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Περίληψη

Η ταχεία ανάπτυξη σύνθετων μοντέλων βαθιάς μάθησης οδήγησε σε μεγάλα και

σημαντικά επιτεύγματα, σε μια πληθώρα εφαρμογών, υποδεικνύοντας την ικα-

νότητά τους στην αναγνώριση σημαντικών προτύπων στα δεδομένα. Ωστόσο,

αυτή η επιτυχία συνοδεύτηκε από τη μείωση της ερμηνευσιμότητας των μο-

ντέλων. Αυτές οι περίπλοκες αρχιτεκτονικές θεωρούνται ¨μαύρα κουτιά¨, διότι

πραγματοποιούν πολλούς χαμηλού επιπέδου, μη γραμμικούς υπολογισμούς. Πα-

ρόμοια με τον ανθρώπινο εγκέφαλο, κατανοούμε τον εκάστοτε αλληλεπίδραση

των νευρώνων, αλλά δυσκολευόμαστε να κατανοήσουμε πώς το μοντέλο συνδυ-

άζει πληροφορίες για τη δημιουργία υψηλότερων έννοιων. Αυτό το κενό γνώσης

οδήγησε στον τομέα της Επεξηγηματικής Τεχνητής Νοημοσύνης (ΕΤΝ).

Η Επεξηγηματική Τεχνητή Νοημοσύνη (ΕΤΝ) βρίσκεται στο στάδιο της ανάπτυ-

ξης, και μια σειρά ερωτημάτων για την κατανόηση της λειτουργίας του μοντέλου

δεν έχει ακόμα διατυπωθεί. Ωστόσο, η έρευνα ξεκίνησε με ένα θεμελιώδες ερώτη-

μα: ¨ποιοι παράγοντες επηρεάζουν την απόφαση ενός μοντέλου για ένα δεδομένο

είσοδο¨, οδηγώντας στην ανάπτυξη των ¨μεθόδων Ανάθεσης¨. Αυτές οι μέθοδοι

στοχέυουν στην απόδοση της απόφασης ενός μοντέλου πίσω στα χαρακτηριστικά

εισόδου, με την ανάθεση σημασίας σε κάθε χαρακτηριστικό. Για να επιτευχθεί

αυτό, χρησιμοποιούν διάφορα μαθηματικά εργαλεία, στενά σχετιζόμενα με την

έννοια της σημασίας. Η εξάπλωση τέτοιων μεθόδων απαίτησε τη δημιουργία ¨με-

τρικών Αξιολόγησης’ για να μετρήσουν την αποτελεσματικότητά τους. Ωστόσο,

τέτοιες μετρικές εμφάνισαν περιορισμούς, οδηγώντας μερικούς ερευνητές στην

ανάπτυξη συνόλων ¨Αξιωμάτων και Κριτηρίων’ που θεωρούνταν απαραίτητα για

την αξιόπιστη ανάθεση. Αν και αντιμετωπίζουν παρόμοιους περιορισμούς, πα-

ρέχουν μια πιο έννοιολογικά ορθή προσέγγιση για αξιόπιστες αναθέσεις.

Σε απάντηση σε αυτές τις προκλήσεις, αυτή η διατριβή εξερευνά το έννοια της

¨Μηδενικής Πληροφορίας¨, καθώς μπορεί να προσφέρει σημαντική βοήθεια σε

αυτές τις ερωτήσεις. Αυτή η έννοια αποσκοπεί στο να κρύψει όλες τις πλη-

ροφορίες που περιέχονται σε τμήματα μιας εικόνας για ένα συγκεκριμένο μο-

ντέλο, αποκαλύπτοντας τη συμβολή τους στη απόφαση του μοντέλου. Αυτή η

διατριβή αναπτύσσει μια νέα προσέγγιση στο πρόβλημα, σχεδιάζοντας κριτήρια

που σχετίζονται με την απόκρυψη της πληροφορίας. Πρώτον, σχεδιάζουμε ένα

αλγόριθμο για την απόκρυψη της πληροφορίας από ολόκληρη την εικόνα. Με-

ταφράζοντας τα κριτήρια σε συναρτήσεις κόστους, ο αλγόριθμος εντοπίζει τα

πιο επιδραστικά σημεία που οδηγούν στη μείωση της βεβαιότητας του μοντέλου

και τα χρησιμοποιεί για να ορίσει μια μέθοδο Ανάθεσης. Στη συνέχεια, για την

απόκρυψη πληροφορίας από μέρη της εικόνας, τα κριτήρια πρέπει να επεκταθο-

ύν για να περιέχουν τις αλληλεπιδράσεις χαρακτηριστικών. ΄Ενας αλγόριθμος

βελτιστοποίησης εκπαιδεύεται για να πληροί αυτά τα κριτήρια, ενώ χρησιμοποιε-

ί γεννητικά μοντέλα για την ανακατασκευή των απόκρυμμένων τμημάτων με

¨φυσική’ συμπλήρωση. Η μέθοδος δοκιμάζεται με βάση πολλές μετρικές, εμ-

φανίζοντας ισχυρή απόδοση έναντι άλλων τεχνικών. Στη συνέχεια, μπορεί να

χρησιμοποιηθεί από διάφορες μεθόδους Ανάθεσης και μετρικές Αξιολόγησης που

βασίζονται στην απόκρυψη πληροφορίας, προσφέροντας καλύτερα αποτελέσματα.
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Συνολικά, αυτή η διατριβή προσπαθεί να αναπτύξει μια μεθοδολογία για αξιόπι-

στες τεχνικές συμπλήρωσης για τη Μηδενική Πληροφορία. Δεν παρέχει ορι-

στικές απαντήσεις στο πρόβλημα, δεδομένη την πολυπλοκότητά του. Αντίθετα,

ανοίγει το δρόμο για την ανάπτυξη καλύτερων κριτηρίων ως μια μελλοντική κα-

τεύθυνση, προσφέροντας απαντήσεις σε θεμελιώδεις ερωτήσεις της ΤΝ.
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σης, Μηδενική Πληροφορία Σημείου, Μηδενική Πληροφορία Κομματιών



Abstract
The rapid evolution of complex deep learning models has yielded remark-
able achievements in various applications, underlining their proficiency in
recognizing vital data patterns. However, this success came at the cost of
transparency and interpretability. These intricate architectures are consid-
ered as black boxes, since they perform numerous low-level, non-linear
calculations. Much like the human brain, we understand individual neu-
ron interactions but we struggle to comprehend how the model combines
information to form higher concepts. This gap of knowledge gave rise to
Explainable AI (XAI).

This particular field of AI is in its developing stage and a sequence of ques-
tions to comprehend the model’s functioning is yet to be formed. However,
the exploration began with a fundamental question: ”what factors influence a
model’s decision for a given input”, leading to the development of attribution
methods. These methods are dedicated to attributing a model’s decision to
specific input features, by assigning importance scores to each feature. To
achieve this, they leverage different mathematical tools, closely related to the
notion of importance. The proliferation of such methods necessitated the
creation of evaluation metrics, to gauge their effectiveness. Yet, such metrics
exhibited limitations, leading some researchers to the development of sets
of axioms and criteria that were considered essential for robust methods to
satisfy. While facing similar limitations, they provided a more conceptually
sound approach for robust attributions.

In response to these challenges, this thesis explores the concept of Zero In-
formation as it may offer valuable insights. This concept aims to conceal all
information contained in parts of an image for a particular model, revealing
their contribution to the model’s score. This thesis develops a new approach
to the problem, by designing criteria related to information concealment.
First, we design an algorithm for hiding information from the whole image.
By translating criteria into loss functions, the algorithm finds the most influ-
ential points that lead to the drop of the model’s confidence and uses them
to define an attribution method. Then, for hiding information from parts
of the image, criteria need to be extended to capture feature interactions.
An optimization algorithm is trained to meet these criteria, while leverag-
ing generative models for reconstructing the hidden parts with natural fill.
The method is tested across multiple metrics, showing strong performance
against other techniques. It can then be exploited by different attribution
methods and evaluation metrics based on information concealment, yielding
better results.

Overall, this thesis attempts to develop a methodology towards robust filling
techniques for Zero Information. It does not give definite answers to the
problem, since it is constrained by its complexity. Instead, it paves the way
for better criteria to be developed in the future, to answer a fundamental
question of XAI and unlock the power of different methods and techniques.
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Chapter 1

Introduction

In the realm of artificial minds, Explainable AI (XAI) emerges as the
eloquent bard, weaving narratives of transparency and insight. It
bestows upon the computational enigma the gift of lucid verse, unveiling
the intricate dance of reason in its decisions, a harmonious symphony
for human trust and understanding to thrive. – ChatGPT 3.5, when
asked to define XAI in a poetic manner.

I welcome the reader to my research thesis on the topic of Explainable Ar- About this thesis

tificial Intelligence (XAI). This is an emerging field within the realm of AI
that aims to shed light on the decision-making processes of machine learn-
ing models. Unlike more established disciplines such as Linear Algebra or
Functional Analysis, XAI is still in its formative stages, lacking definitive
mathematical foundations. As a result, it presents a set of challenges without
universally accepted solutions. Instead, researchers have charted various
trajectories, each with its unique advantages and limitations.

The primary objective of this thesis is to provide a conceptual understand-
ing and a comprehensive overview of the challenges in XAI. Throughout
this journey, we examine several Attribution methods from a mathematical
perspective, and critically assess different metrics and criteria, developed
to prove the effectiveness of the aforementioned techniques. Ultimately, we
focus our attention to a fundamental issue in XAI, that is to find a manner
to properly conceal information from a model-image pair. For this problem,
that has yet to be addressed properly, we design algorithms leading to new
Attribution methods and techniques that advance the field of XAI further.
This will be a lengthy and intricate journey through many concepts and ideas.

1.1 Machine Learning theory and application

Recent advances in Machine Learning techniques, especially the develop-
ment of deep learning models, have triggered a remarkable expansion of the
field [58, 8]. These cutting-edge models have demonstrated their prowess
across diverse domains, ranging from medicine [28], disease diagnosis [74]
and drug discovery [46], to education [17], agriculture [1], marketing [46],
and finance [68]. As a result, deep learning models have found practical
applications in automating a wide array of labor-intensive tasks. The follow-
ing paragraphs aim to introduce the concepts of machine learning and deep
learning, catering to readers who may be new to this field.

13
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Machine Learning. Machine Learning (ML) is a subset of artificial intelli- Overview of ML

gence (AI) that focuses on the development of statistical models that enable
computer systems to improve their performance on tasks that were con-
sidered hard for computers to tackle. Recognising objects in images is a
task that humans excel without much difficulty, but a computer struggles.
ML manages to tackle such tasks, by designing models that are based on
experience or data. Instead of relying on explicit programming, ML systems
learn patterns and make predictions or decisions based on input data. This
process involves training a model on a labeled dataset, where the model
learns to recognize patterns and relationships within the data. Once trained,
the model can generalize its knowledge to make predictions or classifications
on new, unseen data.

Deep Learning. Deep Learning is a subfield of Machine Learning that fo-
cuses on neural networks with many layers, known as deep neural networks
(DNNs). These networks are inspired by the structure of the human brain
and are designed to automatically learn and extract hierarchical features
from data. Deep Learning has gained significant attention and success
in recent years due to its remarkable performance in tasks such as image
and speech recognition, natural language understanding, and autonomous
driving. Deep Learning models, particularly deep neural networks called
Convolutional Neural Networks (CNNs) for images and Recurrent Neural
Networks (RNNs) for sequences, have the ability to capture complex pat-
terns and representations, making them highly effective for tasks that involve
large datasets and high-dimensional data. In recent years, a very powerful
architecture was designed, namely the Transformers which excelled in many
different applications.

Computer Vision. Computer Vision (CV) is among the most prominent
applications of machine learning. In CV tasks, datasets primarily consist
of images, and the common objective is to identify objects within these im-
ages and determine their positions. The field witnessed significant progress
with the development of the first Convolutional Neural Networks (CNNs)
[53] designed specifically for CV. Subsequently, more complex architectures
emerged, boasting a substantial number of parameters [34, 51, 84, 93]. No-
table among these is the ResNeXt architectureResNeXt [59] , a recent achieve-
ment that delivers accuracy on par with state-of-the-art CV models. More
recently, there has been a shift towards using TransformersTransformers
[100], originally designed for natural language processing, in the realm of
CV, giving rise to Vision Transformers Vision Transformers [20] that rival
the accuracy of ResNeXt.

1.2 The hidden decision making process of DNNs

However, deep learning models are often regarded as ’black boxes’ [104], pri- The black-box
nature of DNNsmarily due to their intricate architectures, which involve numerous low-level

calculations within nested, non-linear functions. These functions are grouped
into layers, creating latent representation spaces with structures that remain
largely unknown. Data is progressively mapped to lower-dimensional spaces
within these structures, eventually leading to the model outputs. This inher-
ent complexity somewhat somewhat parallels the operation of the human
brain, where higher-level concepts emerge from the interactions of individual
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neurons. Yet, much like our understanding of the brain, we still struggle
to precisely explain how these low-level computations combine to form
higher-level concepts, including thoughts, calculations, or memories. This
challenge is also pronounced in the realm of artificial intelligence.

Despite the enigmatic nature of a model’s decision-making process, one Statistically
associating cause
to effect

might argue that we can enhance trust in a model that is highly accurate.
This argument has been pivotal for the deployment of such architectures in
real-world applications. However, does this argument hold water? At a high
level a model learns by statistically associating cause-and-effect relationships.
For many applications, the number of possible feature combinations grows
exponentially, resulting in multiple potential causes being associated with
the same effect. Consequently, a model’s strong performance might suggest
a deep understanding of such relationships, and no misalignment between
the model and human cause-and-effect associations. On the other hand, it
might also suggest that we have not yet discovered in which examples this
misalignment exists.

To illustrate this, consider the Imagenet dataset, one of the most popular in
the field of AI. Within a specific class of fishes, the majority of images depict
a fisherman holding the fish, as demonstrated in Figure 1. This scenario can
perplex the model, causing it to learn that the concept of ”tench” includes
both the fish and the fisherman that holds it. This misalignment may not
necessarily be the model’s fault, it can rather be attributed to the design of
the dataset itself. Since there is a redundancy in information within an image,
different causes might statistically prevail those we would like them to be.
Thus, in this particular example, we need to ensure that a model considers
the fish as the cause of its decision and neglect the human behind it. Then,
we can safely generalise such models to other crucial applications.

Figure 1: Images from the class ”tench” of the Imagenet dataset. They were collected
from the first 25 images of the class and show a person holding a fish.

The following section delves deeper into the necessity of Explainable AI and
its applications across various real-world scenarios.

https://en.wikipedia.org/wiki/ImageNet
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1.3 Unveiling model transparency: A quest for
clarity

Understanding the inner workings of a Deep Neural Network (DNN) may
not be inherently intuitive for the human mind which operates at a high
level of abstraction. However, the benefits of such understanding are signifi-
cant. Several compelling reasons underscore the importance of explainability,
addressing distinct aspects of model performance and pattern recognition.

1. Addressing Safety Concerns. Safety concerns regarding a model’s training Enhancing safety

process are not without foundation. The potential for a model to associate an
effect with incorrect causes raises critical questions. Researchers have posited
that widely-adopted and successful models may have learned patterns diver-
gent from those desired. This phenomenon has been vividly described as the
”Clever Hans” effect [52]. An illustrative example of this was observed with
the Fisher Vector Classifier which won the PASCAL VOC competition. Rather
than accurately identifying the object of interest, it often relied on unrelated
contextual information, such as identifying boats based on the presence of
water around them or airplanes by the blue sky in the background. In some
exceptional instances, it classified images containing horses as ”horse” based
solely on the presence of label-text in the bottom left corner, which was a
common feature in all images containing horses.

In domains as critical as medicine and self-driving vehicles, such erroneous
decisions have the potential to imperil lives. Therefore, the imperative for
models to provide explanations for their decisions, enhancing safety and
security, cannot be overstated.

2. Model’s Robustness. The revelation of adversarial attacks [94] prompted Ensure model’s
robustnessa reassessment of the robustness of DNN architectures. These attacks involve

slight alterations to a model’s input, imperceptible to the human eye, yet
capable of fundamentally influencing the model’s decisions. Real-world
experiments [21] further underscored this vulnerability, demonstrating how
simple physical alterations, such as affixing stickers to a stop sign, could
render an AI system incapable of recognizing the sign. How do these subtle
modifications affect the feature associations within the model, leading to
divergent judgments? Explainable AI (XAI) potentially holds the key to
unraveling this enigma, shedding light on the resilience and accuracy dispar-
ities among different models.

3. New insights. Attributing an effect to its underlying causes serves as Insights into data
patternsa valuable tool for interdisciplinarycollaboration and knowledge discovery.

Biologists, for instance, seek to unravel the intricate interactions between
proteins responsible for the emergence of specific traits. In the realms of biol-
ogy and pharmacology, understanding which precise reactions triggered the
curative effects of a drug is of paramount importance. Economists attempt
to discover which factors triggered an economic crisis and historians try to
find what drove a revolution at a particular historic moment. Assuming
the abundance of data, a model can associate the correct causes to its effects.
Thus, the understanding of the model’s functionality holds the potential to
shed light on such associations and lead to new discoveries in science.

https://zlthinker.github.io/Fisher-Vector
https://www.microsoft.com/en-us/research/publication/the-pascal-visual-object-classes-voc-challenge/
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With a clear understanding of why XAI is indispensable, we embark on a
journey to delve deeper into its evolution. In the following chapter, we briefly
discuss the evolution of XAI, including Attribution methods, Evaluation
metrics, and other pivotal aspects that have shaped this burgeoning field.

1.4 The evolution of XAI

A fundamental question we must address is: ”What does it truly mean How to understand
the modelto comprehend a model’s inner workings and make it transparent”. Is

it about understanding how its parameters interact? Perhaps it relates to
uncovering what concepts are internally generated. Or does it revolve around
comprehending the sequential nature of its computations? Even today, these
questions lack definitive answers. In a noteworthy exploration of this subject
[56], the author notes:

the term interpretability is ill-defined, and thus claims regarding inter-
pretability of various models may exhibit a quasi-scientific character.

In subsequent sections, the author attempts to define desiredata for Inter-
pretability, pointing to trust, causality, transferability, informativeless and
fair & ethical Decision Making. Later, he defines the notion of post-hoc
explanations, that are meta-explanations for the model’s decision making
process. A post-hoc explanation could be a natural language explanation or
visualizations of latent activations.

This pioneering work lays a structured foundation for clarifying a model’s
transparency. Researchers then turned their attention to Local Explanations,
constructing maps of importance for each particular input feature of a given
input example. These maps are called attribution maps and the methods that
produce them are defined as Attribution methods. The primary objective of Attribution

methodssuch methods is to unmask the features that led to a particular effect, without
answering how they cooperated to achieve this effect, rather only answering
what caused it. Such an explanation could be important for different ML
applications –an example in Computer Vision can be seen in Figure 2. Such
a method points to pixels that are possibly related to a particular concept.

This shift in focus is well-founded and justified. When considering the ap-
plication of DNN models in medical imaging, the primary goal is to ensure
that the model makes accurate decisions in relation to a specific cause (the
presence of cancer) and its effect (labeling an image as cancerous). One
straightforward approach is to identify the crucial parts of the original image
that the model deemed significant for its decision. If these regions corre-
spond to cancerous areas, it suggests that the model has captured the true
correlations between the cause and the effect.

Up to this point, researchers have pursued various avenues to design Attri- Designing an
Attribution methodbution methods that score features according to some notion of importance

for the model’s decision-making. These methods have harnessed different
tools from the toolbox of mathematics, drawing from diverse domains like
mathematical analysis and gradient theory, linear algebra, probability theory,
game theory, and thermodynamics. However, as the model’s decision is de-
terministic and, thus, rooted in unique causal factors, the question of which
Attribution method provides the correct explanation remains unanswered.
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(a) Image (b) Attribution map overlay

Figure 2: The attribution map of GradCAM for this particular image of a dog. It
clearly points the head of the dog, giving high importance scores to pixels that
correspond to the object of interest.

Researchers have endeavored to compare these diverse methods in order to Evaluation metrics

deduce which of those is better. This led to the development of different
Evaluation metrics, analogous to assessing different model architectures
based on prediction accuracy and F-score. Yet, the design of such metrics
is not evident, since the true attribution is elusive, in contrast to a model’s
classification score where there the expected labels are known beforehand.
One approach might involve devising quantifiable measures that exhibit
some degree of correlation with the concept of explainability. For instance,
we could gauge the impact on the model’s decision when concealing the
critical elements highlighted by a reliable attribution map for a specific in-
put, anticipating a change in the model’s output due to the absence of the
causal factors. Nonetheless, many of these metrics faced criticism regarding
their validity. In this work, we not only challenge the effectiveness of some
widely-used metrics but also introduce more robust methodologies.

