NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PROGRAM OF POSTGRADUATE STUDIES

MSc THESIS

On visual explanation of supervised and self-supervised
learning

Dimitrios A. Reppas

ATHENS

DECEMBER 2022

EONIKO KAI KAMOAIZTPIAKO NMANEMIZTHMIO AOGHNQN

2XOAH OETIKQN ENIZTHMQN
TMHMA NMAHPO®OPIKHZ KAI THAENIKOINQNIQN

NMPOrPAMMA METANTYXIAKQN ZMNOYAQN

AINAQMATIKH EPTAzIA

NMNavw oTnv oTrTIKNA £§yNON TNG ETIBAETONEVNG KA
AQUTOETTIBAETTOMEVNG HABNONG

AnpnTpiog A. Pémrtrag

AOHNA

AEKEMBPIOZ 2022

MSc THESIS
On visual explanation of supervised and self-supervised learning

Dimitrios A. Reppas
A.M.:DS1200010

SUPERVISOR: Yannis Avrithis, Research Director, ATHENA Research and Innovation
Center

EXAMINATION COMMITTEE:
Yannis Avrithis, Research Director, ATHENA Research and Innovation Center

loannis Emiris, President and General Director, ATHENA Research and Innovation
Center

Stephane Ayache, Professor and Research Scientist, Aix-Marseille University

December 2022

AINAQMATIKH EPrAZzIA

Mavw oTtnv oTITIKA €§AYNoN TNG TMIBAETTOUEVNG KAl QUTOETTIBAETTOMEVNG HABNONG

AnunRTpiog A. Pétrmrag
A.M.:DS1200010

EMIBAENQN KAOGHIHTHZ: Navvng ABRpidng, AicuBuvTr¢ Epeuvag, EpeuvnTIKO KEVTPO
"AOHNA’

EZETAZTIKH ENITPOIMH:
Mavvng ABpidng, AicubBuvTic Epeuvag, EpeuvnTiko kévipo "AOHNA”
lwavvng Epipng, Mpoedpog kai Nevikdg AieuBuvTng, EpeuvnTiko KEvTpo "AOHNA”
Stephane Ayache, KaBnyntrc kai Epguvnng, MavemoTiuio MacoaAiag

AeképBprog 2022

ABSTRACT

In recent years, the rapid development of Deep Neural Networks (DNN) has led to a re-
markable performance in many Computer Vision tasks. The increasing complexity of the
models, the computational power, the amount available of data and the supervision during
the training process are the main causes behind this success. As an alternative to super-
vised representation learning, self-supervised methods are becoming popular in dispens-
ing the need for carefully labelled datasets.

Undoubtedly, the more complex the models get, the greater is the need for understanding
their predictions. The primary objective of this thesis is to interpret both supervised and
self-supervised models, using either convolutional neural networks or visual transformers
as a backbone. Variations of visualization methods are used, based on class activation
maps (CAM) and attention mechanisms. Given an inputimage, these methods provide us
with a saliency map that is used to interpret the network prediction. This map indicates the
regions of the image that the model pays the most attention to. We evaluate these methods
qualitatively and quantitatively. We further propose new alternative or complementary
visualization methods, which show where important information can be hidden inside the
network and how to reveal it. These new methods further improve the quantitative results.
Our study highlights the importance of interpretability, shows some common properties
and differences in the way supervised and self-supervised models make their predictions
and provides valuable information on both the models and the visualization methods.

Thanks to the knowledge we gain from the interpretability study, we further improve self-
supervised learning, in particular using mask image modeling (MIM). Here, we indicate
the regions of an image that are most important to be hidden from a student network
and define a more challenging MIM-based self-supervision pre-text task. Based on this,
we propose new masking strategies that achieve higher k-NN, linear probing scores and
acceleration in the learning process of downstream tasks. Considering the computational
efficiency challenge these methods face, we conduct experiments on different scales of
a dataset and number of training epochs and show their impact on the scores. Here,
we further visually explain the influence of each masking strategy and scale of a dataset
by using interpretability methods during the learning and evaluation process. Finally, we
introduce a new loss function based on contrastive learning and achieve improvements
over the baseline when used with different masking strategies.

SUBJECT AREA: Computer Vision, Deep Learning

KEYWORDS: Interpretability, Self-supervised Learning

NEPIAHWH

Ta teAeuTaia xpdvia, n Taxeia avatTuén Twv Neupwvikwy AIKTUwv BaBoug éxel eTTipépel
agloonueiwTa emTevypata o€ TTOAEG epyaaciec Opaong YmoloyiotTwy. H augavopevn
TTOAUTTAOKOTNTA TWV JOVTEAWY, O JEYAAOG OyKOG dedopévmy KaBWG Kal n etTiBAewn Katé Tn
OIAPKEIA TNG EKTTAIOEUONG TWV HOVTEAWV Eival OI KUPIEG AITIEG TTIOW ATTO AUTHV TNV ETTITUXIA.
Q¢ evaAAakTIKA AUON yia TNV ETTIBAETTOPEVN EKUABNON avaTrapdoTaong, TTpoTaddnkav uébo-
0ol auToeTTiBAEYWNG yia va atmmaAAayoupe atrd Ta uwnAd KOGOTN TTOU ATTAITOUVTAl YIO ThV
TTAPAYWYH TTPOCEKTIKA ETTIONUACTHEVWY OEDOUEVWIV.

Avau@ifoAa, 6co 110 TTOAUTTAOKQ YivovTal Ta HOVTEAQ, TOOO PEYAAUTEPN €ival N avaykn
Katavonong Twv TTPoPAéwewy Toug. O TTpwTapXIKOG OTOXOG QUTAG TNG diatpIPng eival
N €pMNveia T000 TWV ETMIPAETTOUEVWY OC0 KOI TWV QUTOETTIBAETTOUEWY POVTEAWYV, TTOU
BaoilovTal o€ ApXITEKTOVIKEG EITE CUVENIKTIKWYV €iTE OTTTIKWYV transformers dIkTUwWV . oikiAia
MEBODWV OTITIKOTTOINONG XPNOIMOTIOIEITAI, N OTTOIA €ival BACIOPEVN O€ XAPTEG EVEPYOTTOIN-
oNG KAGOEWV Kal JNXavioPoug TTpoooxhs. AoBgiocag piag eiIkovag e106d0u, auTég ol EBodol
MOG TTAPEXOUV PE €va XAPTN ONPAVTIKOTNTAG TTOU XPENOIKOTIOIEITAI VIO TNV EPMNVEIA TNG
TTPORAEWNG TOU BIKTUOU. AUTOG O XAPTNG UTTOBEIKVUEI TIG TTEPIOXEG TNG EIKOVOAG OTIG OTTOIES
TO JovTéNO divel TN peyaAuTepn TTpoooxr. O1 uEBodol TTou XPNOIKMOTTOIOUME aglIoAOyOoUVTal
1600 TT010TIKA 600 Kal TTOoOTIKA. MpoTeivoupe TTEPAITEPW VEEG EVOANAKTIKEG 1) CUUTTANPW-
MOTIKEG HEBOGDOUG OTITIKOTTOINONG, Ol OTTOIEG UTTOOEIKVUOUV TTOU PTTOPOUV VO KPUPTOUV
ONMAVTIKES TTANPOPOPIEC HECT OTO BIKTUO Kal TTWG UTTOPOoUV va attokaAu@Bouv. Oi véeg
MEBOBOI BEATILOVOUV TTEPAITEPW TA TTOCOTIKA atroTeEAéouaTta. H YeAETN pag uttoypapuilel
TN ONUACIa TNG EPUNVEUCINOTNTAG, DEIXVEI OPICUEVEG KOIVEG 1010TNTEG KAl DIOPOPEG OTOV
TPOTTO YE TOV OTTOIO TA ETTIPBAETTOUEVA KAl AUTOETTIBAETTOMEVA HOVTEAQ KAVOUV TIG TTPOLBAE-
WEIG TOUG KAl TTAPEXEI TTOAUTIMES TTANPOPOPIEG TOOO YIa T OVTEAQ OO0 Kal YIa TIG HEBSGSOUG
OTITIKOTTOINONG.

XA&png TwV YVWOEWY TTOU ATTOKOMICAUE aTrd TN HEAETN TTAVW OTNV EPUNVEUCIUOTNTA, BEATI-
WVOUE TTEPAITEPW TNV AUTOETTIBAETTOMEVN HABNON, 10iWG XPNOIKMOTTOIWVTAG TN YOVTEAOTTOI-
non KAAUYWNG eIKOvag. ESdw, UTTOBEIKVUOUE TIG TTEPIOXEG MIAG EIKOVOAG TTOU €ival TTIO GNPAVTI-
KO va atrokpuTrTovTal atrd €va OiKTUO padnTtr Kal opifoupe pia o atrodoTikr pHEB0do
auToeTTiBAEWNG TToU BaacifeTal 0Tn povTeAOTTOINON KAAUWNG €IKOVaG. Me Baon auTd, TTporTei-
VOUUE VEEG OTPATNYIKEG KAAUWNG TToU €TTITUYXAVOUV uwnAdTepa k-NN kai liner probing
atmroTeAégpaTa Kal EMTAXUvVon oTn dladikaoia eKPabnong o€ epyaadieg TTou akoAouBouv.
AapBavovtag uttdyn TNV TTPOKANCT UTTOAOYIOTIKOU KOOTOUG TTOU AVTIMETWTTICOUV AUTEG Ol
MEBODOI, diegdyoupe TTEIpAPaTa o€ OIOPOPETIKEG KAIUAKEG EVOG GUVOAOU BEDOUEVWV Kal
aPIBUOU ETTOXWV EKTTAIOEUONG Kal OEIXVOUE TO AVTIKTUTTO TOUG OTa atToTEAEoUaTa. Edw,
e€nyouue TTEPAITEPW OTITIKA TNV ETTIPPON KABE oTpaTnyIKAG KAAUWNG Kal KAIMOKAG £vOG
ouvoAou dedopévwy XpnoIPoTToIwvTag HEBGdOoUC epunveiag kata Tn diadikacia panong
Kal agloAdynong. TEAOG, €10Ayoupe pia vEa ouvapTnon OTTWAEIOG TTou Bacidetal oTnv
QVTIOETIKA NABNON Kal ETTITUYXAVOUNE BEATILWOEIG O€ OXEON YE TN BACIKI cuvaptnon étav
XPNOIUOTIOIEITAI PE OIOPOPETIKEG OTPATNYIKEG KAAUWYNG.

OEMATIKH MEPIOXH: Opaon YtroAoyioTtwy, BaBiad Md&Bnon

AEZEIZ KAEIAIA: EpunveuoipornTa, AutoemmBAeTopevn Mdabnon

ACKNOWLEDGEMENTS

More than half of this work was conducted in the Laboratoire d’'Informatique et Systemes
(LIS) research lab at Ecole Centrale Marseille (ECM) and the rest in Athens. Part of this
work was funded by the French national research agency (ANR) UnLIR project (ANR-19-
CE23-0009) and HPC resources were used from GENCI-IDRIS (Grant 2020-AD011013552).
Extra resources were provided by the LIS lab as well.

First and foremost, | would like to thank my supervisor Yannis Avrithis for his support,
valuable guidance, endless motivation and trust he showed me. Special thanks to the
rest members of this work Stephan Ayache, Ronan Sicre, Hanwei Zhang, Felipe Torres
and Shashanka Venkataramanan for their extra assistance and motivation. In addition, |
am grateful to all the people at LIS research lab for being so hospitable, friendly and for
creating such a pleasant and warm working environment. In closing, | would like to thank
my family, friends, and Tania for being by my side throughout this project.

CONTENTS

1 INTRODUCTION

11 Computervision L. e e
1.2 Machinelearning L L L e e e e e e e e e e e e e
13 Deeplearning L L Lo e e e e e e e e
1.4 Challenges and motivationo 0 0oL
1.5 Ourwork e e e e e e
1.6 Structure L e

2 BACKGROUND

21 Deepneuralnetworks L e e e e e e e e e e
211 Howitstartedo

21.2 Convolutional neural networkso

213 Transformers Lo e e e e e e

214 Self-supervisedlearningo

2.1.4.1 The self-supervised models used inthisstudy

2.2 Interpretability of DNNo
2.21 Intepretability importanceo L oL L Lo

2.2.2 Interpretability categorieso Lo Lo

223 CAM-basedmethodso

224 Attention-basedmethods00 Lo,

3 INTERPRETABILITY

3.1 Methodology e e e e e e e e e e e e e
3.2 Contributions
3.3 Experimentalsetup
3.31 Dataset L L e e e e e
3.3.2 Networks e e e e e e e e e e e
3.3.3 Evaluationprotocol e e e e
3.34 Implementationdetails 0oL Lo
3.4 Experimental results anddiscussion 000,
3.41 Interpretability of models with CAM-based methods
3.4.2 Interpretability of transformers oL o 0oL oL
3.5 Conclusion L e e e e e e

4 MIM ON SELF-SUPERVISION

41 Methodology e e e e e e e e e
4.2 Contributions L e
4.3 Experimentalsetup L Lo e e e
431 Dataset L e e e e e e e
432 Networks L.
4.3.3 Evaluationprotocol Lo
434 Implementationdetails L0000
4.4 Experimental results and discussiono 00000
441 Maskingstrategies Lo Lo
442 Interpretability of MIM-based models

443 Contrastivelearning e e e e e e e

14
14
14
16
17
18
19

20
20
20
22
24
27
29
34
34
35
36
38

4.5 Conclusion L e e e e e e e e e e e

5 OVERALL CONCLUSION AND FUTURE WORK
51 Conclusion e e e e e e e e e e e e
5.2 Futurework e e e e e e e e e e e e e e e e e

ABBREVIATIONS - ACRONYMS

REFERENCES

73
73
73

75

79

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

Figure 22:

LIST OF FIGURES

The architecture of perceptron [1]. 21
The architecture of MLP [2]. 22
Theresidual block [3]., 23
The ViT methodology and the transformer encoder overview [4]. . . . 25
The DeiT architecture [5]. 26
The XCiT layer [6]. i 27
Momentum Contrast (MoCo) [7]. 30
DINO self-distillation based approach [8] 31
iBOT framework [9] 33
Attention-Guided Masked Image Modeling approach [10] 34
Class activation mapping method (CAM)[11] 36
Random image samples derived from ImageNet [12]. 44
The deletion and insertion metrics for a random input image [13]. 46
Quantitative evaluation of raw attention maps obtained from different
layers. Classification metrics on 1000 randomly picked images from
the ImageNet validation set. AD|/AlT: average drop/increase I1/DJ:
insertion/deletion | / 1: lower / higheris better. 52
Average attention map and maps from different heads. All the maps
are obtained from the last layer of the supervised DeiT base model. . 53
Pre-processing functions of raw attention maps for better interpretabil-
ity. The attention maps are obtained from the supervised DeiT base
model. 53
Visualization of saliency maps based on the raw attention map and
the tensor of the keys. The maps are obtained from the supervised
DeiTbasemodel. 54
Different masking strategies for a given input image (a). The strategy
(b) is used by SimMIM [14], (b) by MAE [15], (d) by BEIT [16] and
iBOT [9], (e) by AttMask [10] and (f) by MST [17]. Both (e),(f) are
based on the attention map (g). The source of the images is [10]. 57
Linear probing and k-NN scores of AttMask for different layers.The
AttMask for the 12, layer is the baseline approach [10]. The mod-
els are trained on the 20% ImageNet and evaluated on the whole
validation set of thedataset. 63
Top-1 accuracy scores for AttMask and AttMask-Raws ;5 for a 100-
epoch linear probing evaluation. The models are pre-trained for 100
epochs on the 20% (left) and on 100% ImageNet (right). 67
Top-1 accuracy scores for AttMask and AttMask-Raws ;, for a 100-
epoch linear probing evaluation. The models are pre-trained for 300
epochs on the 100% ImageNet. 67

The evolution of the raw attention map during pre-training when AttMask
[10] strategy is incorporated into iBOT [9]. The training lasts for 100
epochs and is on the 100% ImageNet.

Table 1:
Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Table 10:

Table 11:

Table 12:

Table 13:

Table 14:

Table 15;

LIST OF TABLES

Pre-trained networks used inchapter3. 45
Saliency maps for a given input image, obtained from different deep
neural networks, when using four different CAM-based methods. . . . 47
Saliency maps for several input images, obtained from different deep
neural networks, when using Score-CAM method. 48

Qualitative and quantitative evaluation of saliency maps obtained for
a given input image. The maps are derived from different deep neu-
ral networks, when using GradCAM method. AD/AI: average drop/in-
crease |I/D: insertion/deletion | / 1: lower / higher is better. For one
input image, Al returns either 1 (true)orO (false). 49
Quantitative evaluation of CAM-based saliency maps. Classification
metrics on 1000 randomly picked images from the ImageNet validation
set. AD/Al: average drop/increase |/D: insertion/deletion | / 1: lower /
higherisbetter. 49
Raw attention maps for two input images, obtained from untrained,
supervised and self-supervised deep neural networks, that are based
on different backbones. L L oL 50
Quantitative evaluation of raw attention maps. Classification metrics
on 1000 randomly picked images from the ImageNet validation set.
AD/Al: average drop/increase I/D: insertion/deletion | / 1: lower / higher

isbetter. 51
Raw attention maps of supervised and self-supervised transformers
derived from different layers, given an inputimage. 51
Attention maps derived from Raw, standard Rollout and its alternatives
[18] and TIBAV [19] methods 54

Quantitative evaluation of saliency maps derived from a supervised
and self-supervised DeiT base model. Classification metrics on 1000
randomly picked images from the ImageNet validation set. AD/Al: av-
erage drop/increase |/D: insertion/deletion | / 1: lower / higher is better. 55
Evaluation of Rollout-based masking strategies with £-NN and linear
probing. The models are trained on the 20% ImageNet and evaluated
on the whole validation set of thedataset. 64
Linear probing and £-NN evaluation of masking strategies based on
the pre-processing of the attention maps with power and log functions.
The models are trained on the 20% ImageNet and evaluated on the
whole validation setof thedataset. 65
Evaluation of the multi-layer masking and multi-crop strategies with &-
NN and linear probing. The models are trained on the 20% ImageNet
and evaluated on the whole validation set of the dataset. 65
Evaluation of masking strategies with £-NN and linear probing. The
models are trained for 100 and 300 epochs respectively, on the 100%
ImageNet and evaluated on the whole validation set of the dataset. . 66
Detailed k-NN evaluation report for AttMask [10] and AttMask-Raws; 15
strategies. 67

Table 16:

Table 17:

Table 18:

Raw attention maps obtained from the last layer of iBOT when the
model is trained with three different masking strategies on the 20%
and 100% ImageNet.
Quantitative evaluation of raw attention maps, derived from iBOT mod-
els trained with three different masking strategies on the 20% and
100% ImageNet. Classification metrics on 1000 randomly picked im-
ages from the ImageNet validation set. AD/Al: average drop/increase
I/D: insertion/deletion | / 1: lower / higheris better.
Evaluation of two iBOT losses with £-NN and linear probing. The mod-
els are trained for 100 epochs with three different masking strategies
on the 20% ImageNet and evaluated on the whole validation set of the
dataset.

On visual explanation of supervised and self-supervised learning

1. INTRODUCTION

1.1 Computer vision

For years, people have been dreaming of machines with human intelligence that can think
and act like human beings. One of the most exciting ideas was to create machines that
could see and similarly interpret the world as humans do. The imagination of the past has
become a reality nowadays to some extent. Thanks to advances in artificial intelligence
and computational power, computer vision is progressively integrated into our daily lives.

Computer Vision is the field that focuses on how to make machines process and gain a
high-level understanding of visual data in a similar way human vision works. Visual data
can be images, video sequences, views from multiple cameras, multi-dimensional data
from a 3D scanner, etc. With the acquired knowledge, computers can take actions or
make recommendations. A few common computer vision tasks are the following:

* Image classification: Given an input image, the computer can predict accurately its
certain class. For instance, if we give a computer an image depicting a dog, it can
classify this image into the "dog” category.

» Object detection: In this task, the computer deals with detecting objects of a certain
class in visual data. Given an input image depicting four dogs, the computer can
detect them all and provide their exact location on an image. Face detection and
pedestrian detection are two well-researched domains of object detection.

» Object tracking: Here, the objects are initially detected and uniquely identified in a
frame of video and then their trajectory is tracked. In autonomous cars, for instance,
objects such as pedestrians and other cars are tracked to avoid collisions and obey
traffic laws.

» Content-based image retrieval: The computer in this task deals with the problem of
searching for visual data in large databases. The search is based on the content of
the image rather than using metadata tags associated with them. In other words,
if we query a database given an input image, similar images to the input will be
retrieved. Through content-based image retrieval, manual image tagging can be
replaced by automatic image annotation.

The aforementioned computer vision tasks include methods for acquiring, processing,
analyzing and understanding visual data and the extraction of high-dimensional data rep-
resentations which are further used, by computers, to automate predictions and recom-
mendations. The way one computer provides recommendations and predictions relies on
algorithms and machine learning strategies. Several factors contribute to the success of
computer vision, including machine learning which we describe in the next section.

1.2 Machine learning

Technology has become an integral part of our daily lives. The continuous production of
data, the increase of computation power in the past few years and the development of
better algorithms result in machine learning being all around us, from autonomous cars,
language translation machines, chatbots, etc. Probably, the general public has already
used devices utilizing such technologies. For example, a smart watch that uses fitness
tracker technology, or an intelligent home assistant like Google Home. As we input more

D. Reppas 14

On visual explanation of supervised and self-supervised learning

data into these machines, this helps them to gain a kind of experience, thus improving
the delivered results. When we ask Alexa to play our favourite music station, she will
choose to play the music station we play most often. Our listening experience can further
be improved by telling Alexa to adjust the volume, skip songs, and many other possible
commands. All of this is possible thanks to machine learning and the rapid advancement
of artificial intelligence.

