasets see chapter 4.

Code of Spreading is available in GitHub repository:
https://github.com/giannismisios/Unsupervised_Embedding_Learning.git

3.2 Graph-based positive mining for contrastive learning

This paper [6] proposes an instance-wise self-supervised learning framework used for
image retrieval task. They found out that well known self-supervised learning methods
such as MoCo [3], SimCLR [4] or [5] fail in instance retrieval task.

A key feature of retrieval datasets like GLDv2 is that samples of the same class can vary
greatly in viewpoint, background, etc. Therefore, due to the large intra-class variance, a
network should be trained in a way to produce robust instance representations by focus-
ing on discrete instances rather that the whole image. Such representations cannot be
learned from augmented versions of the original samples, as suggested by the MoCo [3]
and Spreading [5]. Thus, an unsupervised method was proposed to mine positives and in-
formative negatives from both mini-batches and Memory Bank. Instance-wise contrastive
learning was used to train a model to pull the images containing the same instances close
in the embedding space despite their large variance in background, viewpoint etc., while
pushing away all other images.

w/o DAAnchor Neighbours

A training tuple in mini-batch

Candidate pool

Backbone
Spatial

pooling
Embedding

Memory bank

w/ DA

update

Memory bank

w/o DA update

get features

w/ DA
Network architecture

Mini-batch

selection

Pseudo

positive

mining Positives Negatives

Loss

Query

set

Positives

Negatives

get

featuresPositives

Negatives

1

1

2

3

4

Figure 2: Overview of InsCLR. During training, each image is fed to the network in two forms: with and without random
data augmentations (DA). The former (red) contributes to the back-propagation, while the latter (yellow) is used for the robust
positive mining. Step 1: the images are encoded by the network, and the output features are first used to update those in the
corresponding memory banks. Step 2: positives are selected within the mini-batch (Section 3.2). The selected positive features
without DA form a query set. Step 3: with the query set, pseudo positives are mined from the memory features corresponding
to the candidate pool of the anchor (Section 3.3). The features that are not selected as positives become negatives. Step 4: a
contrastive loss is computed based on the anchor, the mined positives and negatives (with DA).

3.1 Overview
Problem definition. We follow the line of work that rep-
resents images by global features (Babenko and Lempitsky
2015; Tolias, Sicre, and Jégou 2015; Gordo et al. 2016; Cao,
Araujo, and Sim 2020) extracted from CNNs. Image re-
trieval is then performed by computing a cosine similarity
between a query image and a set of gallery images in the fea-
ture space: Sij = cos(fi, fj), where f denotes the image fea-
ture extracted by the CNN. In this case, the retrieval quality
entirely depends on image-level representations computed
from CNNs. Given an ImageNet-pretrained network and an
instance-retrieval-oriented dataset, the objective of this work
is to learn strong image representations for instance retrieval
by using the dataset in a self-supervised learning (SSL) man-
ner. As discussed in Section 1, the state-of-the-art SSL meth-
ods are mainly designed for image classification, and fail to
capture the large intra-class invariance (such as viewpoint,
background etc.) for instance retrieval. In this work, we pro-
pose InsCLR to close this gap by mining informative cross-
image positives during training, and manage to match the
performance of fully-supervised methods.
The learning framework of InsCLR. As illustrated in
Figure 2, InsCLR mainly consists of a network to encode
images, memory banks to store image features, and the pro-
posed methods to mine pseudo positives from both mini-
batches and the memory bank. For each anchor image, the
mined positives as well as the negatives are used to com-
pute a contrastive loss for training the network. We briefly
describe the adopted network architecture and our training
sample configuration in the following.
Network architecture. To make a fair comparison, we
adopt s simple network architecture to produce image-level
features. As shown in Figure 2 (top-middle), it consists of
three components: a backbone network, a spatial pooling
layer and an embedding module. Details on the architecture
are presented in Section 4.1.

Memory bank. We leverage memory banks to store a
large amount of sample representations during training,
which provide more diverse yet meaningful hard samples
apart from those in mini-batches. Different from previous
image-level SSL methods (Wu et al. 2018; He et al. 2020)
that regard all the features in the memory bank as negative
samples, we propose to mine pseudo positive samples from
the memory bank. Although an additional momentum en-
coder (He et al. 2020) can be used to alleviate the problem of
inconsistency between the features in the memory, we only
maintain one encoder (similar to (Wang et al. 2020)) due to
its efficiency and simplicity.
Setup for training samples. SCAN (Van Gansbeke et al.
2020) simply collects positives for each mini-batch by com-
puting the nearest neighbours of an anchor image, using a
pretrained model. The nearest neighbours are computed of-
fline, and are fixed during the whole training process. This
inspired us to first compute the nearest neighbours for each
image using a pre-trained model, which can be used in the
subsequent step as prior knowledge for dynamically select-
ing positives during training. Specifically, we construct a
pre-computed candidate pool for each image, which con-
tains the potential positives as well as the hard negatives
(with a high similarity). The candidate pool for each image
is obtained by computing its P nearest neighbours in the
whole training set using only the global features extracted
by ImageNet-pretrained networks in an offline manner. A
training tuple is formed by an anchor image with its Nb

top-ranked images from its candidate pool. Anchors are ran-
domly selected from the whole training set. A mini-batch
is then constructed by multiple such tuples, e.g. 16 training
tuples with Nb = 3 form a mini-batch of 64.

3.2 Positive Selection in Mini-batches
To identify more informative positives during training, we
investigate various approaches to dynamically collect posi-
tives from each tuple, which are described as follows.

Figure 11: InsCLR framework where positive and negative mining is performed within Mini-batch
and Memory bank without data augmentations. Then a Memory bank storing the augmented
version of the mined positives and negatives is used for the contastive loss computation.

In order to formulate the training process let X = {x1, . . . , xn} ⊂ X be an unordered and
unlabeled collection of samples (images). The input samples x ∈ X are represented by
a set of features Y = {y1, . . . , yn} ⊂ Y , where Y is the embedding space and y = g(x, θ)
for x ∈ X and θ is a set of parameters to be learned. The goal is to learn the model
parameters θ such that matching images are mapped to nearby points in the embedding
space while non matching items are well separated. A training pair is defined with respect
to a reference (anchor) sample xr. A matching pair consists of the anchor and a positive
sample x+. Similarly a non matching pair consists of the anchor and a negative sample
x−. Such training pairs should be sampled without supervision. By NNc

k(y) we denote the
k angular nearest neighbors of y ∈ Y , i.e. the k most similar features in Y according to
Cosine similarity function (Sc).

I. Misios 29

https://github.com/giannismisios/Unsupervised_Embedding_Learning.git

Self-supervised Metric Learning

The training process was divided into two steps due to the positivemining within mini-batch
and from the Memory Bank.

Figure 12: Mini-batch construction from offline pre-constructed Candidate Pool (CP) for each
reference image (xr).

Positive Selection in Mini-batches: Positive mining within mini-batch is done by the
following five steps:

1. An offline Candidate Pool is generated for each image in the dataset that contains
the top 250 most similar images. This is implemented using the faiss IP (IP: Inner
Product) similarity search module.

2. Anchors are randomly selected from the entire training set. Here 16 anchors are
sampled for each mini-batch. Based on the instance discrimination approach, all
anchors are assumed to belong to different classes. Consequently, the nearest
neighbors of different anchors are considered to belong to different classes.

3. Given an anchor xr and its embedding yr = g(xr), we select from its Candidate
Pool (CP) the k (k=3) samples corresponding to the angular nearest neighbors. The
anchor together with these k samples form a tuple. Sampling 16 anchors with their
k = 3 nearest neighbors creates a mini-batch (B) of 64 images.
Positives within tuple of anchor xr:

P+(xr) = {x ∈ CPxr : g(x) ∈ NNc
k(y

r) ≥ Th1}, (3.6)

where Th1 is a user defined threshold (Th1=0.95) and CPxr is the Candidate Pool of
a specific anchor xr.

I. Misios 30

Self-supervised Metric Learning

Negatives within mini-batch of anchor xr:

P−(xr) = {x ∈ B \ P+(xr)}, (3.7)

where set B contains the images of the mini-batch.

4. Each sample of the mini-batch is randomly augmented applying transformation func-
tion T resulting in x′.

x′ = T (x), for x ∈ B. (3.8)

5. Finally, contrastive loss [32] is computed among the samples of the mini-batch B.

LContrastive = (1− Iij)[Sij − λ]+ − IijSij, (3.9)

where Iij = 1 indicates a positive pair, while Iij = 0 indicates a negative pair. Sij is
the cosine similarity between two augmented images x′

i and x′
j.