At present, defining a reliable criterion for measuring the effectiveness of an Mathematical
CriteriaAttribution method remains a challenge. To address this issue, researchers

have introduced a set of mathematical Properties or Criteria that Attribution
methods should satisfy. These Criteria are derived from intuitive notions
about how robust attributions should operate. For instance, a desirable
property is determinism, ensuring consistent outcomes for a given model-
input pair. The introduction of these Criteria has demonstrated that many
existing methods do not meet mathematical correctness standards, paving
the way for the development of new Attribution methods that adhere to
these essential Properties and Criteria. In this thesis, we will conduct an
in-depth examination of these Criteria to assess their effectiveness.

Nevertheless, many of those Axioms and Criteria introduce biases to the
model, driven by our understanding of the notion of explainability. They reflect
general human concepts that do not respect the model’s functioning. We will
carefully and conceptually examine the Criteria designed so far and point
to their strengths and weaknesses. This examination will lead our research
towards more robust evaluation techniques.

https://en.wikipedia.org/wiki/F-score
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The primary contribution of this research thesis lies in the conceptual explo- Our Contribution

ration of various facets of Explainability. Upon a comprehensive examination
of diverse topics, our focus narrows to the pivotal concept of Zero Informa-
tion within the realm of Explainability. The main challenge that this subfield
of XAI tries to tackle is the discovery of a set of values for a subset of features
-might contain the whole set of features as well-, that zero any information
the features might contain. Our research detects significant biases that heuris-
tic techniques introduce to the model, and formulates more theoretically
sound Criteria for concealing the hidden elements. In particular, we propose
desired properties for a robust image concealment and translate them to
loss functions, that take into consideration the functioning of the model for
the particular input. Then, we take a two-fold approach, based on these
Criteria: firstly, we devise an algorithm for concealing images and extract
an Attribution method from this process. Secondly, we establish a pipeline
that tackles the more intricate challenge of concealing specific portions of
images. These methods are evaluated through both visual assessments and
the application of newly devised Evaluation metrics. It is essential to note
that our methodology does not provide definitive solutions to the highly
complex issue at hand. Instead, it sets the stage for a robust approach to
tackle the challenges posed by Zero Information.

To this day, the question of what a model deems important for its decision-
making process remains a compelling enigma, driving the curiosity and
dedication of countless researchers in their quest for answers.

1.5 Thesis Structure

The introductory chapter has set the stage for our exploration. It’s at this
point that mathematics plays a pivotal role, providing a foundation for the
subsequent chapters. Chapter 2 delves into the mathematical definition of
Attribution methods and offers insight through various examples to facilitate
a deeper understanding. In chapter 3 we comprehensively examine the most
noteworthy Attribution methods developed to date. Chapter 4, discusses the
different Evaluation metrics employed to assess these Attribution methods,
while chapter 5 briefly touches on the concept of Criteria in the context of
Attribution methods.

The subsequent chapters lay the theoretical groundwork for our research.
Chapter 6 Chapter 6 introduces the concept of Zero Information, a pivotal
element in our exploration, whereas chapter 7 further scrutinizes the chal-
lenge of out-of-distribution data and explores methodologies to address it.
The following chapters delve into the aforementioned problems, designing
algorithms for whole images (chapter 8) and image parts (9 and 10). Lastly,
chapter chapter 11 outlines the experimental setup and the Evaluation met-
rics employed. The performance of the algorithms to these metrics are found
in Chapter 12. The final chapter, Chapter 13, provides a comprehensive
summation of our findings, explores its limitations and opens the door to
further discussions and future work.



Chapter 2

Attribution
Attribution methods aim to unveil key mathematical properties of the
model that are closely related to feature importance. These properties
encompass various tools such as gradients, linear combinations, eigenval-
ues/eigenvectors and many more. The following section will present a
mathematical definition of attribution, highlighting its nature as a meta-
explanation, since inherently includes the notion of importance. To offer readers
a more intuitive understanding of Attribution methods, a subsequent chapter
will demonstrate how attributions can be calculated in simple examples.

2.1 Mathematical definition

This section expresses mathematically the definition of an Attribution method.
The definition might be simple enough to formulate, yet, it does not provide
any insights about its nature. Thus a simple definition is that the attribution
is the measure of importance of each feature to the model’s decision. Yet,
it consists of a meta-explanation, since a mathematical definition of feature
importance cannot be possibly formed. It is the particular definition of an
Attribution method that defines it.

Mathematically stated, such an attribution can be defined as a function of Mathematical
formulation

R : F×Rr → Rr, R( f , x) = R f (x), (1)

where f : Rr → Rn is an instance of all DNN models F, and r, n ∈ N. r is
the number of dimensions of the input space and n is the number of classes.
R assigns a value of importance of each feature of an input x ∈ Rm with
respect to f , depicting the importance score of that feature to the decision
f (x) of the model.

A point we should consider with care is that an attribution map resulting
from an Attribution method ultimately produces a map of importance values,
one to each feature. This does not mean that features have been decomposed
to independent parts and the attributions express values only to those fea-
tures. These values are all codependent on one another.

Throughout this thesis, the application of interest is Computer Vision. Thus, computer Vision

the input space is the image space X and the model f I have chosen to
use is the ResNet architecture [34], which is a popular model for image
classification. This selection is based on its relatively lower memory and CPU
requirements compared to other models, without compromising performance.
Additionally, I assume that after the application of ResNet, the output passes

20
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through a softmax layer, which transforms logits into probabilities. I consider
this layer to be an integral part of the model.

2.2 Attribution games

This section aims to address what the attribution of simple models should
be, with the purpose of piquing the reader’s interest, while also highlight
the inherent complexities of this question.

Example 1. A simple linear model.

Consider a simple linear model with two variables x1, x2 and their corre-
sponding weights w1, w2. The model is defined as:

f (x1, x2) = 10x1 + 100x2. (2)

The weight of the second variable is much greater than that of the first. Does
that mean that it has a higher contribution to the model’s score? A first,
naive approach would be to select

R(xi) = wi, (3)

thus
R(x1, x2) = (10, 100).

We notice that this is identical to the Gradients of the variables.

However, what if, for a specific input x, variable x2 takes a much smaller
value than x1? Let’s consider x = (1, 1

10 ). In this case, each of the terms wixi
adds up to 10. The model then adds up the two values, with each having an
equal contribution to the result. Hence, we realize that gradients alone are
insufficient. Another choice could be to define attributions as:

R(xi) = wixi. (4)

Notice that this is identical to considering Gradients x Input.

The multiplication of the weight by the corresponding input value captures
the combined effect of both factors. While other functions may serve a similar
purpose, this multiplication method is among the simplest. However, it has
a notable drawback—it consistently attributes a zero value when the input
is zero. In the context of images, this means that a black object of interest
would be entirely neglected.

Example 2. A simple quadratic model with symmetrical variables.

Consider the following function f : R2 → R, where:

f (x1, x2) = x1 + x2 + 2x1x2. (5)
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In this example, the two variables have a completely symmetrical contribu-
tion to the output of the function. Thus, when their input values match,
their attribution should be equal. If x1 = x2 = c, where c ∈ R, then
R(x1) = R(x2) = r.

Since this value r is unknown, it is logical to assume that r is a function of c.
How could we discover the formula of this function? We could argue that
the formula could not possibly be linear, since the function itself is quadratic.
It is reasonable to assume that the formula should probably be quadratic as
well. A criterion we will stumble upon in the upcoming chapters, states that
the summation of the contributions should add up to the model’s prediction,
thus

N

∑
i=1

R(x)i = f (x). (6)

This logical assumption creates a very strong link between r and c = f (r),
because f (r) obeys the behavior of r.

Note 1. For the method Gradients × Input (GI),

GI(xi) = xi
∂ f
∂xi

= xi (1 + 2xj) = xi + 2 · xixj

where i, j ∈ {1, 2}, i ̸= j. Could this be a feasible attribution? According to the
aforementioned criterion, the addition GI(x1) + GI(x2) = x1 + x2 + 4 · x1x2,
exceeds the model’s prediction. The attribution this criterion suggests is
R(xi) = xi + 2xixj, which has the same form as GI. Nonetheless, in even
more complex functions, GI might break completely.

Note 2. How should R behave in cases where x1 ̸= x2? In such case, our
intuition could not lead us to any conclusion about the model’s feature
attribution.

Now, let’s consider a scenario inspired from game theory.

Example 3. Game theoretic.

In a scenario inspired from game theory, two teams A and B compete against
each other to achieve a higher overall score. Each team comprises of two
players: A1, A2 and B1, B2 respectively. In this scenario, the strategies of
the players and the resulting scores are completely symmetrical. Team A
comes up with the following strategy; player A1 is devoted on increasing the
score of his/her team, while A2’s aim is to minimize the score of the other.
Their score is a1. On the other hand, team B follows a different approach.
The two players coordinate to maximize their score. They have a combined
contribution b equally distributed, but because A2 attacked them, the score
of the B team is b− a2. Let’s assume that a1 > b− a2 and that team A wins.

How could we attribute the victory of team A to its players? We could
argue that RA = (a1, 0), since only the first player contributed to the team’s
score. Or, we could find a complex relationship that also includes the con-
tribution of A2 to the drop in score of the B team. What about team B?
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Its score cannot only be attributed to its players (RB = (b/2, b/2)). We
should also consider A2 to have a negative contribution to its score. Thus, an
attribution that explains the outcome of the model should give positive and
negative values to all the players of the game; R(A) = ((a1, 0), (0, 0)), R(B) =
((0,−a2), (b/2, b/2)). In such case, does the winning of the A team also owe
to the players of B that did not play optimally?

A followup example combines and generalises non-linear models along with
game-theory. This combination might possibly lead to the design of a DNN
model. After all, a DNN is a non-linear model, for which in optimization
the parameters are adjusted in such a way that not only a particular class is
favored (a team wins), but also the other classes get zeroed (the other teams
lose).

2.3 Towards a robust Attribution

The examples presented earlier were intended to provide readers with an
initial grasp of the issue. Even for basic functions and scenarios, addressing
these straightforward questions is immensely challenging. Robust method-
ologies have been devised and will be explored further in the following
sections. The pursuit of comprehending various methodologies, their re-
silience, efficacy, and the creation of novel techniques for Explainable AI
continues. The quest to identify the ideal attribution method remains an
ongoing inquiry to this day.
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Chapter 3

Attribution methods
Various approaches have been explored to design methods for attributing
the importance score of a decision back to input features. These methods
can be grouped into three main categories: Gradient methods, Occlusion
methods and Class Activation Mapping methods.

Gradient-Based methods leverage gradients as a guide to feature importance.
Gradients point to the most sensitive directions of features that significantly
influence the model’s decision. Relevance Propagation methods share sim-
ilarities with gradient methods but apply distinct rules between layers to
guide the backpropagation of information -usually resulting from gradients,
yet other tools could be used as well-, backpropagating class information to
the input features. On the other hand, CAM methods exploit the saliency
maps of CNNs, by applying a linear combination of these maps. In contrast,
Perturbation methods pivot on hiding parts of an image to unveil their im-
portance. Lastly, Local Approximation methods fall between Gradient-based
and Occlusion-based methods, trying to locally approximate the model using
simpler, more interpretable functions.

We will briefly examine each category, focusing on the most mathematically
robust methods of each. Before delving into these methods, it’s essential
to heed the words of authors [78] regarding the attribution of a model’s
decision:

”For attribution, no ground truth exists. If an attribution heatmap
highlights subjectively irrelevant areas, this might correctly reflect the
network’s unexpected way of processing the data, or the heatmap might
be inaccurate. Given an image of a railway locomotive, the attribution
map might highlight the train tracks instead of the train itself. Current
Attribution methods cannot guarantee that the network is ignoring the
low-scored locomotive for the prediction”.

Thus, authors argue that no assumption should be made about the attribution
of the model, its shape and appearance. Otherwise, authors who overlook
this observation are subject to confirmation bias as defined in [23]:

”A severe limitation of these approaches (i.e. Attribution methods)
is that they are subject to a confirmation bias: while they appear to
offer useful explanations to a human experimenter, they may produce
incorrect explanations. In other words, just because the explanations
make sense to humans does not mean that they actually convey what is
actually happening within the model.”

25
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3.1 Gradient methods

Gradient methods perform single or multiple backward passes through
the model, gathering information from gradients to generate an attribution
map. The underlying concept behind these techniques is that gradients are
closely related to sensitivity. They point to the directions in which a function
experiences the most rapid changes. Consequently, they highlight important
features that, when perturbed, lead to the most significant reduction in the
model’s confidence. In this sense, gradient methods share similarities with
Occlusion Methods.

Gradient methods are often grouped with Rule-Based methods which define
rules for propagating activations backward through the model’s layers until
they reach the input layer. Together, they form the Backward methods. These
two methodologies are introduced in the following subsections.

3.1.1 Review of legacy gradient methods

The first and most straightforward Attribution method, known as Saliency
Maps dates back to the analysis of the earliest CNNs [85]. The authors
posited that feature importance corresponds to the absolute value of the
feature gradients concerning the most highly activated class. In mathematical
terms, this is expressed as:

R(x)i =

∣∣∣∣
∂ fc(x)

∂xi

∣∣∣∣ . (7)

Here i represents a specific feature and c denotes the highest activated class.
However, it was observed in [63] showed that this method can only provide
a local that this method provides only a local explanation of the model’s
prediction. This implies that it can interpret only a small portion of the
prediction, explaining just a fraction of the overall score, while most of it
remains unexplained.

Authors of [82] proposed an alteration by removing the absolute value and
multiplying the gradients with the input values of the features. Their method,
commonly known as Input × Gradient, resulted in sharpening the resulting
attribution map.

R(x)i = xi
∂ fc(x)

∂xi
. (8)

In DeConvNet [110], the authors outlined a rule for CNNs with Rectified
Linear Unit (ReLU) activation, aiming to propagate the model’s decision
from feature maps in lower spaces to feature maps in higher spaces. The rule
is defined as:

R(x)l
i = (R(x)l+1

i > 0) R(x)l+1
i , (9)

where R(x)l
i corresponds to the attribution of the i-th feature of layer l for

input x. However, in Guided Backpropagation [88] the authors redefined
the rule by introducing an additional term, yielding:

R(x)l
i = ( f (x)l

i > 0) (R(x)l+1
i > 0) R(x)l+1

i . (10)
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3.1.2 Integrated Gradients

Authors of [92] design a gradient-based method, named Integrated Gra-
dients (IG), which aims to redistribute the model’s decision back to the
input features, capturing information about feature importance through the
model’s gradients. IG follows a path from the input data to a predefined
baseline point, which is typically considered as containing no information.
This journey gathers information about the contributions of each feature
along the way. The mathematical formula is provided below:

R(x)i = (xi − x0i )
∫ 1

α=0

∂ f (x0 + α(x− x0))

∂xi
dα. (11)

Here x0 represents the baseline point. A notable strength of this method is
its ability to trace back the model’s activation to the input features. This is
achieved because the Fundamental Theorem of Calculus ensures that:

∑
i

R(x)i = f (x)− f (x0). (12)

This is not the only property IG satisfies. It has been proven to satisfy
multiple properties, crucial for evaluating a method’s robustness and closely
related to feature importance. However, one notable limitation of IG is
its dependence on the selection of an appropriate baseline point. While
the original authors provide some initial guidance on this matter, other
works [91] have conducted experiments with various baseline choices for the
method. Yet, these experiments have not yielded a clear advantage for any
specific baseline. This issue will be examined in more detail in section 8.

3.2 Rule-based methods

Rule-based methods backpropagate the model’s output back to the input
features, by applying different rules in order to let the information flow
between the layers of the model. In this section, three such methods will
be described, namely the Layer-Wise Relevance Propagation (LRP), Deep
Taylor Decomposition (DTD) and DeepLIFT. The first two share many
similarities and, thus, will be presented together.

3.2.1 ϵ−LRP & DTD

Deep Taylor Decomposition [64] and ϵ-LRP [10] both developed by the same
authors, stand out as two of the most robust Attribution methods designed
to date, since they satisfy many desired properties related to importance.
Overall, These methods employ very similar rules, with coincide after speci-
fying the sets of hyperparameters.

DTD relies on Taylor Decomposition, which allows the local approximation
of a function f around a specific point x, using a reference point x0

1. This
technique facilitates the deconstruction of a model’s decision into its individ-

1 A root point is a point x0 with the property f (x0) = 0. It is the same as the baseline point, as
authors of [92] refer

https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
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ual components, each assigned a score based on its contribution to the final
decision. In mathematical terms:

f (x) = f (x0) +
(∂x

∂x

∣∣∣
x=x0

)T
(x− x0) + ϵ. (13)

This can be expressed as:

f (x) = 0 + ∑
i

∂ f
∂xi

∣∣∣
x=x0

(xi − x’i) + ϵ. (14)

Thus, an attribution could be

R(x) =
∂ f
∂x

∣∣∣
x=x’

(x− x’). (15)

However, determining a suitable x0 often proves to be an intricate task. Au-
thors argue that the complexity of f (x), can make this problem expensive
or even unsolvable. Instead, authors apply DTD to each function of each
layer in a DNN with ReLU activation, where finding appropriate x0 points
is more feasible. They then combine the information and apply rules to
backpropagate the decision. These rules are further elucidated below, when
LRP is explained.

In ϵ-LRP, authors introduce the quantity Rl
i signifying the relevance of unit i in

layer l. Beginning at the output layer L, the algorithm redistributes relevance
Rl

i of unit i to units in the preceding layers based on their contributions to
Rl

i . One commonly employed rule for this purpose is the ϵ− LRP rule. For
two neurons i, j in two consecutive layers l, l + 1, along with bj denoting the
bias of neuron j, authors define

zji = wl+1,l
ji

as the weighted activation of neuron i to j, and

Zj = ∑
i′
(zji′) + bj

as the sum of these z-activations plus the bias. Then:

Rl
i = ∑

j

zji

Zj + ϵ · sg(Zj)
· Rl+1

j . (16)

Here sg represents the sign function, and ϵ serves as a stabilization term to
prevent division by zero.

This method effectively backpropagates information through layers, ensur-
ing that the sum of attributions remains constant for all layers, a property
referred to as Conservation. Authors explored various rules for backpropa-
gating relevance (another popular rule is the αβ−rule).

Despite their effectiveness in numerous experiments and visual examina-
tions, both methods come with their limitations. Firstly, they disregard
non-linearities, with DTD only considering first-order terms (due to its re-
quirement), while LRP rules incorporate non-linear unit activations within
xis. Additionally, they exclusively consider non-negative relevance scores,



3.2 rule-based methods 29

making them unable to identify negative attributions that certain features
may have on the resulting score, as demonstrated by [6]. Lastly, for linear
models, the attribution produced by these methods aligns with the weights
of the variables, as noted by authors of [26] mention. Researchers [6] have
raised further concerns regarding ϵ−LRP.

3.2.2 DeepLIFT

DeepLIFT is another method that performs rule-based, backward propaga-
tion of the model’s score, akin to LRP. This method assigns a score to each
unit, representing the impact on the overall score when the value of a unit is
set using a reference input, denoted as x0. Specifically, for the last layer L:

RL
i =

{
fi(x)− fi(x0) if i = c
0 otherwise

. (17)

Then, the reference values zji for all hidden units are determined by running
a forward pass f (x0) of the baseline input x0 and monitoring the activation
of each unit:

z′ij = w(
jil + 1, l)x0il . (18)

The rule applied, referred to as the Rescale rule, is as follows:

Rl
i = ∑

j

zji − zji

∑′i zji′
R(l−1)

j (19)

DeepLIFT appears to combine elements from both LRP and Integrated
Gradients. The choice of the baseline is often set as the zero point, which is
considered one of the method’s limitations.

3.2.3 A comparison of Gradient and Rule-Based methods

In a study by the authors of [6], various Backwards methods were compared,
and intriguingly, their findings suggest that these methods may not be as
distinct as initially perceived. They reformulated ϵ-LRP and DeepLIFT (with
the Rescale rule) using gradients, resulting in mathematical expressions that
closely resemble the aforementioned gradient-based methods. This conver-
gence in mathematical expressions becomes especially evident when the
activation function used in the model is ReLU or Tanh. Specifically, four
methods -ϵ−LRP, DeepLIFT, IG and Gradient*Input- yield nearly identical
attributions in this context.

This phenomenon occurs because ϵ-LRP effectively aligns with Gradient*Input
when ReLU is employed, and aligns with DeepLIFTin the case of a network
with no additive biases and f (0) = 0. Additionally, they discovered a high
correlation between DeepLIFT and IG. The authors elucidate this further:

”While Integrated Gradients computes the average partial derivative
of each feature as the input varies from a baseline to its final value,
DeepLIFT approximates this quantity in a single step by replacing the
gradient at each nonlinearity with its average gradient. Although the
chain rule does not hold in general for average gradients, we show
empirically ... that DeepLIFT is most often a good approximation of
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Integrated Gradients. However, we found that DeepLIFT diverges from
Integrated Gradients and fails to produce meaningful results when
applied to Recurrent Neural Networks (RNNs) with multiplicative
interactions (eg. gates in LSTM units ...).”

Considering these findings, it suggests that IG may be the most robust
method among them. Therefore, this research thesis further explores the at-
tributes of Integrated Gradients, attempting to address some of the challenges
it presents in Section 8.