Machine learning is considered a branch of artificial intelligence (Al) field. Al tends to
mimic human intelligence. To be more specific, its technologies are used to perform and
optimize tasks that humans have historically achieved, such as decision-making, facial
recognition and speech translation. Machine learning is a domain of study that uses com-
putational algorithms for a variety of daily tasks. The purpose of machine learning is first
to gain an understanding of the structure of data and then to fit that data into models that
can be utilized for decision-making processes. Machine learning differs from traditional
computational approaches. In traditional computing, the algorithms used by a computer
for problem-solving are sets of explicitly programmed instructions. On the other hand, the
algorithms used in machine learning allow computers to be trained on input data and use
statistical analysis to output values that fall within a specific range. As a result, machine
learning facilitates computers in building models from input data that can be applied to au-
tomate decision-making processes. In other words, these algorithms enable a computer
to learn from data and even improve itself, without being explicitly programmed to do so.

Machine learning is categorized into four different categories based on the way an algo-
rithm learns from data. The algorithm and the type of learning we choose, depends on the
type of data and the task we want to complete. The four basic types of learning are the
following:

» Supervised learning: In this type of learning, the available dataset consists of la-
belled examples, meaning that each data point contains an associated label. The
purpose of supervised learning algorithms is to learn a function that maps inputs
to labels, based on example input-label pairs. During training, for each input as-
sociated with a true label, the algorithm outputs a predicted label that is compared
with the given true label. Here, there is an error function, called loss function, which
measures the distance between the true and predicted labels. Learning is achieved
by passing the training data many times to the algorithm and by minimizing the loss
function between the true and predicted labels. Through this process, the param-
eters of the function, that is being learned, are changing each time we pass the
data. The learned function also called inferred can be used then for mapping new
examples. ldeally, through the inferred function the algorithm correctly determines
the class labels for unseen instances. For the ideal scenario, the learning algorithm
needs to generalize from the training data to unseen situations in a "reasonable”
way. The generalization ability of an algorithm is measured through accuracy and
error metrics. Typical types of supervised learning are classification and regression
problems.

» Unsupervised learning: This type of learning uses unlabeled data. Here, the al-
gorithm finds commonalities among its input data. Machine learning methods that
facilitate unsupervised learning are particularly valuable having in mind that labelled
data is less abundant than unlabelled data. The straightforward purpose of unsu-
pervised learning is to discover hidden patterns within a dataset. For instance, un-
supervised models are ideal for exploratory data analysis, cross-selling strategies,
customer segmentation, etc. A secondary goal is feature learning which allows the
machine to discover the representations that are needed to classify raw data.

D. Reppas 15

On visual explanation of supervised and self-supervised learning

» Semi-supervised learning: The type of learning that falls between supervised learn-
ing and unsupervised learning is called semi-supervised learning. During the train-
ing procedure, the classification and feature extraction from a large and unlabeled
dataset is guided by a smaller labelled dataset. When not having enough labelled
data for supervised learning, orifitis too costly to label enough data, semi-supervised
learning is a good alternative.

* Reinforcement learning: To perform this type of learning, three major components
take part in this process which are the agent, the environment and the actions. The
agent is the decision-maker. Everything that the agent interacts with, is the environ-
ment. Actions are called whatever the agent does. The agent is able to perceive
and interpret its environment by taking actions and learning through trial and error.
More precisely, the agent interacts with its environment and receives rewards for
performing correctly and penalties for performing incorrectly. By maximizing its re-
ward and minimizing its penalty, the agent learns without intervention from a human.
Reinforcement learning is a type of dynamic programming in which an algorithm is
trained using a system of reward and punishment. This kind of machine learning is
found in robotics, video games, healthcare applications, etc.

1.3 Deep learning

The wide public often tends to confuse deep learning and machine learning and use them
interchangeably. However, this is not the case as deep learning is only a sub-field of
machine learning. The accelerating progress in areas such as computer vision, natural
language processing and speech recognition is credited to deep neural networks. Appli-
cations powered by deep neural networks are now used by the majority of people. These
networks have also become powerful tools for many scientific fields, such as bioinformat-
ics, medicine and astronomy which usually involve a massive amount of data.

Deep learning has evolved from neural networks. Neural networks, or artificial neural
networks (ANN), consist of node layers, also called artificial neuron layers. There is always
an input layer, one or more hidden layers and an output layer. If a model consists of more
than one hidden layer, it is called a deep neural network and if it has exactly one hidden
layer it is called a neural network.

The basic purpose of these networks is to learn good representations from large amounts
of raw data, which can then be used for several tasks. Deep neural networks are trained in
a similar way as other machine learning algorithms and learning can be supervised, semi-
supervised or unsupervised. During training, data associated with true labels are passed
through the network multiple times while the distance between the true and predicted
labels is progressively minimized by a loss function. After each pass of the data through
the network, an epoch is completed and the weights of the network are updated. These
weights, also called parameters, are found on each connection between the neurons.
After the training process, the network with its learned parameters will be used to map
unseen instances to certain labels. How good or bad a network generalizes on unseen
examples is measured again through accuracy and error metrics.

A good question would be here when to use machine learning and when deep learning
algorithms. Machine learning and deep learning differ primarily in the type of data used.
Using structured data is crucial for machine learning algorithms and, here, there is a need
for domain experts during data preparation. On the other hand, deep-learning algorithms

D. Reppas 16

On visual explanation of supervised and self-supervised learning

are autonomous and learn from raw data without the need for human intervention. While
deep learning algorithms show their superiority over machine learning algorithms in sev-
eral tasks, it is needed much more training samples for deep learning to achieve such
performance. In general, deep learning is being used in more complex use cases. If the
problem is simple, it is often preferred to use machine learning.

1.4 Challenges and motivation

Self-supervision The objective of deep learning is to learn good representations from
raw data. While supervised models achieve this by being trained on datasets that consist
of labelled examples, this is not the fact for self-supervised methods. These methods learn
representations from data that are not associated with manual data labelling procedures.
Self-supervised learning is regarded as an intermediate category between supervised and
unsupervised learning. Although a labelled dataset is not required, this type of learning
is being achieved with the use of several pseudo-labels created to accomplish a simple
task which is based on the dataset and is predefined by us. This task is known as the
pre-text task. For instance, given an input image, we can start to rotate it by 90° and by
this way we create four augmented views of the image and the respective pseudo-labels
0°, 90°, 180°, and 270°. By using as a pre-text task the prediction of the rotation of one
image, the model can progressively learn a good representation of the image. Another
pre-text task in self-supervised learning is to mask some regions of an image and based
on the original image reconstruct the hidden regions during learning, etc. Self-supervised
models become popular since the high cost in time and money needed for the preparation
of good quality labelled data is eliminated and because these methods are one step closer
to embedding human cognition in machines.

Although these methods produce models that outperform sometimes even supervised
models when transferred to a variety of downstream tasks, there are some serious chal-
lenges these methods face, related to the accuracy, computational efficiency and pre-text
task. First and foremost, reaching high accuracy scores by using pseudo-labels is not as
easy as using a good quality manually labelled dataset. To achieve competitive scores, the
models trained in a self-supervised way need more data than supervised models. Consid-
ering the computation efficiency, the time needed for training a model is higher compared
to supervised learning. Finally, choosing the right pre-text task and way to take advantage
of a specific unlabeled dataset plays a vital role.

Interpretability Over the last few years, deep neural networks (DNN) have achieved
remarkable success in natural language processing, speech recognition, computer vision
and other fields. They have not only overcome many previous machine learning perfor-
mances such as decision trees and support vector machines but also achieved state-of-
the-art performances on specific real-world tasks.

However, deep learning still has some serious obstacles to overcome. To reach better
performance, the models tend to become extremely complicated with millions of free pa-
rameters. In these complicated networks, unexpected behaviours are often observed. For
instance, it has been shown that an arbitrary change in the prediction of a network could
come from applying a certain imperceptible change to the input image. The modified input
is called adversarial example and is a good indication that their underlying mechanisms
have not yet been well understood. For this reason, deep neural networks are often re-

D. Reppas 17

On visual explanation of supervised and self-supervised learning

ferred to as "black boxes”. There are many unsolved questions about the performance of
the model. For example, why does the model generalize well or not and why is a model
fooled by an adversarial example?

The more complex a model, the more accurate the predictions can be, but explaining to
an individual how the output was determined can be difficult. Banking and insurance com-
panies, for example, use simple machine learning models because they need to explain
how every decision was made. Preferring to use simple machine learning while having
state-of-the-art deep neural networks only because the prediction of these networks is not
well understood, is an obstacle that must be overcome.

Based on these challenges, many researchers started to focus on model interpretability. A
variety of interpretability methods are proposed to further investigate the inner mechanism
of deep neural networks and better understand the way these models predict, although
there is still room for improvement. For instance, for a simple image classification task,
visualization tools are used to generate kind of heat maps, given an input image to the
model, to indicate the regions the model takes mostly into account before its prediction for
a certain class. Finally, which interpretability method to choose is based on the data and
the model you want to interpret and is an extra challenge.

1.5 Our work

The aforementioned challenges show us the importance of the interpretability of deep
neural networks and motivate us to further investigate the domain. Here, we choose to
explore visualization methods used for the interpretability of pre-trained models; therefore,
there is no need to train the models from scratch to interpret them. In this way, we have
more freedom to conduct an extensive study on interpretability. We start this work, by
providing visual explanations for a variety of deep neural networks pre-trained on the same
benchmark dataset. The networks are based on different backbone architectures and are
trained either in a supervised or a self-supervised way. To interpret the models, we use
several baseline visualization methods. We further propose new methods that can be
used as alternatives and complementary tools to better understand the networks. Through
this study, we want to explore the inner mechanism of the networks and the visualization
tools we use to interpret them. As this study is for both supervised and self-supervised
models, an extra motivation here is to show common properties and differences in the
way both models predict. Insights from this study are used to further improve a self-
supervised approach, based on a pre-text task in which masked regions of an input image
are recovered during training to achieve representation learning.

Motivated by the self-supervision challenges and thanks to the knowledge we gained from
the interpretability study, we dedicate the rest of our work to finding ways to improve a self-
supervised approach that is based on the recovery of masked regions of images. In this
approach, first, some portions of an image are masked and then, during learning, these
portions are recovered always by taking into account the respective non-masked coming
from the original input image. The recovery of the masked regions of an image is used
as a way for representation learning. A good question would be here, which portions of
the image to mask to achieve better learning and a more competitive pre-text task. After
long experimentation on this, we find an answer and propose new masking strategies that
provide better accuracy scores than previous baseline strategies and acceleration in the
learning process of downstream tasks.

D. Reppas 18

On visual explanation of supervised and self-supervised learning

Considering the accuracy and computational efficiency challenges, we conduct experi-
ments on different scales of a standard benchmark dataset for various training durations
and see the impact on accuracy scores. Then, the influence of the masking strategy and
scale of a dataset is explained visually by the use of interpretability methods during the
learning and evaluation process.

In every type of learning and network architecture, choosing the right loss function is al-
ways a challenge. Based on this, we introduce a new loss function and conduct exper-
iments to show its impact on accuracy scores. We compare its results with the ones
obtained from the baseline loss function, for models trained with different masking strate-
gies.

1.6 Structure

In this section, we present the structure of this work. The chapters are organized as
follows:

» Chapter 1 gives an introduction to Computer Vision, Machine Learning, and Deep
Learning fields while presenting the main challenges that motivate us to conduct this
study.

» Chapter 2 presents state-of-the-art deep neural networks that take part in this study.
The networks are CNNs and transformers and are trained either in a supervised or
self-supervised way. Then, it highlights the importance of interpretability, categorizes
the methods used for the visual explanation of the predictions of the models and
presents the ones we are using.

» Chapter 3 presents our study on interpretability domain. More precisely, it detailed
describes the methodology we follow. It shows our contributions and the experimen-
tal setup we use. It ends with the experimental results along with our conclusions.

» Chapter 4 presents our study on MIM-based self-supervised methods. It shows the
methodology and our contributions, the experimental setup and results along with
the final conclusions we reach.

» Chapter 5 gives the common points of the previous two chapters and comes up with
an overall conclusion. Finally, it provides some future proposals.

D. Reppas 19

On visual explanation of supervised and self-supervised learning

2. BACKGROUND

This chapter is a summary of the basic concepts, domain of research and knowledge
we use to fulfil the purposes of this work. The provided information is closely related to
computer vision, deep learning and interpretability domains. More precisely, we provide
a general overview of deep neural networks and give valuable information about their
functionality. Here, we start with the fundamental architectures and dive into CNNs and
transformers which are the two families of networks we use in this study. We further
emphasize the difference between supervised and self-supervised learning and describe
the architectures we use. We then proceed to the interpretability of deep neural networks.
Here, we highlight its importance and present its basic categories. In the end, we describe
the visualization methods we use. References and related work are attached to the entire
chapter.

2.1 Deep neural networks

Deep learning is a branch of the machine learning methods and based on artificial neural
networks with representation learning. A deep neural network (DNN) use an artificial neu-
ral network (ANN) as a backbone and has multiple layers between the input and output
layers. There is a great variety of deep neural networks but all share five major compo-
nents: neurons, connections, weights, biases, and functions. These components function
similar to the human brain and can be trained like any other machine learning algorithms.
Learning can be supervised, semi-supervised or unsupervised. Maybe the most famous
deep learning algorithms nowadays are multilayer perceptrons (MLPs), convolutional neu-
ral networks (CNNSs), transformers, long short term memory networks (LSTMs), recurrent
neural networks (RNNs), generative adversarial networks (GANs) and autoencoders. In
this work, we use CNNs and transformers. In the following subsections, we describe
those two families of networks. Before diving into this, there is a need to briefly describe
the fundamental architecture of deep neural networks which is perceptron.

2.1.1 How it started

Perceptron Perceptron, introduced by Frank Rosenblatt in 1962, is arguably the foun-
dation of deep neural networks. Perceptron is a binary linear classifier that is capable of
learning linearly separable patterns. Given an input = € R¢, perceptron is a generalized
linear model

y = f(z;w) = sign(w' z), (2.1)
where w € R? is a weight vector to be learned and
+1 x>0
: _ ’ = 2.2
sign(x) {_17 . (2.2)

An input z is classified to the C; class if y = 1 and to the C; class if y = —1. Given a target
variable s € {—1,1} and an training sample = € R?, x is correctly classified if the output y
equals s. In the basic perceptron formula (2.1), apart from the z1, ..., z, inputs, there is
also a constant term z, = 1. The addition of the constant term x, incorporates an extra

D. Reppas 20

On visual explanation of supervised and self-supervised learning

weight coefficient w, to the formula, which is called bias b. Taking into account the bias
term b the (2.1) is generalized to:

y = f(x;w,b) = sign(w' x4+ b). (2.3)
The perceptron algorithm could be explained with Figure 1. Training samples z1,...,x,
are given to the network along with their respective target variables s, ... s, € {-1,1}.

Starting from an initial weight vector w(®, the algorithm learns iteratively by updating the
weight vector following the rule w®*") « w® + es;x;, where ¢ is the learning rate. The
weight vector is updated only if the input sample x; is misclassified. When all the input
samples z; are classified correctly, the learning process stops and the final weight vector
indicates the decision boundary.

/~ Weights
Constant r\D\
WO

,/r\ Weighted

Ve .
- L

w
@)’"’_} 7=l Step Function

Figure 1: The architecture of perceptron [1].

inputs —

Multilayer perceptron The story of deep neural networks continues with multilayer per-
ceptrons (MLPs). In comparison with perceptron, MLPs have more than one neuron and
the hidden layers can be more than one and thus changing the overall depth of the model.
Each of the neurons is a perceptron and these models can be seen as efficient nonlinear
function approximators. In each neuron, there is a non-linear function called activation
function that should be chosen wisely. Examples of activation functions are the step func-
tion introduced in perceptron (2.2), the sigmoid, the rectified linear unit, the hyperbolic
tangent, etc. If z is an input and f* the approximation function, then a classifier y = f*(x)
maps x to a category y, as in perceptron. In an MLP, the mapping is defined as y = f(z;6),
where 0 are the learnable parameters that result in the best approximation function. The
function f is composed of many different functions that are associated together according
to a directed acyclic graph. Each function can be seen as a new representation of the
previous one. In a naive example, where the MLP has two layers, the function is given by
f(z) = fA(fO(z)), in which f1) represents the first layer and f(? the second layer. The
functions are connected in a chain and the total length of this chain indicates the depth
of the MLP. The first layer of this network is called input layer and the last output layer.
The intermediate layers are the hidden layers. The general architecture can be seen in
Figure 2.

During training, the objective is f(z) and f*(x) to be matched by progressively minimiz-
ing a loss function. For different inputs =, we get approximate examples of f*(x). Each
given input = is accompanied by a target label y ~ f*(z). As only the output of the last
layer is specified, the algorithm should decide how to use the hidden layers and which
approximation function f* to implement. The weights of the network are updated by using

D. Reppas 21

On visual explanation of supervised and self-supervised learning

the back-propagation algorithm. This algorithm first calculates all the gradients and then
back-propagates them within the network.

Hidden Layer

Input 3

Figure 2: The architecture of MLP [2].

2.1.2 Convolutional neural networks

After the short description of the two fundamental architectures of DNNs, a quick overview
of the convolutional neural networks (CNNs) follows. CNNs can be seen as regularized
versions of multilayer perceptrons (MLPs). MLPs usually mean fully connected networks.
In other words, each neuron in one layer is connected to all neurons in the next layer. The
"full connectivity” of these networks makes them prone to overfitting data. Typical ways
of regularization, or preventing overfitting, include: penalizing parameters during training,
with weight decay, and trimming connectivity by applying skipped connections, dropout,
etc. CNNs take a different approach toward regularization. They take advantage of the
hierarchical pattern in data and assemble patterns of increasing complexity using smaller
and simpler patterns embossed in their convolutional filters also called kernels.

The main block of the architecture of a CNN is the convolutional layer. This layer consists
of a bunch of kernels that are used to extract feature maps for a given input. Through the
convolution operation, each kernel slides across the height and width of the input image
and the dot product of the kernels and the image are computed at every spatial position.
The output feature maps from the convolution operation are expressed by:

Y = b; + Z Wi, (2.4)

TiET

where W;; € RFXFXC gre the kernels, x; is the spatial position in an image and b, the bias
term of the i, filter. The total number of filters is D and equals the number of feature maps.
This number indicates the depth of the convolutional layer. The size of WW;; is determined
by a selected receptive field ' and its input image depth C.

CNNs are used to process and extract features from data and consist of multiple layers.
These networks have rectified linear unit layers (ReLU) to exclude negative values from
the output feature maps. Then, there are the pooling layers that perform a down-sampling
operation to reduce the dimensions of the feature map. The output of the pooling oper-
ation can be flattened and passed to a fully connected layer (MLP) from which the final
predictions of the model are obtained. The general philosophy behind these networks is

D. Reppas 22

On visual explanation of supervised and self-supervised learning

that the deeper we go, the more filters we find but with decreased dimensions because of
the pooling operations.

The overall architecture of CNNs results in some properties, such as sparse interactions,
parameter sharing and equivariant representations. These networks do not have the "full
connectivity” of MLPs; therefore, fewer parameters need to be stored as also fewer opera-
tions are required. Considering the parameter sharing, the output of a convolutional layer
has a depth component and if we partition each segment of the output, we will obtain a
2D plane of a feature map. Across the same 2D planes all the filters share their weights.
Finally, the property of equivariance means that if the input changes, the output changes
in the same way.

The story of CNN While many believe LeNet [20] is the first CNN model, in 1980 a
biologically-inspired network is introduced that uses convolutions. The name of the model
is neocognitron [21]. LeNet [20] was the first one to combine the ideas of sparse interac-
tions, parameter sharing and equivariant representations in a learning scheme to further
improve the performance of neural networks. The network was implemented in computer
vision recognition tasks. It has 5 layers, the two of them are convolutional and the rest
fully-connected layers. An improved CNN was then AlexNet [22], which had 5 convolu-
tional and 3 fully connected layers. It was the first network to use ReLU as an activation
function. Two years after, Inception v1 [23] was the best CNN by using an increased
depth of 22 layers. This model achieved better performance than AlexNet while having 25
times fewer parameters. The secret behind this was the introduction of an Inception mod-
ule. This module consists of a feature-wise concatenation of 3 convolutions and 1 max
pooling layer in its naive version. To reduce the computation complexity and dimension-
ality, 121 kernels were used as bottlenecks. The second version of this model, Inception
v2 [24], was even better by applying batch normalization, which was first introduced [25].
This technique regularizes the models, avoids the training to get stuck in poor local minima,
makes the training process to be influenced less by the parameter scale and allows higher
learning rate values. Inception v3 introduces another idea, in which there is a factorization
of 7 x 7and 5 x 5 convolutions into three and two 3 x 3 convolutions respectively. In this
approach, a reduction of parameters is succeeded because the weight between adjacent
tiles is shared. The last CNN we present is the residual neural network (ResNet) [3]. Be-
fore ResNets, as shown previously, the architectures tend to stack more and more layers
to achieve improvements in scores. In [3], it is highlighted the vanishing gradients prob-
lem. As the gradient is back-propagated from the deeper layers to the shallower ones, the
gradients may reach infinitely small numbers by the repeated multiplications, when the
network consists of many layers. To face this problem, the “identity shortcut connection”
is introduced also called residual block. As shown in Figure 3, there is skip of connec-
tions between one or more layers. The vanishing gradients problem when going deeper
is mitigated thanks to residual blocks and the ResNets achieve the best performance in
ILSVRC 2015.

weight layer

X
identity

Figure 3: The residual block [3].

D. Reppas 23

On visual explanation of supervised and self-supervised learning

In this work, we use ResNet 50 in our study on interpretability. To be more specific, we
use pre-trained ResNet 50 models, trained in a supervised and self-supervised way, to
interpret their predictions with CAM-based visualization methods. The self-supervision of
ResNet 50 is made with DINO [8] and MoCo v3 [4] approaches.

2.1.3 Transformers

Architectures based on self-attention, in particular transformers [26], are currently state-
of-the-art methods in almost all natural language processing (NLP) tasks. Inspired by this
success, the research community introduced these models to the computer vision domain
as well. Some works combine CNNs with self-attention [6, 27-30] while others replace
the convolutions entirely [4, 5, 31, 32]. Here, we take a closer look at the transformer
architectures used in this work.