At each iteration, the embedding z is computed by z=f(x’;θ) for each x’ ∈ P’, where
θ is the current set of model parameters.
Thus, while the Candidate Pool is computed once in a cycle, the loss is computed
on the current network representations.

The ”Positive Selection in Mini-batches” process is repeated for a total of 3 cycles.

We consider taking all the Nb images in the tuple as
positives, referred as nn (similar to (Van Gansbeke et al.
2020)), as a baseline. We then investigate four threshold-
based strategies to select the positives from the Nb images.
Given a threshold Tb, the four methods are defined as fol-
lows.

(1) Augmented similarity. We adopt a threshold to se-
lect the positives, i.e. computing feature similarities between
the anchor and Nb neighboring images in the training tuple,
and only considering the images with a similarity over the
predefined threshold as pseudo positives: SDA

ij > Tb. How-
ever, this similarity is highly unreliable since it is computed
using the images after random augmentations. (2) Unaug-
mented similarity. To overcome this limitation, the second
strategy is to feed the original images without any augmen-
tation to the networks, and apply the threshold on their sim-
ilarities: Sw/oDA

ij > Tb. Note that the unaugmented version
is only used for similarity computation, and does not con-
tribute to training loss. (3) Sample-relative similarity. A
universal threshold may not work reliably to all anchor im-
ages. Some classes may have smaller intra-class variance,
and thus require larger thresholds. We further develop the
third strategy that selects the positives by using sample-
relative similarities. Namely, the similarities are scaled by
dividing by the largest similarity in each training tuple: Srel

ij
> Tb. (4) Multi-scale similarity. Lastly, based on the sec-
ond strategy, we intend to improve the similarity by feeding
the unaugmented images with multiple scales, which is the
fourth strategy: Sms

ij > Tb.
With these mining approaches, we can select pseudo pos-

itives dynamically within each mini-batch. For example, a
training tuple with Nb = 7 may have 3 images selected as
positives, based on one of the proposed methods, and the
other 4 are then regarded as negatives. We empirically com-
pare the four strategies in Section 4.2.

3.3 Mining Positives from Memory Bank
Benefits. Apart from learning the discrimination between
positives and negatives in mini-batches, we also wish to
collect more positives from the memory bank. The bene-
fit of finding positives from the memory bank is two-fold.
First, mining more positives from the memory bank will
encourage the model to pull potential positives closer, in-
stead of pushing them away by default (i.e. considering them
as negatives in the memory). This sets our method apart
from image-level SSL like MoCo (He et al. 2020) or Sim-
CLR (Chen et al. 2020a). Second, by excluding the selected
positives, the rest of the images in the candidate pool are
considered as hard negatives, since they often have high of-
fline similarities with the anchor image (comparing to other
images in the dataset).
Mining with query sets. The selected positives within the
mini-batch are assumed to be of the same class as the anchor,
with a high confidence. Therefore, we can consider the an-
chor image and its selected positives from the mini-batch as
a query set, and then cast the task of mining positives from
the memory bank into a retrieval problem with a set of query
images, instead of a single query image. To this end, we pro-
pose a new algorithm that can effectively explore the under-

Selected pesudo positive from mini-batch

Candidate

0.8

Similarity aggregationSimilarity computation

Query

set

0.75

Query

set

Query set

for iter i+1

Anchor

Mined pesudo positive from candidate pool

Determine pseudo positives

Iter i

Sset

Image manifold

Figure 3: Mining positives in the memory bank. The sim-
ilarities Sset between each image in the candidate pool and
the whole query set are computed by pairwise similarity
computation followed by aggregation. The positive selection
is based on Sset and the mined images become part of the
new query set.

lying image relation on-the-fly during training. This proce-
dure is presented in the bottom part of Figure 2. Crucially,
the whole mining process should be performed on the image
features extracted without any random augmentation. Other-
wise, we found the training can degrade significantly. Hence,
two memory banks are used. The one without augmentations
is for mining, while the other one is for representation learn-
ing. To be specific, our method consists of two steps: simi-
larity computation and aggregation, which are performed on
every training tuple in a mini-batch. The method is shown in
Figure 3.
Step 1: similarity computation. To make use of every
query at hand, we first compute the similarity between the
features of each query image and that of memory images.
Each image in the pool now has Np similarity scores, where
Np denotes the size of the query set Q. As an optional step,
we can disregard the similarity scores below a threshold. In-
tuitively, it is possible to have an image which may not look
similar to all the images of the same class, e.g. even though
images contain the same object, they may not have a low
global similarity due to different viewpoint and background
clutter etc. Mathematically, we have:

S(i, Q) = φ(S(i, q1), S(i, q2), . . . , S(i, qNp
)), (1)

where φ is the optional discarding step and q ∈ Q.
Step 2: similarity aggregation. For each image in the
candidate pool, we measure its similarity to the whole query
set by Sset. Sset is obtained by aggregating its similarities
to each image in the query set. In this work, two aggregation
functions are considered: average and maximum:

Sset = ψ(S(i, Q)), (2)

where ψ is the aggregation function. We then re-rank the
images in the candidate pool based on Sset. Given the re-
ranked of candidate images, we can determine the pseudo

Figure 13: Positive mining for each reference (anchor) image from its Candidate Pool.

Mining Positives from Memory Bank After completing the three cycles of ”Positive
Selection in Mini-batches” process, the final model will be further fine-tuned during the
”Mining Positives from Memory Bank” process consisting of the following steps:

1. Update offline the Candidate Pool for each image in the dataset containing the top
250 most similar images.

I. Misios 31

Self-supervised Metric Learning

2. Given an anchor xr and its embedding yr = g(xr) we select from its Candidate Pool
(CP) the k (k = 3) samples corresponding to the angular nearest neighbors. The
anchor along with those k samples form a tuple.
Positives within tuple of anchor xr:

P+(xr) = {x ∈ CPxr : g(x) ∈ NN c
k(y

r) ≥ Th1}, (3.10)

here Th1 = 0.95.

3. Within the tuple the anchor xr with the positives form a query set Q

Q = {xr, . . . , xλ}, (3.11)

where λ ≤ k.

4. Positive mining within the Memory Bank follows the Algorithm 0 (see Figure 13).
Thus, query set Q is enriched with more images. Now,

Q = {xr, . . . , xλ, . . . , xp}. (3.12)

Algorithm 1 Positive Mining within Memory Bank
1: for x in {CP(xr)\Q} do ▷ CP(xr): Candidate Pool of anchor (xr)
2: Sset(x)← mean(S(x, i for i in Q)) ▷ mean similarity with all images in query set Q
3: if argmax(Sset(x)) ≥ Th2

then ▷ Th2
: user defined threshold (here Th2

=0.6)
4: Q← Q ∪ {x} ▷ add image x to the query set Q
5: else
6: stop
7: end if
8: end for

5. For each randomly selected anchor xr there is a different Training Pool P which
is its Candidate Pool (CPxr). The positive pool contains the samples of the query
set Q. The negative pool P− contains the remaining samples of the candidate pool
of xr (CPxr) that are not contained in Q (not selected as positives). So, for each
anchor-image

P = CPxr = Q+ ∪ P−. (3.13)

6. Contrastive loss [32] is computed among the samples of the Training Pool P

LContrastive = (1− Iij)[Sij − λ]+ − IijSij. (3.14)

The proposed training method was evaluated on CUB200-2011, CARS196, SOP and 6%
GLDv2 datasets either for training from scratch or using pre-trained ImageNet model. For
more details about the experiments and datasets please refer to chapter 4.

Code of InsCLR is available in GitHub repository:
https://github.com/giannismisios/insclr.git

I. Misios 32

https://github.com/giannismisios/insclr.git

Self-supervised Metric Learning

3.3 Self-Distillation for contrastive learning

This paper [7] presents an end-to-end framework for self-supervised metric learning. Un-
like the previous methods, where a unique label is assigned in every instance, here an
attempt is made to compute the contextualized semantic similarity between the sam-
ples. A Teacher-Student architecture was used where Teacher model was updated as
a momentum-based moving average of Student model. The Teacher model was used for
contextualized semantic similarity computation which was used as synthetic supervision
of the Student model during the training. While Student model outputs embeddings of size
128, the Teacher model outputs high-dimensional embeddings of 1024. As a result, the
computation of contextualized semantic similarity becomes more robust due to the rich
information which can be encoded in high dimensional embedding. The contextualized
semantic similarity is computed in two stages:

• Pairwise Similarity: The pairwise similarity of two samples xi and xj, denoted by
wP

ij , is computed by

wP
ij = exp

(
−
||yti − ytj||22

σ

)
, (3.15)

where yti is the teacher embedding vector of xi and σ is the Gaussian kernel band-
width.
It can be seen that pairwise similarity computation is highly correlated with the qual-
ity of the embedding vectors y. Therefore, pairwise similarity is unreliable using a
randomly initialized Teacher network that is mitigated by adding the contextual sim-
ilarity.