3.3 Class Activation Mapping methods

First introduced in [113], the authors described the initial Class Activation
Mapping (CAM) as a method for explaining the decisions made by CNN
models. CAM leverages feature maps which are two-dimensional maps
resulting from the application of convolutions in CNN architectures.

CAM relies on a technique known as Global Average Pooling. Instead of
flattening the last Convolutional layer’s output into a vector, GAP computes
the average of each feature map, reducing its the spatial dimensions to 1x1.
These values are considered as weights for the corresponding feature maps,
to form a weighted sum. For a class of interest c and feature maps Ak

Rc(x) = ∑
k

wc
k Ak(x), (20)

where
wc

k(x) = ∑
i,j

Ak
i,j (21)

In the equations above, fi represents the i−th feature map of the last layer,
which is a two-dimensional matrix (comprising variables i and j). Rc is the
resulting attribution map, which is upsampled to match the dimensions of
the input image.

Essentially, CAM computes a weighted sum of feature maps where the
weights are determined by the model’s classification weights. Other methods
select other values for the weights wc

i , which they consider to yield more
robust attribution maps. Until today, there exists a large number of such
methods [19, 45, 102, 103, 111, 65] Two of the most popular CAM methods,
namely Grad-CAM, GradCAM++, while X-GradCAM is also included, since
it is designed in such way that it satisfies important criteria.

3.3.1 GradCAM & GradCAM++

GradCAM and GradCAM++ are discussed together because they both de-
termine the weights for the weighted sum in a similar manner. GradCAM
computes the weight of a feature map by considering the first-order deriva-
tive of the output score yc with respect to each of its components. These
values are then summed up and normalized by a factor Z. Expressed in
mathematical terms:

wc
i =

1
Z ∑

i,j

∂yc

∂Ak
i,j

. (22)
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4

Fig. 2. Success of Grad-CAM++ for: (a) multiple occurrences of the same class (Rows 1-2), and (b) localization capability of an object in an image
(Rows 3-4). Note: All dogs are better visible with more coverage, shown in the heatmap as well as Guided Grad-CAM++ for input images of rows 1
and 2. Full region of the class is visible for input images of rows 3 and 4 (full body of the snake and the head/legs of the bird).

where Z is a constant (number of pixels in the activa-
tion map). This helps in generalizing CAM to any deep
architecture with a CNN block, without any retraining or
architectural modification, where the final Y c is a differ-
entiable function of the activation maps Ak. However, this
formulation (Eq. 3) makes the weights wc

k independent of
the positions (i, j) of a particular activation map Ak. The
authors work around this limitation by taking a global
average pool of the partial derivatives ∂Y c

∂Ak
ij

, i.e.

wc
k =

1

Z

∑

i

∑

j

∂Y c

∂Ak
ij

(4)

To obtain fine-grained pixel-scale representations, the pro-
posers of Grad-CAM upsample and fuse their class-specific
saliency map Lc via point-wise multiplication with the
visualizations generated by Guided Backpropagation. This
visualization is referred to as Guided Grad-CAM. This ap-
proach however has some shortcomings as illustrated in Fig.
1. Grad-CAM fails to properly localize objects in an image if
the image contains multiple occurrences of the same class.
This is a serious issue as multiple occurrences of the same
object in an image is a very common occurrence in the
real world. Another consequence of an unweighted average
of partial derivatives is that often, the localization doesn’t

correspond to the entire object, but bits and parts of it. This
can hamper the user’s trust in the model, and impede Grad-
CAM’s premise of making a deep CNN more transparent.

In this manuscript, we propose a generalization to
Grad-CAM which addresses the abovementioned issues
and consequently serves as a better explanation algorithm
for a given CNN architecture, and hence the name for
the proposed method, Grad-CAM++. We formally derive
closed-form solutions for the proposed method and care-
fully design experiments to evaluate the competence of
Grad-CAM++ both objectively and subjectively. In all the
experiments, Grad-CAM was used as a baseline comparison
method as it is considered the current state-of-the-art CNN
discriminative (class specific saliency maps) visualization
technique [16].

3 GRAD-CAM++ METHODOLOGY
Building upon the gradient-based visualization techniques
in Grad-CAM and CAM, we propose a generalized method
called Grad-CAM++, which is formulated by explicitly
modeling the contributions of each pixel in the feature maps
of a CNN to the final output. In particular, we reformulate
Eq. 1 by explicitly coding the structure of the weights wc

k as:

wc
k =

∑

i

∑

j

αkc
ij .relu(

∂Y c

∂Ak
ij

) (5)

Figure 3: GradCAM and GradCAM++ in action.

On the other hand, GradCAM++ aims to address certain inefficiencies of
GradCAM, especially in scenarios where multiple objects or regions exist in
an image. It leverages second-order gradients and applies a ReLU function
to the gradients, which helps to better focus on the objects of interest. As a
result, it provides more detailed and accurate visualizations, aligning more
closely with human judgment regarding the important regions in an image.
An illustration of the application of both methods can be found in Figure 3.

3.3.2 Explanation Grad-CAM

In the Explanation Grad-CAM approach, the authors of XGrad-CAM [27] aim
to determine CAM weights in a robust manner. While their method is rooted
in CAM techniques, it draws upon ideas from Occlusion methods, which
will be discussed in the following section. The central concept is to select
weights not based on intuition but in a way that meets critical mathematical
properties. They define various mathematical criteria that they argue should
be satisfied and translate these criteria into a set of equations, the solution
to which yields the appropriate weights. These properties are discussed in
more detail in Chapter 5, but are briefly outlined below.

1. Sensitivity.

The sensitivity criterion ensures that any reduction in the prediction score
due to the occlusion of a specific feature map can be entirely attributed to
the activation of that map when it is activated. Specifically, if c represents the
class with the highest activation and f lk is the activation of the k−th feature
map in layer l, the weights wc

k should satisfy the following equation:

fc(x)− fc(x \ {k}) = ∑
i,j

wc
k Ak

ij(x) (23)

where K is the number of feature maps at layer l and x \ {k} denotes the
prediction for class c, when the k-th feature map in the target layer has been
replaced by zero. As Equation 23 should hold for any k, it results in a set of
K equations.
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2. Conservation.

The principle of Conservation posits that the linear combination of the
activations of all feature maps should match the model’s prediction. Using
the same notation as before, this criterion is translated as:

fc(x) =
K

∑
k=1

(
∑
i,j

wk
c f lk(i, j)

)
. (24)

The authors find an approximate solution to the K + 1 equations mentioned
above, thereby defining a CAM attribution. While their method may exhibit
certain weaknesses, the direction of their approach is intriguing. They
establish mathematical criteria that an Attribution method should satisfy,
being a solution to the losses incurred by these criteria. In this thesis, we will
also employ this concept in Chapter 9.

3.4 Perturbation & Occlusion methods

”When an image classifier makes a prediction, which parts of the image
are relevant and why? We can rephrase this question to ask: which parts
of the image, if they were not seen by the classifier, would most change
its decision?” - Refered in [13]

An intuitive way to evaluate importance is as follows: a feature is considered
important for the model’s prediction of a particular class if its presence leads
the model to be confident about that class, while its removal results in a
significant decrease in the model’s confidence in that class.

Methods that utilize this criterion are called Occlusion or Perturbation Meth-
ods. They apply alterations to various features of the input and measure
the corresponding impact on the output. These changes to the input can
either be small perturbations, such as adding slight random noise, or more
substantial interventions in the form of occlusion methods. Such methods
play a significant role in this particular thesis. Among the various occlusion
methods, the most noteworthy are summarized below.

3.4.1 Occlusion-x

Occlusion-x, introduced in [110] represents one of the earliest Attribution
methods. It operates on the principle of occluding parts of an image and
measuring the resulting drop in the model’s prediction score. In this method,
the image features that are going to be hidden are grouped together, form-
ing a box of size x. This box is then slid across the image. As it slides, it
conceals the pixels they overlap by replacing them with a gray color. This
method, though rudimentary, served as a foundational concept and laid the
groundwork for more robust Occlusion methods. Figure 4 provides a visual
representation of the sliding window operation in Occlusion-x.
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Visualizing and Understanding Convolutional Networks

Figure 8. Images used for correspondence experiments.
Col 1: Original image. Col 2,3,4: Occlusion of the right
eye, left eye, and nose respectively. Other columns show
examples of random occlusions.

Mean Feature Mean Feature
Sign Change Sign Change

Occlusion Location Layer 5 Layer 7
Right Eye 0.067± 0.007 0.069± 0.015
Left Eye 0.069± 0.007 0.068± 0.013
Nose 0.079± 0.017 0.069± 0.011

Random 0.107± 0.017 0.073± 0.014

Table 1. Measure of correspondence for different object
parts in 5 different dog images. The lower scores for the
eyes and nose (compared to random object parts) show the
model implicitly establishing some form of correspondence
of parts at layer 5 in the model. At layer 7, the scores
are more similar, perhaps due to upper layers trying to
discriminate between the different breeds of dog.

5. Experiments

5.1. ImageNet 2012

This dataset consists of 1.3M/50k/100k train-
ing/validation/test examples, spread over 1000 cate-
gories. Table 2 shows our results on this dataset.

Using the exact architecture specified in (Krizhevsky
et al., 2012), we attempt to replicate their result on the
validation set. We achieve an error rate within 0.1% of
their reported value on the ImageNet 2012 validation
set.

Next we analyze the performance of our model with
the architectural changes outlined in Section 4.1 (7×7
filters in layer 1 and stride 2 convolutions in layers 1
& 2). This model, shown in Fig. 3, significantly out-
performs the architecture of (Krizhevsky et al., 2012),
beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test
error of 14.8%, the best published performance
on this dataset1 (despite only using the 2012 train-

1This performance has been surpassed in the recent
Imagenet 2013 competition (http://www.image-net.org/

ing set). We note that this error is almost half that of
the top non-convnet entry in the ImageNet 2012 classi-
fication challenge, which obtained 26.2% error (Gunji
et al., 2012).

Val Val Test
Error % Top-1 Top-5 Top-5

(Gunji et al., 2012) - - 26.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 −−
(Krizhevsky et al., 2012), 5 convnets 38.1 16.4 16.4
(Krizhevsky et al., 2012)∗, 1 convnets 39.0 16.6 −−
(Krizhevsky et al., 2012)∗, 7 convnets 36.7 15.4 15.3

Our replication of
(Krizhevsky et al., 2012), 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3
1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1
6 convnets, (a) & (b) combined 36.0 14.7 14.8

Table 2. ImageNet 2012 classification error rates. The ∗
indicates models that were trained on both ImageNet 2011
and 2012 training sets.

Varying ImageNet Model Sizes: In Table 3, we
first explore the architecture of (Krizhevsky et al.,
2012) by adjusting the size of layers, or removing
them entirely. In each case, the model is trained from
scratch with the revised architecture. Removing the
fully connected layers (6,7) only gives a slight increase
in error. This is surprising, given that they contain
the majority of model parameters. Removing two of
the middle convolutional layers also makes a relatively
small different to the error rate. However, removing
both the middle convolution layers and the fully con-
nected layers yields a model with only 4 layers whose
performance is dramatically worse. This would sug-
gest that the overall depth of the model is important
for obtaining good performance. In Table 3, we modify
our model, shown in Fig. 3. Changing the size of the
fully connected layers makes little difference to perfor-
mance (same for model of (Krizhevsky et al., 2012)).
However, increasing the size of the middle convolution
layers goes give a useful gain in performance. But in-
creasing these, while also enlarging the fully connected
layers results in over-fitting.

5.2. Feature Generalization

The experiments above show the importance of the
convolutional part of our ImageNet model in obtain-
ing state-of-the-art performance. This is supported by
the visualizations of Fig. 2 which show the complex in-
variances learned in the convolutional layers. We now
explore the ability of these feature extraction layers to
generalize to other datasets, namely Caltech-101 (Fei-
fei et al., 2006), Caltech-256 (Griffin et al., 2006) and
PASCAL VOC 2012. To do this, we keep layers 1-7
of our ImageNet-trained model fixed and train a new

challenges/LSVRC/2013/results.php).

Figure 4: In Occlusion-x a gray window slides across the image, monitoring the drop
in model’s confidence.

3.4.2 LIME

LIME [73] stands for ”Local Interpretable Model-agnostic Explanations”
and is a prominent Attribution method in Explainable AI (XAI). It relies
on Perturbation to locally approximate the model’s decision boundaries.
LIME works by perturbing input data points and observing how the model’s
predictions change, enabling it to approximate the model’s functionality
around a particular point. Figure 5 offers a visualization of the method.

Figure 3: Toy example to present intuition for LIME.
The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink
background, which cannot be approximated well by
a linear model. The bold red cross is the instance
being explained. LIME samples instances, gets pre-
dictions using f , and weighs them by the proximity
to the instance being explained (represented here
by size). The dashed line is the learned explanation
that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width σ.

L(f, g, πx) =
∑

z,z′∈Z
πx(z)

(
f(z)− g(z′)

)2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. Ω(g) =∞1[‖wg‖0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have different values of K for different instances. In this
paper we use a constant value for K, leaving the exploration
of different values to future work. We use the same Ω for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of Ω makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.

Any choice of interpretable representations and G will
have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x′

Require: Similarity kernel πx, Length of explanation K
Z ← {}
for i ∈ {1, 2, 3, ..., N} do

z′i ← sample around(x′)
Z ← Z ∪ 〈z′i, f(zi), πx(zi)〉

end for
w ← K-Lasso(Z,K) . with z′i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to differentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.

After getting such insights from explanations, it is clear
that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

Figure 5: LIME samples points near an input point and locally approximates the
model at hand.

In essence, LIME creates a simplified, interpretable surrogate model for a
given instance by sampling and perturbing the input data points around it. It
then trains this surrogate model to approximate the behavior of the complex
model in the local neighborhood of the instance of interest. It achieves this
by minimizing the following loss

L( f , g, πx) = ∑
z,z′∈Z

πx(z)( f (z)− g(z′))2. (25)

Here f represents the model being approximated by a linear model g. Points
are sampled around x, according to πx and are denoted as z. These points
are then mapped to the space of g as z′. The loss function ensures that
the linear model effectively approximates the behavior of the model in the
vicinity of x.
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LIME’s strength lies in its model-agnostic nature, making it applicable to
various machine learning algorithms without requiring knowledge of their
internal workings. This quality renders it a valuable tool for understanding
and debugging machine learning models, fostering trust in AI systems.

3.4.3 RISE

RISE [69] stands for ”Randomized Input Sampling for Explanation,” and it
works by generating a set of random masks that are applied to the input
image. These masks are binary matrices that indicate which portions of the
image are visible and which are hidden. By repeatedly applying these masks
and observing how they affect the model’s output, RISE collects information
about the importance of different image regions for making a prediction. To
be more precise, RISE attributes to a feature i a value

R(x)i = EM[ f (x⊙M)|M(i) = 1] (26)

meaning that for a mask M : I ⇒ {0, 1}|I|, feature i is visible. Thus, the
method gathers all masked images where feature i appears, calculates the
expected value of the predictions of f in those images and attributes this
value as a score to i. Due to the computational infeasibility of constructing
all possible masked images and calculating the score, the authors employ the

3.4.4 DeepSHAP

DeepSHAP, introduced in [60] is a novel approach to model explainability
that draws inspiration from Shapley values in game theory [55, 101]. The
fundamental idea behind Shapley values is to determine a fair attribution
for the participants on a winning team, based on their contributions to the
outcome.

DeepSHAP exhibits similarities to the RISE method and also incorporates
elements from LIME. The method divides each image into batches and trains
a linear model, akin to LIME, treating each batch as a variable. The weights
assigned to these variables are calculated similarly to RISE. However, instead
of measuring the model’s score in all scenarios where the feature is included,
DeepSHAP measures the difference in score when the feature is excluded. In
mathematical terms, if F is the set of features and xS the input value where
only the features in S ⊆ F are not hidden, the weight of the i−th feature is:

w(x)i = ∑
S⊆F\{i}

|S!|(|F| − |S| − 1)!
|F|! [ fS∪{i}(xS∪{i})− fS(xS)]. (27)

The SHAP method has proven to provide robust attribution and is math-
ematically established as the best choice among linear methods (ie LIME,
ϵ−LRP, Occlusion), based on certain critical criteria. These criteria will be
explored in moire detail in Chapter 5.

3.4.5 Review

Numerous other methods incorporate perturbation or occlusion at their core
[38, 22, 67, 18, 87, 24, 25]. We could also argue that methods such as Inte-
grated Gradients [92] and DeepLIFT [83] are also related to this category as
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they require the existence of a baseline input entirely devoid of information.

However, Occlusion methods come with their deficiencies. Authors of [86]
revealed that LIME and SHAP are susceptible to adversarial attacks by mod-
els that imitate their behavior in the regions of interest but operate randomly
elsewhere. These attacks stem from the models’ ability to discern the origin
of the data points (perturbed or not) because they follow distinct distribu-
tions. Another limitation of these methods is their inefficiency in addressing
the concept of information concealment. Most of these approaches rely on
zeroing the values of different features to mask them. Yet, as demonstrated
in Chapter 6 this approach does not furnish a robust selection. Therefore, a
different path must be pursued, guided by rigorous mathematical Criteria 9,
10. This challenge forms the focal point of the second part of this thesis.

3.5 A discussion on Attribution methods

This chapter has only covered a limited subset of Attribution methods de-
veloped thus far, focusing on those chosen based on their popularity or
intriguing mathematical concepts. However, many other methods have been
developed to address inefficiencies in the aforementioned methods or intro-
duce entirely new designs. Some of these methods are briefly mentioned
below.

IBA is a recent method introduced in [79] that introduces random noise
to intermediate feature maps to calculate their contribution. It shares simi-
larities with X-GradCAM and produces highly effective visualizations for
attribution maps. FullGrad [89] is an advancement over gradient methods,
considering both the neuron activations and input gradients. A different
technique is applied by the authors of [49] which aims to measure the impor-
tance of a concept to a specific decision. It accomplishes this by collecting
latent representations of a particular concept (e.g., the stripes of a zebra)
and other random concepts, defining a linear classifier to distinguish them,
and generating a scalar value that quantifies the concept’s influence on the
model’s decision, for the particular input. Their method is named TCAV.

Some methods have attempted to blend attribution and explainability with
interpretable rules and techniques. Certain methods train models to explain
their decisions using natural language [TODO] while others translate ex-
plainability into first-order logic rules [TODO]. Additional approaches seek
to link XAI with Information theory [16].

One of the most promising recent directions that researchers have explored
involves Explainability in Transformers [100]. Transformers have gained
considerable attention due to their strong performance and their innate
capacity for explaining decisions, through the Multi-Head Attention [12].
Nevertheless, concerns about the effectiveness of such methods have arisen,
and ongoing research continues to address these issues [42, 105]. Some
approaches have endeavored to combine these techniques with traditional
Attribution methods [15, 4].
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In summary, there is currently a wealth of algorithms for computing attribu-
tion maps. The natural question that arises is which of these methods is the
most suitable. Evaluation metrics, covered in Section [4] and mathematical
Criteria [5] aim to provide answers to this question.



Chapter 4

Evaluation
In section 3 we explored various Attribution methods, each generating a dis- The need for

Evaluation metricstinct Attribution map, highlighting different features as crucial to the model’s
decisions. Some of these methods might present a theoretical similarity (as
we saw in Subsection 3.2.3), but in general, they produce vastly different
maps, exhibiting diverse shapes and minimal overlaps, which is particularly
evident in the different CAM methods 3.3 as illustrated in Figure 6. Con-
sequently, they do not converge to a unified decision. Determining which
method outperforms the others is the fundamental quest that Evaluation
metrics aim to address.

4.1 The nature of Evaluation metrics

Evaluation metrics serve as a means to assess the effectiveness of an Attri-
bution method. In contrast to model training, where the correct predictions
are known in advance, in the field of Explainable AI the ground truth is not
predefined. Consequently, Evaluation metrics in Explainable AI significantly
differ from the conventional scoring systems used to evaluate a model’s per-
formance. The true attributions of features are unknown, and yet Evaluation
metrics attempt to measure the effectiveness of an Attribution method in
some way.

Defining a score for Attribution method effectiveness in the absence of true
attributions is not straightforward. This score should ideally be linked to
the concept of feature importance, which is the primary objective of various
Attribution methods. Conceptually, Attribution methods and Evaluation Attribution

methods and
Evaluation metrics

metrics are based on the same foundations and it is not uncommon for the
development of an Attribution method to be guided by a novel Evaluation
metric. The most notable instance is that of Occlusion 3.4, with other similar
cases found [37]. However, the central question persists: How do we design
such metrics?

To address this question, researchers have either constrained the attribution to
specific local image regions or measured the satisfaction of Criteria associated
with the concept of importance. As a result, different Evaluation metrics can
be categorized into two primary groups; Localization-biased and Importance-
based metrics. Yet, they also exist other fundamental metrics, to ensure that
Attribution methods satisfy important properties. These are the Sanity Checks
described below.