ViT [4] While convolutional neural network still remain the most standard approach on
computer vision tasks, a vision transformer, called ViT [4], was introduced in 2020 and had
comparable image recognition results with ResNets on several benchmarks. The model
reached these results when pre-trained on large amounts of data (ImageNet-21k [33],
JFT-300M [34]) and transferred to well-known small or medium-size benchmarks datasets
(ImageNet [12], CIFAR-100 [35]).

The ViT philosophy is inspired by [26] and treats 16 x 16 image patches (tokens) the same
way as word tokens in NLP. Given an input image X € R"*“*¢ where h x w is the spatial
resolution and ¢ is the number of channels, the first step is to tokenize it. This means to
convert it to a sequence of n = hw/p? non-overlapping patches P, € RP”*?>*<fori =1,...,n,
where p x p is the patch resolution. Each patch is then flattened into a vector in R?*¢ and
projected to an embedding vector z; € R using a linear layer, where d is the embedding
dimension. An extra learnable embedding 2I®s! € R?, known as “classification token” [cls],
is then added to the previous embedding vector to form the tokenized image

Z = (2 25 z,) € ROVFDXA (2.5)

where “;” denotes row-wise stacking and n + 1 the total number of tokens including [cls].
The role of the [cls] token will be to represent the image at the output layer. A sequence
of position embeddings is also added to Z to retain positional information. The resulting
sequence is the input of the transformer encoder.

The key building block of this encoder is the self-attention mechanism. This module op-
erates on an input matrix Z € R"*YU*¢ where n + 1 is the number of tokens, each of
dimensionality d. The input Z is linearly projected to queries Q = ZW,, keys K = ZW,
and values V = ZW,, using the weight matrices W, € R™%, W, € R¥% and W, € R,
where d, = d;,. Keys and queries are used to compute the attention weights

-
Avit(K, Q) = Softmax (%) . (2.6)

The Softmax is applied, such that each element of the Ayip(K, Q) lies in the range [0, 1]
and the sum of each row is equal to 1. The output of the self-attention operation is given
by the weighted sum of the n + 1 token features in V, with the weights corresponding to

Avir(K, Q)
Ovir = Avir(K, Q)V. (2.7)

D. Reppas 24

On visual explanation of supervised and self-supervised learning

The attention module repeats its computations multiple times in parallel inside one layer.
To be more specific, the attention module splits its query, key, and value projections h
ways and passes them independently through h separate self-attention operations called
attention heads. From the attention heads, we obtain h attention calculations that are
concatenated to produce a final attention output. This is called multi-head attention and is
an extension of self-attention which gives the transformer greater power to encode multiple
token relationships.

In addition to the multi-head self-attention, each layer of the transformer encoder is com-
posed of skip connections, normalization layers and an additional multi-layer perceptron
(MLP) block, as shown in Figure 4. A transformer encoder consists of B such layers, also
known as blocks. Through all of its layers, the transformer encoder uses a sequence of
fixed length n + 1 of token embeddings of fixed dimension d, represented by a (n+ 1) x d
matrix. From the output of the last encoder layer, only the embedding of the [cls] token is
passed through a classification head. The classification head is implemented by a MLP
with one hidden layer at pre-training and by a single linear layer at fine-tuning.

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

i i
L - @5 @5 E

* Extra learnable i - X
[class] embedding Linear Projection of Flattened Patches]

SHE I
EZ%—»%HI%@%%E‘

Embedded
Patches
Figure 4: The ViT methodology and the transformer encoder overview [4].

In this work, in our study on interpretability, we use pre-trained ViT base models, trained
in a supervised and supervised way, and in our study on self-supervised learning, we
use a ViT-S/16 model as a transformer encoder of iBOT to train the model from scratch.
The self-supervision of ViT base, in the interpretability study, is made with DINO [8] and
iBOT [9] approaches.

DeiT [5] While VIiT is competitive to convolutional neural networks when pre-trained on
large and private datasets [33, 34], when trained on insufficient amounts of data, it does
not generalize well. The superiority of convolutional neural networks when trained on
less amount of data, is justified because transformers lack some of the inductive biases
inherent to CNNs, such as translation equivariance and locality. In [5], it is proposed a
data-efficient training procedure. Thanks to the novelty of a particular distillation proce-
dure, DeiT reaches competitive results while not requiring a very large amount of data to
be trained. Apart from the distillation procedure, specific augmentation, optimization and
regularization techniques are followed to further improve the performance of the model.

The main architecture of the network remains the same as in [4], but there is an addition of
an extra special token called distillation token, as shown in Figure 5. This token interacts

D. Reppas 25

On visual explanation of supervised and self-supervised learning

with the [cls] and patch tokens through the self-attention layers. It is employed in a similar
way as the class token. The difference between the two special tokens is that on the
output of the network the objective of the distillation token is to reproduce the (hard) label,
predicted by a teacher network, while the class token tries to reproduce the true label. The
teacher network is a convolutional neural network. Both class and distillation tokens are
learned by back-propagation and contribute to the total loss. The final loss

1 1
Lper = §LCE(SOftmaX(Z[CIS])a y) + §LCE(SOftmaX(Z[dist])a Yr), (2.8)

is constituted from two equally weighted cross entropy losses Lcg, where y is the true
label, vy, the hard predicted label from the teacher network, Zs the output class token
embedding and Z4sy the output distillation embedding. At test time, both the class and
distillation embeddings contribute to the final model prediction. More specifically, the Soft-
max outputs by the two classifiers are fused (added) to make the final prediction of the
label.

Lce Lteacher
f f
{@DDD%EDDD@}

FFN
self-attention

i)
leooooooOoooe}
ttttttrss sy

class patch distillation
token tokens token

Figure 5: The DeiT architecture [5].

In this work, we use DeiT base in our study on interpretability. More precisely, we use pre-
trained DeiT base models, trained in a supervised and self-supervised way, to interpret
their predictions with CAM-based and attention-based visualization methods. The self-
supervision of DeiT base is made with MoCo v3 [4] approach.

XCiT [6] The self-attention mechanism of transformers provides global interactions be-
tween all tokens and allows flexible image data modelling beyond the local interactions
of CNNs. On the other hand, this flexibility has a negative impact on memory and time
complexity. As a result, applications to high-resolution images and long sequences are
hindered. In [6], a model, called XCiT, is proposed that uses a “transposed” version of
self-attention (2.6). This self-attention version operates across feature channels rather
than tokens. The interactions are based on the cross-covariance matrix between keys K
and queries () and the attention weights are given by:

Axc(K, Q) = Softmax (KTQ) , (2.9)

T

D. Reppas 26

On visual explanation of supervised and self-supervised learning

where 7 is a learnable temperature parameter which scales the inner products before
the Softmax, allowing for sharper or more uniform distribution of attention weights. The
resulting cross-covariance attention is given by the weighted sum of the values V, with
the weights corresponding to Ax¢(K, Q)

Oxca = VAxc(K, Q). (2.10)

The V has linear complexity in the number of tokens and allows efficient processing of
high-resolution images.

In the cross-covariance attention block (XCA), interaction between patches is made only
through the shared statistics. To enable explicit communication across patches, there is
a simple local patch interaction block (LPI) after each XCA block. This block consists of
two depth-wise 3x3 convolutional layers with batch normalization and GELU non-linearity
in between. LPI is a depth-wise structure; therefore, there is only negligible overhead in
terms of parameters as well as a very limited overhead in terms of throughput and memory
usage during inference. Finally, as is common in transformer models, there is an addition
of a point-wise feedforward neural network (FNN). While the interaction between features
is confined within the XCA block and no feature interaction takes place in the LPI block, the
FFN allows for interaction across all features. Each of the XCA, LPI and FFN is preceded
by LayerNorm and followed by a residual connection in a XCiT layer, as shown in Figure 6.

XCiT layer Lx Self-attention (Vaswani et al.)
KFeed—Forward Network (FFN) \ KT /Vdy
1

A(K, Q) = Softmax Q

Y ——

Local Patch Interaction (LPI)

! Cross-Covariance Attention (XCA)
LayerNorm

; : KT/r .
Cross-CovanancelAttentlon (XCA) Axc(K, Q) = Softmax a7
T
input tokens K e RV*d @ € RNV*dq

Figure 6: The XCiT layer [6].

In this work, we use XCiT small in our study on interpretability. To be more specific, we
use pre-trained XCiT small models, trained in a supervised and self-supervised way, to in-
terpret their predictions with CAM-based and attention-based visualization methods. The
self-supervision of XCiT small is made with DINO [8] approach.

2.1.4 Self-supervised learning

The goal of deep learning itself is to learn good representations of raw data. Unsupervised
learning is concerned with learning these representations without labels. Self-supervised
is often used interchangeably with unsupervised learning and "self’ usually refers to the
scenario where we can create our own supervision based on the data. It becomes crys-
tal clear that learning good representations in an unsupervised way can be beneficial,
considering the expenses and difficulty of producing new datasets for new tasks. Taking
advantage of the vast amount of unlabeled data on the Internet, is something supervised
learning cannot do. So no matter if one can appreciate the success of self-supervised

D. Reppas 27

On visual explanation of supervised and self-supervised learning

learning, there is still a lot more unlabeled data outside than labelled and it could be nice
to leverage the power of the unlabeled data to further improve the performance of super-
vised systems. Combining supervised with self-supervised learning may result in much
more cost, compute and time-efficient systems. Finally, there is also cognitive motivation.
It is said that the way self-supervised models learn from data, can be seen as the way
babies or animals learn from the outside environment. Maybe learning from data is the
only way for the models to obtain "real” intelligence. A relevant quote by Pierre Sermanet
was “Give a robot a label and you feed it for a second, teach a robot to label and you feed
it for a lifetime.”

Depending on the pre-text task and the way we take advantage of the unlabelled data,
several types of self-supervision arise. The main categories are presented below, with
the related work attached.

Generative methods The objective of the generative self-supervised methods is to re-
construct the original input while learning meaningful latent representation. Many of these
approaches rely either on auto-encoding of images [36—38] or on adversarial learning [39],
jointly modelling data and representation [40—43]. These methods usually operate directly
in the pixel space. The high level of detail required when generating images for represen-
tation learning is computationally expensive.

Methods based on pre-text tasks Some self-supervised methods rely on using auxil-
iary handcrafted prediction tasks to learn their representation. In particular, relative patch
prediction [44,45], colorizing gray-scale images [46,47], image inpainting [48], image jig-
saw puzzle [49], image super-resolution [50] and geometric transformations [51,52] have
been shown to be useful.

Contrastive methods Contrastive approaches [7,53-56] have shown great promise
by achieving state-of-the-art results and are the best self-supervised methods compared
to the previous two categories. These models are trained by reducing the distance be-
tween representations of different augmented views of the same image (positive pairs)
and increasing the distance between representations of augmented views from different
images (negative pairs). These methods need a careful treatment of negative pairs [57]
by either relying on large batch sizes [53, 56], memory banks [7] or customized mining
strategies [58,59] to retrieve the negative pairs. Here, the choice of image augmentations
is also important for their performance [53, 56].

Methods based on self-distillation Recent works have shown that the requirement of
negative pairs can be eliminated while at the same time having competitive results. Self-
supervised methods based on self-distillation use only positive pairs and two networks
for representation learning. During learning, the representations of the augmented views
coming from the same image get closer and knowledge from one network is distilled into
the other. Grill et al. propose BYOL [60], which is a metric-learning formulation where fea-
tures are trained by matching them to representations obtained with a momentum encoder.
Methods like BYOL can work even without the momentum encoder, but their performance
will drop [60,61]. Finally, DINO [8] takes its inspiration from BYOL but operates with a
different similarity matching loss. The DINO self-supervised learning can be seen as a
form of mean teacher self-distillation [62] with no labels.

D. Reppas 28

On visual explanation of supervised and self-supervised learning

MIM-based methods Masking a portion of the input tokens (words in a text or patches in
an image) and training a transformer-based architecture to predict these missing tokens
[9, 14-16, 63] is called masked language modelling (MLM) in the language domain [63]
and masked image modelling (MIM) [9, 14, 16] in the vision domain. MIM-based meth-
ods achieve representation learning through the reconstruction of masked patches and
have already shown impressive results. Depending on the masking strategy that is fol-
lowed, several methods were proposed. In BEIT [16], images are mapped to discrete
patch tokens and then a block-wise random strategy is introduced to mask some patches.
The pre-training objective of BEIT is to recover the original patch tokens based on the
corrupted image patch embeddings, which are resulted from the masking strategy. Sim-
MIM [14] randomly masks large patches and predicts the corresponding pixels by direct
regression. In iBOT [9], the self-distillation loss of DINO [8] is extended by adding an
extra dense term (patch level) to the final loss, that is used for reconstructing randomly
picked image patches. Finally, in [10], a masking strategy of highly-attended patches is
proposed. The highly-attended patches are picked from the attention map of the [cls] to-
ken and derived from the last layer of a transformer. On the contrary, MST [17] follows an
opposite masking strategy that is based on low-attended patches.

2.1.41 The self-supervised models used in this study

In this subsection, we take a closer look at the self-supervised models that take part on
the experiments of this work.

MoCov3[4] Momentum contrast (MoCo [7]) is introduced as a way of building large and
consistent dictionaries for unsupervised contrastive learning. As shown in Figure 7, MoCo
uses two encoders to match an encoded query ¢ to a dictionary of encoded keys using a
contrastive loss. This approach uses the InfoNCE loss [54], which can be expressed as:

exp(gk™/7)

exp(ght/7) + > exp(qk~ /)

(2.11)

Lq,k+,{k‘} = — lOg

where q is a query representation, k™ is a representation of the positive (similar) key sam-
ple, {k~} are representations of the negative (dissimilar) key samples and 7 is a tem-
perature hyper-parameter. It is considered that there is only one positive query-key pair
originated from the same image under different random crop views and augmentations. All
the other keys are not originated from the same image and are considered negative pairs
to the query. The dictionary keys {ko, k1, k2, ... } are defined on-the-fly by a set of data
samples. The dictionary is treated like a queue. Here, the current mini-batch is enqueued
while the oldest mini-batch is dequeued. The keys are progressively encoded driven by a
moving average momentum update coming from the query encoder. The encoder of the
query is denoted f, and its parameters 6,. Similarly, f; is the encoder of the keys and 6,
its parameters. The 6, is updated according to

where m € [0,1) is a momentum coefficient. On the other hand, the parameters ¢, are
updated by back-propagation. The momentum update makes 6, evolve more smoothly
than 6,.

D. Reppas 29

On visual explanation of supervised and self-supervised learning

contrastive loss

similarity

q ko ky ko ...

queue

momentum

encoder
encoder

ke ke ke
query Y Y Y
T To™ Ty~ Ty ..

Figure 7: Momentum Contrast (MoCo) [7].

MoCo v2 [64] verifies the effectiveness of two design improvements of SimCLR [53] by
implementing them into the MoCo framework. To be more specific, the fully-connected out-
put layer that is used as the projection head in MoCo is replaced by a 2-layer MLP head.
Then, the original MoCo augmentations are extended by including the blur augmentation
of SIMCLR. Finally, MoCo v3 [65] is an incremental improvement of MoCo v1/2 [7, 64],
that achieves a better balance between simplicity, accuracy, and scalability. In this ap-
proach, the memory queue of the two previous versions is abandoned as it was found a
diminishing gain if the batch was sufficiently large (e.g. 4096). While MoCo v1/2 is only
tested with convolutional neural networks, MoCo v3 is generalized to ViT [4] model as
well. In MoCo v3 architecture, there is a projection head, which is a 3-layer MLP, and
an extra prediction head, which is a 2-layer MLP on top of the encoder f,. The encoder
fx has the projection head only and not the prediction head. The encoder of keys f; is
updated again by the encoder of the query f, according to (2.12), excluding the prediction
head. The improvement of the 3,; MoCo version is mainly a result of the extra prediction
head and the large batch size. MoCo v3 further studies the instability issue when trained
with ViT. Based on an empirical observation of gradient changes, it is found that instability
happens mainly on the shallower layers. The instability challenge is faced by freezing the
patch projection layer during the training process. In other words, a random patch projec-
tion layer to embed the patches is used. By this trick, the instability issue is alleviated in
several scenarios and consistently the accuracy is increased.

In this work, pre-trained MoCo v3 models, that use ResNet 50 and ViT base as backbones,
are used in the interpretability study. The predictions of MoCo v3 models are visually
explained with CAM-based and attention-based methods.

DINO [8] Self-supervised learning in DINO can be interpreted as a form of self-distillation
with no labels. This framework is flexible and works on both convolutional neural networks
and transformers. A simplified version of this approach is illustrated in Figure 8. Given
an input image z, two augmented views of the original image are generated x, 5. The
first view is given to the student network gy, and the second one is given to the teacher
network g,,. Both networks use the same backbone architecture g with different sets of
parameters, 6, and ;. Only the parameters of student network 6, are back-propagated
while the parameters of the teacher 6, are updated with an exponential moving average
(EMA) of the 6, parameters. The rule that updates 6, parameters is 6, «+— A0, + (1 — \)d,,
where)\ follows a cosine schedule from 0.996 to 1 during the training procedure. The
output of the teacher is centered with a mean calculated over the batch. Both network
output a K dimensional feature that is normalized with a temperature Softmax over the

D. Reppas 30

On visual explanation of supervised and self-supervised learning

feature dimension. The output probability distribution from the student network is

Ps(l-)(l) — eXp(QQS (x>(1)/7—8) ’ (213)
> exp(ga, (2)®/7,)

where 7, > 0 a temperature parameter that controls the sharpness of the output distribu-
tion. In a similar way, (2.13) can be used to compute P,. The P, and P, are learned to be
matched by minimizing a cross-entropy loss w.r.t. the parameters of the student network
Os

min H(P(x), P,(x)) (2.14)

where H(a,b) = —alogb. The loss is applied globally between the [cls] tokens of a,b.

DINO follows a multi-crop strategy [66], where from a given image x a set V' of different
views is generated. The set consists of two global views, ={ and x and several local views
of lower resolution. When taking into account all the generated views, Equation 2.14 is
generalized to

min > > H(P(x),P(a)). (2.15)
s ze{ad,zd} a:;i\/

loss:
@ v @
g

S

[ot]

centering

student ggg — teacher gg;

Figure 8: DINO self-distillation based approach [8]

In this work, pre-trained DINO models, that use ResNet 50, ViT base and XCiT small as
backbones, take part in the interpretability study. The predictions of DINO models are
visually explained with CAM-based and attention-based methods.

iBOT [9] This self-supervised framework performs masked image modelling (MIM) via
self-distillation. Self-distillation is shown previously in DINO [8], in which the distillation loss
is applied globally on the [cls] token. iBOT turns this task into masked image modelling
by applying an extra loss densely on the masked tokens.

iBOT follows the random block-wise strategy of BEIT [16], in which a mask vector m =
(mq,...,my) € {0,1}" is generated to randomly mask blocks of image patch tokens. An

D. Reppas 31

On visual explanation of supervised and self-supervised learning

input image X is tokenized as Z = (21°; 2. . . z,). The mask vector m generated from
BEIT strategy, gives the masked tokenized image Z = (1 z,; .. .; 2,), with

21' = (1 — ml)zz -+ miz[maSk], (216)

fori =1,...,n, where 2[MKl c R? is the "mask” token. This special token is learnable as
the [cls].

A simplified version of iBOT learning procedure is illustrated in Figure 9. The u and v
are two tokenized image views of an image X and u, v the respective masked versions
of the views. The student network outputs for the masked view @ the embedding of its
patch tokens apaich = ng“h(a) and the teacher network outputs for the non-masked view
u the embedding of its patch tokens """ = ng‘“"h(u). The training objective of MIM is a
cross-entropy loss and is applied densely between masked and unmasked output patch

embeddings of an image. The loss for a specific view u is

Lyivview = — Z m; - Py ()T log ng“h('&i), (2.17)

=1

where n is the number of patch tokens of the given image and m the mask vector. The
second loss term of iBOT is the distillation loss of DINO. As shown in Figure 9, u is passed
through the teacher and v through the student network to get the predictive categorical
distributions from the [cls] token: u® = P}*(u) and 41 = PI*(i). Here, a cross-
entropy loss is applied globally on the predictive categorical distributions and is formulated
as:

Loy = — Py ()" log P¥(0). (2.18)

iBOT follows the multi-crop strategy of DINO. Based on this strategy, (2.18) and (2.17)
must be generalized to take into account all the crops that are generated from the original
image. From a given image X, a set of different views € V' is generated. There are two
global views V, C V and several local views V; C V' of smaller resolution, where V gZ V.
Through the teacher network, only the unmasked global views are passed. On the other
hand, masked global and unmasked local views are given to the student network. The
training objective of MIM considers only global views and when taking into account all of
them (2.17) can be reformulated to:

Ly = — Z mefet(zv)i 10g(f95(gv)i), (2.19)

veVy =1

where Z" is the tokenized unmasked image of a view v € V;, and 7" its tokenized masked
image. The f,,(Z") and fgs(Z”) are the output patch embeddings of teacher and student
network respectively. With a similar way, 2.18 can be generalized and used for all the
views of an image. This loss takes into account the global views passed through the
teacher and both global and local views passed through the student. The cross-entropy
loss is applied globally on the output [cls] embeddings of the teacher fj,, and student f,,
networks

Lows = = 3057 Tugi fo (270 og fo, (V7). (2.20)

veVy jev

D. Reppas 32

On visual explanation of supervised and self-supervised learning

where Z" is a tokenized unmasked image of a specific global view v € V,, Y7 a tokenized
image (masked or not) of a global or local view j € V', f,,(Z")! is the output [cls] em-
bedding of the teacher and f,, (Y7)I°s! the respective output of the student. The overall
iBOT loss is a weighted sum of (2.19) and (2.20). In the learning process of iBOT frame-
work, as in DINO, only the parameters of the student 0, are back-propagated while the
parameters of the teacher 6, are updated with an exponential moving average (EMA) of
the parameters of the student.

x~7J t~T

=] [=]
stop grad :—'i

vtpatchE u]z:atchEI

o

online tokenizer stop grad

T
o
£
>

[A emask]

Figure 9: iBOT framework [9]

In this work, we use a pre-trained iBOT model, which has a ViT base backbone architec-
ture, in the interpretability study. We interpret the model with attention-based methods.
We further train from scratch iBOT models, that use a ViT-S/16 model as a backbone, in
the self-supervised study.