• Contextual Similarity: The contextual similarity between two samples is defined as
the overlap of their contexts, where the context is inherited from the nearest neigh-
bors in the Teacher embedding space. Thus, the more the common nearest neigh-
bors result in greater contextual similarity between the two samples. So, for each
sample xi, k-reciprocal nearest neighbors is given by

Rk(xi) = {xj|(xj ∈ Nk(xi)) ∧ (xi ∈ Nk(xj))}, (3.16)

where Nk(xi) is the k-nearest neighbors of xi, including itself in the current mini-
batch. Since the size of the neighbor set of xi and xj would be different, a weighted
version of Jaccard similarity was designed as

w̃C
ij =

|Rk(xi) ∩Rk(xj)|
|Rk(xi)|

, if xj ∈ Rk(xi),

0, otherwise.
(3.17)

Compared to the original Jaccard similarity, the weighted version lets more relevant
neighbors contribute more to the similarity through the importance weights, resulting
in improved reliability. Furthermore,query expansion idea is adopted [33–35] to
further improve its reliability. Specifically, w̃C

ij is reformulated as the average of the
contextual similarities between xj and nearest neighbors of xi as follows:

ŵC
ij =

1

|N k
2
(xi)|

∑
h∈N k

2
(xi)

w̃C
hj. (3.18)

I. Misios 33

Self-supervised Metric Learning

This equation is not symmetric.
To ensure symmetry, the final form of the contextual similarity is defined as the av-
erage of ŵC

ij and ŵC
ji, which is given by

wC
ij = wC

ji =
1

2
(ŵC

ij + ŵC
ji). (3.19)

• Contextualized Semantic Similarity: The contextualized semantic similarity be-
tween to samples xi and xj is the average of their pairwise similarity Equation 3.15
and semantic similarity Equation 3.19

wij =
1

2
(wP

ij + wC
ji). (3.20)

The contextualized semantic similarity wij lie between [0, 1]. Moreover, it is reliable in both
cases of training with a pre-trained model and from scratch because, in the early stages
of training where the model in not mature enough to understand the pairwise similarities
between samples, contextual similarity is reliable enough to serve the purpose of training
supervision. As training progresses, pairwise similarity becomes increasingly reliable.

𝑥𝑖

Used for Evaluation

For Training Only

Used for Evaluation

Updated by EMA

Updated by EMA

Forward

Backward
𝑥𝑖

𝑥𝑗

𝑥𝑖

𝑥𝑗

𝑑𝑖𝑗
𝑓𝑠

𝑑𝑖𝑗
𝑔𝑠

𝑤𝑖𝑗

Figure 2. An overview of our STML framework. First, contextualized semantic similarity between a pair of data is estimated on the
embedding space of the teacher network. The semantic similarity is then used as a pseudo label, and the student network is optimized by
relaxed contrastive loss with KL divergence. Pink arrows represent backward gradient flows. Finally, the teacher network is updated by an
exponential moving average of the student. The student network learns by iterating these steps a number of times, and its backbone and
embedding layer in light green are considered as our final model.

teacher and student whose backbone are initialized identi-
cally. Class-equivalence between a pair of data is approxi-
mately estimated as their semantic similarity on the embed-
ding space of the teacher network. The predicted similarity
is used as a soft pseudo label for learning the student model,
and the teacher model is in turn updated by a momentum-
based moving average of the student. Iterating this process
evolves the student model progressively.

The success of STML depends heavily on the quality
of predicted semantic similarities, and our second contribu-
tion lies in the way of estimating semantic similarities us-
ing contexts. Specifically, given a pair of data, we compute
their semantic similarity considering the overlap of their
contexts (i.e., neighborhoods in the embedding space) as
well as their pairwise distance. We found that the contextu-
alized semantic similarity approximates class-equivalence
precisely. Further, since it has a real value indicating the
degree of semantic similarity, it provides rich information
beyond binary class-equivalence. Also, since it requires
no external module nor memory banks [20, 31], it makes
STML efficient and concise. To further enhance the quality
of predicted semantic similarity, we design the teacher net-
work to learn a higher dimensional embedding space than
the student counterpart. This asymmetric design of the two
networks allows the teacher to provide more effective su-
pervision thanks to its improved expression power while the
student, i.e., our final model, remains compact.

To the best of our knowledge, STML is the only un-
supervised metric learning method that can consider se-
mantic relations between data in end-to-end training with-
out introducing off-the-shelf techniques. Compared to the
instance-level surrogate classes [13, 56, 60, 61], pseudo la-
bels generated and exploited by STML are more appropriate

to capture semantic relations between data since they indi-
cate class-equivalence relations. Also, unlike previous work
based on pseudo labeling [3, 4, 25, 26, 33, 58], STML em-
ploys no external algorithm and thus allows training to be
efficient, end-to-end, and less sensitive to hyper-parameters.
Further, it is naturally applied to semi-supervised metric
learning [14] as well as unsupervised metric learning.

We first evaluate STML on standard benchmarks for
metric learning [32, 48, 55], where it largely outper-
forms existing unsupervised learning methods. Surpris-
ingly, sometimes it even beats some of supervised learn-
ing models using the same backbone network as shown
in Fig. 1. Beyond that, its efficacy is demonstrated on
two benchmarks for semi-supervised metric learning [14],
where it substantially outperforms previous work as well.

2. Related Work

Unsupervised metric learning has been mainly addressed
in two different directions, instance discrimination [13, 56,
60, 61] and pseudo labeling [3, 4, 25, 26, 33, 34, 58]. Fol-
lowing the contrastive learning strategy [2, 6, 8, 20], in-
stance discrimination methods assign a unique label per
training instance and learn embedding spaces where dif-
ferent instances are well discriminated. Unfortunately,
they have a trouble modeling variations within each latent
class. On the other hand, pseudo labeling methods dis-
cover pseudo classes by applying off-the-shelf algorithms
like k-means clustering [3, 4, 26, 33, 34], hierarchical clus-
tering [58] and random walk [25] to unlabeled training data.
Such methods can consider the class-equivalence relations
between training data by utilizing existing supervised met-
ric learning losses [19, 45, 54] with pseudo labels. How-

Figure 14: STML framework where Teacher network is used to compute the Contextualized
Semantic Similarties (wij) between the samples of the mini-batch. wij then is used as synthetic

supervision to train the Student model and then to update the Teacher model.

The training of Student and Teacher model is carried out simultaneously. The backbones
of Student and Teacher model are initialized identically. Teacher model is used for the
contextualised semantic similarity computation and serves as synthetic-supervision ofStu-
dent model training. It is updated at the end o each iteration as a momentum-based
moving average of the Student model to maintain consistency and stability of the training
process.

The Student model has two parallel embedding layers gs and fs with a shared backbone
encoder ϕt. The layer gt is an auxiliary element for updating the Teacher model, which
has the same dimension as gs of the Teacher. The backbone encoder ϕs in line with the
layer ft forms the final model which has a relatively low output dimension (128).

During training, mini-batches are constructed by randomly sampling q images as anchors
as well as their k nearest neighbors. Thus, the mini-batch becomes of size q(k + 1). In

I. Misios 34

Self-supervised Metric Learning

CUB200-2011 and CARS196 datasets q and k are set to 5 and 11 respectively because
they have many samples per class. By contrast, in the SOP and GLDv2 datasets which
contain also classes with a small amount of samples, q = 15 and k = 3. Finally, mini-
batch is doubled by augmented versions of the original images. Within the mini-batch,
contextualized semantic simiralitieswC

ij between the samples are computed using Teacher
model embeddings. Since its value lies between [0, 1] they proposed a new contrastive
loss called Relaxed Contrastive [36].

LRC(Yfs) =
1

n

n∑
i=1

n∑
j ̸=i

wij

(
dfsij

)2
+

1

n

n∑
i=1

n∑
j ̸=i

(1− wij)
[
δ − dfsij

]2
+
, (3.21)

where dfsij := ||yfsi − yfsj ||2/(1n
∑n

k=1 ||y
fs
i − yfsk ||2) as the relative distance between f s

i and
f s
j , Yfs is all Student embedding vectors generated by f s, n is the number of samples in
the mini-batch, and δ is a margin.
The contextualized semantic similarity determines the magnitude of the force that attracts
or repels a pair of samples on the Student embedding space. Note that embedding layer
gs is trained in the same way as fs.