37
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Figure 6: Attribution maps created using various CAM methods for four different
examples from the Imagenet dataset. The first column displays the original images,
while each subsequent column corresponds to a specific CAM Attribution map
generated using the method referred in that column

4.1.1 Sanity Checks

Sanity Checks do not aim to measure importance scores or introduce lo-
calization bias to assess the effectiveness of Attribution methods. Instead,
they encompass standard tests that any Attribution method should satisfy.
An analogy might be that such checks does not measure how fast a human
walks, they only confirm that it can stand.

Authors of [2] have devised two randomization tests to assess whether an
Attribution method meets fundamental Criteria.

The Model Randomization Test focuses on monitoring the dependence of Model
Randomization
Test

an Attribution method on a model’s parameters. It involves randomizing
the weights of a model and then comparing the resulting Attribution map
generated by the Attribution method. This randomization can be performed
in layers, either sequentially or randomly. The underlying idea is based on
the expectation that, as the model’s decision-making process changes due to
random weight perturbations, the resulting Attribution map should differ
significantly from the initial attribution, essentially resembling a random
attribution. The test revealed that certain methods, such as Guided Backprop-
agation [88] and GradCAM [80] were invariant to changes in higher-layer
weights.

Similarly, authors of [96] have conducted multiple tests to examine the
sensitivity of various Attribution methods to the underlying model used.
However, these tests remain a subject of dispute, as it has been demonstrated
that randomly initialized CNNs can act as powerful classifiers [77, 98]. To
address this, authors of [108] created a controlled environment in which they
asserted that random models could not interpret images. To do so, they
generated synthetic images featuring multiple objects.

The Data Randomization Test involves randomly altering the labels of Data
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the images and then retraining a model. In this scenario, no predictive
model should perform better than one that guesses randomly. The test
calculates the Attribution map for both models (trained on correct and
altered labels, respectively) using an Attribution method and measures the
difference between the two maps.

4.2 Localization metrics

This section introduces a category of Evaluation metrics that aims to con-
straint the regions of the image to which an Attribution method should direct
its focus. This can be accomplished by either introducing human bias into
the regions considered vital or devising custom environments that exclude
specific image areas from contributing to the model’s decisions.

4.2.1 Pointing Game - Localization

The Pointing Game metric, originally introduced by the authors of [112]
has since become a foundational Evaluation metric [81, 69], with similar
criteria developed in subsequent works, such as the localization criterion
in [14, 69]). This metric involves a human annotator for each image-label
pair (x, y) who marks the regions within the image where objects are located.
The Attribution method is then utilized to identify the most important pixel
and check whether it falls within the annotated object regions. If it does,
the image is classified as a hit. The localization accuracy score is calculated as
follows:

Acc =
#Hits

#Hits + #Misses
(28)

Authors argue that the higher the localization accuracy of an Attribution
method, the more effective the method is.

Nevertheless, such a technique introduces a human bias to the model. As
authors of [69] state:

“Such evaluations not only require a lot of human effort but, importantly,
are unfit for evaluating whether the explanation is the true cause of
the model’s decision. They only capture how well the explanations
imitate the human-annotated importance of the image regions. But an
AI system could behave differently from a human and learn to use cues
from the background (e.g., using grass to detect cows) or other cues
that are non-intuitive to humans. Thus, a human-dependent metric
cannot evaluate the correctness of an explanation that aims to extract
the underlying decision process from the network.”

4.2.2 DiFull

Authors of [72] employ a unique approach by creating composite images
from four images in the dataset. Specifically, they shrink the four images and
arrange them in a 2×2 grid, the same size as the original image. The top-left
image in this grid contains the object of interest. The authors propose that
an Attribution method, when backpropagating the decision for this specific
object, should only highlight regions within this image. Any attribution
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pointing to areas outside the top-left image is considered incorrect. A
visualization of their concept is presented in 7.

Towards Better Understanding Attribution Methods

Sukrut Rao, Moritz Böhle, Bernt Schiele
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

{sukrut.rao,mboehle,schiele}@mpi-inf.mpg.de

Fig. 1. Left: Illustration of DiFull and ML-Att. In DiFull, we evaluate models on image grids (col. 1). Crucially, we employ separate
classification heads for each subimage that cannot possibly be influenced by other subimages; this yields ‘ground truths’ for possible and
impossible attributions (col. 2). For ML-Att, we evaluate methods at different network layers; here we show results for Grad-CAM and
IntGrad. Further, we show results after smoothing IntGrad (S-IntGrad), which we find to perform well (Sec. 5.2). Right: Visualisation of
our AggAtt evaluation. By sorting attributions into percentile ranges w.r.t. their performance and aggregating them over many samples, we
obtain a holistic view of a methods’ performance. AggAtt can thus reflect both best and worst case behaviour of an attribution method.

Abstract

Deep neural networks are very successful on many vision
tasks, but hard to interpret due to their black box nature. To
overcome this, various post-hoc attribution methods have
been proposed to identify image regions most influential to
the models’ decisions. Evaluating such methods is chal-
lenging since no ground truth attributions exist. We thus
propose three novel evaluation schemes to more reliably
measure the faithfulness of those methods, to make compar-
isons between them more fair, and to make visual inspec-
tion more systematic. To address faithfulness, we propose
a novel evaluation setting (DiFull) in which we carefully
control which parts of the input can influence the output in
order to distinguish possible from impossible attributions.
To address fairness, we note that different methods are ap-
plied at different layers, which skews any comparison, and
so evaluate all methods on the same layers (ML-Att) and
discuss how this impacts their performance on quantita-
tive metrics. For more systematic visualizations, we pro-
pose a scheme (AggAtt) to qualitatively evaluate the meth-
ods on complete datasets. We use these evaluation schemes
to study strengths and shortcomings of some widely used
attribution methods. Finally, we propose a post-processing
smoothing step that significantly improves the performance
of some attribution methods, and discuss its applicability.

1. Introduction
Deep neural networks (DNNs) are highly successful on

many computer vision tasks. However, their black box na-
ture makes it hard to interpret and thus trust their decisions.
To shed light on the models’ decision-making process, sev-
eral methods have been proposed that aim to attribute im-
portance values to individual input features (see Sec. 2).
However, given the lack of ground truth importance values,
it has proven difficult to compare and evaluate these attri-
bution methods in a holistic and systematic manner.

In this work, we take a three-pronged approach towards
addressing this issue. In particular, we focus on three im-
portant components for such evaluations: reliably measur-
ing the methods’ model-faithfulness, ensuring a fair com-
parison between methods, and providing a framework that
allows for systematic visual inspections of their attributions.

First, we propose an evaluation scheme (DiFull), which
allows distinguishing possible from impossible importance
attributions. This effectively provides ground truth annota-
tions for whether or not an input feature can possibly have
influenced the model output. As such, it can highlight dis-
tinct failure modes of attribution methods (Fig. 1, left).

Second, a fair evaluation requires attribution methods to
be compared on equal footing. However, we observe that
different methods explain DNNs to different depths (e.g.,
full network or classification head only). Thus, some meth-
ods in fact solve a much easier problem (i.e., explain a much
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Figure 7: The 2×2 grid for a particular set of images. As the annotator image on the
right shows, only the image that contains the object(s) of a particular class can have a
possible attribution.

However, the conceptual basis of this approach might be questionable. The
model is not trained on 2×2 grid images that contain multiple objects. It
is capable of identifying patterns related to the object of interest in other
regions as well. The model does not inherently understand the concept of a
2×2 grid or respect its borders. It can extend its focus beyond the specified
region without any restrictions, resulting in both possible and impossible
regions, making the approach challenging to justify.

4.2.3 Optimization tests

The methodology presented by the authors of [48] involves the application
of optimization techniques to create a controlled experimental environment
where the contribution of features is either permitted or restricted. Their ap-
proach bears resemblance to that discussed in DiFull 4.2.2, but it involves the
application of loss functions to differentiate between possible and impossible
image regions. Their experiments are summarized below:

• Null Feature Experiment. In this experiment, two images denoted
as m and n are inserted in a vast area with random noise. The opti-
mization process ensures that each maximizes a different class a and b
respectively, while at the same time constraints to second-null image to
have a zero contribution to a. If xm,n represents the composite image
containing these two elements, the losses can be expressed as:

min
m

fa(xm,n) (29)

min
n

fb(xm,n) + ( fa(xm,n)− fa(xm))
2 + ( fa(xn)− fa(x))2 (30)

where in xm, only the m image is added to image x (xn respectively)
and no image is added in x. The two last terms of equation 30 ensure
that image n does not contribute to any coalition of features. Thus,
an Attribution method should only while the where the optimization
algorithm performed on one of the two images, alters in in such a way
that it does not affect the model’s decision, in any cooperation it forms
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with other players-images. An Attribution method should neglect this
image, and point only to the first one.

• Single/Double Feature Scenario In these experiments, optimization
was performed to allocate features to different classes (or, in the case of
a single feature, to only one class). This resulted in Attribution maps
that differed significantly between classes.

The authors used statistical tools to assess the performance of various Attri-
bution methods in these scenarios. Their findings identified GradCAM [81],
Extremal Perturbations [24] and IBA [79] as the best-performing methods.
However, it is important to note that these methods may lack robustness due
to the use of backgrounds with random noise (see Section 6) Additionally,
optimization algorithms may not consistently produce the expected results.

4.3 Importance-based Evaluation metrics

Other Evaluation metrics are based on the concept of a model’s importance
and are closely aligned with Attribution methods.

4.3.1 Average Drop

The Average Drop (AD) criterion, introduced by [14] is rooted in a simple
concept: hiding the most important image parts, as determined by an At-
tribution method, should significantly affect the model’s confidence in its
decision. In essence, a more effective Attribution method is one that results
in a larger drop in the model’s confidence.

Specifically, for a model f , an image x, f the model’s decision favors class c,
thus

f (x)c = max
j

f (x)j,

then, for an Attribution method R, AD normalizes the attribution Rc(x) to
values between zero and one. The normalized attribution is then used to
calculate the Hadamard product x′ = x⊙ norm(ac(x)). This process helps
define AD as:

AD =
N

∑
i=1

max(0, f (x)c − f (x′)c)

f (x)c
(31)

A lower AD indicates that the Attribution map effectively retains the most
important regions, keeping the score f (x′)c high. Thus, a better AD is one
that is larger.

The authors also introduced a complementary metric known as the Increase
in Confidence. This metric counts the examples where f (x′)c exceeds f (x)c,
and normalizes this value according to the dataset’s size.

By applying these metrics, the authors were able to quantitatively evaluate
the effectiveness of various Attribution methods. The detailed results can be
found in their paper. It is important to note that implementing these metrics
may introduce significant challenges for the model, as explained in 6. Hiding
image information is a non-trivial problem, that can introduce bias to the
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model. It can also generate images that are Out-of-Distribution (OoD) for
the given data distribution.

4.3.2 Top-K Ablation

Authors of [33] define a similar metric to that of AD 4.3.1, where instead of
calculating the hadamard product, they select the top-K features and drop
the others, to calculate the F1-score of the model to the newly devised test
set. They fill the values of the missing parts by selecting different baseline
values according to heuristic methods for filling image parts (explained in
6.2). Thus, their method is more oriented towards evaluating different filling
techniques.

4.3.3 Sensitivity-N

Sensitivity-N [6] is another metric that relies on feature concealment. It ran-
domly masks a subset of the model’s features and quantifies the correlation
between the drop in the classifier’s score and the attribution associated with
the masked parts. Given a set TN containing N randomly selected features,
Sensitivity-n calculates the Pearson correlation coefficient as follows:

Sensitivity− N(x) = PCC( ∑
i∈TN

Ri(x), fc(x)− fc(x \ TN)) (32)

where x \ TN denotes that the features of x corresponding to TN are set to
zero.

4.3.4 Remove and Retrain

This metric, introduced by [36] assesses the impact of hiding the most impor-
tant image parts, but does so only after retraining the model. The rationale
behind retraining the model stems from the recognition that introducing
black masks to the image can lead to data being outside the original distri-
bution used for training. Consequently, the model may struggle to make
informative decisions in regions it was not trained on. After retraining the
model, the authors measure the drop in the model’s confidence for the origi-
nal image and its masked version. For Attribution methods that effectively
highlight the most important image features, the expected drop in confidence
should be greater compared to weaker methods. Surprisingly, the results
showed that only a limited number of Attribution methods outperformed
random masking.

However, this idea was later challenged by the authors of [75], who suggested
that there might be information leakage from the mask to the model. They
argued that the shape of the black masks’ boundaries, hints at the identity of
the object. This allows the model to identify patterns between the concealed
objects and the classes to which they belong. Consider a simple example:
a model trained to detect whether an apple is on the left or right side of
an image. The background of the image is consistently grey. If a high-
performing Attribution method points to the apple, attempting to hide
the apple with a black mask and retraining the model may still lead it to

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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accurately identify the object’s location, only now it recognizes a black object
instead of an apple.

4.3.5 Insertion - Deletion

Another criterion for evaluating the effectiveness of an Attribution method
is the Insertion-Deletion criterion, inspired by [26] and introduced in [69]. In
this approach, an Attribution method is used to create an Attribution map,
and features are sorted according to their attribution values. The Deletion
criterion involves deleting feature values one by one until all features are
removed, measuring the model’s prediction at each step for the original
image’s predicted class. This process forms a curve, as depicted in Figure
8. The score calculated based on the area under the curve (AUC) represents
the performance of the Deletion criterion. In contrast, the Insertion criterion
operates in the opposite direction, starting from an empty image (with all fea-
tures removed) and gradually adding features, maintaining the same order.
A higher AUC in both Deletion and Insertion indicates better performance.

PETSIUK, DAS, SAENKO: RISE: RANDOMIZED INPUT SAMPLING FOR EXPLANATION 17

Figure 8: RISE-generated importance maps (second column) for representative images (first column)
with deletion (third column) and insertion (fourth column) curves.

Figure 9: Failure cases. In some cases RISE does pick up more important features, but cannot get rid
of the background noise (in part due to MC approximation with only a subset) like in rows 1 and 2.

Figure 8: The curves of Deletion and Insertion when hiding an image according to an
Attribution map.

However, authors of [29] have shown that these metrics lack robustness, as
they do not account for the intensity of feature attribution. Furthermore,
these methods may result in cases that deviate from the initial data distribu-
tion, resulting in OoD images.

Employing simplistic, heuristic techniques to hide input features can in-
troduce significant bias to the model, potentially rendering the resulting
score ineffective. It is also essential to consider that these methods assume
independence between features, whereas the concealment of one feature
may significantly affect the contribution of others, making independent
measurement challenging. More on this will be discussed in Section6.

4.3.6 DC-AC

The Deletion Correlation (DC) and Insertion Correlation (IC) Criteria [29] are an
alternative version of the Insertion-Deletion metrics. Instead of calculating the
AUC of scores, these Criteria compute the linear correlation of class score
variations and saliency scores at each step. This helps measure how much
each feature contributes to the model’s decision. However, it is worth noting
that these metrics share the same limitations as Deletion-Insertion metrics.
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4.3.7 Average DCC

The ADCC metric, introduced in [70] specifically for evaluating various CAM
methods 3.3, calculates a score by combining elements of the Average Drop
4.3.1, the L1−norm of a CAM, and its Coherency. Coherency measures
the relationship between the attribution of a CAM to an image x and its
attribution after being hidden according to CAM(x). For the maximally
activated class c for an image x,

Coherency(x) = PCC(CAM(x), CAM(x⊙ CAM(x))), (33)

where PCC stands for the Pearson’s Correlation Coefficient. The three scores
are combined using the harmonic mean to produce the ADCC metric. The
Coherency criterion is interesting as it suggests that the image’s attribu-
tion should not be significantly altered after removing less important parts.
Despite its potential, Coherency faces similar challenges as the AD metric,
which will be explored further.

4.3.8 Robustness-S

The Robustness-S criterion [37] takes a different approach compared to the
aforementioned methods. It acknowledges that hiding information may
introduce bias to the model and measures the robustness of an explanation
by attempting to break it. This criterion quantifies the effort required to
succeed in altering the model’s prediction. For the general problem defined
as:

ϵ∗xT
( f , x, T) = min

δ
{∥δ∥p, f (x + δ) ̸= c ∧ δT = 0}, (34)

where δT = 0 indicates that features not found in T are zeroed. The aim is to
discover

ϵ∗xTR
and ϵ∗xTR

. (35)

Here, TR are considered to be the most important features according to an
Attribution method R. The goal is thus to find a minimal perturbation of
the important features to change the model’s prediction. For the different
Attribution methods, a small ϵ∗xTR

is considered superior (indicating less
effort required), while the opposite holds for ϵ∗xTR

.

While finding the minimum value of a set through optimization is impossible
[47], the perturbed features may indeed introduce bias to the model. It is
important to note that changes in the model’s prediction may not solely
result from perturbing the non-fixed features, but also the other features as
well. As we will prove in this thesis, optimization algorithms might work
unexpectedly.

4.4 Challenges

In the context of Evaluation metrics, one can identify potential challenges Precise
measurementthat might hinder their performance in precisely measuring the effectiveness

of different Attribution methods. A more comprehensive examination of the
most popular Evaluation metrics can be found in [96]. In many cases, the

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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challenges stem from the way features are removed.

Still, Evaluation metrics do indeed calculate the effectiveness of Attribution Occlusion is well
foundedmethods, but rather approximately. The idea of Occlusion is theoretically well

founded: when concealing unimportant image parts that contain an object of
interest, we expect a mild drop in the model’s confidence in the correspond-
ing class. However, the extent of this drop, which can only be explained via
an Attribution method is yet to be precisely defined.Our general expectation
is that random masking would lead to a more substantial drop due to the
concealment of vital information. To gain further insights into this matter, an
experimental study could be conducted to measure the drop in score when
random masking is applied, and monitor how the drop in model confidence
is distributed among different classes, ideally with no favoritism towards
any specific class.

Among the most popular Evaluation metrics found in the bibliography are Most popular
Evaluation metricsAverage Drop, Sensitivity-N, and Insertion/Deletion. The first two involve

the removal of information in a one-step process, while the latter necessitates
multiple steps in pixel removal. The latter approach introduces additional
biases and errors to the implementation. For example, at each step, the
Attribution map may change due to the interdependencies of the values of
feature maps, as discussed in Section 2, resulting in a new sequence of values.
Since the first two methods do not sort features based on their attribution
scores, they are not susceptible to this particular issue. Consequently, this
thesis aims to mitigate some of their deficiencies.

While various issues in the design of Evaluation metrics were briefly dis-
cussed earlier, a more detailed and in-depth exploration will be conducted
in Sections 6, 7, 8, 9. These sections will focus on designing an algorithm
for effectively concealing information from image parts. This development
can potentially enhance different metrics based on Occlusion, ultimately
creating a more robust tool for evaluation. The pursuit of designing a robust
Evaluation metric remains an ongoing endeavor.



Chapter 5

Axioms and Criteria
In this chapter, we delve into the development of axioms and Criteria for The need for

Criteriathe evaluation of attribution methods. These foundational principles aim
to establish a theoretical foundation for assessing the robustness and effec-
tiveness of different methods. While traditional evaluation techniques offer
rough estimations of importance, they lack a definitive yardstick for ranking
attribution methods – determining whether higher or lower scores indicate
better performance. Given the intricacies of how models operate, making
such judgments is inherently complex.

The lack of theoretical robustness of the Evaluation metrics has been ac-
knowledged by researchers in XAI. Authors of [92] state the following:

”Roughly, we found that every empirical evaluation technique we could
think of could not differentiate between artifacts that stem from per-
turbing the data, a misbehaving model, and a misbehaving attribution
method. This was why we turned to an axiomatic approach in
designing a good attribution method”

The axiomatic approach involves defining Axioms and Criteria that inher-
ently align with the concept of feature importance.A method’s effectiveness
is determined by its adherence to these Criteria. This provided a new way
for evaluating and comparing different methods. This approach introduces a
new methodology for evaluating and comparing different attribution meth-
ods: he evaluation is not based on a score, but rather a ”Yes/No” answer
tied to the satisfaction of essential Criteria.

However, this approach also raises a series of questions and challenges. Are Questions
regarding Criteriasome Criteria more critical than others? Is there a hierarchy of importance

among them? How many Criteria are necessary to ensure the effectiveness of
a method? And, potentially, could the design of these Criteria be influenced
by human bias?

5.1 Criteria-based Evaluation

While these questions remain unanswered and indicate the need for further
research, the XAI community started engaging with Criteria-based evaluation
approaches, as they offer a more robust methodology for assessing attribution
methods. In the following sections, we will present various Criteria found in
the existing literature.

46
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5.1.1 Sensitivity

This criterion, as introduced by [92] consists of two key statements. Sensitivity-
a posits that when two inputs and baselines differ in a single feature but
produce distinct model predictions, the divergent feature should be assigned
a non-zero attribution. Sensitivity-b1 on the other hand, declares that when
a model is independent of a specific variable, the attribution to that variable
must always be zero.