AttMask [10] Attention-guided masked image modeling (AttMask) is again an idea in
the context of distillation-based MIM. Here, the mask generation is based on the attention
maps of a teacher network and it is shown that this type of informed masking demonstrates
improvements over the previous baseline random masking strategies [14—16] and creates
a more challenging MIM pre-text task for self-supervision.

In AttMask [10], both teacher and student use the same transformer as a backbone and the
basic idea is that the teacher encoder generates an attention map which is used to guide
masking for the student encoder. A simplified overview of this self-attention mechanism
is illustrated in Figure 10, where a tokenized image 7 is given as an input to the teacher
network f, and this encoder outputs the target features fy (Z) and the attention map of
the last layer @®sl. The attention map definition is described in detail in subsection 2.2.4
and is expressed by (2.32). Based on the attention map, a mask m!?, based on the most
high-attended tokens, is generated. Once, the high-attended token mask is generated per
image, the masked tokenized image 7 is created according to (2.16) and passed through
a student encoder f, to generate the predicted features f,(Z). The multi-crop strategy is
followed in this self-supervised approach as well. Learning is succeed by minimizing the
dense distillation loss Ly (2.19), which is applied between the predicted projections of
patch tokens and target non-masked patch tokens projections. As in iBOT, AttMask also
uses the global cross-entropy loss Lqs; (2.20), applied between the teacher and student
[cls] output representations. Therefore, the final loss of AttMask is a weighted sum of both
(2.19), (2.20). Following [8, 9], only the parameters of the student # are back-propagated
and the parameters of the teacher ¢’ are updated with an exponential moving average of
the parameters of the student.

In this work, we train from scratch AttMask models, that use a ViT-S/16 model as a back-

D. Reppas 33

On visual explanation of supervised and self-supervised learning

fo
@ @ @ Target
Image - Teacher | — @ @ @ features
Z e fy (2)
l alcLs]
Self-Attention E
¢ H
® — m—> Lymv Loss
1 AttMask T
Masked [M] | OO0 predictea
1m~age [M]l[M] - Stll d ent - @ @ @ featuies
Z | Do @
fo

Figure 10: Attention-Guided Masked Image Modeling approach [10]

bone, in the self-supervised study. Based on this approach, we propose new masking
strategies and define a more challenging MIM-based self-supervision pre-text task.

2.2 Interpretability of DNN

The basic purpose of this section is to highlight the importance of neural network inter-
pretability, refer to its basic categories and finally present the baseline interpretability meth-
ods used in this project. But before proceeding to the next sections, we will try to define
interpretability. The clearest and to-the-point definition for us is given by [67], where in-
terpretability is defined as the ability to provide explanations in understandable terms to a
human. Explanations can be logical rules and understandable terms should be from the
domain knowledge related to the task. In other words, interpretability is about providing
explanations that are built on top of understandable terms which can be specific to the
targeted tasks.

2.2.1 Intepretability importance

Undoubtedly, the interpretability issue affects people’s trust in deep learning systems and
lack of interpretability could be harmful in many cases [67—69]. Having this in mind and
based on [70], we summarize three essential reasons why interpretability is important.

1. High-reliability requirement: Although deep neural networks have proven so far great
performance on some relatively large test sets, the real-world environment is way
more complex. As some unexpected failures are inevitable, there is a crucial need
for means to ensure control. Having in mind that some prediction systems are re-
quired to be highly reliable because an error may cause catastrophic results (e.g.
human lives, heavy financial loss), interpretability can make potential failures easier
to detect avoiding severe consequences.

2. Ethical and legal requirements: It is a fact, that there is a worry about fairness when
deep neural networks are used in our daily routine and that seems to be normal
because a neural network may be trained with a biased training set, which is often

D. Reppas 34

On visual explanation of supervised and self-supervised learning

not so easy to observe. So a way to examine the fairness of a network prediction
is to interpret it. In addition, many companies in the industry, such as banking and
insurance, use data from their clients and machine learning models for automated
decision-making. It is a legal requirement for these companies to be able to explain
to their clients how a decision was taken. Interpreting the predictions of models
maybe is the only way to achieve this.

3. Scientific usage: According to Thomas Hobbes, “Science is the knowledge of conse-
quences, and dependence of one fact upon another.” When a deep neural network
reaches a better performance over its previous baseline model, it must have found
some unknown "knowledge”. Interpretability is a way to reveal it.

2.2.2 Interpretability categories

The more the need for interpreting models, the more methods are released. There have
been proposed several ways of categorizing these methods. We believe that a novel
taxonomy for the existing interpretability methods is introduced in [70]. The taxonomy
consist of three dimensions: passive vs. active, global vs. local interpretability and types
of explanations.

1. Passive vs. active approaches dimension: The passive interpretation process is
made on trained networks. This means that the weights of the model are already
learned from the dataset used in training. On the contrary, in the active methods,
there is a need for some changes before the start of training. The modification could
be on the network architecture or the training process.

2. From local to global interpretability: Global interpretability includes processes used
to understand the overall prediction logic of a network. Local interpretability meth-
ods are used for individual explanations of the predictions of a model. However,
multiple local explanations can be accumulated to achieve a certain level of global
interpretability.

3. The type/format of produced explanations: According to [70], logic rules, hidden se-
mantics, attribution and explanations by examples are the four most common types
of explanations. Extracting logic rules is a type of explanation that usually provides
global explanations. In these methods, a single rule set or a decision tree is ex-
tracted by a target model. The explanation is of the form ”If an input z is classified in
a class y, itis because the features f;, .. ., f,, are present and features f,, ..., f,. are
not”. In the second type of explanation, the goal is to associate abstract concepts
with the activation of hidden neurons or layers. For instance, in a classification task
on a dataset that consists of car images, some neurons may have a high response
to the main shapes. Others may respond to the detail or background information
of the cars. These methods provide global interpretability and are based on repre-
sentative inputs that maximize the response of the neurons. One way to reveal the
response of the neurons is the provision of visual explanation, by using appropriate
tools. The format of attribution is a way to show the impact the features of an in-
put image have on the prediction of a model. The attribution in the computer vision
field is represented by a mask called a saliency map that indicates the high-attended
regions of an image. In the last type of explanation, to interpret the predictions of
a model for specific inputs, similar examples to the inputs are used to support the
interpretability.

In practice, each interpretability method has each own advantages and disadvantages. In

D. Reppas 35

On visual explanation of supervised and self-supervised learning

this work, we use passive (post-hoc) attribution-based methods which could be charac-
terized local or semi-local. To be more specific, we use popular baseline methods which
are based on CAM or attention. In section 3.1, we further propose new interpretability
methods, based on the two aforementioned families, which can be used as alternative or
complementary visualization tools for better understanding the networks.

2.2.3 CAM-based methods

Methods based on class activation map (CAM) can be defined in general as simple mech-
anisms to interpret predictions of convolutional neural networks (CNNs). Through these
methods, saliency maps are generated that highlight the image regions which are most
relevant to a particular class. For each class, the network learns a different set of weights.
After training, these weights are used to linearly combine the feature maps of a given in-
put image for the generation of the saliency map for a specific class. In other words, the
saliency map is a result of the knowledge gained for a specific class by the network during
training and the feature maps of a given input image. The weights used to combine the
feature maps are either based on gradients or class scores. The variation of weighting
schemes results in different CAM-based methods.

P55

4
1
™ Australian

Tw. 5 terrier

Class
Activation
Map

Figure 11: Class activation mapping method (CAM) [11]

OO

<Z00O
<Z00
<Z00
<zZ00O
<zo00

Class Activation Mappmg

!

+ Wy AF oo0 A W, *

g A

The first CAM was introduced in [11], where it is shown that a CNN with a global average
pooling (GAP) layer demonstrates localization capabilities, although the network was not
trained for this purpose. In a network with a CNN followed by a GAP layer, the final
classification score Y, for a target class ¢ can be expressed as a linear combination of its
global average pooled feature maps A* derived from the last convolutional layer

Yo=D wi) > Alwy). (2.21)
k x Y
The saliency map M¢ for a specific class ¢ for each spatial location (z, y) is given by:

ry) =Y wiA(z,y), (2.22)
k

where w¢ is the weight coefficient which is used to linearly combine the feature maps A*.
For a target class ¢, M.(z,y) is directly correlated with the importance of a specific spatial
location (z,y) of an input image [and thus can be used as a visual explanation tool of
the class predicted by the model. In the CAM method, a linear classifier is trained on

D. Reppas 36

On visual explanation of supervised and self-supervised learning

top of the global averaged pooled feature maps of the last convolutional layer for each
target class c, for the weights wj, to be estimated. In other words, one linear classifier for
each class needs to be trained. In Figure 11, it is shown the final saliency map derived
from the CAM method for a given input image depicting an Australian terrier. Here, the
global averaged pooled feature maps of the image are linearly combined by the weights
wi,wa, . .. Wy, learned by the network for the specific class "Australian terrier”, to produce
the final saliency map.

Although the saliency maps obtained from the CAM method are class discriminative, the
need for training multiple classifiers is too restrictive. To overcome the limitation of [11],
new approaches, based on this idea, were proposed. Although there is a variety of CAM-
based methods, we use only four of them in this study. All of them can be expressed with
a common formula detailed described in the next paragraph.

Eq. (2.22) can be generalized for different selected target layers as follows. Given an
input image I, a L-layer CNN, a target class c and a target layer [, the saliency map for all
CAM-based methods

K
M,(z,y) = ReLU (Z wi A% (x, y)> : (2.23)

k=1

is expressed as linear combination of the K feature maps A%, determined by the weight
coefficient wy. The resulting saliency map is first ReLU rectified to filter negative units and
then is upsampled to the size of the input image. While all the methods based on CAM
use Equation 2.23 to obtain saliency maps, finding the most meaningful way to compute
wj, and determine the importance of each feature map to the prediction of a target class
results in a variety of CAM-based methods.

* In GradCAM [71], the weight coefficient of each feature map wy, for a class c is the
summation of the gradients of the class score Y, w.r.t every pixel of the feature map
A (z,y)

1 Y. (A")

Z £ 0A(z,y)’ @29

wy =
where Z is the total number of units in the k;;, feature map. In other words, there is
first computation of the gradient of the score for class ¢ w.r.t feature map activations
% and then these gradients flowing back are global average pooled % ZW to give
the importance weights wyf. In this approach, it is considered that all pixel gradients

contribute equally to computing wg, as an average from all of them is taken.

* GradCAM++ [72] considers that pixels (z,y) that contribute more toward a class ¢
should take more weight and not treated equally, as in GradCAM, while comput-
ing the weight coefficients w¢ of feature maps A*. Based on this, it is introduced
a pixel-wise weight coefficient a*(z,) that consists of higher-order positive partial
derivatives. Here, the weight coefficient of each feature map wy, is the summation of
pixel-wise weighted ReLU rectified gradients of the class score Y, w.r.t the feature
maps A*(z,y)

Y, (A!
wy, = mzy: a®(z,y) ReLU <8A”f—gx,g);)> . (2.25)

In [72], it is shown that the addition of factor a*(x,y) improves robustness towards
more objects on the image and the obtained saliency maps are more sharpened and
better localized on images.

D. Reppas 37

On visual explanation of supervised and self-supervised learning

* In XGradCAM [73], it is considered, as previously, that for a class ¢ the contributions
of the pixels (z,y) is not the same; therefore, it is introduced a factor which is given
by the normalized feature maps

A (z,y)

s¥(x,y) = m (2.26)

Here, the weight coefficient of each feature map wy, is the summation of the weighted,
by the normalized feature maps on each spatial location (x, y), gradients of the class
score Y, w.r.t the feature maps

Al
Zs x,y) aAl’“()) (2.27)

In [73], it is shown by using the s*(z,y) factor the sensitivity and conservation prop-
erties of GradCAM are boosted. Considering sensitivity, the importance of each fea-
ture map in the output probability of a model should be equal to the output change
resulting from the removal of the corresponding feature of the input. In conservation,
the sum of the importance of all the feature maps should match the magnitude of
the output of the model.

* Finally, Score-CAM [74] is not dependent on gradients and obtains the weight of
each feature map through its forward passing score on the target class. Again,
Score-CAM can be defined for any target layer [according to (2.23) and the weight
coefficient of the feature maps is

wy, = Softmax (u°), , (2.28)

where the Softmax normalization is used to consider only the positive feature con-
tributions. This means fewer highlighted areas in saliency maps. The vector u
computes the importance of each feature map by comparing the output probabil-
ity scores of a baseline input image / and an image [,, masked according to each
feature map A%

uj, = f (In © n(up(A™))), = f(D)e, (2.29)

where © is the Hadamard product which is used to mask 1,, according A, up de-
notes upsampling to the spatial resolution of input 7,, and n(A) is a normalization of
A into range [0, 1] that is given by:

A—min A

max A —min A’

n(A) = (2.30)
Itis shown that Score-CAM provides the best quantitative and qualitative results over
the previous CAM-based methods. Also, there is no need for gradients anymore to
compute the weight coefficient w;. For computing wy, it is required as many forward
passes through the model as the number of feature maps in the target layer, which
is more computationally expensive than the three previous methods.

2.2.4 Attention-based methods

The multi-head self-attention has become the key building block in the architecture of
transformers and visualizing the attention weights, alternatively called attention maps, is

D. Reppas 38

On visual explanation of supervised and self-supervised learning

the easiest and most popular approach to interpret the predictions of these networks and
further gain insights about their internal mechanism.

To give a detailed description of how to visualize raw attention maps, we reuse and refor-
mulate (2.6). A transformer encoder, with B total blocks, takes as an input a tokenized
image Z € R™*tVx4 where n + 1 is the number of tokens, each of dimensionality d. The
input Z is linearly projected to queries Q = ZW,, keys K = ZW,, and values V = ZW,,
using the weight matrices W, € R¥%, W, € R™ and W, € R, in h ways and will be
used in h self-attention operations, called "heads”, to compute independent attentions that
are concatenated to produce a final attention output. The self-attention operation is ap-
plied on a small sub-space d,, of the input embedding dimension d. The d}, is computed by:
hd;, = d, where h is the number of "heads”. To compute the weights of the self-attention
output of a specific block b, Q®Vand K ®) € R*(+1)xdn gre used

))’
A® = Softmax (QW) . (2.31)

The Softmax is applied, such that each element of the A®) e R/>*(+1)x(+1) Jies in the
range [0, 1] and the sum of each row is equal to 1. A; denotes the row i of A and represents
the attention coefficients of each token w.r.t the token i. In [75], they focus on the raw
attention map of the [cls] token that represents the pairwise relevancy of [cls] token and
patch tokens. The attention map vector of [cls] token consists of all but the first element
of the first row of A

C_i[cls] = (a1,27 1,3y .- - 7a1,n+1) . (232)

The attention map vector of [cls] token djqs) has n elements. This vector is first reshaped to
2D and then interpolated to the size of the input image. This raw attention map indicates
the regions of an input image that the [cls] token attends. Visualizing the raw attention
map, given an inputimage, is shown to be an easy and widely used method to interpret the
predictions of models, based on self-attention mechanisms. In [75], the final raw attention
map is derived from the last block of the model, in particular, from different heads or an
average of all of them.

In [18], it is assumed that taking into consideration only attention maps from the last self-
attention-block, is an unreliable way to interpret the prediction of the model because the
information derived from different tokens across layers of transformers is incrementally
mixed. With the main problem being how the information propagates from the input layer
to the embeddings in deeper layers, it is proposed Rollout method in which average from
all heads attention maps

A =+ E,A®), (2.33)
derived from each block b are combined linearly to produce the final attention map
rollout = AMWA® A5 (2.34)

where £}, is the average across the dimension of heads and B is the last block. To account
for the residual connections in transformer blocks b, in (2.33), it is added the identity matrix
I to avoid self-inhibition for each token.

According [19], the main challenge in assigning attributions based on attention weights is
that there is a non-linear combination of attentions from one layer to another. Based on

D. Reppas 39

On visual explanation of supervised and self-supervised learning

this, it is proposed a visualization method that gradients and relevancies are propagated
through the model and integrated to generate the final attribution maps, called relevancy
maps. This method adopts LRP to calculate the relevance scores for each attention head
in each block of transformer [76] and the relevance propagation is based on the generic
deep Taylor decomposition [77]. In this study, we call this method TIBAV. Given an input
image, the final raw attention and Rollout maps are independent of a target class. On the
other hand, TIBAV is the only class-specific visualization tool for transformers. We briefly
describe this approach with the following two equations:

A® = T+ E,(VA® © R™)*, (2.35)
A = AVA® AB), (2.36)

Following the propagation process of gradients and relevance, each attention map A®
of a specific block b has its gradients VA® and relevance R™) w.r.t a target class c.
Here, n, is the layer which corresponds to the Softmax normalization operation in (2.31)
of block b and R(™) is the relevance of the layer. E, is again the average across the heads
dimension, I is the identity matrix to account for the residual connections in the model
and © is the Hadamard product. To compute the weighted attention relevance, only the
positive values of the multiplication between gradients and relevance are considered (7).
The final map of the method Ag,, € R+ ig g result of multiplying the maps A®
from each block b.

D. Reppas 40

On visual explanation of supervised and self-supervised learning

3. INTERPRETABILITY

The whole section is dedicated to the presentation of our work in the interpretability do-
main. We first describe in detail the methodology we follow in our experiments and present
the most important contributions of our work. We give then a general overview of the
dataset, networks and the evaluation protocol we use. Here, we add some useful imple-
mentation details. The chapter ends with the presentation of the experimental results and
the conclusions.

3.1 Methodology

The methodology of our work in this chapter is correlated with the interpretability of pre-
trained deep neural networks. Here, we interpret the predictions of both supervised and
self-supervised models that are based on common backbone architectures. The networks
we choose to investigate are state-of-the-art convolutional neural networks and transform-
ers. Given a series of input images, we interpret the models by using variation of post-hoc
visualization techniques to provide visual explanations. These explanations are known
as saliency maps and are not evaluated only qualitatively but quantitatively as well. The
evaluation of the saliency maps provides us with some significant observations on the
post-hoc methods and the evaluation metrics we use. These saliency maps further help
us to explore the inner mechanism of the models and give us the opportunity to compare
their predictions. A more thorough description of the methodology we follow in this set of
experiments is organized and presented below.

Interpretability of models with CAM-based methods We conduct extensive experi-
ments using a variety of CAM-based methods to interpret both CNNs and transformers,
trained in a supervised or self-supervised way. The visualization methods we use here
are GradCAM [71], GradCAM++ [72], XGradCAM [73] and Score-CAM [74]. Although the
aforementioned methods are proposed to interpret CNNs architectures, we use them for
the transformers as well, following the implementation code [78]. As we’ve already men-
tioned in subsection 2.2.3, a saliency map for a specific class ¢ of an input image for all
CAM methods could be expressed as a linear combination of the feature maps in the tar-
get layer. In a transformer, the output of the layers is typical of shape b x (n+1) x d, where
b is the batch size. In the n + 1 dimension, the first element represents the [cls] token and
the rest represent the p x p patches in the image. We treat the last n elements as a p x p
spatial image, with d channels. This reformation gives the output of transformer the shape
of feature maps learned by CNNs. By reshaping the output of the transformer along with
the gradients, it is possible to use CAM-based methods for transformers as well.

The saliency maps we observe from all CAM-based methods are evaluated qualitatively
and quantitatively. For the quantitative evaluation, we use classification metrics which are
described in detail in subsection 3.3.3. All the qualitative and quantitative results along
with their discussion can be found in subsection 3.4.1.

Interpretability of models with baseline attention-based methods Here, we want
complementary attribution maps for transformers, obtained from more standard visualiza-
tion approaches for these networks. Therefore, we use attention-based methods which

D. Reppas 41

On visual explanation of supervised and self-supervised learning

can be used to interpret only transformers and not CNNs. To be more specific, we vi-
sualize raw attention maps and use the Rollout [18] and TIBAV [19] methods to further
interpret supervised and self-supervised transformers.

All the attribution maps, obtained from the aforementioned methods, are evaluated qual-
itatively and quantitatively with classification metrics. We summarize the results and our
observations in subsection 3.4.2.

A closer study on the predictions of transformers At this set of experiments, we take
a closer look at the inner mechanism of transformers and further investigate the way these
models predict, given input images, by proposing new complementary visualization meth-
ods that are based on the previous attention-based approaches. The obtained attribution
maps along with their evaluation are found in subsection 3.4.2.

* Raw attention maps: As previously mentioned in subsection 2.2.4 visualizing the
raw attention map of the [cls] token is the easiest and most popular approach to
interpret a prediction of a transformer. The most standard approach so far is to
visualize the raw attention map from the last layer of a transformer, which is a result
of averaging the attention map from each head for a specific layer. For abbreviations
purposes, one can find this approach in our work as Raw;, or simply Raw. Here, we
study also the option where the Softmax operation is absent from the self-attention
mechanism and we call this method Raw*. We also choose to visualize attention
maps from shallower layers as well, Rawg,Raws,. .. etc. This will give us a better
idea of where both supervised and self-supervised models focus on an image when
going deeper into the networks and vice versa. For the attention map obtained from
the last layer, we further investigate the difference in the maps when studying each
head individually.

* Rollout complementary methods: Rollout [18] as we mention in subsection 2.2.4 is
a linear combination of the attention maps derived from all the layers of transformer.
Based on this, we use the method for specific groups of layers and not for all. So for
instance, if we want to investigate the predictions of the model in a group of middle
layers, we linearly combine their attention maps and evaluate the resulting map.
We call Rollout;_5 the method from which the final attention map is derived from the
3.4, 4 @nd 5, layer etc.

* Pre-processing raw attention maps: Here, we use two mathematical functions to
pre-process Raw to reveal the next highest attended regions on an image. The first
function we use is the log. As we said, the final attention map is derived from the
average of the attention maps of all heads in a specific layer. Now, we first apply the
log function on the attention map of each head and then we calculate the average.
The log function brings all the attention values closer to the most highly attended
ones. By this way, we reveal the next more important regions on an input image
that a model takes into account before its prediction. The name we give in this
method is Raw-Log. A similar influence on the attention map has the power function
when the map of each head is raised to powers € (0,1). The smaller the value of
the power, the more "hidden” regions are revealed, always following the priority of
the most important pixels. The method when using the power value 0.5 has name
Raw-Pow(0.5).