Furthermore, by applying self-distillation between gs and fs , richer information is embed-
ded from a higher-dimensional space to a lower one. Following [37], Kullback-Leibler (KL)
divergence is used as objective of self-distillation

LKL(Yfs ,Ygs) =
1

n

n∑
i=1

n∑
j ̸=i

σ(−dgsij) log σ(−dgsij)
σ(−dfsij)

, (3.22)

where σ(·) is the softmax operation. Note that KL loss flows only through fs branch in
the backward pass. The gradient-flow of gs is truncated, because σ(fs) distribution is
optimized over the reference distribution σ(gs).

In summary, this method trains the two branches fs and gs of the Student model by mini-
mizing the overall loss

LSTML(Yfs ,Ygs) =
1

2

[
LRC(Yfs) + LRC(Ygs)

]
+ LKL(Yfs ,Ygs). (3.23)

After each iteration Teacher model (gt) is updated as a momenum-based moving average
of Student branch (gs).

The proposed method is summarized on Algorithm 2

Experiments performed on CUB200-2011, CARS196, SOP and 6% GLDv2 datasets with
two different setups. The first setup used the GoogleNet pre-trained on ImageNet, while
the second used a randomly initialized ResNet18.

Code of Spreading is available in GitHub repository:
https://github.com/giannismisios/Self-Taught.git

3.4 Contributions

The contributions of our work are highly correlated with the challenges of self-supervised
metric learning in general. In particular, we study Spreading, InsCLR, and Self-Taught

I. Misios 35

https://github.com/giannismisios/Self-Taught.git

Self-supervised Metric Learning

Algorithm 2 Self-taught metric learning [7]
Input: teacher model t, student model s, kernel bandwidth σ,momentumm, batch size n.
1: set θt = θϕt ∪ θgt , θs = θϕs ∪ θgs
2: Identically initialize the backbone of t and s.
3: for number of epochs do
4: Construct mini-batches using nearest neighbor batch construction
5: for number of iterations do
6: for all samples in a mini-batch {xk}nk=1 do
7: ytk ← (gt ◦ ϕt)(xk)
8: yfsk ← (f s ◦ ϕs)(xk), ygsk ← (gs ◦ ϕs)(xk)
9: end for
10: for all i ∈ {1, · · · , n} and j ∈ {1, · · · , n} do
11: wP

ij ← exp(−||yti − ytj||22/σ)
12: compute wC

ij using Eq. (3.17, 3.18).
13: wij ← 1

2
(wP

ij + wC
ij)

14: end for
15: compute LSTML using Eq. (3.23) and then optimize t.
16: θt ← mθt + (1−m)θs
17: end for
18: end for
19: return student model s

extensively in order to fairly compare them and extract valuable information about the
advantages and disadvantages of each method.

Experiments conducted on four datasets that have a common feature of disjoint training
and test classes. In this way, by evaluating the generalization and discrimination ability of
the final model, we evaluate the method and loss function used to train the model. The
CUB200-2011 and CARS196 datasets, as you will read in subsection 4.1.1, are classifica-
tion datasets with very little variation between classes. SOP is metric learning dataset with
high between-class variability. GLDv2 is a large-scale retrieval dataset with high variabil-
ity both within and between classes. Considering the available resources we built the 6%
GLDv2 keeping its characteristics. It can be seen that the datasets have many differences
in characteristics and size that serve a different purpose in the evaluation process.

Furthermore, the methods were modified and hyperparameters changed according to sec-
tion 4.2 for a fair comparison. In particular, we used GoogLeNet and ResNet18 models
with a low dimension embedding layer. Furthermore, the image augmentation process
was standard for all methods in both training and testing. In this way, we could focus
on the efficiency of sample mining techniques of each method alongside the chosen loss
function and how far it is from supervised learning.

In addition, we experimented with two tasks of using a pretrained network on ImageNet
or initialized from scratch. These experiments could evaluate the sample mining tech-
nique of each method in different stages of the training process. In the first epochs using
ResNet18 from scratch, the methods should mine positives and negatives from global
image representations. Furthermore, we investigated whether it is effective to use a pre-
trained network on a general-purpose dataset such as ImageNet to initiate the training
process in a self-supervised metric learning task.

I. Misios 36

Self-supervised Metric Learning

4. EXPERIMENTAL SETUP

In this chapter there is a detailed report of the experiments conducted to evaluate the effec-
tiveness of all three self-supervised metric learning methods ([5], [6], [7]) in two different
setting. The first setting is to fine-tune a pre-trained network while the latter is to train it
from scratch. All methods were trained and tested on four metric learning and retrieval
datasets (CUB200-2011, CARS196, SOP, GLDv2) according to their protocol.

4.1 Datasets

The datasets used to train and test the three self-supervised metric learning methods
(Spreading, InsCLR, Self-Taught) are the CUB200-2011, CARS196, SOP and GLDv2
datasets. A common feature among these datasets is that training classes are disjoint
to test classes. Therefore, the final model is evaluated for its ability to generate a dis-
criminated embedding space despite the large intra-class variations of the images. The
datasets differ in the number of training images and classes as well as in the number of
images per class. More specifically, CUB200-2011 and CARS196 have a small number of
training images and classes, yet the classes contain almost the same number of images.
A more detailed description of the datasets is following.

4.1.1 CUB200-2011

Figure 15: Random CUB200-2011 image samples.

The CUB200-2011 [38] dataset contains images of North American birds from a range
of 200 different species (classes). Half of them constitute the training set and the rest
the test set. The total number of 11, 788 images is divided in 5, 864 images forming the
training set and the remaining 5, 924 images belong to the test set. A characteristic of the
CUB200-2011 dataset is that there is little variation in the number of images per category.
More specifically, the class with the fewest samples contains 41 images while 60 images
has the class with the most. Furthermore, looking at Figure 15 it can be seen that bird
images have a noisy background which makes it difficult even for humans to classify the
bird species.

I. Misios 37

Self-supervised Metric Learning

4.1.2 CARS196

Figure 16: Random CARS196 image samples.

The CARS196 [39] dataset contains 16, 185 images of 196 car classes. The data is divided
into 8, 144 training images of 96 classes and 8, 041 testing images of the same number of
classes. In the CARS196 dataset, as in CUB200-2011, classes contain almost the same
number of samples with 59 being the minimum and 97 the maximum. Another common
feature between CUB200-2011 and CARS196 datasets is that inside the same class the
samples have high variability while having very little variability between the classes.

4.1.3 SOP

Figure 17: Random SOP image samples.

The SOP [40] dataset is composed of 120, 053 images from 22, 634 online product classes,
and is partitioned into 59, 551 images of 11, 318 classes for training and 60, 502 images
of 11, 316 classes for testing. In this dataset the minimum images per class is 2 and the
maximum is 12. Looking at Figure 15, it can be seen that in many images the background
is plain white which simplifies the localization of the object of interest.

I. Misios 38

Self-supervised Metric Learning

9/26/22, 7:47 PM Instance-level Recognition. Introduction, challenges, and recent… | by Kb Pachauri | Towards Data Science

https://towardsdatascience.com/instance-level-recognition-6afa229e2151 3/14

Google Landmarks Dataset v2 (GLDv2) Class Distribution, Image from https://arxiv.org/pdf/2004.01804.pdf

Intra-class variability: Landmarks are mostly spread across a wide region and have
very high intra-class variability as shown in the below image.

Images from Google Landmarks Dataset v2 (GLDv2)

Noisy Labels: The success of machine learning models depends on high-quality
labeled training data, as the presence of labels errors can greatly reduce the
model's performance. These noisy labels as shown in the below image,
unfortunately, noisy labels are part of a large training set and need additional
learning steps.

Open in app Get started

Figure 18: Images from GLDv2.

4.1.4 GLDv2

The Google Landmark Dataset version 2 [41] is a benchmark for large-scale, fine-grained
instance recognition and image retrieval in the domain of human-made and natural land-
marks. The dataset contains approximatelly 4.1M images from 203, 094 landmarks. The
GLDv2 is a challenging dataset because landmarks are mostly spread across a wide re-
gion having very high intra-class variability as shown in Figure 18 . In the GLDv2, a few
popular places have more than 1000 images but many less known places have less than
5 images.