At first glance, both statements appear logical since they establish a rela-
tionship between cause and effect. If a modification of a feature’s value
fails to produce an effect, it should not be considered a causative factor.
While these two definitions complement each other, Sensitivity-a is more
practical from an evaluation standpoint. It is relatively straightforward to
assess by zeroing the values of a feature that influences the model’s decision
and verifying that an attribution method assigns an importance score to that
feature. Conversely, identifying the variables upon which a complex model
depends is a far more intricate task, requiring experimentation.

The authors illustrate this criterion with a simple example that demonstrates
the apparent violation of Gradients. They extend the same reasoning to
DeConvNets 9 and Guided Backpropagation 10, both relying on ReLU,
which renders them susceptible to problems with Gradients.

Trying to conceptually understand this criterion, one might express concerns Concerns

about its validity. Features in DNNs have a combined effect to the model’s
prediction, thus an alteration of the value of a feature could lead to new
interactions between features. A rule that restricts the feature of interest to
attribute more or less than before does not hold water.

Lemma 1 (Sensitivity). A change to a model’s prediction, caused by the pertur-
bation of a particular feature’s value should lead to a differing attribution of the
contributing features.

In practice, this criterion may not yield worthy results. Any change in
a DNN’s input feature is bound to produce a change to the output. Also,
features are inherently entangled within the DNN, and modifying one feature
may affect the entire feature set. In such cases, this criterion essentially asserts
that if a change in a feature’s value leads to a different output, the resulting
attribution should also be different (which will be, for an attribution method
that respects the input values).

5.1.2 Conservation

This criterion postulates that the sum of importance scores within an Attri-
bution map should equate to the model’s decision. In mathematical terms:

∀x : f (x) = ∑
i

R(x)i. (36)

While initially introduced in [10], this criterion can also be found in various
other research works. It is referred as Completeness in Integrated Gradients

1 authors of [60] refer to this criterion as ”Missingness”.
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[92], Conservation in X-Grad Cam [27] (for the needs of feature maps) and
aligns with local accuracy in SHAP [60]. The underlying rationale for this
criterion is grounded in the belief that the model’s activation should be
completely explained by the attributions of features. Failing to do so implies
that something essential remains unexplained and unattributed, leaving part
of the model’s decision unaccounted for. Similarly, an attribution method
should not attribute higher accuracies to features than the model’s output
score, as this overstates the significance of these features in the decision-
making process.

The application and interpretation of this criterion may differ among meth-
ods. Integrated Gradients and SHAP use it as a meta-criterion that their
methods satisfy to prove their robustness. Conversely, ϵ−LRP and X-Grad-
CAM are engineered according to it, guaranteeing its satisfaction. To achieve
this, in X-Grad-CAM this criterion is transformed into a loss function, which
is subsequently optimized while in the case of ϵ−LRP, it serves as a guiding
principle for backpropagating the model’s output score to the attributions of
individual features. In practice, evaluating this criterion can be challenging,
primarily because a model’s output is not scalar but a vector of class scores.
Determining how attribution methods should calculate the attribution of
each class and ensure that these sum up to the model’s output score remains
a subject of exploration.

Is this criterion theoretically rational, and is it intricately linked to the notion
of importance? Some may argue that it might not be of great consequence if
one were to scale the values within an attribution map by an arbitrary factor.
What may be more important is the relative relationship between different
attribution values. Additionally, between the model’s input and output,
numerous complex nonlinear functions come into play. It is certain, though,
that there exists a correlation between the attribution scores and the model’s
decision, given the cause-and-effect phenomenon. Yet, it is not evident what
this relationship should be.

5.1.3 Positivity

Introduced by ϵ−LRP, [10], this criterion asserts that an attribution method
is considered ”positive” if the values within the attribution maps it generates
are always greater than or equal to zero. In mathematical terms:

∀x, i : R(x)i ≥ 0 (37)

This criterion enforces non-negativity in attributions, implying that a fea-
ture’s effect on the model’s decision can only be positive or neutral. This
criterion serves to theoretically fortify the LRP method.

However, it raises concerns regarding the constraints it places on attribution
methods, which may not necessarily align with the model’s functionality
and training process. During training, the objective is not solely to maximize
the activation of a specific neuron but also to suppress the activation of
competing neurons. Thus, the model’s parameters may be adjusted to ensure
a negative effect on specific neurons’ activation when combined with the input.
The question arises: can this constraint extend to the particular neuron of
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interest? It is conceivable that a feature affects negatively the neuron of
interest, by deactivating important neurons along the way. As such, the
positivity criterion remains a topic of concern and debate.

5.1.4 Implementation Invariance

Defined in IG [92], the criterion states that for two functionally equivalent
models, the attribution method should produce identical explanations. In
mathematical terms,

∀ f1, f2 : Rm → Rn for which ∀x ∈ Rm it holds that R f1(x) = R f2(x). (38)

This criterion might resemble the Randomization Tests 4.1.1 in a way that it
comprises a basic property an attribution method should satisfy, more related
to general characteristics of it, and not to the evaluation of a method. Yet,
DeepLIFT and LRP fail to satisfy this criterion, which comprises a serious
disadvantage for these methods.

5.1.5 Consistency

This criterion is applicable primarily in scenarios akin to SHAP, where a
complex DNN is approximated by a linear explanation model. An input x
for a model f is translated to z′ for the approximate linear model through a
function hx (which usually corresponds to ”hyper-variables” of f , such as
hyper-pixels), it states the following:

Given f (z′) = f (h(z′)) and z′ \ i denote the action of setting z′i = 0, the
criterion posits that for any two models f and f ′, if ∀z′ ∈ {0, 1} it holds that

f ′(z′)− f ′(z′ \ i) ≥ f (z′)− f (z′ \ i),

then
ϕi( f ′, x) ≥ ϕi( f , x). (39)

Here ϕi represents the i−th weight associated with the i−th element of the
linear model. The essence of this criterion is to establish a direct link between
the relative contributions of i in f than f ′ where the exclusion of this feature
results in a more substantial drop in the model’s prediction. This heightened
drop should correspond directly to the weight ϕi of i in the models; the
weight for i in f needs to be larger than that of f ′. Yet, this criterion suffers
from the same limitations as Sensitivity

5.1.6 Weak Dependence

Introduced in [89], authors define the notion of weak dependence on inputs.
They consider piece-wise linear models defined on open connected sets, thus

f (x) =





w0 · x + b0, x ∈ U0

...
wn · x + b0, x ∈ Un

(40)

where all Ui are open connected sets. Authors suggest that for this function,
the Attribution map R(x) restricted to a set Ui is independent of x, and
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depends only on the parameters wi, bi.

They attempt to generalize the attribution in simple linear models, yet, such
a selection for the attribution might be poor for those models (as seen in
Example 2). By the use of this criterion they try to challenge Integrated
Gradients, by defining the following piece-wise linear model:

f (x) =





3x1 + x2, if x1, x2 ≥ 1
x1 + 3x2, if x1, x2 < 1
0, otherwise

(41)

and consider a baseline x′ = (0, 0) three points (2, 2), (4, 4), (1.5, 1.5), all of
which satisfy x1, x2 > 1 and thus are subject to the same linear function of

f (x1, x2) = 3x1 + x2.

However, depending on the point considered, IG yields different relative
importances among the input features.

• for x = (4, 4), R(x) = (10, 6),

• for x = (1.5, 1.5), R(x) = (2.5, 3.5),

• for x = (2, 2), R(x) = (4, 4),

thus, for symmetrical points of the same function, the attributions vary,
pointing to different features as the most important each time.

The problem with this approach is the selection of the baseline point. If for
example, x′ = (1, 1), the problem is not present. In complex functions, the
baseline might not just be the zero point. We conduct an extensive research
in Chapter 8.

5.1.7 Continuity

Defined in [27], this axiom states that for two nearly identical inputs that lead
to identical model activations, then the corresponding explanations should
also be nearly identical. For x1, x2 ∈ R for which |x1 − x2| ≤ δ1 and for a
model f for which | f (x1)− f (x2)| ≤ δ2, then

|R(x1)− R(x2)| ≤ ϵ, (42)

for δ1, δ2 > 0, and ϵ = ϵ(δ1, δ2) > 0.
This criterion mainly applies to gradient methods, suffering from the problem
of the shattered gradient [7]. Simple gradient methods, as well as CAM
gradient methods suffer from it, yet methods that do not only use the local
gradients (such as IG and DeepLIFT) are immune.

5.1.8 Combining different Criteria

The aforementioned criteria should not be viewed in isolation when assessing
an attribution method’s robustness. Each of these criteria, on its own, can be
susceptible to manipulation by simple or handcrafted examples. For instance,
the Conservation criterion could be misled by an attribution R(x)i = 1/n,
where n represents the output size, satisfying not only the Conservation
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criterion but also Continuity and Positivity.

It is the interplay and combination of different criteria that enhance the
robustness of an attribution method. While other criteria have been proposed
(such as rotation [26], Symmetry [92], Model Saturation [83]), this thesis
primarily focuses on the more established and widely recognized criteria, as
they hold greater significance. A comprehensive and universally accepted set
of criteria has yet to be formulated, with each criteria-based method defining
its own criteria based on their design and mathematical framework.

5.2 The power of Criteria

Given the intense scrutiny directed at the entire spectrum of criteria in this
thesis, and the assertion that their individual utility remains somewhat lim-
ited, it is natural for readers to ponder their effectiveness. To address this,
let’s delve into the work of SHAP [61] as an example. SHAP incorporates
three criteria, as mentioned earlier, to assert and prove the superiority of
their method among similar alternatives. Let’s examine this method more
closely.

Initially, SHAP introduces the notion of the explanation model, which treats a
model’s decision explanation as a distinct model, akin to the LIME approach.
SHAP defines this explanation model to be linear, inherently making it more
interpretable. Mathematically, this is represented as:

g(z′) = ϕ0 +
M

∑
i=1

ϕiz′i. (43)

Various methods, including DeepLIFT, LRP, LIME, and Shapley Value Es- Different methods

timation techniques, select different coefficient values for this model. It’s
this choice of coefficients that distinguishes these methods. SHAP then
demonstrates that their method is the sole approach that satisfies the three
criteria they have devised.

In essence, SHAP groups methods that share the same mathematical expres-
sion and concurrently defines criteria linked to the explainability properties
of these methods. They subsequently identify coefficient values that meet
these criteria, showcasing their method’s superiority over others. This path-
way holds promise for achieving model explainability when more refined
and resilient criteria are established.

5.3 Further discussion

Not all criteria-based methods operate under the same principles. Integrated
Gradients and SHAP first establish an attribution method and subsequently
substantiate its effectiveness through the formulation of criteria tied to these
methods’ properties. In contrast, LRP and XGradCAM have attribution
methods that are guided and directly derived from criteria. This distinction
is noteworthy.
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From where do these criteria originate and why did the authors select them
instead of others? One might argue that these are logical criteria that an
explanation method should fulfill, or it would be deemed inconsistent. How-
ever, in the case of SHAP, other authors employ different criteria for their
methods. For instance, DeepLIFT employs the model saturation criterion
to demonstrate its efficiency, which SHAP does not satisfy. Therefore, it’s
possible that there are additional properties related to explanation methods
that methods like DeepLIFT, LRP, and LIME fulfill but that SHAP does not.

In any case, a comprehensive and well-rounded set of criteria that guarantees Set of Criteria

the effectiveness of an explanation method remains an uncharted territory,
with much more exploration and research needed in this domain.



Part III

Z E R O I N F O R M AT I O N T H E O RY



Chapter 6

The concept of Zero Informa-
tion in XAI
As previously mentioned in section 3 and 4, the notion of Information
Concealment is fundamentally rooted to the field of Explainable AI. Differ-
ent attribution methods, evaluation metrics and mathematical criteria are
founded on it. Yet, research on a mathematically robust algorithm for infor-
mation concealment still lacks. Most of the aforementioned methods and
metrics make simple assumptions about information concealment, without
diving deeply into the mathematical details. This in turn adds a serious bias
to the model. This topic is further developed in the following two chapters.

6.1 Zero values

Conventionally, the standard procedure for occluding a set of features within Zeroing: A standard
methodan input involves setting their values to a baseline. Zeiler and Fergus [110],

introduced this idea and applied it to RGB images, selecting the grey color
as the baseline value. Later on, the baseline evolved to the zero input (black
value), recognized as a more suitable candidate for ’zero information’. This
is in accordance with Information Theory, where the zero vector (or any
constant vector) corresponds to a message with zero Entropy. As a result,
this message contains the minimal possible quantum of information. For
a discrete random variable X which takes values in X and is distributed
according to p : X→ [0, 1] The entropy is defined as

H(X) = − ∑
x∈X

p(x)logb p(x) = E[−logb p(X)] (44)

Thus, the entropy of a degenerate distribution1 is equal to zero.

However, Deep Learning exhibits limited correlation with Information The- Patterns in black
imagesory. Blackening may not inherently equate to zeroing information for a DNN.

Some evidence comes from the black image itself: by feeding a black image
to different models, the outputs are non-zero. This phenomenon arises from
the existence of positive biases in deep layers that force certain neurons to
activate, triggering computations in the subsequent layers. Consequently,
a particular neuron of the last layer will get a higher score (which will be
amplified by the softmax function), raising the following question: Does the
black image contain any information? Evidently, DNNs think it does.

1 A degenerate distribution is a distribution with a basic characteristic: there exists some value x,
for which P(X = x) = 1
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Conceptually, we could generalize this idea to any black segments, in dif-
ferent backgrounds -not only in black, and arrive at the conclusion that
blackening parts cannot hide information entirely.

The authors of Integrated Gradients propose the use of an image with no IG and the black
baselinesignal as the baseline reference point, which might be a point with a small

activation. They acknowledge the fact that images containing information
might satisfy this criterion (such as adversarial examples) and so they advise
the use of a black image. We quote:

“So we would additionally like the baseline to convey a complete absence
of signal, so that the features that are apparent from the attributions are
properties only of the input, and not of the baseline. For instance, in an
object recognition network, a black image signifies the absence of objects.
The black image isn’t unique in this sense—an image consisting of noise
has the same property. However, using black as a baseline may result in
cleaner visualizations of “edge” features.”

In the case of the black image, the mathematical formula (Equation 11) im-
plies that the attribution for the black parts of the input image will always
be zero. That is because the value of those features matches the baseline
value, leading to the nullification of the first multiplication term within the
formula. This constraint poses a limitation to the method’s applicability. It is
not always true that a black segment of an image has zero contribution to
the model’s decision, as we will see in section 6.3.

6.2 Heuristic techniques

Researchers rapidly recognized that employing a black overlay was an inade- Alternative strategies

quate strategy for information concealment. Consequently, they embarked on
investigating alternative approaches in order to hide information effectively.
Different filling methods were examined, which also inherited a human-
perceived notion of zero information. Some of the most common techniques
are the following:

• Blurring of the hidden part.

• Addition of random noise to the hidden part.

• Replacement of the hidden part with random noise.

• Replacement of the hidden part with the application of max distance.

• Averaging through different points for max distance.

Nonetheless, despite the diverse range of methods employed, an inherent The bias persists

bias persisted In a study conducted by the authors of [31], 10,000 images
were generated, each filled with random noise. Surprisingly, when these
images were fed into a maxout network [30] equipped with a softmax layer, it
was found that for over 98% of the images, the model assigned a probability
of more than 50% to some class. This observation suggests that a significant
amount of information existed within random noise. Soon thereafter, authors
of [66] extended these findings to images containing structures composed
of various mathematical shapes. It became evident that heuristic techniques
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Figure 2: Computed saliency for a variety of in-filling techniques. The classifier predicts the
correct label, “drake”. Each saliency map (top row) results from maximizing in-class confidence of
mixing a minimal region (red) of the original image with some reference image in the complementary
(blue) region. The resulting mixture (bottom row) is fed to the classifier. We compare 6 methods
for computing the reference, 3 heuristics and 3 generative models. We argue that strong generative
models—e.g., Contextual Attention GAN (CA) (Yu et al., 2018)—ameliorate in-fill artifacts, making
explanations more plausible under the data distribution.

Figure 3: Visualization of reference value infilling methods under centered mask. The ResNet
output probability of the correct class is shown (as a percentage) for each imputed image.

Consider an input image x comprising U pixels, a class c, and a classifier with output distribution
pM(c|x). Denote by r a subset of the input pixels that implies a partition of the input x = xr ∪ x\r.
We refer to r as a region, although it may be disjoint. We are interested in the classifier output when
xr are unobserved, which can be expressed by marginalization as

pM(c|x\r) = Exr∼p(xr|x\r)

[
pM(c|x\r,xr)

]
. (1)

We then approximate p(xr|x\r) by some generative model with distribution pG(xr|x\r) (specific
implementations are discussed in section 4.1). Then given a binary mask2 z ∈ {0, 1}U and the
original image x, we define an infilling function3 φ as a convex mixture of the input and reference
with binary weights,

φ(x, z) = z � x+ (1− z)� x̂ where x̂ ∼ pG(x̂|xz=0). (2)

3.1 OBJECTIVE FUNCTIONS

The classification score function sM(c) represents a score of classifier confidence on class c; in our
experiments we use log-odds:

sM(c|x) = log pM(c|x)− log(1− pM(c|x)). (3)

SDR seeks a mask z yielding low classification score when a small number of reference pixels are
mixed into the mask regions. Without loss of generality4, we can specify a parameterized distribution

2 zu = 0 means the u-th pixel of x is dropped out. The remaining image is xz=0.
3 The infilling function is stochastic due to randomness in x̂.
4 We can search for a single mask z′ using a point mass distribution qz′(z) = δ(z = z′)

3

Figure 9: An example image from [13], featuring a sparrow to be concealed. Different
heuristics for obscuring image details yield varying model responses. Despite human
consensus that none of these methods introduce information to the image, the model’s
probabilities (shown above each image) diverge, indicating distinct findings in each
image.

failed to effectively conceal information from the model.

A comprehensive overview of the various techniques employed to conceal Different rule-based
techniques lead to
different results

image parts or select a baseline point can be found in [33], where the authors
carefully categorize each technique based on its characteristics. Through
an array of experiments, the authors of this study deduce that no single
method consistently outperforms the others on a large scale. Additionally,
they observe that the choice of method significantly impacts the model’s
decision. This conclusion is in accordance with the findings in [90], where
authors perform large scale experiments on Integrated Gradients [92]. To
better illustrate the substantial impact of different filling methods on the
resulting scores Alipour et al. [5] provided an insightful visualization. It can
be seen in 9.

What are the fundamental problems that those methods blindly inherit to the
images when occluding information from them? It is of major significance
to identify them, in order to construct later a robust method that addresses
those challenges.

6.3 The Added Bias problem

The added bias problem has been pointed out in different works [90, 37,
32, 23]. Authors of [37] state the following: for attribution methods and
evaluation metrics that are based on Occlusion, hiding a part by setting its
values to a reference value

“would favor feature values that are far way from the baseline value
(since this corresponds to a large perturbation, and hence is likely to
lead to a function value difference), causing an intrinsic bias for these
methods and evaluations. For example, if we set the feature value to
black in RGB images, this introduces a bias favoring bright pixels:
explanations that optimize such evaluations often omit important dark
objects such as a dark-colored dog”.

Let’s examine the aforementioned example in more depth. In Figure 10, we Example

consider the part to be concealed to correspond to the body of a black dog.
Hiding this segment by blackening it, would result in a small alteration of the
model’s judgement and prediction, given that the input was not substantially
modified. On the other hand, selecting a bright color as a reference value
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Figure 10: Filling techniques for hiding image parts result in diverging predictions
for the ResNet50 model.

introduces a large perturbation of the original image, disturbing the shape
of the dog and leading to a greater drop in the model’s prediction score.
This implies that the black filling retained information contained in this part,
while the brighter color probably reduced it. A challenging question that
arises is which is the best value of erasing any information and how can we
evaluate it?

6.4 The Out-of-Distribution problem

The Out-of-Distribution problem (OOD) arises when there is a significant dis-
similarity between the data distributions of the training and testing datasets.
Consequently, a DNN trained on discovering patterns in a particular data dis-
tribution may struggle to identify different correlations in other distributions,
resulting in a notable decline in the model’s accuracy. This issue also extends
to Occlusion methods in XAI, where new, out-of-distribution image parts are
introduced to the model. In such cases, precisely attributing changes in the
model’s score becomes exceptionally challenging, as the observed drop may
be attributed to the OOD problem rather than the occlusion of the object of
interest.

In their work [29], the authors aimed to visually represent this distribution
dissimilarity for the blackening and blurring filling methods, particularly
concerning the Insertion/Deletion metrics 4.3.5. They achieved this by
projecting the input data, along with their masked versions created through
gradual occlusion, onto lower-dimensional representation spaces, as required
by these metrics. The results, depicted in Figure 11 clearly showcase the
evolving trajectory of gradual blackening or blurring, which progressively
diverges from the original data distribution. This phenomenon extends to
various other heuristic filling methods, when occluding image parts.
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Metrics for saliency map evaluation of deep learning explanation methods

which might lead to unexpected behavior of the model and of the method used
to generate the explanation maps. However, as suspected by [20], the blurring
operation seems to create samples that are less far from the training distribu-
tion compared to the masking operation, probably because a blurred image still
contains the low-frequency parts of the original image. Another explanation is
that most current classification models are designed with the assumption that
an input image contains an object to recognize, which is in contradiction with
DAUC and IAUC as they consist to remove the object to recognize from the
image. This suggests that modifying these metrics in such a way as to always
leave an object to recognize in the input image would solve this issue.