» Taking advantage of the tensor of keys: As we showed in subsection 2.2.4, the
multi-head self-attention module operates on a tokenized image Z € R"t1)x¢ where
n + 1 is the number of tokens, each of dimensionality d. The input 7 is linearly pro-

D. Reppas 42

On visual explanation of supervised and self-supervised learning

jected to queries @, keys K and values V all € R»*(+1)xdn where h is the number
of heads and d, = d/h. Then,) and K values are used for the attention weights
A € R*(+1)x(n+1) cglculation according (2.31). So far, all the attention-based meth-
ods that are independent of a certain class take advantage only of A to provide vi-
sual explanations. As transformers are complicated architectures and information is
shared across multiple linear projections, we strongly believe that valuable informa-
tion for interpreting the prediction of the models is not hidden only in A. Therefore,
we take advantage of K and treat it in a similar way we treat A so far to provide
visual explanations. Here, it must be mentioned that we use no Softmax operation
on K. To be more specific, first, we estimate the average keys tensor over all heads
K e R+Dxdn for the last block of the network and then we calculate its L2 norm
over dy, || K®|| € R**'. From ||K®||, we exclude the first element and we take

]; - (klyg, kLg, ‘e ,k’LnJrl). (31)

The k consists of n elements and is first reshaped to p x p, which is the patch grid size,
and then upsampled back to the size of the original image using bilinear interpolation.
This will be the final attribution map we use to reveal some hidden information inside
K and as we show, in subsection 3.4.2, it can be used for interpretability purposes.
Later, we call this method Keys, omm-

Here, we propose a second method where we obtain attribution maps derived simply
from the pairwise multiplication of (2.32), (3.1). The final vector obtained from djgs; - k
has n elements. As before, it is reshaped to the patch grid size and then upsampled
back to the size of the inputimage. Here, it must be clarified that there is no Softmax
operation on djgs) in this method. In the experiments, we call this approach Raw* x
KeyS,om-

3.2 Contributions

In this section, we highlight the most important contributions of the methodology we follow
in section 3.1.

1. We provide you with an extensive study on visual explanations of supervised and
self-supervised learning. It is the first study that uses more than 14 different post-
hoc attribution-based methods to interpret 10 deep neural networks that are based
on 4 different backbone architectures that are either CNNs or transformers. Of the
14 visualization methods, 7 are new and proposed by us to further understand the
predictions of transformers. For all methods and models, there are both qualitative
and quantitative results.

2. From the experimental results for both CNNs and transformers, we observe impor-
tant insights about supervised and self-supervised models when sharing the same
backbone. Furthermore, we determine what information the models need to feel
confident for their predictions. We identify also which of the selected post-hoc meth-
ods are proper visualization tools for CNNs and which are for transformers and show
if there is a tool that can be used for both network families.

3. From the experiments we conduct on transformers, we show where important in-
formation can be hidden inside the network and how to reveal it thanks to the new
visualization methods we propose. By using the new visualization methods, we
further obtain better classification metrics than previous post-hoc attribution-based
methods.

D. Reppas 43

On visual explanation of supervised and self-supervised learning

3.3 Experimental setup

This section is dedicated to experimental setup we follow in chapter 3. There is a detailed
report about the dataset, networks and evaluation protocol we use. We further provide
some implementation details of the experiments we conduct.

3.3.1 Dataset

The dataset we use for the experiments of this chapter is a subset of the validation set of
ImageNet [12], which is briefly described in the next paragraph. To be more specific, from
the total 50k images of the validation set, we use only 1000, 1 random image per class.
The data was downloaded from:

https://github.com/EliSchwartz/imagenet-sample-images

ImageNet ImageNet [12] is a database with over 14 million varying-resolution images.
This dataset was one of the first of its kind regarding its scale. ImageNet large scale
visual recognition challenge (ILSVRC) was an annual computer vision competition that
took place between 2010 and 2017. For this challenge, the training data, which is a subset
of ImageNet, consists of 1.2 million images that are shared in 1000 classes. The validation
set consists of 50k images and the testing set is comprised of 150k. The ILSVRC contest
included three tasks. The first was the image classification task and since 2011 there has
also been a single-object localization task. Since 2013, there has been an object detection
task as well.

Figure 12: Random image samples derived from ImageNet [12].

D. Reppas 44

https://github.com/EliSchwartz/imagenet-sample-images

On visual explanation of supervised and self-supervised learning

3.3.2 Networks

In this chapter, we want to interpret the predictions of deep neural networks that are
pre-trained on ImageNet [12]. We conduct experiments on both supervised and self-
supervised networks that use as backbone architectures ResNet, ViT, DeiT and XCiT.
The exact models we use along with the source where we found the weights are all sum-
marized in Table 1.

Table 1: Pre-trained networks used in chapter 3.

Backbone Method Weights
Supervised https://pytorch.org/vision/stable/models.html
ResNet 50 DINO https://github.com/facebookresearch/dino
MoCo v3 https://github.com/facebookresearch/moco-v3/blob/main/CONFIG.md
Supervised https://timm.fast.ai/
ViT base DINO https://github.com/facebookresearch/dino
iBOT https://github.com/bytedance/ibot
DeiT base Supervised https://github.com/facebookresearch/deit
MoCo v3 https://github.com/facebookresearch/moco-v3/blob/main/CONFIG.md
XCiT small Supervised https://github.com/facebookresearch/xcit
DINO https://github.com/facebookresearch/dino

3.3.3 Evaluation protocol

Here, we first perform a visual evaluation of the saliency maps, obtained from each model
and visualization method, given an indicative number of input images. We evaluate then
quantitatively the saliency maps of 1000 ImageNet samples derived from the validation
set with the following classification metrics:

» Average drop [72]:A good saliency map, for a specific given input image and class,
should highlight the regions that are most relevant for the prediction of model. This
metric is computed as the average drop (AD) in the confidence of model for a par-
ticular class c in an image when giving to a model only the saliency map regions

N c_ e
AD=Y" max(o’;@), (3.2)
i=1 i

Y¢ is the confidence score of model for class ¢ given the ' image and Of is the
output score of model for class ¢ when only the saliency map regions are given as
input. The max, in the numerator, is used to handle cases where Of > Y. The
average drop is calculated per image and then averaged over the full dataset. We
expect law average drop values for good saliency maps.

» Average increase [72]: Average increase (Al) measures the number of times in the
full dataset, the confidence of model increased when providing only the saliency map
regions as input

N

Tye<oe
Al = — 3.3
>R (33)
where N is the number of input samples, 1 an indicator function that returns 1 when
the argument is true, Y;© the confidence score for the original image and Of the score
when providing only the saliency map regions as input to the model. The higher the
average increase scores the better the saliency map.

D. Reppas 45

https://pytorch.org/vision/stable/models.html
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/moco-v3/blob/main/CONFIG.md
https://timm.fast.ai/
https://github.com/facebookresearch/dino
https://github.com/bytedance/ibot
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/moco-v3/blob/main/CONFIG.md
https://github.com/facebookresearch/xcit
 https://github.com/facebookresearch/dino

On visual explanation of supervised and self-supervised learning

 Deletion [13]:Deletion metric (D) measures a decrease in the confidence score of
the predicted class as pixels are removed progressively according to their descend-
ing importance. The importance is obtained from the saliency map of an image. As
shown in Figure 13 for a good saliency map, we expect a sharp drop and conse-
quently a low area under the probability curve. The deletion score is determined by
the area under the curve and given by:

S

where Y the probability score before adding or removing important pixels, Y the
score in the last step, Y, the score in the i;;, step and s the total number of steps.

* Insertion [13]:The insertion metric, takes the complementary approach. It measures
the increase in the confidence score of model as more and more pixels are intro-
duced. Again, first, the most important pixels are added. Here, we expect a big area
under the probability curve Figure 13 and high AUC values according to (3.4) for
good saliency maps.

Explaining: cowboy boot Deletion Insertion

AUC=0.011 AUC=0.840

Figure 13: The deletion and insertion metrics for a random input image [13].

3.3.4 Implementation details

The baseline code for this set of experiments is [78]. It is used for CAM-based method
experiments and is further developed to include attention-based approaches as well:

https://github.com/DimitrisReppas/On_visual_explanation_of_supervised_and
_self-supervised_learning

When we conduct CAM-based experiments we have to choose a target layer from which
we want the saliency map to be generated. For networks based on ResNet 50 backbone,
we choose the last convolutional layer by default, i.e., convolutional layer 3 of bottleneck
2 of block 4. For networks that use transformers as backbones, we choose from their last
block the norm1 layer, following [78] strategy.

As far as it concerns the image pre-processing and normalization, we use the same tech-
niques, for a fair comparison, in all models and visualization methods. To be more specific,
we resize all images to 224 x 224. To normalize them, we first divide them by 255 and then
we subtract the mean ImageNet vector [0.485, 0.456, 0.406] and divide channel-wise by the
standard deviation of ImageNet [0.229, 0.224, 0.225]

To obtain saliency maps with TIBAV [19] visualization method, we use its official released
code. For a fair comparison with the other methods, we use again the same image pre-
processing and normalization techniques.

D. Reppas 46

https://github.com/DimitrisReppas/On_visual_explanation_of_supervised_and_self-supervised_learning
https://github.com/DimitrisReppas/On_visual_explanation_of_supervised_and_self-supervised_learning
https://github.com/hila-chefer/Transformer-Explainability
https://github.com/hila-chefer/Transformer-Explainability

On visual explanation of supervised and self-supervised learning

3.4 Experimental results and discussion

This section is dedicated to experimental results and is organized as follows. We first
present qualitative and quantitative results of saliency maps derived from both CNNs and
transformers when using CAM-based methods. Then, we focus only on transformers and
present qualitative and quantitative results of their saliency maps, when using standard
attention-based methods and alternative approaches proposed by us. All the results are
discussed in detail.

3.4.1 Interpretability of models with CAM-based methods

In this experiment, we use GradCAM [71], GradCAM++ [72], XGradCAM [73] and Score-
CAM [74] to interpret CNNs and transformers, trained in a supervised or self-supervised
way. The obtained saliency maps are visually evaluated for several random samples de-
rived from the ImageNet validation set. All visualization methods are quantitatively eval-
uated on the 1000 images validation subset with the average decrease (AD), average
increase (Al), deletion (D) and insertion (I) metrics.

In Table 2, we show the saliency maps for a random input image, from both CNNs and
transformers for the aforementioned CAM-based approaches. For networks using ResNet
50 as a backbone, a change of the visualization method does not cause a serious variation
on the saliency map, although quantitatively Score-CAM [74] has the best performance at
least at AD, Al metrics, as shown in Table 5. The rest visualization methods have similar
metrics for these models. On the other hand, the influence of the chosen visualization
method on the saliency map is great when the network has a transformer as a backbone.
This is an insight that interpreting transformers with the CAM-based method is not the best
option, taking into account their quantitative results in Table 5 as well. Although it is hard
to say, from Table 2 and Table 5 we observe that the two best methods for transformers
are GradCAM [71] and Score-CAM [74] while the other two are equally bad.

Table 2: Saliency maps for a given input image, obtained from different deep neural networks,
when using four different CAM-based methods.

Method Input image ResNet 50 XCiT small DeiT base

GradCAM [71]
[=

bald eagle
GradCAM++ [72]

Supervised DINO MoCo v3 | Supervised DINO | Supervised MoCo v3

XGradCAM [73]

Score-CAM [74]

D. Reppas 47

On visual explanation of supervised and self-supervised learning

In Table 3, we show saliency maps derived from Score-CAM [74], given several input im-
ages to the previous models. We visualize them to show if there is a standard effect on the
maps when going from supervised to self-supervised learning. First and foremost, when
looking at the CNNs we observe reasonable maps for both supervised and self-supervised
networks. From Table 2, Table 3 and Table 5, we can clearly say that the CAM-based
methods are great interpretability methods for networks that use CNNs as backbones. By
looking closer to Table 3, we observe that the saliency maps derived from self-supervised
CNN networks are smaller, with less background information than the maps obtained from
the respective supervised models, although all are equally well localized. This is impor-
tant because we show that self-supervised models learned to predict by mostly paying
attention to the object and not to the background. This can be explained quantitatively as
well, from Table 5. The metrics we choose are classification ones and are closely related
to the confidence scores of the network when seeing only the salient regions of an image.
When passing through a network equally good saliency regions, the ones that contain
information from the background other than information from the object will help most of
the time the network to be more confident in its prediction. This is the reason, supervised
models have better quantitative results, at least in AD and Al metrics. On the other hand,
the qualitative analysis of transformer-based models, in Table 3, does not show us that
the type of learning has a clear impact on the saliency map. For some specific inputs, all
methods provide us with meaningful maps and for others we observe good maps coming
only from the supervised or only from the self-supervised models. The previous qualita-
tive observations are expressed in the same unclear way quantitatively, in Table 5. Once
again, this means that CAM-based methods do not work very well with transformer-based
models.

Table 3: Saliency maps for several input images, obtained from different deep neural networks,
when using Score-CAM method.

ResNet 50 XCiT small DeiT base
Targetclass Sample

Supervised DINO MoCov3 | Supervised DINO | Supervised MoCo v3

goose
dugong
meerkat

envelope

- B

In Table 4, we present a qualitative and quantitative evaluation of saliency maps derived
from GradCAM [71], given a random input image to the previous networks. Here, we

D. Reppas 48

On visual explanation of supervised and self-supervised learning

see that only when all the metrics are good the saliency map is acceptable. For instance,
saliency maps derived from the networks based on ResNet and the DeiT model pre-trained
with MoCo v3 self-supervised approach provide good quantitative and qualitative results.
Additionally, the saliency map obtained from the XCiT model pre-trained with the DINO
approach only gives a great AD score, but the rest are not impressive; thus, the qualitative
results are also not reasonable. This means that the metrics are not good representatives
of the saliency map when used separately. So the more metrics we use, the better the
interpretability of the models. It is noteworthy that the aforementioned insight is observed
only for a small number of samples whose saliency maps have been assessed qualitatively
and quantitatively. It may not be the case for the entire dataset.

Table 4: Qualitative and quantitative evaluation of saliency maps obtained for a given input image.

The maps are derived from different deep neural networks, when using GradCAM method. AD/Al:

average dropl/increase I/D: insertion/deletion | / 1: lower / higher is better. For one input image, Al
returns either 1 (true) or 0 (false).

. . ResNet 50 XCiT small DeiT base
Metric Input image
Supervised DINO MoCo v3 \ Supervised DINO \ Supervised MoCo v3
L\'l' .
o [el aa
~ S R D
_ ‘ | ‘
ADJ tiger shark 0.02 0.11 0.10 0.39 0.05 0.20
Alt 0 0 0 0 0 0
DJ 0.14 0.17 0.14 0.09 0.49 0.14
I 0.94 0.86 0.84 0.41 0.74 0.41

In summary, in these experiments, we show meaningful saliency maps and comparisons
of supervised and self-supervised models that use ResNet as a backbone. The insights
hold for four different CAM-based methods. In contrast, these methods do not allow us to
reveal important observations about transformer-based models. This is why in the next
set of experiments we focus on alternative visualization methods to interpret supervised
and self-supervised transformers.

Table 5: Quantitative evaluation of CAM-based saliency maps. Classification metrics on 1000
randomly picked images from the ImageNet validation set. AD/Al: average dropl/increase I/D:
insertion/deletion | / 1: lower / higher is better.

Metric Method ResNet 50 XCiT small DeiT base
Supervised DINO MoCov3 | Supervised DINO | Supervised MoCo v3
GradCAM [71] 0.21 0.40 0.45 0.45 0.66 0.46 0.49
ADJ GradCAM++ [72] 0.21 0.40 0.43 0.67 0.84 0.62 0.71
XGradCAM [73] 0.21 0.40 0.45 0.87 0.78 0.86 0.84
Score-CAM [74] 0.17 0.29 0.26 0.50 0.51 0.66 0.75
GradCAM [71] 0.44 0.17 0.12 0.11 0.13 0.07 0.17
Al GradCAM++ [72] 0.41 0.16 0.12 0.05 0.04 0.04 0.08
XGradCAM [73] 0.44 0.17 0.12 0.02 0.05 0.02 0.04
Score-CAM [74] 0.49 0.22 0.23 0.11 0.16 0.06 0.10
GradCAM [71] 0.08 0.08 0.08 0.13 0.17 0.16 0.10
Dy GradCAM++ [72] 0.08 0.09 0.09 0.22 0.24 0.20 0.13
XGradCAM [73] 0.08 0.08 0.08 0.35 0.27 0.31 0.21
Score-CAM [74] 0.09 0.10 0.10 0.18 0.16 0.21 0.14
GradCAM [71] 0.51 0.49 0.51 0.58 0.54 0.53 0.54
it GradCAM++ [72] 0.51 0.48 0.50 0.52 0.47 0.51 0.50
XGradCAM [73] 0.51 0.49 0.51 0.43 0.43 0.43 0.41
Score-CAM [74] 0.51 0.47 0.48 0.55 0.57 0.54 0.54

D. Reppas

49

On visual explanation of supervised and self-supervised learning

3.4.2 Interpretability of transformers

In this subsection, we conduct extensive experiments using a variety of visualization meth-
ods to interpret transformers, trained in a supervised or self-supervised way. The obtained
saliency maps are visually evaluated on several random samples derived from the Ima-
geNet validation set. Then, 1000 random images, derived again from the Imagenet valida-
tion set, are used to evaluate all methods quantitatively with the average decrease (AD),
average increase (Al), deletion (D) and insertion (I) metrics.

Raw attention maps In this experiment we visualize the attention map of the [cls] to-
ken from the last layer for supervised and self-supervised transformers. The models we
choose, use as backbones DeiT base and ViT base. For the DeiT base experiments, we
obtain the attention map when the network is untrained as well. From a quick look in Ta-
ble 6, it is easy to see that both supervised networks based on different backbones have
a similar way of predicting. According to their maps, both networks pay more attention to
scattered information on the background of the images and less to the object. This is un-
expected for us and we choose to further investigate this subject in the next experiments.
On the other hand, the three self-supervised models work in a completely different way.
These models pay attention mainly to regions on the object. All attention maps of these
models seem reasonable to us and there is no considerable difference between the maps
when changing the self-supervised approach or the backbone. For the untrained network,
we characterize its attention map as spread out in general and sometimes acceptable on
the object with some context information.

Table 6: Raw attention maps for two input images, obtained from untrained, supervised and
self-supervised deep neural networks, that are based on different backbones.

DeiT base ViT base

Target class Sample

Untrained Supervised MoCo v3 \ Supervised DINO

goose

bighorn

All the previous observations are expressed quantitatively for the DeiT base experiments
in Table 7. We can see the clear superiority of MoCo v3 over the supervised model. Here,
it is unexpected that the untrained model achieves better AD scores than MoCo v3. This
is justified by the fact that the attention maps from the untrained model are always spread
out, although not acceptable most of the time. As we saw previously in subsection 3.4.1,
big saliency maps that contain both object and background information usually help the
model to be more confident and therefore the AD or Al can be favoured. Here, we strongly
believe that the more evaluation metrics one uses, the better understanding of the saliency
maps he/she has. A complete study on this should provide localization metrics as well
[74,79-81].

Briefly, in this experiment, we show reasonable attention maps for the self-supervised
models when visualizing the raw attention map of the [cls] token of the last layer. On the

D. Reppas 50

On visual explanation of supervised and self-supervised learning

Table 7: Quantitative evaluation of raw attention maps. Classification metrics on 1000 randomly
picked images from the ImageNet validation set. AD/AI: average drop/increase I/D:
insertion/deletion | / 1: lower / higher is better.

Metric DeiT base

Untrained Supervised MoCo v3
ADJ 0.40 0.95 0.52
Al 0.08 0.01 0.13
Dy 0.29 0.28 0.10
I 0.45 0.46 0.55

other side, the raw attention maps derived from the supervised models show us that these
models pay attention mainly to context information from the background. Not focusing
much on the object and achieving such great performance in multiple computer vision
tasks was something we did not expect. In the next experiments, we investigate this further
and search for the information these models use before predicting a class category.

Table 8: Raw attention maps of supervised and self-supervised transformers derived from different
layers, given an input image.

. DeiT base ViT base
Layer Inputimage

Supervised MoCo v3 | Supervised DINO iBOT

D. Reppas 51

On visual explanation of supervised and self-supervised learning

Discovering hidden information from the raw attention maps visualization Here, in
the first experiment, we visualize raw attention maps derived from different layer depths for
both supervised and self-supervised models. The backbone networks these models use
are again DeiT base and ViT base. Initially, Table 8 shows that from supervised models we
observe similar attention maps no matter what backbone networks they use. This holds for
self-supervised models as well. Our next step is to analyze how the attention map changes
from the first layer to the deepest layer of the supervised models. In the beginning, the
salient region is more random or noisy, but as we reach the middle layers we observe the
salient regions on the object. Moving from the middle layers to the last one, we see the
salient regions scattered across the background. Similarly, in the self-supervised models,
we see random salient regions at first, but as we move to the middle layers, we see salient
regions covering the entire object. As we go deeper, the salient regions stay on the object
but get limited in extent. The 6th layer seems to be the one in that both supervised and self-
supervised networks have similar attention maps. In Figure 14, we express the previous
observations quantitatively for models that use DeiT base as a backbone. For the attention
maps of supervised models, we observe that the best AD, Al, D and | metrics are achieved
in the middle layers. When using the self-supervised approach, we have again the best
AD, Al in the middle layers and the best D, | in the last layer. We further estimate the
classification metrics for the attention maps of an untrained DeiT base model and as we
expected there is no significant variation as we change depth layers.

100 _
15 |- n
80 |- =
X)
> T 10 :
< 60 |- - <
5 & =
40 |- =
0 -
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Ny, layer of the network Ny, layer of the network
40 T =] T T T T T
\ 55 |- =
30 |- = 50 |- =
= S
g < 45 - N
0 2| 7 /
40 |- —e— Supervised MoCo v3 ||
10 \7 | | | | | | | | | Untfained
I I I I I
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Ny, layer of the network Nqp, layer of the network

Figure 14: Quantitative evaluation of raw attention maps obtained from different layers.
Classification metrics on 1000 randomly picked images from the ImageNet validation set. AD|/Al1:
average drop/increase I1/D/: insertion/deletion | / 1: lower / higher is better.