Taking into account the available resources, we decided to use a subset of the GLDv2. In
particular, we randomly selected 6% of the classes, that is 12, 586 classes, corresponding
to 239, 979 images. We will refer to this subset as 6% GLDv2. In this case, the minimum
number of images per class is 2 and the maximum is 944. The subset is nearly twice as
SOP dataset.

The 6% GLDv2 dataset is used only for model training. Evaluation is done on rParis6k [42]
and rOxford5k [42] datasets which also contain landmark images from Paris and Oxford
respectively. Both datasets are divided into a test set containing the query images and an
index set containing the images where the model tries to find the positives of the queries.
Each image of the index set except for a label referring to the landmark it shows, has a
second label as Easy or Hard. According to [42], label Easy is assigned to images of
the index set clearly depicting the query landmark. In contrast, label Hard is assigned to
index images depicting the query landmark, but with viewing conditions that are difficult to
match with the query. During the evaluation process three setups of different difficulty are
defined by treating labels:

• Easy (E): Easy images are treated as positives, while Hard are ignored.

• Medium (M): Easy and Hard images are treated as positives.

• Hard (H): Hard images are treated as positives, while Easy are ignored.

4.2 Implementation Details

For a fair comparison of the three self-supervised metric learning methods ([5], [6], [7]),
we tried to conduct the experiments under the same conditions, therefore, we kept most

I. Misios 39

Self-supervised Metric Learning

of the settings the same among the three methods. First of all, the mini-batch size during
the training process was set to 64 in all three methods.

Moreover, the size of the images that are fed for training and testing are the same for
all three methods. More specifically, during training with pre-trained GoogLeNet on Im-
ageNet, image size for both training and testing was set to 227x227, while in training
ResNet18 from scratch task image size was set to 224x224. Image size is also cor-
related with data augmentation process because every image was augmented before
training and testing. Augmentation process for GoogLeNet training images was ia se-
quence of Resize to 256x256, RandomCrop to 227x227 and RandomHorizontalF lip with
0.5 probability. For ResNet18 training images the only difference was the RandomCrop to
224x224. In testing images, the same sequence of augmentations was applied excluding
the RandomHorizontalF lip. In addition, the same sequence of augmentations was used
in Spreading and Self-Taught methods during training to double the mini-batch in order to
generate artificial positives.

Another common setting among the three methods was that the embedding size of the
final model was set to 128. Note that the methods may use secondary models, such as the
Teacher model in Self-Taught, that outputs higher-dimensional embeddings for auxiliary
actions, such as positive mining, however these models do not contribute to the evaluation
process.

Moreover, all methods use the same network architecture for each task. For the task of
training from scratch, the ResNet18 network architecture was used, while in the task of
fine-tuning a pre-trained network, the GoogLeNet architecture pre-trained on ImageNet
was chosen.

Furthermore, all three methods were trained and tested on the same benchmark datasets
(CUB200-2011, CARS196, SOP, 6% GLDv2). The authors of each dataset have sug-
gested the training and evaluation protocol that we followed strictly. Finally, all experi-
ments were performed on a four GPU NVIDIA-A100 system with CUDA version 11.7 and
PyTorch [43] 1.10.1 installed.

However, there are also settings and/or hyperparameters that remain the same as those
suggested by the authors. For instance, Spreading [5] paper uses SGD optimizer with
learning rate decay while Self-Taught [7] is optimized by AdamP with Nesterov momentum
[44]. For more details please refer to the official papers ([5], [6], [7]).

4.3 Evaluation Protocol

Models trained on metric learning datasets (CUB200-2011, CARS196, SOP) are evalu-
ated using the Recall@k metric [45]. To compute Recall@k we first use the final model at
the end of training to extract the embeddings of the images in the test set. Then, for each
query-image in the test set, we retrieve its k nearest neighbors from the index set con-
sisting of the remaining images of the test set. Each of the retrieved k nearest neighbors
is assigned a score of 1 if the labels between the query image and the retrieved image
match, 0 otherwise. Those scores are averaged for all the images of the test set and the
Recall@k metric is reported. For example, Recall@3 is calculated by finding the 3 nearest
neighbors for each image in the test set, giving score 1 if the label matches the label of
the query image, 0 otherwise. By averaging these scores, we calculate the Recall@3 for
that image. Recall@3 metric is computed by iteratively averaging these scores across all
images in the test set. Recall@1 (R@1) is considered the most informative metric because

I. Misios 40

Self-supervised Metric Learning

it is the most challenging for the model. While k increases, R@k becomes more relaxed.

In addition to Recall@k, we report also Normalized Mutual Information (NMI) [46] metric,
which is a measure of clustering quality. More specifically, the NMI shows the homogene-
ity of the generated clusters as a factor that indicates the probability that an instance is of
class A if randomly sampled from the cluster labeled A.

Models trained on the 6%GLDv2 dataset are evaluated on revised rOxford5k and rParis6k
datasets usingMean Average Precision (mAP). To calculate the mAP, we first need to cal-
culate the Average Presicion (AP) for each query image of the test set. Average precision
(AP) is the average of precision values across all ranks where relevant images are found
in the index set. The AP values are then averaged over the set of queries and Mean
Average Precision (mAP) is reported. An example of mAP calculation is shown in Figure
Figure 19.

Efficient Large-scale Image Search with a Vocabulary Tree

Figure 9: Example of computing mean Average Precision.

4.3 K-H Best Values

We computed mAP varying different combinations of K and H, and different feature extraction
algorithms, with the first 1000 images from the UKBench dataset, to find which combinations per-
forms better. K and H were chosen, in such a way that vocabulary construction could fit in a fixed
amount of RAM. Thus, for H = 6 only a few values of K were tested. Figures 10 and 11 show the
mAP behavior when varying K between 8 and 32 for H = 2, 3, 4, 5, 6 values, using L2 norm, and
Hamming distance, respectively.

Results are consistent with [18], where values K = 10 and H = 6 (see Section 3) were proposed
as good parameters to build the vocabulary tree.

Note that methods that use L2 norm exhibit results superior to the ones using Hamming distance.
Methods using L2 norm have mAP peaks of 0.92 while the ones that use Hamming distance obtain
at most 0.88. The descriptors methods KAZE [1] and AKAZE [2], in some cases resulted slightly
better than the classic ones. One important advantage of using KAZE and AKAZE is that they are
open source, while SIFT [16] and SURF [6] are patented and non-free.

4.4 Performance vs. Training Size

Figure 12 shows the result of varying the number of images used to train the vocabulary. For each
feature description technique, K and H parameters were chosen according to the best results of the
K-H exploration experiment in Section 4.3 and the descriptors were extracted using SIFT.

The UKBench dataset was used both for training and testing. Training was performed varying
incrementally the number of images from 1000 to 10000. Metrics in runtime were computed using
always the entire dataset (10200 images). Results show that a bigger vocabulary gives a better
performance, conclusion that is consistent with Niéster work.

4.5 Performance vs. Dimensionality Reduction

A good improvement can be achieved by using Principal Component Analysis (PCA) to reduce the
dimensionality of the features. Dimensionality reduction is done before generating the vocabulary, as
well as in the runtime phase. Figure 13 shows the results of applying PCA on the training features of
the first 1000 images of the UKBench dataset. Figure 14 shows the results of the same experiment,
but applying PCA to reduce dimensionality of SIFT descriptors from 128 to 2 dimensions. The

89

Figure 19: Example of Mean Average Precision (mAP) calculation.

I. Misios 41

Self-supervised Metric Learning

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter we present the results of the three different self-supervised metric learning
methods (Spreading, InsCLR, Self-Taught) trained from scratch or fine-tuned on CUB200-
2011, CARS196, SOP and 6%GLDv2 datasets and evaluated onCUB200-2011, CARS196,
SOP and rOxford5k & rParis6k datasets respectively. Furthermore, a discussion of the
results follows.

5.1 Results

5.1.1 CUB200-2011

Imagenet Pre-trained GoogleNet In this experiment we used GoogLeNet pre-trained
on ImageNet. We fine-tuned and evaluated it on CUB200-2011 training and test set re-
spectively. Looking at the Recall@1 (R@1) column of Table 1, which is considered the
most informative metric, we observe that Self-Taught works best and outperforms the
second best, Spreading, by a large margin. Τhis demonstrates the effectiveness of the
Contextual Semantic Similarity introduced in Self-Taught, as opposed to the binary ap-
proach of similarities in Spreading. In contrast, while the pre-trained network has 39.2
R@1, after fine-tuning with the InsCLR, R@1 drops to 29.63, indicating that the method
fails. The failure may be caused due to the weakness of the method to mine positives
based on embedding representations extracted from the pretrained network.