(a) (b)

Fig. 2: UMAP projection of representations obtained while computing (a) DAUC
and (b) IAUC on 100 images. The color indicates the proportion of the image
that is masked/unblurred. The model used is a ResNet50 on which we applied
Grad-CAM++ on the CUB-200-2011 dataset. We also plotted representations
from 500 points of the test set to visualize the training distribution (in blue).
By gradually masking the image, the representations converge towards a point
(in yellow) that is distant from the points corresponding to unmasked images
(in blue). Similarly, blurring the image causes the representation to move away
from the training distribution. This shows that masking/blurring indeed creates
OOD samples.

DAUC and IAUC only take the pixel score rank into account. When
computing DAUC and IAUC, the saliency map is used only to determine in which
order to mask/reveal the input image. Hence, only the ranking of the saliency
scores Sij is used to determine in which order to mask the image, leaving the
actual values of the scores ignored.

However, pixel ranking is not the only characteristic that should be taken into
account, as the visual appearance can vastly vary between two attention maps
without changing the ranking. Figure 3 shows examples of a saliency map with

Figure 11: The UMAP projection of representations, obtained while computing
Deletion (a) and Insertion (b) on 100 images with representations from 500 points of
the test set, to visualize the training distribution (in blue). By gradually masking the
image, the representations converge towards a point (in yellow) that is distant from
the points corresponding to unmasked images. Similarly, blurring the image causes
the representation to move away from the training distribution.

6.5 The Attribution Shift problem

Considering the model as a set of nested calculations, the act of altering the
values of a subset of features holds the potential to forge new associations
between the features of the input in the computational graph. This in
turn, would result in a change of the attribution of each feature; some
features might now be able to attribute more -if they were suppressed by
the zeroed features-, others could possibly attribute less -if they had a joined
attribution with the zeroed features-. The DNN of the Figure 12 illustrates
this phenomenon.

Figure 12: The Attribution shift problem is noticeable in this neural network archi-
tecture with one hidden layer and ReLU activation functions. If x1 = x2 = 1, both
neurons of the hidden layer are activated, and the two inputs contribute to the output
from both the upper and lower path. But, if x1 = 1, x2 = 0, the upper neuron of the
hidden layer is deactivated, thus input x1 cannot contribute from the upper path. It
now contributes less to the model decision, leading to a drop in its attribution score.

Hence, the alteration of specific input components might create an avalanche False measures
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Figure 13: Heuristic methods for hiding image parts induce an attribution shift of
the visible parts. (Top) The image is masked by thresholding the attribution map
of GradCAM; (bottom) a new attribution map is obtained for the masked image.
Masking by black or blurry overlays result in the smaller left segment of the object
disappearing from the new attribution map.

phenomenon, capable of altering the attributions of all input features. In such
cases, the change in accuracy cannot be directly and completely attributed to
the concealed parts, since the attribution map has also been altered for the
visible parts of the image. A real-world example can be seen in Figure 13.

6.5.1 Towards a robust filling method

These findings have steered many researchers away from employing oc-
clusion methods altogether and work on parallel routes, directed towards
adversarial examples [11, 37, 54]. Nonetheless, it is insightful to better study
this problem in depth, in order to tackle it effectively and shed more light on
the model’s hidden structure.

Some methods have explored alternative rule-based techniques, such as
neighborhood search [75] that fills the hidden part by using colours from
neighboring pixels etc. A fundamental idea of those methods is that the
reconstructed part should take into consideration the visible parts of the
image. The following lemma summarises these conclusions.

Lemma 2. Considering a model and an input, the function of hiding information
from a subset of features for that particular input is dependent on the model and the
image itself.

A fundamental idea in this project is not to impose different notions of ‘zero Our novelty: An
optimization
algorithm

information’ to the model, but rather let the model show us what it consid-
ers to be zero information for a particular image. We design optimization



6.5 the attribution shift problem 60

algorithms to the hidden parts that are driven from the model itself, towards
the direction of zero information. The next section introduces the reader to
this idea.

We start by tackling the challenge of concealing the entire image—a task we
find to be comparatively more tractable than the endeavor of constructing
zero information segments. As we proceed, we will harness a suite of tools
we have developed, enabling us to effectively tackle the latter question.



Chapter 7

Filling methods for OoD data
Conventional machine learning paradigms operate under the assumption
that both the training and test datasets derive from the same distribution.
This statistical consistency is formally denoted as Independent and Identically
Distributed (i.i.d.). Nevertheless the existence of distributional shifts in real-
world scenarios disrupts this assumption, leading to a significant degradation
in model performance. This phenomenon is known as the ‘Out-of-Distribution’
problem (OoD) [57].

Described mathematically from the authors, let X be the feature space and
Y the label space. A parametric model is defined as fθ : X → Y . Given a set
of n training samples of the form {(x1, y1), ..., (xn, yn)}, drawn from training
distribution Ptr(X, Y), a supervised learning problem is to find an optimal
model f ∗θ which can generalize best on data drawn from test distribution
Pte(X, Y). In real-world scenarios, the test distribution upon which a model
is deployed may diverge from the training distribution;

Ptr(X, Y) ̸= Pte(X, Y)

leading to the OoD problem.

An intuitive way to understand this phenomenon is to associate it with the
problem of social misalignment, as defined in []. Authors of [32] state:

Explanations are socially misaligned when people expect them
to communicate one kind of information, and instead they com-
municate a different kind of information. For example, if we
expected an explanation to be the information that a model relied
on in order to reach a decision, but the explanation was actually
information selected after a decision was already made, then we
would say that the explanations are socially misaligned.

The generality of this problem makes it appear in different applications
of AI. In particular, it has been noticed in Computer Vision[26, 5, 37, 44],
Natural Language Processing [50, 99, 76], Audio Classification [40] and many
others. Different methodologies have emerged in order to tackle it. Before
we explore them, we need to establish the relationship between OoD and XAI.

7.1 Link between OoD & Explainable AI

How does this challenge relate to the field of XAI? As mentioned in section
6.4, occlusion methods, involving the application of masks to input images,
can introduce foreign or unfamiliar elements into the image, thereby divert-
ing it from its original distribution. We refer to these elements as artefacts, as
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defined in [32]. This phenomenon has been extensively reported and studied
in literature [33, 86, 36, 13, 76, 107, 50, 26, 71, 3, 44, 37].

This problem is particularly pronounced in heuristic methods like Mean
and Random filling, as illustrated in Figure 9. Furthermore, path-based
approaches, as discussed in section 8.4, are also susceptible to OoD issues.
The paths leading to a Zero Information Point may traverse regions entirely
outside the expected distribution.

Lastly, even evaluation metrics and mathematical criteria based on occlu-
sion are not immune to this challenge. To be more precise, metrics such as
Average Drop 4.3.1 and top-K ablation 4.3.2 are vulnerable to OoD-related
concerns. However, the extent of their impact on results remains uncertain,
as the correct filling method has yet to be determined. Mathematical criteria
such as Conservation 5.1.2 and Consistency 5.1.5.

7.2 Addressing the OoD challenge

In order to mitigate the challenge of OoD, a wide range of techniques is
being tested and deployed.

Model Retraining

A first approach is to retrain the model to data with artefacts. Authors of [36]
retrain a DNN model to the input dataset being masked according to different
attribution methods and calculate the drop in the model’s accuracy. Arguably,
is this way, they manage to calculate the OoD-ness of the data, by calculating
the difference in prediction of the two models. Another interesting method
is introduced by authors of [32], who expose the model to artifacts during
the training phase of the model. In that way, when introducing artefacts to
the model in the test phase, they do not appear to be OoD. Nevertheless, the
approach of retraining the model suffers from an important disadvantage. As
shown in [75] artefacts might add information to the model and contribute
to its score for a particular input and class.

7.2.1 Marginalizing OoD data

Another technique that was explored by different researchers, was to inden-
tify and marginalize Out-of-Distribution data. Authors of [71] develop an
algorithm that improves methods such as LIME, RISE and OCCLUSION, that
are based on the construction of multiple masked versions/perturbations of
the input. They calculate an Inlier Score of each perturbation, which is related
to the probability of the model to produce such sample. This score func-
tions as a weight for the perturbation, before the aforementioned attribution
algorithms attribute the scores back to image regions.

7.2.2 Selecting artefacts near distribution

In Natural Language Processing, authors of [76] modify the algorithm of
Integrated Gradients [92] in such a way that the points it interpolates are not
selected blindly in a strait line, thus gathering information from OoD points,
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rather collecting data from words in a non-straight path that are more close
to the model’s distribution. Starting from the initial word to be concealed, the
algorithm at each point-embedding searches for the word which embedding
is the closest and, at the same time, conserves the monotonicity of the path
towards the zero information word. This might require a small perturbation
of some features of a word embedding, although the point it stands remains
in close distance to an original word of the dataset. Instead of applying
heuristic techniques for finding points near distribution, other methods
generate the artefacts to be in distribution.

7.2.3 Filling the hidden features

A different approach that many researchers are exploring is to fill the hidden
parts of the image with different values, that might correspond to the notion
of no information, while alleviating the problem of OoD-ness.

Heuristic Methods

Another approach is to attempt to fill the hidden variables with a value
that results in an in-Distribution (ID) data point. Authors of [43] select a
reference value –to use as a zero information point– and define it to be the
the expectation E[ f (X)] over the activations of f to the data of the underlined
distribution X. For the hidden features H, they select to fill them with the
expectation

E[ f (xV , XH)], (45)

where xV is the value of the visible features. Researchers in [114] follow a
similar approach, calculating the expected value over a neighbourhood of
the missing pixels, while authors of [114] use the Gaussian distribution to fill
the hidden regions. In a different approach, authors of [26] opt to find the
optimal mask, considering the added artefacts to be in-Distribution if they
form a simple, regular structure. They achieve to do so by regularizing the
mask in total-variation (TV) norm and blur the minimal masked part. This
term is then added to the loss function.

Generative Models

Authors of [13] translate the criteria of Smallest Deletion Region (SDR) and
Smallest Supportive Region (SSR) into an objective function, that its maximiza-
tion satisfies them both. In order to fill the hidden features, they deploy
different generative models, such as Variational Autoencoders [39] and Con-
textual Attention GAN [109]. The later seems to reconstruct the hidden parts
of the image with a very natural fill, as can be seen in Figure 14. On the
other hand, researchers in [107] argue that their technique lacks robustness,
since the hidden parts are not sampled, rather filled deterministically. Instead,
they use a neural network, which they refer to as PatchSampler. Lastly,
authors of [3] use a Generative Image Impainting model [109] to fill the hidden
parts, using the same criterion as in [13], improving the results of different
attribution methods, relying on occlusion.

Statistical methods performed poorly when applied for image filling, while
generative models have yet to show their power.
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Figure 2: Computed saliency for a variety of in-filling techniques. The classifier predicts the
correct label, “drake”. Each saliency map (top row) results from maximizing in-class confidence of
mixing a minimal region (red) of the original image with some reference image in the complementary
(blue) region. The resulting mixture (bottom row) is fed to the classifier. We compare 6 methods
for computing the reference, 3 heuristics and 3 generative models. We argue that strong generative
models—e.g., Contextual Attention GAN (CA) (Yu et al., 2018)—ameliorate in-fill artifacts, making
explanations more plausible under the data distribution.

Figure 3: Visualization of reference value infilling methods under centered mask. The ResNet
output probability of the correct class is shown (as a percentage) for each imputed image.

Consider an input image x comprising U pixels, a class c, and a classifier with output distribution
pM(c|x). Denote by r a subset of the input pixels that implies a partition of the input x = xr ∪ x\r.
We refer to r as a region, although it may be disjoint. We are interested in the classifier output when
xr are unobserved, which can be expressed by marginalization as

pM(c|x\r) = Exr∼p(xr|x\r)

[
pM(c|x\r,xr)

]
. (1)

We then approximate p(xr|x\r) by some generative model with distribution pG(xr|x\r) (specific
implementations are discussed in section 4.1). Then given a binary mask2 z ∈ {0, 1}U and the
original image x, we define an infilling function3 φ as a convex mixture of the input and reference
with binary weights,

φ(x, z) = z � x+ (1− z)� x̂ where x̂ ∼ pG(x̂|xz=0). (2)

3.1 OBJECTIVE FUNCTIONS

The classification score function sM(c) represents a score of classifier confidence on class c; in our
experiments we use log-odds:

sM(c|x) = log pM(c|x)− log(1− pM(c|x)). (3)

SDR seeks a mask z yielding low classification score when a small number of reference pixels are
mixed into the mask regions. Without loss of generality4, we can specify a parameterized distribution

2 zu = 0 means the u-th pixel of x is dropped out. The remaining image is xz=0.
3 The infilling function is stochastic due to randomness in x̂.
4 We can search for a single mask z′ using a point mass distribution qz′(z) = δ(z = z′)

3

Figure 14: Different filling techniques for image parts, along with the resulting model
activation of the class of interest. Generative models (VAE, CA), reconstruct the
images with a more friendly and natural fill.

7.3 Generative models for robust Filling

The aforementioned filling methods might alleviate the OoD problem to
some extent, but they fail to tackle the problems of added bias 6.3 and
attribution shift 6.5. For that reason, we think that a solution should combine
a generative model as long as it is combined with optimization criteria. We
describe a complete pipeline in section 10. This pipeline uses as a generative
model a Masked Autoencoder (MAE) [35]. The standard architecture is
described below.

7.3.1 Masked Autoencoders

The architecture of MAE is an asymmetric encoder-decoder architecture that
can reconstruct hidden image parts effectively, while offering scalability.
The encoder constructs a hidden representation of the visible parts and the
decoder learns to reconstruct the image based on those latent representations.
The main idea of the model is that images, in contrast to language, are
natural signals with heavy spatial redundancy. For that reason, in order to
reduce redundancy and achieve a holistic understanding of the data dis-
tribution beyond low-level image statistics, a large portion of the image is
hidden (75%). In order to enhance this objective, this architecture is applied
to patches of the image, not to the features of it. The architecture can be seen
in Figure 15, while the functioning of the model is described below.

Each image is considered as a set of 16x16 patches. Each patch is being
mapped to a lower space. A number of patches is being randomly masked.

1. Encoder. The visible patches pass through an encoder that maps the
input to a lower-dimensional representation. It produces a reduced-
dimensional representation of the input data that captures important
features of the visible parts.

2. Decoder. The encoded data is then passed through a decoder, which
aims to reconstruct the original input from the reduced-dimensional
representation along with the masked tokens. Its objective is to fill in
the missing information caused by the masking in the encoder.

3. Loss Function. The quality of the reconstruction is evaluated using
a loss function, such as mean squared error or binary cross-entropy,
which measures the difference between the original input and the re-
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Figure 15: The architecture of MAE autoencoders and the asymmetric encoder-
decoder sequence.

constructed output.

4. Training. The network is trained to minimize the loss function by
adjusting its parameters, including the masking pattern in the encoder.
The goal is to learn an efficient encoding that captures the essential
information in the data.

The architecture is considered to be asymmetric, since the encoder is being
applied only on the visible parts of the image, while the decoder functions
in both the visible and hidden image tokens. The model has proven to
be useful for other applications as well. Authors of [97] used MAE to de-
tect adversarial attacks. They managed to do so by leveraging MAE losses
to build a Kolmogorov-Smirnov test [62] that detects adversarial samples.
Furthermore, they use the MAE losses to calculate input reversal vectors
to repair adversarial samples. Also, authors of [106] used MAE for image
augmentation. The masked autoencoders were used to generate the distorted
view of the input images, and thus, enlarge the training dataset and increase
its diversity with complex examples. They have proven that models trained
on the augmented datasets excelled in many vision tasks.



Part IV

Z E R O I N F O R M AT I O N M E T H O D S



Chapter 8

Zero Information Points
As previously discussed, Integrated Gradients [92], DeepLIFT [82, 83] and The assumption of

a baseline point.Shapley values [61] are fundamentally rooted in the existence and utiliza-
tion of a baseline point, which they assert to contain no information. The
strategies they employ to discover such points, derive from simplistic, heuris-
tic techniques like adopting random noise or using a black image. Yet, as
previous research suggests, even the black and random images may contain
valuable information [31].

Nonetheless, it has been demonstrated that none of these choices consistently
outperform the others in all scenarios, as underscored by the findings in [91],
leaving uncertainty about which choice to make when confronted with an
input image. Some of their results are presented in Figure 16.

We prefer to refer to such points as Zero Information Points (ZIPO), a term Zero Information
Pointsthat provides a more profound insight into their inherent characteristics.

Based on those findings, authors of [41] attempt to tackle the problem of
finding a ZIPO for the DeepSHAP method [61] in a different manner. Their
main idea is that a technique for finding such a point should respect the
model’s parameters. Thus, a ZIPO should not be defined, rather be unearthed
through the application of an algorithm that takes into account the model’s
parameters. With this in mind, we can deduce the following lemma:

Lemma 3. Zero Information Points emerge from the intrinsic operations of a
model itself.

Figure 16: The resulting attribution maps after selecting different baseline values for
the initial image.
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This lemma implies that the concept of global points unsupportable. This
conclusion aligns with a high-level, conceptual intuition. Since each model A ZIPO is not

globalfunctions in a unique way, a point that -for some reason- is characteristic
to the model, should somehow get correlated with its specific operations
and parameters. To assume the existence of a global ZIPO would be akin to
asserting that there exists a single root point for all distinct functions.

In the following subsections, we delve into the fundamental concept of ZIPOs
and develop an algorithm to discover them.

8.1 What are Zero Information Points

We inquire ”what is a Zero Information Point within the context of a par- A ZIPO makes a
model indecisiveticular model f ? How can it be translated to the functioning of the model

f ? Intuitively, a point x0 for which f cannot find any information prompts
the model to a state of confusion and indecisiveness, given the absence of
discriminating cues. This is translated to a uniform activation of the neurons
within the last layer. None of the neurons is activated more than the others;
rather, they all converge to a dormant state where they leave the model
indecisive. Consequently, our challenge lies in the pursuit of a point x0 for
which f (x0) is gives no advantage to any class. In other words, it is a point
that maximizes the entropy of the model’s decision.

Definition 1. We define a point x0 to contain zero information if and only if

x0 = argmax
x

(H( f (x))). (46)

In a DNN with a Softmax layer, this results in a uniform distribution of acti- Uniform
Distributionvations that sum to one. Researchers in Machine Learning have recognized

the existence of such points for nearly a decade now. In [31] authors refer
to these points as Rubbish Points or Degenerate Inputs1 and consider a
robust model to be one that satisfies an important property; after the model’s
computation for such an input

“we want all classes output near zero probability of the class being
present, and in the case of a multinoulli distribution over only the
positive classes, we would prefer that the classifier output a high-entropy
(nearly uniform) distribution over the classes.”

Thus, our research stumbles upon the same phenomenon, arguing that such
points might be useful for model explainability. Authors of [41] use the same ZIPO’s activation

at the decision
boundary

definition, although expressed in a slightly different way:

“the value α is neutral if the decision maker’s choice is determined by
the value of f (x) (the model) being either below or above α.”

meaning that a model can make no judgement, if its activation is α. Thus,
such a point lies at the decision boundary of the model.

Authors then refer to the problem of OoD data 7.1, and develop an algorithm An algorithm for a
Shapley ZIPOfor finding such a point at a SLP. The algorithm starts by tracking the lowest

output value back to the input values, and slightly increases those values,

1 They are also defined as fooling images in [66]
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considering that the model is monotonic. At one point, the algorithm will
change its decision. This means that it has passed the decision boundary.
The ZIPO lies in the interval of the last two steps. It can continue the search
in this smaller interval. The algorithm resembles root-finding algorithms
in arithmetic analysis. It is then generalized to MLPs, by breaking them
down to sequences of SLPs and applying the aforementioned algorithm
many times, for each of the SLP components.

Remark. Assuming that the DNN architecture applies a softmax function within Information exists
internallyits final layer, the model’s indecisiveness is translated to a uniform activation of the

softmax layer. Consequently, this does not exclude the presence of information within
the deep layers of the model, however it assures that it cancels out when softmax is
applied. Arguably, due to architecture of DNNs, there exists no point for which
all neurons of the model are deactivated, unless we make strong assumptions
about the model itself. Thus, it is reasonable to consider that zero information only
exists at the model’s output.

Theorem 1. There exist DNN architectures, for which there exists no input that
deactivates all neurons of their layers.