In Figure 15, we present the raw attention maps for the supervised DeiT base model for
a random input image, derived from different heads of the last layer. We show also the
average attention map of all heads. While the majority of the heads pay attention to scatter
information of the background, there are only a few that focus on the object, as a result,
we observe salient regions in the context of the image for the average attention map as
well. In short, in these experiments, we show for supervised transformers that although

D. Reppas 52

On visual explanation of supervised and self-supervised learning

(a) Input image (b) 14 head (c) 6, head (d) 12, head (e) Average

Figure 15: Average attention map and maps from different heads. All the maps are obtained from
the last layer of the supervised DeiT base model.

there are no salient regions on the object in the raw attention map of the last layer, saliency
maps on the object can be found inside different heads or in the raw attention maps of the
middle layers. We also prove that we can improve the AD, Al metrics for self-supervised
models when obtaining raw attention maps from middle layers.

Pre-processing raw attention maps for better interpretability As described in detail
in section 3.1, in this experiment, we use the power and log to boost the next highest
attended regions on an image to improve interpretability, especially on the supervised
transformers. In Figure 16, we see that for power values € (0, 1), as we reduce the value,
the raw attention map becomes more reasonable. This kind of filtering helps us to interpret
easier the predictions of the supervised transformers. The log function has the same
influence on the raw attention maps as power when raising the raw attention map to power
values close to 0.

(a) Input image (b) Raw (c) Raw-Pow(0.5) (d) Raw-Pow(0.3) aw-Pow(0.05) (f) Raw-Log

Figure 16: Pre-processing functions of raw attention maps for better interpretability. The attention
maps are obtained from the supervised DeiT base model.

Alternative visualization methods based on the tensor of keys Just as we explain in
section 3.1, in this experiment, we visualize information coming from the tensor of keys of
transformer. From Figure 17, we observe that by simply visualizing the Keys,,,.., map, we
notice that reasonable salient regions are presented on the image despite being spread
out. As we have already proved, the raw attention maps of the last layer for supervised
models contain mostly salient context information, but when visualizing Raw*, which is the
map when the Softmax operation is absent, there are salient regions both on the object
and background. The Raw* maps are too noisy but if pairwise multiplied with the Keys, ;1.
maps, we observe acceptable and less noisy saliency maps.

D. Reppas 53

On visual explanation of supervised and self-supervised learning

Keysnorm

(a) Input image (b) Raw (c) Raw* X Keysnorm

Figure 17: Visualization of saliency maps based on the raw attention map and the tensor of the
keys. The maps are obtained from the supervised DeiT base model.

Rollout [18] Rollout is a standard visualization approach for transformers which linearly
combines the attention maps from all layers. Qualitatively from Table 9 and quantitatively
from Table 10, we observe better results when using the Rollout method compared to the
raw attention maps from the last layers. Based on the Rollout, we further use it for specific
groups of layers. Rollout;y_1, provides similar but less noisy attention maps compared to
the standard Rollout method. This is expressed, as we expect, with a little worse results
on the AD, Al metrics for both supervised and self-supervised models. Then, we lin-
early combine attention maps from middle layers and visualize and evaluate the obtained
Rollout;_5 maps. As we expected, these maps are informative, especially for supervised
models. As Rollout;_s; map is derived from middle layers, its final attention map provides
us with the salient region on the object. Quantitatively, when compared with the Raw
method, all the metrics are improved as well. Rollout;_5 when used with self-supervised
methods keeps the reasonable maps but adds some context information on them. This is
expressed quantitatively with better AD, Al and worse D, | scores.

TIBAV [19] TIBAV is the only attention-based visualization method for transformers that
is dependent on a certain class of a given input image. In this experiment, we use
the method to interpret both supervised and self-supervised transformers. TIBAV is the
method that succeeds to bring closer the qualitative and quantitative results of supervised
and self-supervised models, according to Table 9 and Table 10. The comparison shows
us again that the maps derived from the self-supervised model are better.

Table 9: Attention maps derived from Raw, standard Rollout and its alternatives [18] and
TIBAV [19] methods

DeiT base Inputimage Rollout [18] Rollout;p—12 Rolloutz_5 TIBAV [19]

goose
MoCo v3

Discussion on quantitative results of all visualization methods In Table 10, we sum-
marize all the visualization methods proposed in the previous experiments for interpreting
the prediction of supervised and self-supervised transformers. The supervised and self-
supervised models use the DeiT base as backbone. To begin with, there are several

Supervised

D. Reppas 54

On visual explanation of supervised and self-supervised learning

methods we propose that improve the evaluation metrics of the Raw method for both su-
pervised and self-supervised models. From a quick look, we observe that in almost all
methods the saliency maps obtained from the self-supervised model achieve the best
evaluation metrics. The best AD, Al performances are reached in the supervised model
when using the Raw*x Keys, ... method and in the self-supervised model when using
either the Raw* or the Raw-Log method. The best D, | scores are achieved for both su-
pervised and self-supervised models when using the TIBAV [19] method.

Table 10: Quantitative evaluation of saliency maps derived from a supervised and self-supervised
DeiT base model. Classification metrics on 1000 randomly picked images from the ImageNet
validation set. AD/AIl: average dropl/increase I/D: insertion/deletion | / T: lower / higher is better.

Classification metrics for quantitative evaluation

Method
ADJ Al D} I

Supervised MoCov3 | Supervised MoCov3 | Supervised MoCov3 | Supervised MoCo v3

Raw 0.95 0.52 0.01 0.13 0.28 0.10 0.46 0.55
Raw-Log 0.54 0.25 0.07 0.25 0.24 0.10 0.47 0.55
Raw-Pow(0.5) 0.59 0.26 0.07 0.24 0.25 0.10 0.47 0.55
Raw* 0.54 0.25 0.07 0.25 0.24 0.10 0.47 0.55
Keysnorm 0.49 0.41 0.07 0.15 0.30 0.34 0.42 0.29
Raw* x Keysuorm 0.40 0.40 0.08 0.17 0.19 0.14 0.52 0.45
Rollout [18] 0.88 0.39 0.02 0.17 0.22 0.10 0.50 0.55
Rolloutig—12 0.90 0.43 0.02 0.16 0.23 0.10 0.49 0.56
Rollout3_5 0.52 0.37 0.07 0.18 0.21 0.14 0.51 0.50
TIBAV [19] 0.70 0.68 0.04 0.08 0.14 0.09 0.57 0.57

3.5 Conclusion

The chapter 3 is dedicated to the visual explanation of supervised and self-supervised
learning. This study starts with the interpretability of both CNNs and transformers with
four CAM-based methods. In these experiments, we show that CAM-based methods
are proper visualization tools only for CNNs. The comparison of supervised and self-
supervised models, that use the ResNet 50 as backbone architecture, gives us some
valuable information. The saliency maps derived from both self-supervision and supervi-
sion are acceptable on the object, but the latter is spread more across the background. By
taking some extra information from the background while having acceptable maps on the
object, the supervised methods result in better quantitative results than self-supervised.
This is an insight that models need other than the information from the foreground of an
object some extra context from the background to be more confident in their predictions.
Quantitatively, we observe that Score-CAM [74] is the best method for all the CNN archi-
tectures.

CAM-based methods do not help us to reveal important observations for transformers;
therefore, we continue our study by further investigating them with attention-based meth-
ods. We choose first to visualize the raw attention map of the [cls] token from the last
layer of the model. The visualizations give us reasonable saliency maps on the object for
the self-supervised methods. On the other hand, the Raw,, of supervised models show
us that these models pay attention mainly to the context information from the background.
Not focusing on the object while achieving high performances in multiple computer vision
tasks was something we did not expect.

The unexpected Raw;, results for supervised transformers urge us to explore more these
networks. In the next experiments, we try to discover hidden information inside the mod-
els and start this by visualizing raw attention maps derived from different layers. Here, we

D. Reppas 55

On visual explanation of supervised and self-supervised learning

see that supervised models focus on the object in the middle layers of their architecture
and therefore for these depths we observe more similar attention maps between super-
vised and self-supervised models. Quantitatively, as shown for instance with the Raw,
and the Rawg methods, this is expressed with way better results for supervised models
and with an improvement in average drop (AD) and average increase (Al) metrics for the
self-supervised models. The improvement we observe in the AD and Al metrics for the
self-supervised models is again proof that context matters and can further give confidence
to a model before its prediction. Going back to the Raw;, qualitative result of supervised
models, we observe that object information can be found inside the different heads of the
last layer of the model. But while most of the heads focus on the context and as Raw;; is
an average attention map obtained from all heads, the final map will contain mostly con-
text information. To reveal the foreground information of an object that is being hidden in
the Raw,,, we propose two new visualization methods based on the log and power opera-
tions. The two methods made the interpretability of the supervised models a lot easier and
improved significantly the quantitative results of both supervised and self-supervised mod-
els. Furthermore, we propose Raw* which is simply the visualization of the raw attention
map from the last layer of the model when not taking into account the Softmax opera-
tion. This method improves a lot both qualitative and qualitative results for supervised
and self-supervised models and shows us the amount of information Softmax operation
can hide. The last attention-based methods we used in the experiments are Rollout [18]
and TIBAV [19] methods. Rollout works better than Raw;, and in our study, we propose al-
ternatives to the method to further investigate groups of layers of a model. TIBAV provides
us with reasonable saliency maps for both supervised and self-supervised and diminishes
the gap between the two types of learning. Quantitatively, TIBAV achieves similar classi-
fication metrics for supervised and self-supervised models and the best deletion (D) and
insertion (l) scores.

Transformers are complicated and information is shared across multiple linear projections.
Information could be found inside the queries @, keys K and values V' tensors as well.
In our study, we choose to further investigate the K. We propose Keys,,.. and Raw* x
Keys..m, tWo new visualizations methods that provide saliency maps that contain infor-
mation coming from K. Qualitatively, we observe reasonable maps and this is an insight
that our method can be further optimized. Here, we prove that we must take into account
information coming from other linear projections as well to better interpret and understand
transformers. The quantitative evaluation of the two methods for both supervised and self-
supervised models shows they are pretty good at AD and Al metrics but not good enough
at D, | metrics.

The overall conclusion of our study on interpretability is that for both CNNs and transform-
ers the saliency maps of the self-supervised models contain mostly information coming
from the foreground of the object. On the other hand, information derived from the back-
ground of the object seems important for supervised models. Furthermore, we show that
there is no proper method to interpret both CNNs and transformers. This is something
we expected, having in mind the different inner mechanisms of the architectures. The
mechanism of transformers is complicated and, as we show, information is spread inside
the network. Although we try a different kind of methods to reveal this information, we
strongly believe that there is room for improvement. Quantitatively, with the new methods
we propose, we reach better AD, Al, D and | scores than the Raw;, and Rollout baselines.
By comparing our methods with TIBAV, we achieve better AD and Al but worse D and |
scores. The last comparison is not so fair because TIBAV is a class-specific method while
the others are not.

D. Reppas 56

On visual explanation of supervised and self-supervised learning

4. MIM ON SELF-SUPERVISION

This chapter is devoted to the presentation of our work on self-supervised learning, in
particular when using masked image modelling as a pre-text task to further improve and
understand the representation learning process. We first explain thoroughly the method-
ology we follow in our experiments and highlight the most important contributions of our
work. We then present the dataset, network and evaluation protocol we use. Here, we
also provide you with valuable implementation details. We close this chapter with the
experimental results and the conclusions.

4.1 Methodology

Inspired by the interpretability observations of chapter 3 and from the papers of iBOT [9]
and AttMask [10], we follow a methodology with the main purpose to improve the self-
supervision of MIM-based models. All models are pre-trained from scratch and interpreted
as well, during and after the training process. We organize our methodology in three parts
that are described in detail below.

aadaied A G -

(a) Input b) Random (c) Random (d) Block (e) AttMask (f) AttMask g) Attention
image (30) Wise Low Map

Figure 18: Different masking strategies for a given input image (a). The strategy (b) is used by
SimMIM [14], (b) by MAE [15], (d) by BEiT [16] and iBOT [9], (e) by AttMask [10] and (f) by MST [17].
Both (e),(f) are based on the attention map (g). The source of the images is [10].

Alternative masking strategies In subsection 2.1.4, we describe some of the masking
strategies used in MIM-based self-supervised methods. We show some of them in Fig-
ure 18. Following a study on them and a series of conducted experiments, we cannot
argue with AttMask [10] approach. This masking strategy claims that an attention-guided
token masking strategy, which hides tokens that correspond to the salient regions of an
attention map derived from the last layer of a model, offers several benefits over ran-
dom masking when used in MIM-based self-supervised learning. Through the study, we
found that the more challenging the reconstruction task for the MIM-based self-supervised
method, the better the representation learning. Reconstructing regions of the object of one
image is more challenging for a model than reconstructing regions of the background.
Therefore, we believe AttMask [10] ends up with better evaluation scores than AttMask
Low (MST [17]). We consider that a challenging task is to hide regions of an image that
make a model confident before its prediction. A good question here could be “Which are
the regions of an image that make a model confident before its prediction?”. The saliency
map regions could be a possible answer here! In chapter 3, we studied a series of vi-
sualization methods from which we obtained different kinds of saliency maps that were
evaluated qualitatively and quantitatively. The average drop (AD) and average increase
(Al are two classification metrics that give as a good indication of how confident is a model
when seeing only the salient regions of the map before its prediction. From Figure 14 and

D. Reppas 57

On visual explanation of supervised and self-supervised learning

Table 10, we observe that raw attention maps derived from the last layer of model, which
are used in mask generation in AttMask [10], do not have the best AD, Al metrics. Based
on this, we believe that we can create a more challenging MIM objective, by generating
masks from attention-based methods used in section 3.1. From subsection 3.4.2, we ob-
serve that a model is confident about its prediction when other than the foreground object
sees some context information from the background as well. Based on this, we propose
new masking strategies that hide from the student network the aforementioned regions of
an image.

* Mask generation from different layers: Here, we use iBOT [9] as our baseline MIM-
based model along with its released code. We first replace its masking strategy [16]
with the respective of AttMask [10]. We use this strategy, then, in an extensive study
for mask generation from different layers of the model. In this work, we call AttMask-
Raws; the strategy which generates masks derived from the 5, layer attention map
etc. All the strategies are incorporated into iBOT and the models are trained from
scratch and evaluated with £-NN and linear probing. The evaluation of these strate-
gies is found in Figure 19.

* Rollout [18] method for mask generation: While AttMask [10] generates masks from
raw attention maps, we propose to use the attention map derived from the Rollout
[18] method for mask generation. As in section 3.1, we use Rollout to obtain an
attention map from a specific group of layers as well to further generate different
kinds of masks. The various kind of masks generated from this method, help us
better understand the impact of the mask on the learning process. We call AttMask-
Rollout the strategy that generates masks from the final rollout attention map and
AttMask-Rollout;_g the one that generates masks from the attention map derived
from the linear combination of the 5, 6,1, 7, and 8;;, layer of the model. The results
of these strategies are in Table 11.

* Pre-processing of attention maps for competitive MIM: In section 3.1, we use the
power and log to boost the next more high attended regions of an image to improve
interpretability. Here, we use these two operations to introduce two new masking
strategies. To be more specific, in both strategies we first pre-process the raw at-
tention map of the last layer of the model with either the log or power operation
and then we generate masks from the pre-processed maps. We name AftMask-Log
the masking strategy that is based on log function and AttMask-Pow the one that
uses the power operation respectively. In AttMask-Pow, the smaller the power value
€ (0,1), the more context of an image will be hidden from the generated mask. For
power values close to 0 the method generates similar masks with the AttMask-Log.
The evaluation of the two proposed masking strategies is available in Table 12.

* Multi-layer mask generation: As we explained in subsubsection 2.1.4.1,iBOT [9] and
AttMask [10] follow the multi-crop strategy of DINO [8]. Based on this strategy, from
a given input image a set of different views € V' is generated. There are two global
views € V, and several local views € V; of smaller resolution. Through the teacher
network, only the global views are passed while through the student both masked
global views and unmasked local views. In iBOT, both global views are masked
with the random block-wise [16] strategy before being passed through the student
network and in AttMask, both global views are masked with the proposed attention-
guided strategy. Here, we propose a multi-layer mask generation strategy, where
the two global crops are masked with a different kind of strategy. We call AttMask-
Raws ;- the strategy that masks the first crop with AttMask-Raws; and the second one
with AttMask-Raw;,. We compare this method with the standard iBOT and AttMask

D. Reppas 58

https://github.com/bytedance/ibot

On visual explanation of supervised and self-supervised learning

baselines. We further use a third global crop and propose AttMask-Raws 5 12, where
we generate three different masks coming from Raw;, Raw; and Raw;;, one for each
crop. We set then the global crops to 3 for the iBOT and AttMask strategies as well
and compare them with AttMask-Raws 5 12. All the results are found in Table 13.

Interpretability of MIM-based models Once the training of the iBOT [9] models with all
the different kinds of masking strategies is finished, we interpret them. As an interpretabil-
ity method, we choose to visualize the raw attention map of the [cls] token, because it is
the easiest and most popular approach to interpret the prediction of a transformer. We
obtain this map from the last layer of the model. We follow the same evaluation protocol
as in subsection 3.3.3; therefore, we first evaluate the saliency maps qualitatively, given
several input images derived from the ImageNet validation set. We then use the standard
1000 random images subset, derived from the ImageNet validation set, to evaluate the
networks quantitatively with the average decrease (AD), average increase (Al), deletion
(D) and insertion (l) metrics. Here, we have the chance to see the impact of each masking
strategy on the saliency map qualitatively and quantitatively as well. Because we pre-train
the models on different scales of ImageNet we further investigate the influence of the scale
on the saliency maps. All the results are presented in subsection 4.4.2.

As we train the iBOT models from scratch, we interpret the networks in the intermediate
stages of learning as well. In this way, we further study the evolution of the raw attention
map per epoch, better understanding how quickly the models learn and where they mostly
pay their attention during training. Here, we visualize again the raw attention map from
the last layer of the model. We show part of the qualitative results in Figure 22.

Contrastive learning AttMask [10] uses the same loss function with iBOT [9], which is
a weighted sum of Ly (2.19), Lcrs (2.20). Both are cross-entropy losses and Ly is
calculated between predicted projections of patch tokens and target non-masked patch
tokens projections. This dense distillation loss can be seen as a reconstruction loss of the
hidden patch tokens and is based only on the global views of the multi-crop strategy. On
the other hand, L s global cross-entropy loss is calculated between teacher and student
[cls] output representations and is based on both global and local views.

So far in our study, we investigate the impact of changing the masking strategy in a MIM-
based self-supervised approach; therefore, we keep the standard loss of iBOT. Here, we
study the influence of the addition of an extra 3,, contrastive term on the previous loss.
Based on the standard InfoNCE loss (2.11), we formulate a dense contrastive loss. This
loss is based on unmasked global views. To be more specific, for a given image, we
obtain the output patch token embeddings of the teacher network for the n, global views.
From the attention map of [cls] token, we know the highest attended tokens and lowest
ones. Based on this, we order in a descending way dqs; and define the £ first elements as
positives and the k last elements as negatives for the n, global views, where £ is a user-
defined hyper-parameter. The total number of positives T is equal to the total number of
negatives and given by kn,. By choosing a different anchor p; each time derived from the
positives p, we bring p; closer to the rest of positives p; and we push p; apart from all the
negatives n, when minimizing

1 m) -
LInfoNCE—dcnso = Z Z 10g XD (plpj /7—) . (41)
T = o= exp(pip;/7) + Z exp(pin/T)
i "

D. Reppas 59

https://github.com/EliSchwartz/imagenet-sample-images

On visual explanation of supervised and self-supervised learning

LintoncE—_dense 1S the dense contrastive loss we propose and 7 a temperature hyperparame-
ter that is defined from the user. With the addition of the contrastive term, we define iBOT
objective

Ligor—contr = MLy + A2 Lors + A3 LinfoNCE—dense; (4.2)

where \{, A\, A3 the weight coefficients of each loss, which are user defined hyperparam-
eters.

In our methodology, we propose the extra contrastive term to bring high-attended tokens
from different global views closer and push apart all the low-attended tokens from the high-
attended ones. In this way, we make the model discriminate better between the foreground
and background of an object. In our experiment, we examine if the 3,,; term has good or
bad influence on the £-NN and linear probing evaluation scores. We first try this loss when
following the AttMask strategy. Here we set A\, A, = 1 and perform hyperparameter tuning
to find the best k£, \; and 7 parameters. We hold these hyperparameters and use the loss
to experiment with other masking strategies as well. We present part of the results in
subsection 4.4.3.

4.2 Contributions

In this subsection, we summarize the most important contributions of our study on MIM-
based self-supervision, and we present them below:

1. We propose at least 7 new masking strategies to use on MIM-based self-supervision.
Here we succeed to surpass all the previous state-of-the-art strategies on £-NN and
liner probing evaluation scores when the models were trained on different scales of
ImageNet and for a different number of epochs. We further show acceleration in the
learning process of downstream tasks.

2. Through the study on the masking strategies, we come up with valuable insights on
which regions of an image are most important to be hidden from the student network
and define a more challenging MIM-based self-supervision pre-text task. We further
highlight the impact of the training epochs, the scale of the dataset and the number
of global views on the evaluation scores and how to narrow the gap between the
masking strategies.

3. We also interpret these networks and show the impact a change in masking strategy
and scale of a dataset bring to a saliency map. Here, we further investigate the
evolution of saliency maps during the learning process.

4. Finally, we introduce a contrastive term on a MIM distillation-based objective and
study the influence when used with different masking strategies.

4.3 Experimental setup

In this section, we present the experimental setup we follow in chapter 4. We provide
information about the dataset, network and evaluation protocol we use and we show some
valuable implementation details.

D. Reppas 60

On visual explanation of supervised and self-supervised learning

4.3.1 Dataset

In this chapter, we conduct all the experiments on ImageNet [12] dataset again. To be
more specific, during training we use the full train set of Imagenet or a subset. For the
subset, we select the first 20% of training samples per class. For the evaluation of the
models, we use the full validation set of ImageNet. To interpret the trained networks, we
use the standard subset of chapter 3.