The other two methods, Spreading and Self-Taught, address this problem by duplicat-
ing the mini-batch with augmented versions of the original images, generating pseudo-
positives. In this way, during the first epochs, where the model is not mature enough to
distinguish positives from negatives, augmented versions play the role of positives. After
several epochs, the model acquires the ability to mine positive images and the augmented
positives become easy, so they do not contribute to the loss.

Still focusing on column R@1 of Table 1, Self-Taught closes the gap between supervised
and self-supervised methods, suggesting that the synthetic supervision provided by Self-
Taught is comparable to the strong supervised signals.

Table 1: Results (%) on CUB200-2011 using ImageNet pre-trained GoogLeNet.

Methods R@1 R@2 R@4 R@8 NMI
ImageNet pre-trained 39.2 52.1 66.1 78.2 51.4
Supervised 60.23 71.89 82.26 88.86
Spreading 46.54 57.97 69.62 79.83 54.40
InsCLR 29.63 39.89 51.65 63.010 43.05
Self-Taught 58.00 70.34 80.48 88.08 69.54

ResNet18 from scratch Table 2 shows that none of the three methods can train a ran-
domly initialized ResNet18 on CUB200-2011. Global image representations extracted
from a randomly initialized network are equally affected by the whole image containing
the instance of interest as well as the background. Thus, they lack the ability to pay atten-
tion and distinguish the characteristics of the point of interest from the background. This

I. Misios 42

Self-supervised Metric Learning

is shown in Figure 20 where the ResNet18 after being trained on CUB200-2011 is evalu-
ated to retrieve the 4 nearest neighbors. Despite the fact that the birds belong to different
classes, the backgrounds, as the bulk of the picture, have a lot in common.

Table 2: Results (%) on CUB200-2011 using ResNet18 from scratch.

Methods R@1 R@2 R@4 R@8 NMI
Spreading 5.35 8.02 13.13 21.61 24.00
InsCLR 3.44 6.14 10.31 16.9 16.28
Self-Taught 4.00 6.54 10.28 15.65 18.79

Figure 20: Visual assessment of ResNet18 model trained from scratch on CUB200-2011 plotting the
4 nearest neighbors of 2 randomly sampled images placed in the first place of each row. The

number, placed at the upper side of each image, shows the class it belongs to.

5.1.2 CARS196

Imagenet Pre-trained GoogleNet In this experiment we used a GoogLeNet pre-trained
on ImageNet. We fine-tuned and evaluated it on CARS196 training and test set re-
spectively. Table 3 shows that Self-Taught works best and improves R@1 by 10% of
GoogLeNet pre-trained on ImageNet. In contrast, the InsCLR method fails to train the
network as on the CUB200-2011 dataset (see Table 1). This is because ImageNet pre-
trained GoogLeNet cannot retrieve true positives so as to construct a robust Candidate
Pool for the training process. Finally, it can be seen that there is a big gap of about 35%
R@1 between the supervised method, as upper bound, and the Self-Taught which is the
best of the self-supervised.

Table 3: Results (%) on CARS196 using ImageNet pre-trained GoogLeNet.

Methods R@1 R@2 R@4 R@8 NMI
ImageNet pre-trained 35.1 47.4 60.0 72.0 38.3
Supervised 81.61 88.06 92.68 95.62
Spreading 40.92 51.36 62.46 73.62 34.45
InsCLR 19.28 27.03 36.08 47.78 24.59
Self-Taught 46.26 58.14 68.98 78.95 39.14

I. Misios 43

Self-supervised Metric Learning

ResNet18 from scratch Table 4 shows the performance of all three methods on the
CARS196 test set after training a ResNet18 with randomly initialized weights on the train
set of the same dataset. It can be seen that all the methods fail to train the model on
CARS196 dataset. As on the CUB200-2011 dataset (Table 2), a randomly initialized
ResNet18 outputs a global image representation without emphasizing at the object of in-
terest (here, cars). As a result, it is not at the level to understand what a car is and how to
distinguish between different car models. Figure 21 is created by retrieving the 4 nearest
neighbors of an anchor image (image inside the red rectangle). It clearly shows that the
model focuses on the background and color of the car and not on the details of each car
model, that’s why none of the retrieved images belong to the anchor image class.

Table 4: Results (%) on CARS196 using ResNet18 from scratch.

Methods R@1 R@2 R@4 R@8 NMI
Spreading 11.19 15.72 21.39 29.39 20.42
InsCLR 5.90 8.98 13.33 19.74 17.32
Self-Taught 7.20 10.53 15.65 23.36 19.01

Figure 21: Visual assessment of ResNet18 model trained from scratch on CARS196 plotting the 4
nearest neighbors of 2 randomly sampled images placed in the first place of each row. The number

placed at the upper side of each image shows the class it belongs to.

5.1.3 SOP

Imagenet Pre-trained GoogleNet In this experiment we used GoogLeNet pre-trained
on ImageNet. We fine-tuned and evaluated it on SOP training and test set re-spectively.
The results of all three methods are presented on Table 5. It shows that InsCLR and Self-
Taught outperform Spreading by a large margin of about 15%. A common feature between
InsCLR and Self-Taught is the mini-batch construction where random sampled anchors
together with their k = 3 nearest neighbors form a mini-batch. Ιt appears that these k = 3
nearest neighbors belong to the same class as anchors, so there is a progress in the
training process even with the InsCLR that does not use augmentations of the original
images as artificial positives. It is worth noting that InsCLR was the only one that failed
in both CUB200-2011 and CARS196 experiments with GoogLeNet pre-trained network
(Table 1, Table 3). Finally, InsCLR tries to close the gap between the supervised and the
self-supervised approaches on the SOP dataset.

I. Misios 44

Self-supervised Metric Learning

Table 5: Results (%) on SOP using ImageNet pre-trained GoogLeNet.

Methods R@1 R@10 R@100 NMI
ImageNet pre-trained 40.8 64.0 78.0 86.0
Supervised 78.42 90.22 95.64
Spreading 48.05 62.12 77.22 85.69
InsCLR 65.17 79.11 89.69 96.42
Self-Taught 63.43 78.20 88.66 95.91

ResNet18 from scratch Table 6 shows that all three methods succeed to train on a
certain extent a randomly initialized ResNet18 on SOP. The InsCLR and Self-Taught reach
a 41% R@1 which is almost 24% lower than the performance of the pre-trained GoogLeNet
trained with the same methods (Table 5). Furthermore, by comparing Tables 5 & 6, we
can see a similar performance of a ResNet18 trained with InsCLR to that of ImageNet
pre-trained GoogLeNet without further fine-tuning. It is worth noting that the ImageNet
dataset contains classes that were also present in the SOP dataset. Moreover, SOP
dataset is the only dataset out of the four (CUB200-2011,CARS196,SOP,GLDv2) where all
threemethods succeeded in training a randomly initialized ResNet18. Themain difference
between SOP and the other datasets is that most images show the goods on a plain white
background. Thus, during training the model can focus on the instance of interest and not
be distracted by the background.

Table 6: Results (%) on SOP using ResNet18 from scratch.

Methods R@1 R@10 R@100 NMI
Spreading 38.61 53.76 70.20 83.12
InsCLR 41.25 58.48 73.55 86.42
Self-Taught 41.34 57.21 72.89 87.10

5.1.4 GLDv2

Imagenet Pre-trained ResNet101 In this experiment we used GoogLeNet pre-trained
on ImageNet. We fine-tuned it on 6% GLDv2 and evaluated on rOxford5k & rParis6k
datasets. Table 7 shows that InsCLR outperforms the other two methods by a large mar-
gin, achieving about 65% and 72% mAP in the Medium setup of rOxford5k and rParis6k
datasets respectively while also closing the gap with the supervisedmethod. Both Spread-
ing and Self-Taught fail in this experiment, performing similarly. The InsCLR and Self-
Taught have a lot in common, but they have some differences that can be critical.

In Self-Taught, the mini-batch is constructed by random sampled anchors along with their
k = 4 nearest neighbors, each one having a contextualized semantic similarity (3.20)
wij ∈ [0, 1] probably closer to 1. The remaining images that form the mini-batch would
probably have wij closer to 0. So within the mini-batch there is probably a lack of hard
negatives.