Proof. Let’s consider a FFNN f , comprising L layers and employing the
Rectified Linear Unit (ReLU) as its activation function. This model contains
some neurons that have a positive bias. Let’s assume the existence of a point
x for which f l(x) = 0, meaning that all neurons of a specific deep layer l
are deactivated. Then, for the subsequent layer l + 1, solely the biases of the
neurons contribute to the computation. To prevent neuron activation, we
have to strictly impose the condition bl+1 ≤ 0 to the l + 1 layer. Since the
choice of l was random, a deactivation of all neurons f would imply that
bl ≤ 0, ∀l ∈ {1, 2, ..., L}. This contradicts our assumption about the model
architecture.

While the algorithm introduced by [41] is intriguing, we have developed an
alternative technique that bridges the concepts of model importance and
zero information. The forthcoming subsection will delve into the specifics of
this new algorithm.

8.2 An algorithm for Zero Information Points

As previously noted, a methodology for the discovery of a ZIPO necessitates Optimization
Algorithmthe guidance of the model. It is natural thus to consider an optimization

algorithm for this task. The algorithm we present starts from an initial
point, and charts a path towards a local optimum, optimizing entropy while
leveraging gradient information along the trajectory. In contrast to Integrated
Gradients, this path is not necessarily linear; rather, it is data and model
driven. At each juncture, the algorithm queries the model: ’How would you
modify the present input to induce greater confusion?”.

This process constitutes another attribution method, aimed at approaching a Intuition behind
the algorithm’s
design

notion of importance for a particular pair of model-input. As the model adjusts
features that wield the most influence over its decision, it effectively conceals

https://en.wikipedia.org/wiki/Root-finding_algorithms
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the pivotal parts of the input. Upon reaching a local optimum, the juxta-
position of the original input and the optimal point yields an attribution map.

For an input x, model f , learning rate ϵ and epochs N, The algorithm is
outlined in 1.

Algorithm 1 The ZIPO algorithm

Require: f , x, N, ϵ
x′ ← x
for i← 1, ..., N do

y← f (x′)
l ← H(y)
x′ ← x′ − ϵ∇l

end for
x0 ← x− x′

return x0

8.3 Performance

We perform several tests to our method, to ensure its functionality and sta-
bility. First and foremost, we need to secure that the optimization algorithm
works and manages to find a trajectory towards a Zero Information Point. We
plot the loss graph, as well as the evolution of the maximum value, in order
to secure that the algorithm converges to a point with maximum entropy.
The two graphs appear in Figure 17. We can see that the two functions
behave the same. The application of the algorithm to a single image can be
found in Figure 18. Others can be found at the end of the chapter, in Figure
22.

The algorithm succeeds in optimizing the image and erasing any information.
The maximum class gets a score less than 0.004 in almost all cases -remember,
we want it to be 0.001, but this might be infeasible to do. The best value we
found was 0.0019, and in most cases, this value was around 0.0025-0.0034. In
some examples the algorithm converged after only 15 epochs, while in others,
it needed at least 50 epochs for the loss to start dropping towards zero. In
order to reassure that the algorithm succeeds, we increased the gradients of

(a) (b)

Figure 17: The evolution of the loss (a) and maximum activation (b) functions.
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(a) Original Image (b) ZIPO Attribution

Figure 18: The application of the zipo algorithm to an image.

the loss by multiplying it with a weight of 100, which can be considered as a
fixed hyperparameter.

8.4 A discussion on the algorithm

While the ZIPO algorithm offers an improved perspective compared to Inte- Disadvantages of
the algorithmgrated Gradients by considering the model’s reasoning and alleviating the

problem of defining a ZIPO beforehand, it does come with its own set of
limitations.

1. It departs from the linear path

Firstly, the ZIPO algorithm departs from the principle of linearity, as the path
it treads is no longer constrained to be linear. Consequently, the algorithm
does not adhere to the criterion of Symmetry Preservation as defined in [92].
In a two-step process of the algorithm, a change in direction may lead to
alterations of feature contributions. The information gathered during the
first step may now be irrelevant. Significant changes in direction, ideally
owing to the complex shape of the function, but less desirably due to the
introduction of bias and OoD elements into the problem, may occur. We
should acknowledge the fact that at each step, the model makes a decision
based on a different image, deviating from the original one, potentially lead-
ing to OoD regions (to be fair, this is a problem that IG also suffers from).
Nevertheless, conducting experiments (Figure 19) with different steps and
generating resulting attribution maps showcases consistency and confidence
in the algorithm’s direction. This suggests that the bias and OoD issues may
not significantly influence the algorithm’s decisions.

Relaxing the constraint of linearity may not always yield negative outcomes.
This could steer the model toward more in-distribution data, allowing the
algorithm to rectify its decisions along the way. In a noteworthy example,
as presented in [76], authors construct a non-linear yet monotonic path. At
each step, this path approaches the ZIPO, which, in the case of NLP -relevant
to their application— it corresponds to a fixed token. During each step,
the algorithm explores the space of word embeddings to find the nearest
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(a) Initial Image (b) Step 5 (c) Step 10 (d) Step 20 (e) Step 50

Figure 19: The evolution of the attribution map for the initial image (a), as the number
of steps increases. The behavior of the attribution remains predictable, yet the random
noise increases as the number of steps grows.

(a) Image (b) ZIPO Attribution

Figure 20: For the original image (a) the ZIPO attribution is calculated (b). The
attribution attacks to the shapes of the objects, leaving the objects themselves intact.
The attributions of the image parts that correspond to the flag and the parachute are
zeroed.

embedding of a word in the vocabulary in the direction of the ZIPO. Subse-
quently, it might need to slightly adjust the embedding values to maintain
monotonicity. Overall, the algorithm was a success, demonstrating improved
results compared to the standard IG.

2. It is susceptible to Adversarial Examples

Secondly, it’s not always the case that moving towards the most indecisive
direction inherently neglects the most important parts of the image. Within
the vast data space, a phenomenon akin to adversarial attacks [95] might be
possible to occur.

This suggests that this method might not perfectly align with the concept
of importance; rather, focusing on introducing confusion and distrubing the
model’s decision-making process. We observed such a phenomenon in dif-
ferent cases where the optimization algorithm attacked the shape of an object.
In order for the algorithm to find a way to conceal the information that a
complex object carries, it might not hide the object, rather perturb the sur-
rounding pixels to form a completely different shape and thus confuse the model.
This phenomenon is better illustrated in Figure 20.
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(a) Image (b) ZIPO Attribution

Figure 21: For the original image (a) the ZIPO attribution is calculated (b). The
attribution attacks not only to the chainsaw (class of interest), but other parts and
objects they might be related to other classes, such as the bottle of beer.

3. It zeroes all the Information

The algorithm’s core design revolves around the complete erasure of all
information contained within an image. Consequently, after eliminating
information associated with the highest activated classes, the algorithm may
disturb other parts that could be associated with other classes. This could
possibly explain a phenomenon noticeable across different images; In the
loss curve, the loss drops quickly and then increases again, before dropping
near to zero. During these initial steps, the object of the leading class may be
successfully concealed, potentially allowing the emergence of other classes.
Such an example can be seen in Figure 21.

There remains room for the development of more sophisticated algorithms.
These could be crafted to selectively erasing information correlated to the
highest activated class, while leaving any other information unspoiled and
showing robustness against adversarial attacks. Yet, this raises a new ques-
tion; how to effectively conceal information from a part of an image, without
altering the other. This is the question of the following chapter.

8.5 Conclusion

Despite the inefficiencies of the proposed algorithm, it may still be inter-
twined with the concept of model importance and serve as a viable approxi-
mation of the accurate attribution map.
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Original Image ZIPO attribution

Figure 22: The application of the ZIPO algorithm in different images.



Chapter 9

Zero Information Parts
As explained in Section 6.2 heuristic techniques have the potential to intro-
duce substantial biases into models, in contrast to the model-based approaches
discussed in section 8. Specifically, when hiding specific parts of an image,
heuristic techniques may significantly distort the associations among visible
features, as exemplified in Image 9.

The focus of this section is to develop a model-based algorithm tailored to
situations where only a subset of features requires occlusion. This chapter
opens the discussion of the Zero Information Parts. It does not provide a
definite answer to the problem, it rather introduces some problematics and
maps a road towards answering the question.

9.1 Problem formulation

In section 8.2, the criterion for identifying a zero information point centered
on maximizing the model’s entropy. However, in the case when we exclude
only a subset of features, what criteria should guide this process? We start
our study by outlining the problem at a high level of abstraction.

Definition 2 (Problem Formulation). Consider a model f : Rr → Rn, and a
masking function M : Rr → Rr. For an input x, fill the hidden parts of M(x) in
such a way that there is no addition/removal of information to/from the visible parts
of M(x) with respect to the function f .

The problem can be translated to decoupling any associations between
the visible and the hidden parts, while ensuring that the latter has a zero
contribution to the model’s decision making. Whether this is possible to
achieve, might be a matter of debate. Nevertheless, a tentative to satisfy
the aforementioned propertied can be attempted and evaluated later on its
success. The criteria are summarized below.

Lemma 4 (Criteria). The following criteria are deemed necessary for a robust
masking of a subset of features.

• The filling must not alter the contributions of the visible features.

• The filling should introduce no additional information to the model.

The question at hand is if and whether it is possible to satisfy them both, or
if they are in all cases mutually exclusive, thus the quest for an algorithm
would be doomed to fail.
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9.2 Feasibility of Criteria satisfaction

To illustrate the concept, let’s consider Figure 12, depicted again in Figure
23. In this specific architecture, any value chosen for x2 that fails to activate
both neurons in the hidden layer results in a decrease in the attribution of
x1. However, to ensure the activation of the hidden layer x2 must also add
information to the model, just as x1 does. Is there an optimal point for x2 that
can fulfill both these objectives effectively?

Figure 23: In the architecture presented, if x1 = 1, x2 = 0, the upper neuron in the
hidden layer becomes deactivated, preventing input x1 from contributing through
the upper path. To satisfy both fundamental criteria, the values of x2 need to be
determined in a way that ensures their dual purpose.

In the context of a simple model, like the one illustrated in the example
above, an optimal point might not approximate well the solution , as it may
not satisfy both criteria adequately. However, in the case of complex models,
there might be potential to discover approximate solutions that better meet
the criteria.

9.3 A first approach to the problem

To transform the two criteria mentioned earlier into actionable mathematical
expressions grounded in the model’s parameters and the input image, the
design should result it a set of equations. Finding a solution to this set might
be infeasible, or computationally expensive, thus the design should focus on
establishing a loss function to be optimized.

Consider the input image vector as x ∈ X and a masking function as
M : X → {0, 1}r. The masking function splits the image in two parts:

x = [xv; xh], (47)

where {
xv = {i ∈ cX|M(x)i = 1}
xh = {i ∈ cX|M(x)i = 0}

(48)

We introduce a vector variable V, the same shape as xh and define the zero
image parts as:

x0 = [0; V], (49)
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where 0, V replace the visible and hidden parts xv, xh of x respectively, where
the former is a constant zero vector, the same size as xv. An intuitive idea for
Zero Image Parts is to determine a set of values for the hidden pixels that
correspond to the zero element of addition:

{
f (x + x0) = f (x)
f (x0) = 0.

(50)

This implies that x0 serves as the zero element of addition for the model
f . Adding it to the original image should leave the classification score
unchanged. Importantly, only the non-zero values of x0 should be altered,
preserving the visible parts of x when x0 is added. Upon identifying the
neutral element, the final step of the algorithm involves returning a new vector,
x′, which can be constructed from x and x0 as:

x′ = [xv; V]. (51)

Conceptually, for two different points that equally activate a model, their
attributions will inevitably be distinct. That is because, as we mentioned
earlier, a robust attribution should take the input data values into account,
rather than blindly pointing to some ”default” regions. After having said
that, we also mention that since the model is a mapping from higher to
lower-dimensional spaces, there are different points that activate the model
in a similar fashion for various reasons.

The goal of Equation 50(1) is to discover a new point (which is identical to
the original only on the visible parts) is to discover a new point that activates
the model in a similar way (though not for the same reasons). Such points
might be abundant. We need to select the one that adds the least amount of
information to the original image, when replacing the hidden part. This is
what 50(2) tries to achieve.

9.4 The ZIP algorithm

Our algorithm is named ZIP and we outline it below. We consider f to
represent the model, x as the input image and M as a mask with values in
{0, 1} (0 is ”hide”). Additionally, N is the number of steps and ϵ the learning
rate:

Algorithm 2 The ZIP algorithm

Require: f , x, M, N, ϵ
x′ ← rand(size(x))
for i← 1, ..., N do

y← f (x)
y′ ← f (x + (1−M)x′)
y0 = f ((1−M)x′)
l1 ← H(y− y′)
l2 ← H(y0)
l ← l1 + l2
x′ ← x′ − ϵ∇l

end for
x0 ← Mx + (1−M)x′

return x0
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(a) L 1 Loss (b) L 2 Loss (c) L Loss

Figure 24: The evolution of the two losses, when considered alone for l1 and l2 (a)
and b) respectively) and together (c). For plots a) and b) where the loss is applied to
only one of l1, l2, the other loss is also plotted at the same graph, in order to study
the effect of the one on another. It seems as l1 leads to the drop of l2 as well, but the
opposite does not hold. In any case, when both losses are considered, the overall loss
drops smoothly towards zero.

9.5 Visual examples and performance

In this subsection, we assess the performance of our algorithm by visually
inspecting the loss functions and the reconstructed images. The first and
most crucial test involves evaluating the evolution of losses. In all the images
we visually inspected, the losses behaved as illustrated in Figure 24c. To
further examine their behavior, we considered the losses independently to
determine if their combination led to a significant increase in both of them.
This phenomenon indeed occurred, indicating that the losses are not indepen-
dent and may compete with each other, although this effect is limited in scale.

Based on multiple experiments with different images, we can conclude the
following:

• the l1 loss alone diminishes to a point where the maximum difference
of probabilities between the two images falls within the range of [0.0015,
0.003];

• the l2 loss alone diminishes to a point where the probability of the
maximum class falls within the range of [0.0025, 0.004];

• When both losses are considered, these scores fall within the range of
[0.0025, 0.004] for the first loss and [0.003, 0.0045] for the second.

Next, we examine the resulting reconstructed image and its appearance.
Similar to many optimization algorithms, the hidden parts are filled with
random noise, which can lead to out-of-distribution (OoD) results. An
example of this can be seen in Figure 25.

9.6 A discussion on the algorithm

This represents an initial attempt to address the challenge of zeroing image
parts, aligning partially with the arguments and lemmas discussed earlier.
However, its robustness may be called into question. That is because, the
optimized tensor uses black for the visible part, while the reconstructed
image is Out-of-Distribution. They are further developed below.
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(a) Initial Image (b) Masked Image (c) ZIP Image

Figure 25: The results of the ZIP algorithm. The initial image (a) gets masked (b)
and then reconstructed according to the Zero Parts criteria (c). It is clear that the
reconstructed image is OoD.

1. Zeroing Information in the Added Part

The added image is optimized only for the part that matches the hidden
image. The other part is deliberately selected to be black because, when
added to the original image, these parts do not affect the visible portions.
Nevertheless, the second criterion states that the added image should contain
no information, maximizing the model’s entropy. As previous work suggests,
black images may contain rich information.

2. Out-of-Distribution Data

This method fails to satisfy the OoD criterion, resulting in the creation of
images that appear unnatural to the model. In such cases, the model’s predic-
tions cannot be trusted.

To address the later issue, a more suitable solution can be found, as described
analytically in sections 6.4 and 7. We also outline an alternative solution in
the following section, which we believe addresses the former problem.

9.7 Towards a robust Occlusion

The challenge of optimizing only the hidden parts while using a baseline for
the visible parts of x0 (considered to be zero) reveals a significant limitation
of x0. To address this, it is essential to include the visible parts in the
optimization process. Let’s consider x = [xv; xh] and x0 = [x0v ; x0h ], where the
indices v, h symbolize the visible and hidden parts of an image, respectively,
according to the mask M. The ”;” symbol denotes the vector concatenation
operation. We propose the following set of optimization criteria:

{
f ([xv; x0h ]) + f ([x0v ; xh]) = f (x)
f (x0) = 0.

(52)

In this case, the image is split into two parts: the visible and the hidden parts.
Each part is complemented by the respective hidden and visible part of the
zero image to construct two images of the same size as the original one. Now
x0 operates in a manner that encompasses both its visible and hidden parts
and combines them to achieve two objectives:



9.7 towards a robust occlusion 80

1. The combination of these parts with x decomposes its visible and
hidden components without removing any information from it (as
indicated in Equation 52(1))

2. It adds the least amount of information to the model (as expressed in
Equation 52(2))

Consequently, the image with its hidden parts optimally concealed will be:

x′ = [xv; x0h ]. (53)



Chapter 10

The MAE-ZIP algorithm
We have now reached the final stage of our methodology. The accumulated
evidence from our previous observations and conclusions suggests that the
solution to the problem of concealing image information resides at the inter-
section of criteria-based optimization algorithms and generative models. The
challenge is to determine how to effectively combine them into a method
that can accomplish our task. This chapter sets out to address this question.

10.1 The pipeline

In this section, we introduce our innovative approach, the MAE-ZIP algo-
rithm. It effectively tackles both the issue of introduced bias and out-of-
distribution (OoD) artifacts by associating key attributes and criteria (as
outlined in Section 9) with a Generative Model, specifically a Masked Au-
toencoder [106]. Before delving into the algorithm, we must first redefine the
criteria to align them with our revised objectives.

Lemma 5 (Criteria). For robust masking of a subset of features, the following
criteria are indispensable:

• Foreground stability. The filling process must not alter the contributions of
the visible features.

• Background neutrality. The filling should introduce no additional informa-
tion to the model.

• Minimal impact. The filling must fulfill the two preceding criteria while
remaining in-distribution and having minimal impact.

To initiate this process, we consider a masking function denoted as M : X →
{0, 1}r, where X represents the image space and r denotes its dimensions.
Consequently, the masked image, designated as x⊙M(x) is derived from
the Hadamard product of the original image and the mask M.

The Masked Autoencoder (MAE) comprises both an encoder

ge : X × {0, 1}r → X rg−h×lm
, (54)

and a decoder
gd : X rg−h×lg ×X rh×lg → X . (55)

Here, rg corresponds to the spatial resolution, while lg refers to the dimen-
sion of the latent tensor representation.
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The encoder receives an input x and a random masking function M. This
function hides parts of x, leading to a loss of rh × lg spacial dimensions.
A learnable mask token mh ∈ Rrh×lg

is added for the decoder gd(ge, m) =
gd

m(ge). We note that m is originally shaped in Rlg
and it is then augmented

to match the size of the hidden parts. It represents the model’s knowledge
of the image space.

Our MAE-ZIP algorithm extends MAE by incorporating a tensor z ∈ Rrm×lg

in the latent space and optimizes z at test time to accommodate for the
Zero Parts properties, as defined in 9. When given input x ∈ X and mask
M ∈ {0, 1}r, we modify MAE by perturbing the mask token m by z, to
generate the reconstructed image, which is defined as:

x′ = gd(ge(x, M), mh + z). (56)

Additionally, without involving the encoder, we add the hidden part of z to
the mask token mh and decode into the zero image, designated as:

x0 = gd(mg−h, mh + z). (57)

Here mg−h represents the mask token being populated to the size of Rrg−h×lg
.

Both x′ and x0 pass through the classifier f . The output f (x′) is used, along
with f (x), to account for the first property, while f (x0) is used to address
the second property. This is achieved by applying appropriate loss functions
to the two outputs. The optimization of variable z involves back-propagating
the loss through the classifier f and the decoder gd, taking into account the
gradients from both paths through x′ (56) and x0 (57).

Each of the loss terms is multiplied by a hypermarameter to calibrate them
and ensure equal consideration. This detail is not included in the following
description of the losses.

1. Foreground stability. According to the first property, the foreground
parts of the original image x and reconstructed image x′ should have
the same contribution to the prediction of f , as indicated by their
attribution. This is accomplished using the information from the deep
activations of x and x′. In particular, we decompose function f as
f c ◦ f e, where f e : X → Rrl×dl

is an encoder and f c : Rrl×dl → Rk is a
classifier. Here, rl is the spatial resolution and dl the dimension of the
intermediate tensor representation. With these definitions in place, the
foreground loss

LF = ∥ f e(x′)−Mlat( f e(x))∥2, (58)

brings the foreground features of x and x′ close to each other, where
Mlat ∈ {0, 1}rl

augments M to fit the spatial resolution rl .

2. Background neutrality. According to the second property, when de-
coded, the generated background part should not contribute to the
prediction of f . as reflected by having zero attribution. Since the
ground truth class is unknown, the background loss

LB = −H( f (x0)). (59)
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maximizes the entropy of f (x0) such that the model is completely
indecisive between classes for the zero image x0.

3. Minimal impact. The last property constraints variable z to serve a
minimum perturbation on the mask token m as needed for the two
aforementioned properties, thus having minimal impact on the MAE
reconstruction. We thus initialize z as zero and define

Lz = ∥z∥2, (60)

In 11, the values of the hyperparameters, specifically the weight of the losses,
are fixed, ensuring that they all contribute to the result and yield highly
accurate outcomes based on various metrics.