4.3.2 Networks

All the masking strategies we explore are incorporated into iBOT [9]. The iBOT archi-
tecture we choose uses as transformer encoder a ViT-S/16 model as in [10]. Further
architecture details can be found in subsection 4.3.4.

4.3.3 Evaluation protocol

As previously mentioned, we evaluate the networks on the ImageNet [12] validation set.
Following DINO [8], iBOT [9] and AttMask [10], we use k-NN and linear probing for the
evaluation. For £-NN, we first freeze the pre-trained model and extract the features of
the training images. We then use a k-nearest neighbors classifier with £ = 20 and sum-
marize only the top-1 scores. In some of the experiments, we evaluate the models for
k = 10,100,200 as well. For the linear probing evaluation, we first freeze the pre-trained
model and then train a linear classifier using SGD with a batch size of 1024 for 100 epochs.
The learning rate is set to 0.003 and we do not apply weight decay. Following [8—10], we
give as input to the linear classifier the concatenation of the [cls] features from the last
four layers of the pre-trained model. Again, we record only the top-1 accuracy scores.

To interpret the pre-trained from scratch iBOT models, we use the same evaluation proto-
col as in section 3.3. The raw attention maps derived from the last layer of the model are
first evaluated qualitatively and then quantitatively on the 1000 ImageNet subset, by using
the average decrease (AD), average increase (Al), deletion (D) and insertion (I) metrics.

4.3.4 Implementation details

The released iBOT code is our baseline for these experiments. Based on the implemen-
tation details provided in [10], we further develop the code to reproduce AttMask model,
which is the model we mainly compete with. The final code with all the proposed masking
strategies along with the model that performs contrastive learning are available:

https://github.com/DimitrisReppas/MIM_on_self-supervision

Training details We pre-train iBOT models on 20% or 100% of the ImageNet train set.
The images are reshaped to 224 x 224 x 3. The iBOT models we train, use ViT-S/16 as
the backbone architecture. For the 20% of ImageNet experiments, we train the models
for 100 epochs using distributed parallel processing with 16 GPUs. The global batch size
is set to 256 and the batch per GPU to 16. We use AdamW as an optimizer and warm-up
learning rate n for 10 epochs following the linear scaling rule n = 5 x 10~* x bs /256, where
bs is the batch size and then decay using a cosine schedule. For weight decay, we use

D. Reppas 61

https://github.com/EliSchwartz/imagenet-sample-images
https://github.com/EliSchwartz/imagenet-sample-images
https://github.com/bytedance/ibot
https://github.com/DimitrisReppas/MIM_on_self-supervision

On visual explanation of supervised and self-supervised learning

a cosine schedule from 0.04 to 0.4. We also set student temperature to 0.1 and teacher
momentum to 0.99. Following [8, 10], for the first 30 epochs, we use a linear warm-up for
teacher temperature from 0.04 to 0.07. We follow a multi-crop strategy with 6 local crops
and we experiment with 2 and 3 global crops. Global crop scales are sampled from (s, 1)
and local crop scales from (0.05, s) and s is set to 0.25. As data augmentations, we use
gaussian blur, colour jittering and solarization. Finally, we use a shared projection head for
[cls] and patch tokens, of dimensionality 8192 and we do not perform weight normalization
on the last layer of the MLP heads.

For the 100% of ImageNet experiments, we pre-train the models for 100 and 300 epochs.
When the pre-training is for 100 epochs, we use again distributed parallel processing with
16 GPUs and a global batch size of 256. The setup is the same as on 20% of the ImageNet
experiment, except for increasing the number of local crops to 10 and teacher momentum
to 0.996. When the pre-training is for 300 epochs, again the setup is the same. The only
difference is that we use distributed parallel processing with 32 GPUs, we set the global
batch size to 800 and s to 0.32.

Masking probability and mask ratio Here, we follow the exact strategy of [10] in all the
masking strategies we propose and incorporate into iBOT. To be more specific, first, each
image is masked with probability p = 0.5. Then, from the total n patch tokens only the
k = |rn] highest-attended tokens will be masked. The mask ratio r is sampled uniformly
per image as r ~ U(a, b) with [a, b] = [0.1,0.5].

Details for the interpretability experiments To interpret the iBOT models that are
trained with different masking strategies, we visualize the raw attention maps of the [cls]
token from the last layer of the model. Here, we use the same code as in subsection 3.3.4
and follow the same image pre-processing and normalization techniques.

Details for the contrastive learning experiments For the experiments where we intro-
duce the extra contrastive term, as thoroughly described in section 4.1, we set A\, A, = 1.
After a hyperparameter tuning, we set k = 6, 7 = 0.07, \; = 1. Then, we use these param-
eters in the rest experiments.

4.4 Experimental results and discussion

In this section, we present and organize the experimental results of the chapter as follows.
We first show k£-NN and linear probing scores of iBOT models trained from scratch with
different masking strategies. We then interpret the predictions of the models and provide
qualitative and quantitative results. We finally present k-NN and linear probing scores
when replacing the standard iBOT loss with a loss that contains a contrastive term as
well. All the results are discussed thoroughly.

4.41 Masking strategies

In this subsection, we conduct experiments by using a variety of masking strategies that we
incorporate into iBOT approach. The masking strategies we propose are compared with

D. Reppas 62

On visual explanation of supervised and self-supervised learning

baseline strategies and all are evaluated with £-NN and linear probing. All observations
are discussed in detail to conclude which strategy is more beneficial for MIM-based self-
supervised learning.

Mask generation from different layers In this experiment, we pre-train the iBOT model
on the 20% ImageNet for 100 epochs while using the attention-guided token masking
strategy (AttMask [10]) for different layers of the model. We summarize the results in two
plots, one for the £-NN and one for the linear probing scores in Figure 19.

From the k-NN plot, we observe the AttMask-Raw; mask strategy performs better than
the AttMask baseline, with a gain of 0.1%. The AttMask-Raw, performs equally good with
the baseline and better than the rest of the methods.

From the linear probing plot, we see that both AttMask-Raw, and AttMask-Raw; mask
strategies perform better than the AttMask baseline. The gain here for both mask strate-
gies is 0.5%. The AttMask-Raw; achieves equally good accuracy with the baseline and
better than the rest of the methods.

The previous two plots, show us that when using masks generated from attention maps
derived from the 4,,, 5,, we perform equally good or even better than the AttMask base-
line. This is the first insight that although hiding the object from the student network is
proven to be effective, hiding the object and some context information may result in a
more competitive MIM-based self-supervised approach.

49 57.5

48.5
57

48

k-NN %
Linear %

AttMask 56.5 .
475 | | AttMask
56 |- =
| | | | | | | | | | | | | |
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Ny, layer of the network Ny, layer of the network

Figure 19: Linear probing and k-NN scores of AttMask for different layers.The AttMask for the 12;;,
layer is the baseline approach [10]. The models are trained on the 20% ImageNet and evaluated on
the whole validation set of the dataset.

Rollout [18] method for mask generation Based on the previous observations, we
want to further investigate the context information impact by taking advantage of the Roll-
out [18] method. The mask generated from the Rollout method is compared with three
baseline mask strategies, which are the random block-wise [16] used in iBOT [9], the
AttMask-Low [17] and the AttMask [10]. Here, we pre-train again the iBOT model on the
20% ImageNet for 100 epochs.

From a quick look in Table 11, we observe that from the three baselines, we achieve
the best scores from AttMask and the worst scores from the AttMask-Low approach. In
other words, during MIM-based self-supervised learning masking only regions from the
background is the least effective approach while masking regions mostly on the object is
the most effective one. The random block-wise [16] followed in iBOT [9] is in the middle.

D. Reppas 63

On visual explanation of supervised and self-supervised learning

In the AttMask strategy, masks are derived from the last layer of the model while in the
AttMask-Rollout strategy the masks are obtained from the Rollout attention map. When
comparing the two attention maps, as shown in Table 9, for the self-supervised approach
we observe that the Rollout attention map contains salient regions on the object and less
salient regions on the context than the attention map derived from the last layer of the
model. This means that masks which hide only the object, is more probable to be gen-
erated from the AttMask-Rollout than the AttMask strategy. From Table 11, we see that
the small context information the AttMask strategy hides from the student network gives
the method a 0.3% gain in £-NN and a 0.1% gain in linear probing accuracy, compared to
AttMask-Rollout. AttMask-Rollouty_1, is a strategy that hides even less context; therefore,
the gain when using AttMask is even bigger. On the other hand, when using the AttMask-
Rollout;_g strategy we produce masks that hide greater context information than AttMask
while still hiding the object as well. When comparing the two methods, the gain of using
the AttMask-Rollout;_s is 0.2% in £k-NN and 0.3% in linear probing accuracy. The worst
mask strategy we tried was AttMask-Rollout; 4, as this method generates masks that hide
too much context information and not enough object information.

Table 11: Evaluation of Rollout-based masking strategies with £-NN and linear probing. The
models are trained on the 20% ImageNet and evaluated on the whole validation set of the dataset.

Evaluation

iBOT Masking
k-NN Linear

Random block-wise [16] 47.0 56.0
AttMask-Low [17] 44.0 53.2
AttMask [10] 48.9 57.1
AttMask-Rollout 48.6 57.0
AttMask-Rolloutg 12 48.5 56.7
AttMask-Rollouts _g 49.1 57.4
AttMask-Rollout; —4 47.9 56.7

The Table 11 shows as again similar insights to the previous experiment. First and fore-
most, the most important region to hide during MIM-based self-supervised learning is the
object. If you hide some context information as well, the self-supervised approach will
achieve better scores. On the other hand, if you hide too much context information and
not enough object information, the performance will drop.

Pre-processing of attention maps for competitive MIM In this experiment, we pre-
process the [cls] raw attention map from the last layer of the model with power and log
functions to boost the saliency of some regions on the background. The mask generated
from the pre-processed attention maps will hide more context information than the masks
generated from the AttMask strategy. We conduct the experiment on the 20% ImageNet
and we pre-train the iBOT models for 100 epochs.

Table 12 shows that pre-processing the attention maps from the last layer of the model with
power function when using power = 0.7,0.5,0.3 has a positive impact on learning. In k-
NN, AttMask-Pow(0.5) achieves a 0.4% gain over AttMask and in linear probing AttMask-
Pow(0.3) reach a 0.6% gain over AttMask. On the contrary, the AttMask-Log strategy
hides too much context information and not enough information coming from the object,
resulting in a lower performance than the baseline.

D. Reppas 64

On visual explanation of supervised and self-supervised learning

Table 12: Linear probing and %£-NN evaluation of masking strategies based on the pre-processing
of the attention maps with power and log functions. The models are trained on the 20% ImageNet
and evaluated on the whole validation set of the dataset.

iBOT Masking Evaluation
k-NN Linear
AttMask [10] 489 571

AttMask-Pow(0.7) 49.0 57.5
AttMask-Pow(0.5) 49.3 57.5
AttMask-Pow(0.3) 49.0 57.7
AttMask-Log 48.2 56.9

Multi-layer mask generation As previously mentioned, iBOT [9] and AttMask [10] follow
the multi-crop strategy of DINO [8]. In our experiments, for all the proposed masking
strategies we use 2 global crops as in DINO, iBOT and AttMask. In the experiment on the
20% ImageNet, the local crops are set to 6 as in AttMask. So far, we follow the strategy
of iBOT and AttMask and mask the 2 global crops with the same kind of strategy. In this
experiment, we mask the 2 global crops with 2 different strategies. Then, we add an extra
global crop and mask it again with a different strategy.

For the 2 global crops experiment, we propose AttMask-Raws; .. In this strategy, the
masks are derived from the attention maps of the 5;, and 12,, layer. Masking each of
the 2 global crops with a different mask has a positive impact on the k-NN and linear
probing scores, as shown in Table 13. AttMask-Raws ;, performs better than the 2 previous
baselines and compared to AttMask, we achieve a 0.4% gain in £-NN and a 0.5% gain in
linear probing.

The addition of the 3, global crop has a beneficial influence on all strategies, with a min-
imum 1.6%, maximum 2.5% gain in k-NN and a minimum 0.7%, maximum 1.4% gain in
linear probing. The improvements in both scores come with an extra ~ 47% of the time
for the 2 global crops experiment. Here, we propose AttMask-Raws 5 12 with the masks
derived from the attention maps of the 3,4, 5,, and 12, layer of the model. The multi-layer
mask strategy is again the best, with 0.4% gain in £-NN and equally good results with
AttMask in linear probing.

In short, in this experiment, we see that using a multi-layer mask strategy and raising the
number of global crops when a multi-crop strategy is followed, further improves a MIM-
based self-supervised approach. Furthermore, it seems that with the addition of the extra
crop, the gap between the masking strategies gets closed.

Table 13: Evaluation of the multi-layer masking and multi-crop strategies with £-NN and linear
probing. The models are trained on the 20% ImageNet and evaluated on the whole validation set of
the dataset.

Global crops iBOT Masking Evaluation

k-NN Linear

Random block-wise [16] 47.0 56.0
2 AttMask [10] 48.9 57.1
AttMask-Raws, 12 49.3 57.6
Random block-wise [16] 49.5 57.4
3 AttMask [10] 50.5 58.3
AttMask-RaW3,5,12 50.9 58.3

D. Reppas 65

On visual explanation of supervised and self-supervised learning

Experiments on the full Imagenet In this experiment, we evaluate again the masking
strategies we proposed, on the 100% ImageNet. First, we pre-train iBOT models for 100
epochs and then for 300 epochs as in [10].

For the 100 epochs experiment, we observe more or less the same insights, with the only
difference that the score of the strategies comes even closer. So again, AttMask is better
than AttMask-Rollouty_;5, and this time seems to be equally good with AttMask-Pow. The
best strategy is AttMask-Raws 1, with a 0.1% gain in £-NN and a 0.2% gain in linear probing
when compared to AttMask.

We pre-train the iBOT model for 300 epochs only for the AttMask and AttMask-Raws ;5.
Again, AttMask-Raws 5, is a bit better than AttMask with no gain in £-NN and a 0.3% gain
in linear probing.

In summary, we show that in experiments on 100% ImageNet all strategies seem to get
even closer and what to hide is not as important as in previous experiments. The AttMask-
Raws ; strategy is still the best strategy.

Table 14: Evaluation of masking strategies with £-NN and linear probing. The models are trained
for 100 and 300 epochs respectively, on the 100% ImageNet and evaluated on the whole validation
set of the dataset.

Pre-training epochs iBOT Masking Evaluation
k-NN Linear
AttMask [10] 72.6 76.1
100 AttMask-Rollout g_12 72.4 76.0
AttMask-Pow(0.5) 72.7 76.0
AttMask-Pow(0.3) 72.6 76.1
AttMask-RaW5,12 72.7 76.3
300 AttMask [10] 74.8 77.2
AttMask-Raws 12 74.8 77.5

A closer look on AttMask, AttMask-Raw; ;» comparison Here, we explore in more de-
tail the £-NN and linear probing results of the two strategies to gain a better understanding
of their performance.

* k-NN report: In Table 15, we present in detail the k-NN evaluation of the two strate-
gies for k = 10, 20, 100, 200. We show results when the models are pre-trained for 100
or 300 epochs, on the 20% or 100% ImageNet. From a quick look, AttMask-Raws ;-
is the best strategy on this metric. If we look closer, this holds for the 100 epochs
experiment for both 20% or 100% ImageNet. For the 300 epochs experiment on the
100% ImageNet, we observe that the two strategies are equally good. Only when

= 10 AttMask-Raw; 1, performs slightly better than AttMask. It seems that the
superiority of AttMask-Raws ;, for the 20% ImageNet experiments is progressively
minimized when we use the full ImageNet and increase the number of train epochs.

* Linear probing report: In Figure 20 and Figure 21, we present plots of top-1 accuracy
scores for the two strategies for a 100-epoch linear probing evaluation. The plot
stops when each model reaches its maximum accuracy. In Figure 20, we show the
scores for models pre-trained for 100 epochs on the 20% or 100% ImageNet. And
in Figure 21, we see the respective results for models pre-trained for 300 epochs
on the 100% ImageNet. First and foremost, with both strategies, the models reach
their top accuracy before the 100, epoch. For models pre-trained for 100 epochs

D. Reppas 66

On visual explanation of supervised and self-supervised learning

on the 20% ImageNet, AttMask-Raws; ;, reaches the top accuracy of the AttMask
in 55 fewer epochs. When pre-trained on 100% ImageNet for the same number
of epochs, AttMask-Raw; 1, reaches the top accuracy of the AttMask in 16 fewer
epochs. For models pre-trained for 300 epochs on 100% ImageNet, the top score
of the AttMask is achieved by AttMask-Raw; 1, in 20 fewer epochs. Considering the
previous observations, when choosing the AttMask-Raw; ;. strategy to pre-train the
iBOT model, we need to train less a classifier to use it for downstream tasks.

Table 15: Detailed k-NN evaluation report for AttMask [10] and AttMask-Raws ;- strategies.

Pre-training epochs % ImageNet-1k iBOT Masking

k-NN Evaluation

10 20 100 200

20 AttMask [10] 48.5 48.9 472 461

100 AttMask-Raws 12 48.8 493 47.6 46.5
AttMask [10] 727 726 70.7 695

100 AttMask-Raws 12 729 727 71.0 69.7

300 AttMask [10] 748 748 733 723
AttMask-Raws 12 749 748 73.3 723

20% ImageNet

100% ImageNet

16 fewer
epochs

—— AttMask

—— AttMask-Raws 12

i T T

—

58 | ‘ y 76 |-
55 =
X 55 fewer X 74
T epochs &
g 50 18
- < 720
45 =
| | | | | | 70 |
0 20 40 60 80 100 0
Epoch

40 60 80
Epoch

100

Figure 20: Top-1 accuracy scores for AttMask and AttMask-Raw; ;, for a 100-epoch linear probing
evaluation. The models are pre-trained for 100 epochs on the 20% (left) and on 100% ImageNet

(right).
78 F N
76 - |
S
®
8 B 20 fewer N
£ 74 epochs
—— AttMask
72 |- —— AttMask-Raws 12 ||
I L I - L

0 20 40 60 80
Epoch

100

Figure 21: Top-1 accuracy scores for AttMask and AttMask-Raw; ;, for a 100-epoch linear probing

evaluation. The models are pre-trained for 300 epochs on the 100% ImageNet.

D. Reppas

67

On visual explanation of supervised and self-supervised learning

4.4.2 Interpretability of MIM-based models

In this subsection, we interpret the iBOT models trained with different masking strategies.
To interpret them, we visualize the raw attention maps from the last layer of the models
and evaluate them qualitatively and quantitatively. More precisely, we study the evolution
of the attention map during training and the impact the masking strategy and the scale of
a dataset have on interpretability.

The evolution of the attention map during training In Figure 22, we present the evo-
lution of a saliency map during training. To be more specific, we visualize the raw attention
map of the [cls] token, from the last layer of the iBOT model, when following the AttMask
strategy. The model was pre-trained for 100 epochs on the 100% ImageNet and we show
the attention maps for the 5;;,, 25;1,, 5041, 75:1,, 1004, training epoch, given an input image.

Looking closely at the evolution of the attention map, we observe that in the 5,, epoch
there are scattered salient regions all over the image. After 20 epochs, the majority of the
salient regions are found on the object while there are still some in the background. From
the 50, until the last epoch, we see no salient background regions and progressively more
and more features of the object become part of the final saliency map.

(a) Inputimage (b) Epoch =5 (c) Epoch =25 (d) Epoch=50 (e) Epoch=75 (f) Epoch =100

Figure 22: The evolution of the raw attention map during pre-training when AttMask [10] strategy is
incorporated into iBOT [9]. The training lasts for 100 epochs and is on the 100% ImageNet.

The impact of masking and scale of a dataset on interpretability In this experiment,
we interpret iBOT models trained for 100 epochs, on the 20% and 100% ImageNet, with
three different masking strategies. AttMask, AttMask-Pow(0.5) and AttMask-Raw; ;, are
the three mask generation methods we choose. Here, we want to study the impact each
mask strategy and the scale of the dataset have on the raw attention maps of each model.
We visualize attention maps derived from the last layer of the models. These maps are
evaluated qualitatively for randomly picked image samples derived from the ImageNet
validation set. We then use the 1000 images ImageNet validation subset to evaluate
the attention maps of the models quantitatively with the average decrease (AD), average
increase (Al), deletion (D) and insertion (1) metrics.

From a quick look in Table 16, we observe that changing the masking strategy does not
have a great impact on the attention maps and therefore all the maps look similar. On
the other hand, the scale of the dataset has an influence on the map. It seems that when
the model is trained on the 20% ImageNet, we observe spread out salient regions mainly
on the object with a limited percentage of salient regions coming from the background.
When the model is trained on the 100% ImageNet, we find small salient regions on specific
features of the object.

The aforementioned observations are expressed quantitatively in Table 17. Here, we see
again the low impact the change of the masking strategy has. It is hard to say, but it

D. Reppas 68

https://github.com/EliSchwartz/imagenet-sample-images

On visual explanation of supervised and self-supervised learning

seems that AttMask-Raws ;, has the best metrics when the model is trained on the 20%
ImageNet and AttMask achieves the best when the model is trained on the full dataset.
The influence of the scale of the dataset is expressed quantitatively mainly with the AD, D
and | metrics. When the models are trained on the 100% ImageNet, we observe a clear
improvement in these three metrics. The fact that the models reach a bit better Al results
when trained on the 20% ImageNet, is something we didn’t expect.

Table 16: Raw attention maps obtained from the last layer of iBOT when the model is trained with
three different masking strategies on the 20% and 100% ImageNet.

Sample % ImageNet-1k IBOT Masking

AttMask [10] AttMask-Pow(0.5) AttMask-Raws 12

malamute

D. Reppas 69

On visual explanation of supervised and self-supervised learning

Table 17: Quantitative evaluation of raw attention maps, derived from iBOT models trained with
three different masking strategies on the 20% and 100% ImageNet. Classification metrics on 1000
randomly picked images from the ImageNet validation set. AD/Al: average drop/increase I/D:
insertion/deletion | / 1: lower / higher is better .