Referring to InsCLR positive selection within mini-batch 3.2, which takes place in the first
three cycles of the training process, the mini-batch is constructed from randomly sampled
anchors along with their k = 3 nearest neighbors. Next, the neighbors that exceed the
user-defined threshold Th1 = 0.95 are identified as positives while the rest of the images
are identified as negatives. However, those images that are nearest neighbors but do not
exceed Th1 are hard negatives. Table 8 shows the performance of InsCLR per training

I. Misios 45

Self-supervised Metric Learning

cycle where in the first three cycles, having a few hard-negatives within the mini-batch,
there is just an increase of about 10 − 20% mAP at Medium setup compared to the Im-
ageNet pre-trained model, while in the 4th cycle having a lot of hard-negatives from the
Candidate Pool 3.2 there is a steep increase of about 15% highlighting the importance of
hard negatives in the training process.

Table 7: Results (%) on rOxford5k & rParis6k using ImageNet pre-trained ResNet101 fine-tuned on
6% GLDv2.

rOxford5k
Methods mAP@ Easy mAP@ Medium mAP@ Hard
Imagenet Pre-trained 31.46 22.90 6.33
Supervised 76.0 52.4
Spreading 16.61 11.82 4.13
InsCLR 84.31 65.46 36.81
Self-Taught 22.13 17.26 5.39

rParis6k
Imagenet Pre-trained 67.31 51.78 25.91
Supervised 80.2 58.6
Spreading 46.96 35.01 11.74
InsCLR 88.09 72.01 47.99
Self-Taught 49.64 36.41 11.88

Table 8: Results (%) of InsCLR method training per cycle on rOxford5k & rParis6k datasets using
ImageNet pre-trained ResNet101 fine-tuned on 6% GLDv2.

rOxford5k
Methods mAP@ Easy mAP@ Medium mAP@ Hard
Imagenet Pre-trained 31.46 22.90 6.33
1st cycle (instance discrimination) 53.91 37.28 10.5
2nd cycle (instance discrimination) 63.31 44.95 16.84
3rd cycle (instance discrimination) 67.45 50.05 22.48
4th cycle (candidate pool) 84.31 65.46 36.81

rParis6k
Imagenet Pre-trained 67.31 51.78 25.91
1st cycle (instance discrimination) 75.66 56.90 28.32
2nd cycle (instance discrimination) 77.58 58.86 30.33
3rd cycle (instance discrimination) 79.56 59.92 30.16
4th cycle (candidate pool) 88.09 72.01 47.99

ResNet18 from scratch Finally, we experimented on training ResNet18 from scratch
on 6% GLDv2 and evaluated on rOxford5k & rParis6k datasets. Table 9 shows that none
of the three methods succeeded in training the model. Looking at Figure 18, we can see
the very high intra-class variability of landmark images. Therefore, it is not efficient to
take as positives the nearest neighbors from the representations of a randomly initialized
network. This is a reasonable explanation for the failure of the InsCLR method. Moreover,
the common part between Spreading and Self-Taught is the augmentation of the original
samples into the mini-batch to construct artificial positives. However, it turns out that the
supervisory signal from augmented positives is very weak to train from scratch a ResNet18
in such a challenging dataset as GLDv2.

I. Misios 46

Self-supervised Metric Learning

Table 9: Results (%) on rOxford5k & rParis6k using ResNet18 trained on 6% GLDv2.

rOxford5k
Methods mAP@ Easy mAP@ Medium mAP@ Hard
Spreading 3.27 3.02 0.91
InsCLR 2.79 3.28 1.06
Self-Taught 2.42 2.53 0.98

rParis6k
Spreading 9.27 10.10 5.44
InsCLR 7.41 8.32 3.49
Self-Taught 10.46 10.96 5.8

5.1.5 Computational Cost

This section focuses on the computational cost of the experiments conducted. Table 10
presents an approximation of GPU hours or days (d) required to train the networks for
each self-supervised metric learning method. All experiments were performed on a four
GPU NVIDIA-A100 system. Altough the training epochs are not the same for all three
methods, it can be seen that Spreading converges much faster than the other two due to
its simplicity at the expense of performance. Finally, it is worth mentioning that training
InsCLR, which is the best method (see Table 7), on just the 6% of the official GLDv2 needs
about 3.5 GPU days.

Table 10: Computational cost of the experiments.

Method Model Initialization CUB200-2011 CARS196 SOP 6% GLDv2
Spreading pre-trained 4 8 14 20
Spreading scratch 2 5 8 16
InsCLR pre-trained 9 12 2.5d 3.5d
InsCLR scratch 6 10 2.5d 3.5d
Self-Taught pre-trained 14 20 3d 4.5d
Self-Taught scratch 12 17 3d 4.5d

Total: 34d + 9h

I. Misios 47

Self-supervised Metric Learning

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this work we compare some self-supervised metric learning methods by evaluating
them under the same conditions on four metric learning datasets. We aim to investigate
the advantages and disadvantages of each method in metric learning tasks using pre-
trained network or initialized from scratch. The experiments revealed the importance of
positive and negative mining, especially in the early stages of training where the model
is not mature enough to understand the semantic relationships between images. Self-
Taught showed that at the initial stage of the training process, pairwise similarity is not
strong enough to distinguish positives from negatives, while contextual similarity through
reciprocal nearest neighbor search is more powerful. In contrast, InsCLR, which uses only
pairwise similarities, fails on most datasets except SOP.

It is worth mentioning that the dataset plays an important role in the success or failure of
the method. CUB200-2011 and CARS196 are fine-grained data sets, meaning that the
variability between classes is very small. As a result, the model struggles to focus not only
on the instance of interest, but also on key features of the instance. Moreover, GLDv2 is an
image retrieval dataset which means that the intra-class variability is very high. Therefore
the model should generalize well by focusing on the characteristics of each class. The
SOP dataset contains images of objects mostly on a plain white background, which helps
the model focus on the object of interest and not be distracted by the background. Hence,
pairwise similarity, used by Spreading and InsCLR, also incorporates semantic similarity
between images. This is why all methods succeed in training the respective networks on
the SOP dataset.

An effective method to create positives is to augment the original images. This technique
is useful for starting the training process, however it does not generate strong supervisory
signals to approach the supervised methods. This is confirmed in the task of training
ResNet18 from scratch where the augmentation technique is the only one for positive
construction. However, on the SOP dataset, where the training process does not fail,
the gap between the performance of the supervised method compared to the best self-
supervised method using randomly initialized network is very large.

A common feature between the three methods is the way the mini-batches are con-
structed. They start by randomly sampling the anchors and filling them with their nearest
neighbors or augmentations of the anchor images as positives. Exploiting the technique of
instance discrimination, it is assumed that all anchors, together with their positives, belong
to a different classe. As a result, the mini-batch contains potential positives or pseudo-
positives and negatives that are likely easy negatives. Thus, the mini-batch does not have
hard negatives, where their importance was proven in the 4th cycle of the InsCLR method.
In the final cycle of InsCLR, mini-batch is replaced by the Candidate Pool of an anchor
image containing positives, hard negatives and negatives. Table 8 shows the boost in
performance during the last cycle, demonstrating the importance of hard negatives in the
training process.

Finally, focusing on train from scratch task, we can see that all three methods succeed
to train the ResNet18 model only on SOP dataset. We conclude that the self-supervised
metric learning task using randomly initialized network is a very demanding task and its
success or failure is highly correlated with the target dataset yet.

I. Misios 48

Self-supervised Metric Learning

6.2 Future Work

In this section we suggest some research paths that could improve the existing self-
supervised metric learning methods.

Split image into patches The first proposal is to enlarge the dataset by splitting the
image in patches and perform contrastive learning between positive and negative patches.
This can be implemented by either mining positives and negatives first and then splitting
the images into patches that inherit the image ’label’, or splitting the images into patches
first and thenmining positives and negatives at the level of patch. So, it is like switching the
order between Average Pooling and Loss. Here, we first apply the Loss in multiple patches
and then we average those losses. More pairs result in more loss terms. There are
existing works in this field of study like [47] [48] [49], however they have poor performance
in classification tasks. We believe that changing their loss to a softer one like Self-Taught’s
can improve performance.

Instance localization Another suggestion is to localize and crop the object from the
original image in order to reduce the noise that distracts the model. This suggestion can
be combined with the first one as a first step before splitting the image into patches. More
specifically, we can first localize the object and crop the original image and then split the
image to patches. There are existing works on instance discovery [50] [51] in an unsuper-
vised manner. However, they use pre-trained model to discover the objects. Our proposal
is a self-supervisedmethod performing jointly object discovery and representation learning
with or without pre-trained networks.

Memory Bank use The use of cross batch memory has been used in multiple self-
supervised [3] or metric learning methods [52] [53], demonstrating its need for positive and
negative mining. Having seen the effectiveness of the memory bank in InsCLR method,
we suggest enriching the Self-Taught method with a memory bank in order to increase the
negatives and especially the hard negative samples within the mini-batch.