Chapter 11

Experimental setup
This chapter provides comprehensive details regarding the experiments
conducted throughout this research thesis. For all the experiments, we con-
sistently employed the same models and datasets. However, for MAE-ZIP, we
extended the experimental setup to encompass multiple Attribution methods
and specially designed Evaluation tools, which will be explained in detail in
this chapter. We commence with an explanation of the model architectures
and specific insights into our customized models. Subsequently, we delve
into the dataset utilized and elucidate the different metrics developed to
evaluate our results.

11.1 Model architecture Implementation details

The architecture employed in our experiments comprises three distinct com-
ponents, collectively forming a pipeline. Given an input image, we first
apply a mask. The visible section of this image then proceeds through the
generative model, responsible for reconstructing both the hidden image and
the zero image. Following this, we deploy a baseline model designed for
pattern recognition within the two images. The final component involves
the application of loss functions, which enable the backpropagation of losses
from the classifier to the generative model, ultimately influencing the added
variables. Below, we provide an overview of the two models utilized in this
setup. The losses are described in Section 10.

11.1.1 Generative Model

As previously mentioned, our generative model is based on Masked Au-
toencoders. This architecture is originally intended to randomly obscure
a portion of image patches and efficiently reconstruct them. However, our
application of MAE-ZIP necessitated a modification of its design to serve our
specific objectives.

Masking. In contrast to MAE, where image patches are randomly hidden,
MAE-ZIP demands customized masks for constructing Zero Parts tailored
to any given image and mask. To achieve this, we had to adapt MAE to
allow for custom masking. In MAE, masking occurs in batches of size 16x16,
resulting in 14x14 = 196 patches. To define the mask within this space, we
downsample it to 14x14 using a mean kernel of size 16x16 and a stride of
16. This step computes the mean value for each patch, thus ”patchifying”
the mask. Subsequently, we apply a threshold t ∈ [0, 1] to binarize the mask,
hiding each patch if t× 16× 16 of its pixels were hidden, making it visible
otherwise. This operation’s outcome is illustrated in Figure 26.
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(a) Initial Image (b) Image attribution (c) Mask (d) Latent Mask

Figure 26: The process of downsampling the mask. For an initial image (a), we
calculate its attribution (b) according to a particular Attribution method, and derive a
mask from it (c) by keeping a percentage of the most important features. The mask is
then ”patched” and downsampled according to MAE. It is then upsampled to form
the latent mask (d).

The selection of the mask can now be arbitrary. However, this technique also
allows for evaluating various attribution methods. In such cases, the choice
of the masking function M can be selected as follows:

M(x) = x⊙ 1[R(x) ≥ (R(x))]. (61)

Here ⊙ represents the Hadamart product, 1 the indicator function and
R : X → X a particular attribution method. Different functions could be
applied instead of the mean function, in order for the mask M to distinguish
between the important and unimportant features that a suggests. Although,
a function that chooses whole image parts and not sparse pixels might be
required.

Decoder. As detailed in the MAE-ZIP method, we introduced variables
with the mask embedding and incorporated them as hidden variables for the
Decoder to reconstruct. The loss functions play a crucial role in ensuring
that these added variables gradually converge toward Zero Information. In
scenarios where the second loss requires these added variables to be entirely
devoid of any information, no input from the encoder is available. Therefore,
we designed a slightly customized decoder that reintroduces the mask token
with repeated dimensions, matching the size of the encoded visible parts.

11.1.2 Baseline Model

To serve as the baseline classifier in our pipeline, we adopted a Residual
Neural Network (ResNet) [34].This model constitutes the final component of
our pipeline, responsible for making decisions based on input images and
backpropagating losses to the latent features. ResNets represent a class of
deep neural network architectures developed in response to the vanishing
gradient problem [9] often encountered when training very deep neural
networks [93, 84]. Introduced in 2015, ResNets have since emerged as a fun-
damental building block in numerous state-of-the-art deep learning models.

The central idea behind ResNets involves the incorporation of residual blocks,
which feature shortcut connections (also known as skip connections) allowing
for the bypassing of one or more layers within the network. These shortcut
connections facilitate the flow of gradients during backpropagation, effec-
tively mitigating the vanishing gradient issue. In a residual block, the input
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to a layer is combined with the output of one or more subsequent layers,
thereby reintroducing the information of previous blocks unspoiled. This ar-
chitectural innovation simplifies the network’s learning process and enables
the fine-tuning of the desired mapping.

By stacking multiple residual blocks, ResNets have the capacity to train
extremely deep networks, often exceeding 100 layers, without suffering
from performance degradation. The introduction of shortcut connections has
significantly advanced deep learning architectures, addressing a fundamental
challenge in artificial intelligence. This architectural approach has also been
widely adopted in Transformer architectures [100], facilitating the flow of
gradients during training. Deep networks were able to train efficiently,
leading to improved performance on a wide range of tasks in computer
vision, natural language processing, and other domains.

11.2 Dataset

The dataset we selected is the all-famous ImageNet dataset. It is a widely
used benchmark dataset in the field of artificial intelligence, specifically in
the domain of computer vision. It was created by researchers at Stanford
University and contains a vast collection of labeled images, organized into
thousands of categories. The dataset was introduced in 2009 and has since
played a crucial role in the development and evaluation of various computer
vision algorithms, especially for tasks like image classification, object detec-
tion, and image segmentation.

ImageNet consists of over a million images, with each image belonging to
one of approximately 20,000 categories. The dataset covers a wide range
of objects, scenes, and concepts, making it a comprehensive resource for
training and testing computer vision models. ImageNet’s scale and diversity
have made it a standard benchmark for assessing the performance of image
recognition systems. The annual ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) has further popularized the dataset by setting compe-
titions to encourage the development of more accurate image classification
algorithms. As a result, many state-of-the-art deep learning models, includ-
ing CNNs, have been trained and evaluated on the ImageNet dataset, leading
to significant advancements in the field of computer vision.

When conducting experiments on ImageNet, a common practice is to use
the Evaluation dataset, which comprises 50.000 images. The ResNet model
is trained on 1.000 of those classes. Nevertheless, due to limited access to
computational resources, the experiments were performed on a randomly
selected portion of the dataset, containing five images from each class.

11.3 Zero Information metrics

This section introduces the evaluation metrics we developed to assess the
effectiveness of our approach for concealing information while constructing
an image that conforms to the target distribution. The results of MAE-ZIP
based on these metrics will be presented in Chapter 12.
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11.3.1 Attribution Mask

We introduce the AttMask metric, which aids in comparing our method with
other filling techniques. For a given attribution method R, it computes mean
value of the difference in the attribution of the reconstructed image xrec and
the masked attribution of the image M(R(x)):

AttMask = ∥(M(R(x))− R(xrec))∥2
2 (62)

This score provides a rough estimate of the effectiveness of our algorithm.
Our primary objective is to fill the hidden portions of the image in a way
that preserves the attribution of the foreground while reducing that of the
background to zero. The metric accurately measures the deviation from the
correct attribution R. However, as this true attribution is not known, we
approximate it using various attribution methods. The methods we employ
are GradCAM[80], GradCAM++ [14], XGradCAM [27] and LayerCAM [45].

11.3.2 Accuracy Preservation

The purpose of this score is to measure how closely the reconstructed images
align with the model’s data distribution. To achieve this, we fill the hidden
parts of the images using the aforementioned methods and measure the drop
in the model’s accuracy. For the dataset D, we define:

AP =
∑d∈D 1[ŷx = ŷxrec ]

|D| . (63)

We define ŷx = argmax{ f (x) = c} as the class with the highest probability
for f and input x. The intuition behind this approach, is that if the images
are OoD for the model, the model’s performance will significantly decrease.
While a drop in accuracy can be attributed to the concealment of information,
this metric provides a rough estimate of how closely a filling method aligns
with the data distribution when applied to large datasets.

11.4 Baseline methods

We compare the ZIP algorithm with different heuristic techniques, as men-
tioned in 6.2. More specifically, we define as:

• black; filling the background with black color.

• blur x; filling the background with blurry versions of the input image
where x is the size of the blurry filter.

• rand noise; replacing the background with random noise.
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Results
This chapter presents the results of the MAE-ZIP method, according to the
Evaluation metrics developed in Section 11.3. Yet, we first need to ensure that
the algorithm functions as expected, meaning that the optimization leads to
a decrease in all the losses. As mentioned in Chapter 10, each loss is derived
from a different mathematical formula and accompanied by a weighting
term, the range of values may vary. It is essential to calibrate these weights
to make the total loss consider them all equally important.

12.1 Losses

For this purpose, a set of experiments is conducted to select a particular
weight setup for the losses. The aim is to find values that balance all three
losses. It is discovered that a setup leading to the decrease of all values is
{w1 = 1× 101, w2 = 1× 10−2, w3 = 1× 10−4} and this set is referred to as
standard. For this particular set, the losses are plotted in Figure 27. In what
follows, the first two weights are considered fixed, since they adjust the first
two losses in a way that lead to a combined drop of both. The third weight
is treated as a hyperparamenter, and an ablation study is conducted to find
its optimal values in the following section.

Epochs

Lo
ss

Figure 27: The plot of the losses when all combined together, for the standard set of
hyperparameters.
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Original Image MAE-ZIP (standard) MAE-ZIP (l3 = 1)

Figure 28: displays the original image along with the reconstructed images for two
different setups in the first row, namely the standard and one with a highly biased to
the third loss, along with their corresponding GradCAM attributions in the second
row.

Additionally, visual examples for the MAE-ZIP method are provided in
Figure 28. It can be observed that the MAE-ZIP image introduces various
artifacts for a large norm of the optimized values. By increasing the weight
of the third loss, these artifacts disappear, and the reconstructed image more
closely resembles the custom MAE reconstruction. Further fine-tuning of
the weights for the losses is expected. However, it is anticipated that the
reconstructed image may appear slightly ”patchier” in areas of the hidden
part, where MAE introduces some cues of information. In the example in
Figure 28, the algorithm erases the pants of the person and perturbs the tail
of the fish to obscure the information they introduced.

12.2 Metrics

In this section, an ablation study is performed for different values of the third
variable, which is considered as a hyperparameter in this context. The study
aims to compare the method with baseline filling techniques, as described
in Section 11.4. To assess the different setups and methods, the evaluation
metrics designed in Section 11.3, are used with various weight configurations
for w3.

The results of the metric can be found in Table 1. The ablation study reveals
that ZIP-MAE performs well across different hyperparameter configurations.
However, the setup that yields the best scores is selected, which consists
of w1 = 1× 101, w2 = 1× 100, w3 = 1× 10−4. As mentioned before, this is
considered the standart setup.

Following the evaluation of different weight configurations and identifying
the best among them, a comparison is made with heuristic techniques under
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Method w3

GradCAM GradCAM++ XGradCAM LayerCAM

AM↓ AP↑ AM↓ AP↑ AM↓ AP↑ AM↓ AP↑
MAE 0.117 0.714 0.120 0.717 0.116 0.717 0.120 0.717

MAE-ZIP 0 0.119 0.755 0.121 0.763 0.119 0.756 0.121 0.761
MAE-ZIP 1× 10−4

0.119 0.755 0.121 0.760 0.121 0.763 0.119 0.754

MAE-ZIP 1× 10−2
0.119 0.745 0.121 0.756 0.119 0.739 0.121 0.756

MAE-ZIP 1× 100
0.119 0.743 0.121 0.752 0.118 0.738 0.121 0.753

MAE-ZIP 1× 102
0.119 0.743 0.121 0.754 0.119 0.733 0.121 0.753

Table 1: The effect of loss weights on MAE-ZIP performance, on 5K images on
Imagenet validation set. AM: Attribution Mask(62); AM: Accuracy Preservation (63).
The 95% confidence interval is 0.004 in general.

the same metrics. The results are presented in Table 2 with some key
observations:

Method
GradCAM GradCAM++ XGradCAM LayerCAM

AM↓ AP↑ AM↓ AP↑ AM↓ AP↑ AM↓ AP↑
Black 0.231 0.049 0.206 0.053 0.230 0.047 - 0.057

Blurry (20) 0.160 0.150 0.155 0.155 0.160 0.149 - 0.157

Blurry (75) 0.195 0.085 0.180 0.090 0.195 0.083 - 0.090

Random noise 0.162 0.001 0.091 0.012 0.162 0.001 - 0.000

MAE 0.117 0.714 0.120 0.717 0.116 0.717 0.120 0.717

MAE-ZIP 0.119 0.755 0.121 0.760 0.121 0.763 0.119 0.754

Table 2: The results for the application of AttMask (AM) and AD for the different
filling methods, compared to the best MAE-ZIP configuration w3 = 1× 10−4. The
samples we used for calculating the table were 5K images from the validation set of
Imagenet. Whenever w1 and w2 are not defined, they are assumed to be equal to 1.
For the different experiments at the AttMask score, the length of the 95% confidence
interval for each method ranges at around 0.002-0.005.

• Heuristic techniques lead to OoD data, as evidenced by the decline in
accuracy preservation for these methods.

• Small blurring is a potential candidate among heuristic techniques for
filling an image part with no information, although the Attribution
Preservation (AP) score is relatively low.

• MAE, when used as a standalone method, proves to be an excellent
choice for information concealment. It outperforms heuristic techniques
and provides stable results.

• MAE-ZIP, compared to MAE, does not significantly improve Attribu-
tion Mask (AM) but increases the Attribution Accuracy of MAE.

We suggest that the reason MAE seems to perform slightly better than differ-
ent MAE-ZIP configurations may be related to the choice of Class Activation
Mapping (CAM) methods. CAM methods might not capture fine-grained
details that MAE-ZIP reconstructs. However, when the Attribution Accuracy
metric is combined with the AP criterion, the optimization’s effectiveness
becomes clearer. With an increase in AP, the reconstructed image not only
remains in distribution but also constructs a valuable reconstruction for the
model. The algorithm might be able to isolate background information from
the foreground and zero the contribution of the former, enabling better recog-
nition of the object of interest by the model. Additionally, it is suggested that
the algorithm does not add relevant information to the image, as this would
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Figure 29: A visual comparison of the examined filling techniques.

also increase the value of AM significantly, which is not observed.

The presence of bias in different methods may affect the results, especially in
CAM methods that work with saliency maps. Yet, overall, the algorithm is
deemed to be an effective first step towards hiding information from image
parts.

12.3 Visual comparison

For the standard set of hyperparameters, we provide multiple visual ex-
amples for different heuristic filling techniques, as compared to MAE and
MAE-ZIP. The results can be seen in Figure 29.
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F I N A L E



Chapter 13

Conclusion
As this research thesis concludes, it has explored numerous concepts and
ideas, providing a direction for addressing the challenge of Zero Information.
It remains open to further evaluation and exploration. More robust criteria
designs are likely to emerge as different paths are explored. Yet, this research
has pushed the boundaries of our understanding of model functioning and
model attribution. The following three sections present the findings, limita-
tions, and potential future work arising from this thesis.

13.1 High-level findings

This section summarises briefly the most significant high-level findings of
this thesis.

Interconnectedness of Feature Contribution and Feature Attribution

The research has highlighted a strong connection between the concepts of
feature contribution and feature attribution. Disrupting various pathways
that lead to a model’s output affects all features that contribute to that out-
put through those pathways. This observation led to the Attribution Shift
problem, which suggests that altering a portion of the image might result
in changes to the attribution of all features. Consequently, all Attribution
methods, Evaluation metrics, and Criteria based on Occlusion suffer from
this issue. The extent of this problem cannot be directly measured since the
initial attributions of features are unknown, but it can be indirectly estimated
through approximation methods using different measures. Yet, due to the
complex architecture of deep neural networks and the intricate interdepen-
dencies between features across layers, this issue should not be dismissed as
negligible.

Zero Information Properties and Heuristic Techniques

The research argued that points with Zero Information properties, including
regions or entire images devoid of information, cannot be achieved through
heuristic techniques alone. Instead, they can be revealed through the care-
ful consideration of the model’s parameters and input features, guided by
well-defined criteria that enforce the absence of information. These criteria
should be translated into loss functions, considering the model’s activations
at the last or intermediate layers. The design and formulation of these criteria
may not be immediately evident. Nevertheless, the criteria applied in the
algorithms have proven effective -through visual inspection- in concealing
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information. In the case of the ZIPO algorithm, it succeeded in hiding the
target object in many instances (although it was susceptible to attacks). In
MAE-ZIP, the algorithm subtly altered any information introduced by the
Masked Autoencoder.

Susceptibility of Generative Models to Perturbations

The research has shown that even generative models are vulnerable to spe-
cific types of noise tailored to their characteristics. In the case of Masked
Autoencoders, rather than Gaussian noise, the output appears to be more
distinct, yet the resulting image may exhibit a ”patchy” quality. Although
individual patches may have clear shapes, their combination may not ap-
pear natural. This suggests that images with Zero Information properties
may need to slightly relax the In-Distribution constraint in order for the
optimization to succeed.

13.2 Limitations

This section expresses the different limitations of the algorithms developed
in this thesis.

Algorithmic Biases and Deviation from Original Goals

It is evident that the proposed loss functions may introduce unintended
biases to the algorithms and, in some cases, result in a slight deviation
from the original objective. For instance, the ZIP algorithm aims to conceal
elements in the image associated with different categories. However, the
Zero addition element might not function as a local Zero Information Part,
perturbing only those features with irrelevant information. It may not behave
as expected when considered independently, without the hidden part of
the original image. Addressing this issue, the criteria introduced in Section
9.7 attempt to mitigate these biases. However, these criteria cannot be
readily employed alongside the Masked Autoencoder (MAE), unless the
generative model undergoes further modification. This is because MAE
operates on the premise that only one image part is visible, leaving the other
part unconsidered. Concatenating the two reconstructed parts for the zero
element might appear unnatural and out-of-distribution (OoD).

Application of Mask in Patched Image Space

Owing to the architectural design of MAE, which initially decomposes the
image into patches and maps each to a lower-dimensional representation
space, the mask cannot be directly applied to the original image. Instead, it
necessitates downsampling the mask to the latent space of the patches. This
means that a slightly different mask is applied to the problem, resembling
the original but appearing more ”patchified,” characterized by straight lines
rather than curves.

Bias Susceptibility in Effectiveness Criteria

The criteria proposed for assessing the effectiveness of different filling tech-
niques may be susceptible to biases. For the Attribution Mask, the utilization
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of an Attribution method to calculate two Attribution maps for comparison
deviates from the original goal. As discussed in Chapter 12, Class Activation
Mapping (CAM) methods may introduce strong biases towards the hidden
parts. On the other hand, when considered in isolation, Accuracy Preser-
vasion is primarily linked to the OoD criterion. In other contexts, it needs
to be combined with another metric to ensure the fulfillment of the Zero
Information criterion.

13.3 Future work

Building upon the identified limitations, we offer the following suggestions
for future work:

1. Enhanced Loss Design. There is a need to refine the loss functions to
align optimization results more closely with the desired criteria. Opti-
mization algorithms often introduce misalignment due to constraints
limiting their freedom. For the ZIPO algorithm, criteria should focus
solely on the class of interest while preserving information related
to other classes. Additionally, it would be valuable to test the ZIPO
algorithm against Integrated Gradients. In the case of ZIP, we have
proposed a more robust direction, but realizing better practical results
and achieving alignment remain challenges, especially in integration
with MAE.

2. Exploration of Alternative Generative Models. Instead of MAE, ex-
ploring the use of different generative models that can reconstruct
hidden parts based on diverse criteria is an avenue for further inves-
tigation. Diffusion models, for instance, could be suitable candidates
as they can reconstruct hidden objects of various sizes without de-
composing the image into patches. This approach would enable the
resulting mask to more accurately match the true mask, rather than
”normalizing” it to suit the needs of MAE.

3. Development of Robust Evaluation Metrics. It is essential to design
improved metrics for evaluating the effectiveness of Zero Information
algorithms. As mentioned earlier, the criteria we proposed may be
susceptible to biases and may not be sufficiently robust. Creating
alternative metrics that are less prone to such biases is a crucial area of
future research.

4. Application and Expansive Usage. After optimizing the algorithms
and addressing the criteria, MAE-ZIP can be applied to numerous
practical applications. This approach facilitates understanding the indi-
vidual contribution of different image parts to the model’s predictions.
By applying MAE-ZIP to conceal specific parts while leaving others
unchanged, we can quantify the impact of each part on the model’s
decisions. While this may not answer the question of what caused
the model to activate in a particular manner, it does provide insights
into the extent to which a specific part contributes to the model’s deci-
sions. For more comprehensive insights into causality, combining the
algorithm with other Occlusion methods is necessary. Furthermore,
MAE-ZIP can effectively complement Evaluation metrics and Criteria
based on Occlusion, broadening its potential applications.
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13.4 Conclusion

In conclusion, this work does not present a definitive solution to the concept
of Zero Information. It is our hope that this thesis will contribute to the field
of Explainable Artificial Intelligence, prompting further exploration of this
concept by other researchers.

A code repository will be made available soon, complete with clear usage
instructions. We invite researchers to explore our methods, share their
findings with us, and develop new ideas.
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