Metrics for models pre-trained on 20% and 100% ImageNet

iBOT Masking
ADJ Al D| I
20% 100% \ 20% 100% \ 20% 100% \ 20% 100%
AttMask [10] 0.61 0.46 0.17 0.17 0.07 0.1 0.30 0.55
AttMask-Pow(0.5) 0.61 0.49 0.17 0.15 0.06 0.10 0.30 0.54
AttMask-Raws 12 0.58 0.47 0.17 0.16 0.06 0.11 0.30 0.54

4.4.3 Contrastive learning

In these experiments, we introduce an alternative loss for training the iBOT [9] models.
The proposed loss is a result of the standard iBOT loss plus an extra contrastive term, as
detailed described in section 4.1. Here, we compare the £-NN and linear probing scores
of the models when trained with the two different losses. We test both losses for models
trained with AttMask [10], AttMask-Pow(0.5) and AttMask-Raws; ;,. All the models are pre-
trained on the 20% ImageNet for 100 epochs.

The first experiments we conduct were on the iBOT model which followed the AttMask
strategy. After a hyperparameter tuning for k£ = 3,6,12, for - = 0.2,0.14,0.07,0.03 and
A3 = 0.0001,0.01,0.1,0.5,1,5, 10 we reach the top scores when k& = 6,7 = 0.07, A\3 = 1.
We therefore keep the best hyperparameters for AttMask in the experiments with the rest
of the masking strategies. In Table 18, we present the results for the three strategies and
from a quick look, there is no clear benefit of using the loss with the contrastive term.
When using AttMask with our loss, we observe a bit better £.-NN and equally good linear
probing scores. Combining AttMask-Pow(0.5) with our loss gives equally good k-NN and
a bit better linear probing scores. Using AttMask-Raw; 1, with our loss has a bad influence
on k-NN and a good one on linear probing scores. The usage of our loss comes with an
extra ~ 11% of the experiment time with iBOT loss.

Table 18: Evaluation of two iBOT losses with £-NN and linear probing. The models are trained for
100 epochs with three different masking strategies on the 20% ImageNet and evaluated on the
whole validation set of the dataset.

iBOT Masking Loss Evaluation

k-NN Linear

iBOT Loss 48.9 57.1

AttMask [10] Ourloss 491 57.1

iBOT Loss 49.3 57.5

AttMask-Pow(0.5) "1\ oo 493 577

iBOT Loss 49.3 57.6

AttMask-Raws,12 5| oss 491 57.7

4.5 Conclusion

In chapter 4, we focus on three different aspects of MIM self-supervision. In the first
one, we study masking strategies used in the learning process and propose new ones to
further improve accuracy. Then, we see the impact masking strategies and the scale of

D. Reppas 70

On visual explanation of supervised and self-supervised learning

a dataset have on interpretability. Finally, we introduce a new loss and show its influence
on accuracy.

The effect of masking strategies on accuracy Here, we present and evaluate exist-
ing state-of-the-art masking strategies and propose new ones that perform even better.
We further provide the reasons why a strategy achieves better results than another. First
and foremost, we accept that attention-guided token masking is more beneficial than ran-
dom masking. But we argue with AttMask [10] approach that claims mask generation
from attention maps derived from the last layer of the model provides the best results.
This approach provides masks that hide the foreground of an object in an image. We
prove that generating masks that hide mainly the foreground but also a percentage of
context information coming from the background can further improve evaluation scores
and acceleration of the learning process in downstream tasks. We show this by improving
the k-NN and linear probing scores of AttMask baseline when using our AttMask-Raws,
AttMask-Pow, AttMask-Raws 12, AttMask-Raws 5 12 and deteriorating the baseline results
when using our AttMask-Rollout, AttMask-Rollouty_;,. On the other hand, we show that
hiding too much context information and not enough object information has a bad influ-
ence on learning and we prove it through AttMask-Raw,, AttMask-Rollout; _,, AttMask-Log
evaluation results.

Another important insight of this study is that masking each global crop with a different
mask further improves the results. The superiority of this multi-layer strategy is shown
when compared with AttMask [10] and iBOT [9] baselines. To be more specific, we pro-
pose a new masking strategy we call AttMask-Raws ;, that generates a mask for the first
global crop from Raw; and a mask for the second crop from Raw,,. This masking strat-
egy achieves better results than the two baselines. In the next experiment, we add an
extra global crop to all strategies and compare our multi-layer strategy with the previous
baselines. Here we propose AttMask-Raws 5 12, @8 new masking strategy that generates
masks from Raws;, Raw; and Raw;,. This strategy proves again its superiority over iBOT
and AttMask in £-NN and linear probing evaluation metrics.

The efficiency test of the masking strategies is being made on different scales of a dataset,
on different numbers of pre-training epochs and on different numbers of global crops. It
is worth mentioning, that as the values of the aforementioned parameters increase, we
obtain better results for all masking strategies, but the gap between them is progressively
narrowing. In other words, our proposed strategies do improve their results as the scale
of the dataset, the number of epochs and global crops increase, but the gain over using
other baseline strategies decreases. This means, that what to mask is not as important
as before when the network is trained for too many epochs with more global crops on a
greater scale of a dataset.

The effect of masking strategies and scale of a dataset on interpretability The sec-
ond aspect of MIM self-supervision we study in chapter 4, is the impact each masking
strategy and the scale of a dataset have on interpretability. Here, we observe that the
influence of the scale of a dataset in comparison with the kind of masking is greater. In
essence, when changing the masking strategy, we see a low impact on the saliency map.
On the contrary, when the network is trained on a greater scale of the dataset, we observe
smaller well-localized on the object saliency maps than when trained on smaller scales.
This is quantitatively expressed with a better average decrease (AD), deletion (D) and in-
sertion (I) metrics. At this stage of the work, we further investigate how the saliency map

D. Reppas 71

On visual explanation of supervised and self-supervised learning

progressively changes during the training procedure. We clearly show, that at the begin-
ning of the training procedure the model is not able to recognize the important regions of
an image. As the training continues, we prove that the model progressively starts to learn
to focus more on the object and less on the background of an image.

The effect of new loss on accuracy In the last aspect of the MIM self-supervision study,
we introduce an alternative loss for training the iBOT model. This loss is contrastive, is
based on (2.11) and is used as an extra term in the standard iBOT loss. We propose
this loss to help the model better discriminate between the foreground and background of
an image with the objective to further improve accuracy scores. The new loss is tested
with different masking strategies. For some masking strategies, we come up with some
improvements in the results compared to the standard iBOT loss. The improvement comes
with an extra ~ 11% of the experiment time with iBOT loss. Here, we think there is room
for improvement and in section 5.2 we propose some possible ways to achieve it.

D. Reppas 72

On visual explanation of supervised and self-supervised learning

5. OVERALL CONCLUSION AND FUTURE WORK

In section 3.5 and in section 4.5, we provide you with a detailed description of our con-
clusions in this work. In this chapter, we want to present an overall conclusion we end
up with and to show the reasons chapter 3 and chapter 4 are closely related. Then, we
suggest some future work on both main chapters of this study.

5.1 Conclusion

This study is partially dedicated to the visual explanation of supervised and self-supervised
learning and the investigation and improvement of a MIM-based self-supervised approach.
Here, we want to highlight one more time the importance of interpretability and show how
the two parts of our study are closely related. In this work we use interpretability insights of
chapter 3 to further explore and improve MIM-based self-supervision. To be more specific,
from chapter 3, other than the valuable information about supervised and self-supervised
models and all the methods we use and propose to interpret them, we show that all the
models in order to be confident for their predictions need to take mostly information from
the foreground of an object in one image. Here, we discovered that we can boost more the
confidence of a model if we reveal some extra context information from the background.
This was the knowledge we took from the interpretability of the models, to further improve
MIM-based self-supervised learning. In chapter 4, we studied many different masking
strategies and we come 10 the conclusion that masking should be challenging, so we
started to hide from the student network the regions of an image that make a model mostly
confident before its prediction. Based on this, we proposed various kinds of masking
strategies that proved to be beneficial to the MIM-based self-supervised approach.

5.2 Future work

Concerning future work and future directions in the interpretability domain we propose:

1. Lack of a common visualization method for both CNNs and transformers: In the
experiments in subsection 3.4.1, we see that although we use CAM-based methods
for the interpretability of the transformers as well, the results are not acceptable.
Given an input image, the only attention-based method that is dependent with a
certain class of the image is TIBAV. This method follows a strategy introduced for
the interpretability of CNNs as well. TIBAV generates reasonable attribution maps,
but their qualitative and quantitative results are not as good as those generated by
CNNs. Consequently, class-specific visualization tools for transformers need to be
further investigated. First and foremost, to achieve this, understanding better the
inner mechanism of both CNNs and transformers and find some common properties
between their architectures is necessary. Then, some of the strategies that have
already been followed to make CNNs interpretable could be tested on transformers.
An alternative future direction is to use TIBAV as baseline to further improve the
method.

2. A new method for the interpretability of transformers: In subsection 3.4.1, we see
that CAM-based methods suit well with CNNs. In the case of transformers, after
long experimentation, we are not sure which method is optimal. Each method has

D. Reppas 73

On visual explanation of supervised and self-supervised learning

its strengths and weaknesses. Existing visualization methods for transformers take
advantage of information coming from attention weights while some methods also
follow strategies used in the interpretability of CNNs. Transformers are complicated
and information is shared across multiple linear projections, such as queries, keys
and values. Our experiments reveal that projections of keys can provide reasonable
information. Here, an extension could be a new visualization method that benefits
from other linear projections as well.

3. More representative metrics: We believe that the best way to interpret the predic-
tion of a model is the qualitative evaluation given the whole dataset. But this is not
possible, having in mind the scale of the datasets. This is the reason that we need
representative metrics. In our study, we use four classification metrics. We have
seen that only when all the metrics are good, the saliency map is reasonable as
well. This means that the metrics are not good representatives of the saliency map
when used separately. So the more metrics we use, the better the interpretability of
models. On the other hand, using infinite number of metrics is not practical. We see
two future directions for this challenge. Introducing a few extra metrics that measure
other properties of the saliency map is one option. Finding some flaws in the existing
ones and improving them would be another direction.

Concerning future work in the MIM-based self-supervised learning process we propose:

1. Fairer comparison of MIM-based methods: Although AttMask [10] approach and our
methods are attention-guided masking strategies and not random block-wise as in
iBOT [9], there is a lot of randomnesses in all methodologies. This yields a variance
in the results when running the same experiment more than once. As a reminder,
in the three approaches, each image is masked with probability p = 0.5. Then, from
the total n patch tokens only k£ = |rn| of them will be masked. The mask ratio r is
sampled uniformly per image as r ~ U(a,b) with [a,b] = [0.1,0.5]. If we keep r fixed
and execute the experiments for all the approaches, we think this could be a fairer
comparison and the impact of the mask on the learning process would be clearer for
sure. Finally, if we set p = 1, this could give further insights into the mask impact.
Probably, the randomness the parameters p and r provide to the learning process
boosts the accuracy scores. However, reducing the randomness may enable you
to better understand the impact of your modification on the network at least during
an ablation study. After the study, randomness could be reintroduced, if it has an
positive impact on the accuracy.

2. Further investigation on contrastive learning:In section 4.1, we introduce a new loss
term to the iBOT approach with the objective to further improve accuracy results. In
particular, this is a dense contrastive term which helps the model better discriminate
the foreground of an object from the background. The results, although promising,
were not as good as we expected, but we believe this idea could be reimplemented
in different ways. One way could be to use another type of contrastive loss function.

D. Reppas 74

On visual explanation of supervised and self-supervised learning

D. Reppas

ABBREVIATIONS - ACRONYMS

DNN
Ccv
CNN
CAM
MIM
Al
ANN
ML

DL
FNN
ReLU
LSTM
RNN
GAN
MLP
ResNet
XCA
LPI
MoCo
AttMask
GAP
TIBAV
AD

Al

D

I

AUC
kE-NN

Deep Neural Networks

Computer Vision

Convolutional Neural Network
Class Activation Maps

Mask Image Modeling

Artificial Intelligence

Artificial Neural Networks

Machine Learning

Deep Learning

Feedforward Neural Network
Rectified Linear Unit

Long Short Term Memory Networks
Recurrent Neural Networks
Generative Adversarial Networks
Multilayer Perceptrons

Residual Neural Network
Cross-Covariance Attention

Local Patch Interaction

Momentum Contrast
Attention-Guided Masked Image Modeling
Global Average Pooling
Transformer Interpretability Beyond Attention Visualization
Average Drop

Average Increase

Deletion

Insertion

Area Under the Curve

k Nearest Neighbours

75

On visual explanation of supervised and self-supervised learning

REFERENCES

[17 Y. Mahdid, “Perceptron algorithm from scratch in python,” 2020.
https://yacinemahdid.com/static/7c425dc2a439bb4bcc6e627eb549b010/6¢315/thumbnail.jpg.

[2] A. Mohanty, “Multi layer perceptron (mlp) models on real world banking data,” 2019.
https://miro.medium.com/max/700/1*-IPQIOd46dIsutlbUqg1Zcw.png.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers
for image recognition at scale,” 2020.

[5] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Training data-efficient image
transformers and distillation through attention,” 2020.

[6] A. EI-Nouby, H. Touvron, M. Caron, P. Bojanowski, M. Douze, A. Joulin, I. Laptev, N. Neverova, G. Syn-
naeve, J. Verbeek, and H. Jegou, “Xcit: Cross-covariance image transformers,” 2021.

[71 K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual representa-
tion learning,” 2019.

[8] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging properties
in self-supervised vision transformers,” 2021.

[9] J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. Yuille, and T. Kong, “ibot: Image bert pre-training with
online tokenizer,” 2021.

[10] I. Kakogeorgiou, S. Gidaris, B. Psomas, Y. Avrithis, A. Bursuc, K. Karantzalos, and N. Komodakis,
“What to hide from your students: Attention-guided masked image modeling,” 2022.

[11] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features for discriminative
localization,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248-255,
leee, 2009.

[13] V. Petsiuk, A. Das, and K. Saenko, “Rise: Randomized input sampling for explanation of black-box
models,” 2018.

[14] Z. Xie, Z. Zhang, Y. Cao, Y. Lin, J. Bao, Z. Yao, Q. Dai, and H. Hu, “Simmim: A simple framework for
masked image modeling,” 2021.

[15] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick, “Masked autoencoders are scalable vision
learners,” 2021.

[16] H. Bao, L. Dong, S. Piao, and F. Wei, “Beit: Bert pre-training of image transformers,” 2021.

[17] Z.Li, Z. Chen, F. Yang, W. Li, Y. Zhu, C. Zhao, R. Deng, L. Wu, R. Zhao, M. Tang, and J. Wang, “Mst:
Masked self-supervised transformer for visual representation,” 2021.

[18] S. Abnarand W. H. Zuidema, “Quantifying attention flow in transformers,” CoRR, vol. abs/2005.00928,
2020.

[19] H. Chefer, S. Gur, and L. Wolf, “Transformer interpretability beyond attention visualization,” CoRR,
vol. abs/2012.09838, 2020.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[21] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, pp. 193—202, 1980.

[22] A. Krizhevsky, |. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neu-
ral networks,” in Advances in Neural Information Processing Systems 25 (F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, eds.), pp. 1097-1105, Curran Associates, Inc., 2012.

D. Reppas 76

On visual explanation of supervised and self-supervised learning

[23] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1-9, 2015.

[24] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture
for computer vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2818-2826, 2016.

[25] S. loffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” vol. 37 of Proceedings of Machine Learning Research, (Lille, France), pp. 448—456,
PMLR, 07—-09 Jul 2015.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and |. Polosukhin,
“Attention is all you need,” 2017.

[27] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for object detection,” 2017.

[28] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object de-
tection with transformers,” CoRR, vol. abs/2005.12872, 2020.

[29] A. Srinivas, T.-Y. Lin, N. Parmar, J. Shlens, P. Abbeel, and A. Vaswani, “Bottleneck transformers for
visual recognition,” 2021.

[30] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka, J. Gonzalez, K. Keutzer, and P. Vajda,
“Visual transformers: Token-based image representation and processing for computer vision,” 2020.

[31] P. Ramachandran, N. Parmar, A. Vaswani, |. Bello, A. Levskaya, and J. Shlens, “Stand-alone self-
attention in vision models,” 2019.

[32] H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, and L.-C. Chen, “Axial-deeplab: Stand-alone axial-
attention for panoptic segmentation,” 2020.

[33] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor, “Imagenet-21k pretraining for the masses,”
2021.

[34] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data in deep
learning era,” 2017.

[35] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-100 (canadian institute for advanced research),”

[36] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features
with denoising autoencoders,” in Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, (New York, NY, USA), p. 1096-1103, Association for Computing Machinery, 2008.

[37] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.

[38] D.J.Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference
in deep generative models.”

[39] 1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial networks,” 2014.

[40] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville, “Adver-
sarially learned inference,” 2016.

[41] J. Donahue and K. Simonyan, “Large scale adversarial representation learning,” 2019.

[42] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural image syn-
thesis,” 2018.

[43] J. Donahue, P. Krahenbihl, and T. Darrell, “Adversarial feature learning,” 2016.

[44] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by context pre-
diction,” 2015.

[45] C. Doersch and A. Zisserman, “Multi-task self-supervised visual learning,” 2017.
[46] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” 2016.

[47] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning representations for automatic colorization,”
2016.

[48] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders: Feature learning
by inpainting,” 2016.

D. Reppas 77

On visual explanation of supervised and self-supervised learning

[49] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving jigsaw puzzles,”
2016.

[50] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial net-
work,” 2016.

[51] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsupervised feature
learning with convolutional neural networks,” in Advances in Neural Information Processing Systems
(Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds.), vol. 27, Curran Asso-
ciates, Inc., 2014.

[52] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting image
rotations,” 2018.

[53] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual
representations,” 2020.

[54] A.v.d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding.”
[55] Y. Tian, D. Krishnan, and P. Isola, “Contrastive multiview coding,” 2019.

[56] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola, “What makes for good views for
contrastive learning?,” 2020.

[57] S. Arora, H. Khandeparkar, M. Khodak, O. Plevrakis, and N. Saunshi, “A theoretical analysis of con-
trastive unsupervised representation learning,” 2019.

[58] C.-Y.Wu, R. Manmatha, A. J. Smola, and P. Krahenblihl, “Sampling matters in deep embedding learn-
ing,” 2017.

[59] B.Harwood, V.K. B. G, G. Carneiro, I. Reid, and T. Drummond, “Smart mining for deep metric learning,”
2017.

[60] J.-B. Girill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires,
Z.D. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent: A
new approach to self-supervised learning,” 2020.

[61] X. Chen and K. He, “Exploring simple siamese representation learning,” 2020.

[62] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results,” 2017.

[63] J.Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers
for language understanding,” 2018.

[64] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with momentum contrastive learning,”
2020.

[65] X.Chen, S. Xie, and K. He, “An empirical study of training self-supervised vision transformers,” 2021.

[66] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning of visual
features by contrasting cluster assignments,” 2020.

[67] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,” 2017.
[68] Z. C. Lipton, “The mythos of model interpretability,” 2016.

[69] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, D. Pedreschi, and F. Giannotti, “A survey of methods
for explaining black box models,” 2018.

[70] Y. Zhang, P. Tino, A. Leonardis, and K. Tang, “A survey on neural network interpretability,” IEEE Trans-
actions on Emerging Topics in Computational Intelligence, vol. 5, pp. 726—742, oct 2021.

[71] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, “Grad-cam: Why
did you say that? visual explanations from deep networks via gradient-based localization,” CoRR,
vol. abs/1610.02391, 2016.

[72] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-cam++: Generalized
gradient-based visual explanations for deep convolutional networks,” CoRR, vol. abs/1710.11063, 2017.

[73] R. Fu, Q. Hu, X. Dong, Y. Guo, Y. Gao, and B. Li, “Axiom-based grad-cam: Towards accurate visual-
ization and explanation of cnns,” CoRR, vol. abs/2008.02312, 2020.

D. Reppas 78

On visual explanation of supervised and self-supervised learning

[74] H.Wang, M. Du, F. Yang, and Z. Zhang, “Score-cam: Improved visual explanations via score-weighted
class activation mapping,” CoRR, vol. abs/1910.01279, 2019.

[75] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging properties
in self-supervised vision transformers,” CoRR, vol. abs/2104.14294, 2021.

[76] A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and |. Polosukhin,
“Attention is all you need,” CoRR, vol. abs/1706.03762, 2017.

[77] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K. Miiller, “Explaining nonlinear classification
decisions with deep taylor decomposition,” Pattern Recognit., vol. 65, pp. 211-222, 2017.

[78] J. Gildenblat and contributors, “Pytorch library for cam methods.” https://github.com/jacob
gil/pytorch-grad-cam, 2021.

[79] J. Choe, S. J. Oh, S. Lee, S. Chun, Z. Akata, and H. Shim, “Evaluating weakly supervised object
localization methods right,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
to appear.

[80] J.Zhang, Z.Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-down neural attention by excitation backprop,”
2016.

[81] P. Dabkowski and Y. Gal, “Real time image saliency for black box classifiers,” in Advances in Neural
Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

D. Reppas 79

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam

	Contents
	INTRODUCTION
	Computer vision
	Machine learning
	Deep learning
	Challenges and motivation
	Our work
	Structure

	BACKGROUND
	Deep neural networks
	How it started
	Convolutional neural networks
	Transformers
	Self-supervised learning
	The self-supervised models used in this study

	Interpretability of DNN
	Intepretability importance
	Interpretability categories
	CAM-based methods
	Attention-based methods

	INTERPRETABILITY
	Methodology
	Contributions
	Experimental setup
	Dataset
	Networks
	Evaluation protocol
	Implementation details

	Experimental results and discussion
	Interpretability of models with CAM-based methods
	Interpretability of transformers

	Conclusion

	MIM ON SELF-SUPERVISION
	Methodology
	Contributions
	Experimental setup
	Dataset
	Networks
	Evaluation protocol
	Implementation details

	Experimental results and discussion
	Masking strategies
	Interpretability of MIM-based models
	Contrastive learning

	Conclusion

	OVERALL CONCLUSION AND FUTURE WORK
	Conclusion
	Future work

	ABBREVIATIONS - ACRONYMS
	REFERENCES