Semi-Supervised methods The final proposal it to add to the comparison state-of-the-
art semi-supervised metric learning methods like [54]. In this way, the comparison would
be more comprehensive not only on the performance basis but also on the computational
cost of each method.

I. Misios 49

Self-supervised Metric Learning

ABBREVIATIONS - ACRONYMS

GPU Graphical Processing Unit

ReLU Rectified Linear Unit

CNN Convolutional Neural Networks

MLP Multi-layer Perceptron

STML Self-Taught Metric Learning

AP Average Precision

mAP Mean Average Precision

NMI Normalized Mutual Information

IP Inner Product

CP Candidate Pool

NN Nearest Neighbor

NNs Neural Networks

PCA Principal Component Analysis

SSL Self-Supervised Learning

MLP Multi Layer Perceptron

I. Misios 50

Self-supervised Metric Learning

REFERENCES

[1] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and
clustering,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, jun
2015.

[2] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learning of visual
features,” 2018.

[3] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representa-
tion learning,” 2019.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual
representations,” 2020.

[5] M. Ye, X. Zhang, P. C. Yuen, and S.-F. Chang, “Unsupervised embedding learning via invariant and
spreading instance feature,” 2019.

[6] Z. Deng, Y. Zhong, S. Guo, and W. Huang, “Insclr: Improving instance retrieval with self-supervision,”
2021.

[7] S. Kim, D. Kim, M. Cho, and S. Kwak, “Self-taught metric learning without labels,” 2022.

[8] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” Commun. ACM, vol. 60, p. 84–90, may 2017.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
2014.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich, “Going deeper with convolutions,” 2014.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

[13] A. Globerson and S. Roweis, “Metric learning by collapsing classes,” in Advances in Neural Information
Processing Systems (Y. Weiss, B. Schölkopf, and J. Platt, eds.), vol. 18, MIT Press, 2005.

[14] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin nearest neighbor classifi-
cation,” Journal of Machine Learning Research, vol. 10, no. 9, pp. 207–244, 2009.

[15] M. Soleymani Baghshah and S. Bagheri Shouraki, “Kernel-based metric learning for semi-supervised
clustering,” Neurocomputing, vol. 73, no. 7, pp. 1352–1361, 2010. Advances in Computational Intelli-
gence and Learning.

[16] F. Xiong, M. Gou, O. Camps, and M. Sznaier, “Person re-identification using kernel-based metric learn-
ing methods,” in Computer Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.),
(Cham), Springer International Publishing, 2014.

[17] S. Chopra, R. Hadsell, and Y. Lecun, “Learning a similarity metric discriminatively, with application
to face verification,” in Learning a similarity metric discriminatively, with application to face verification,
vol. 1, pp. 539– 546 vol. 1, 07 2005.

[18] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for large margin nearest neighbor
classification,” in In NIPS, MIT Press, 2006.

[19] K. Sohn, “Improved deep metric learning with multi-class n-pair loss objective,” in Advances in Neural
Information Processing Systems 29 (D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
eds.), pp. 1857–1865, Curran Associates, Inc., 2016.

[20] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via lifted structured fea-
ture embedding,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[21] S. Kim, D. Kim, M. Cho, and S. Kwak, “Proxy anchor loss for deep metric learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3238–3247, 2020.

I. Misios 51

Self-supervised Metric Learning

[22] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-similarity loss with general pair weighting
for deepmetric learning,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[23] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context pre-
diction,” 2015.

[24] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles,”
2016.

[25] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” 2016.

[26] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting image
rotations,” 2018.

[27] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning of visual
features by contrasting cluster assignments,” 2020.

[28] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for unsupervised learning of visual
features,” 2018.

[29] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires,
Z. D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent: A
new approach to self-supervised learning,” 2020.

[30] X. Chen and K. He, “Exploring simple siamese representation learning,” 2020.

[31] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Mining on manifolds: Metric learning without labels,” in in
Proceedings of Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2018), June 2018.

[32] R. Hadsell, S. Chopra, and Y. Lecun, “Dimensionality reduction by learning an invariant mapping,” in
CVPR, pp. 1735 – 1742, 02 2006.

[33] R. Arandjelović and A. Zisserman, “Three things everyone should know to improve object retrieval,” in
CVPR, 2012.

[34] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total recall: Automatic query expansion with
a generative feature model for object retrieval,” in ICCV, 2007.

[35] O. Chum, A. Mikulik, M. Perdoch, and J. Matas, “Total recall ii: Query expansion revisited,” in CVPR,
2011.

[36] S. Kim, D. Kim, M. Cho, and S. Kwak, “Embedding transfer with label relaxation for improved metric
learning,” in CVPR, 2021.

[37] K. Roth, T. Milbich, B. Ommer, J. P. Cohen, and M. Ghassemi, “Simultaneous similarity-based self-
distillation for deep metric learning,” in ICML, 2021.

[38] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-UCSD Birds-200-2011
Dataset,” Tech. Rep. CNS-TR-2011-001, California Institute of Technology, 2011.

[39] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained categorization,”
2013 IEEE International Conference on Computer Vision Workshops, pp. 554–561, 2013.

[40] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning via lifted structured feature
embedding,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[41] T. Weyand, A. Araujo, B. Cao, and J. Sim, “Google landmarks dataset v2 – a large-scale benchmark
for instance-level recognition and retrieval,” 2020.

[42] F. Radenović, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Revisiting oxford and paris: Large-scale
image retrieval benchmarking,” in CVPR, 2018.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[44] B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim, Y. Uh, and J.-W. Ha, “Adamp: Slowing down the
slowdown for momentum optimizers on scale-invariant weights,” in International Conference on Learning
Representations, 2021.

I. Misios 52

Self-supervised Metric Learning

[45] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[46] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge Uni-
versity Press, 2008.

[47] X. Wang, R. Zhang, C. Shen, T. Kong, and L. Li, “Dense contrastive learning for self-supervised visual
pre-training,” 2020.

[48] Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc, “Dense classification and implanting for few-shot learn-
ing,” 2019.

[49] Y. Lifchitz, Y. Avrithis, and S. Picard, “Local propagation for few-shot learning,” 2021.

[50] O. Siméoni, A. Iscen, G. Tolias, Y. Avrithis, and O. Chum, “Graph-based particular object discovery,”
Machine Vision and Applications, vol. 30, 03 2019.

[51] H. V. Vo, E. Sizikova, C. Schmid, P. Pérez, and J. Ponce, “Large-scale unsupervised object discovery,”
2021.

[52] J. Revaud, J. Almazan, R. S. de Rezende, and C. R. de Souza, “Learning with average precision:
Training image retrieval with a listwise loss,” 2019.

[53] X. Wang, H. Zhang, W. Huang, and M. R. Scott, “Cross-batch memory for embedding learning,” 2019.

[54] U. K. Dutta, M. Harandi, and C. C. Sekhar, “Semi-supervised metric learning: A deep resurrection,”
2021.

I. Misios 53

	Contents
	INTRODUCTION
	Motivation
	Structure

	BACKGROUND
	The evolution of Deep Neural Networks
	Metric Learning
	Deep Metric Learning
	Sample mining
	Model structure
	Loss function
	Contrastive Loss
	Triplet Loss
	NPair Loss
	Lifted Structure Loss
	ProxyNCA Loss
	Multi-Similarity Loss

	Self-supervised Learning
	SimCLR
	MoCo
	SwAV
	BYOL
	SimSiam
	MOM

	SELF-SUPERVISED METRIC LEARNING
	Contrastive learning with Instance Discrimination
	Graph-based positive mining for contrastive learning
	Positive Selection in Mini-batches:
	Mining Positives from Memory Bank

	Self-Distillation for contrastive learning
	Contributions

	EXPERIMENTAL SETUP
	Datasets
	CUB200-2011
	CARS196
	SOP
	GLDv2

	Implementation Details
	Evaluation Protocol

	EXPERIMENTAL RESULTS AND DISCUSSION
	Results
	CUB200-2011
	Imagenet Pre-trained GoogleNet
	ResNet18 from scratch

	CARS196
	Imagenet Pre-trained GoogleNet
	ResNet18 from scratch

	SOP
	Imagenet Pre-trained GoogleNet
	ResNet18 from scratch

	GLDv2
	Imagenet Pre-trained ResNet101
	ResNet18 from scratch

	Computational Cost

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work
	Split image into patches
	Instance localization
	Memory Bank use
	Semi-Supervised methods

	ABBREVIATIONS - ACRONYMS
	REFERENCES

