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Abstract

In computer vision, image captioning is a challenging task, in which the goal

is to bridge the gap between visual content and natural language understand-

ing. Image captioning, as the name suggests, is the process where a descriptive

caption is automatically generated from an image. Another challenging task

is visual question answering, where a user can ask questions about an image

and receive meaningful answers. In recent years, there is a lot of effort in the

research community to improve both processes, by introducing different archi-

tectures and methods. Image captioning and visual question answering are two

very related vision-language tasks. However, they are treated individually.

In this thesis, we follow a lightweight approach for image captioning and we

made a thorough investigation of all its components. We then extend that

method to handle visual question answering tasks. Finally, we introduce a

unified model, which is trained via multitask learning on both image captioning

and visual question answering. This single model can handle both tasks at

inference, achieving competitive performance in both. Surprisingly, although

multitask learning often leads to inferior performance in the individual tasks, in

our case it even improves performance.

In another direction, we employ the power of diffusion generative models to

boost the performance of our image captioning and visual question answering

models. Using diffusion, we generate images from the existing captions of each

training set to create new, synthetic datasets. By controlling each generated

image to be similar to the existing one corresponding to the caption, we verify

that the synthetic datasets can assist to improve the performance of captioning,

as well as visual question answering in the presence of multitask learning.
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Chapter 1

Introduction

1.1 Overview

The last years, we have noticed revolutionary improvements in Artificial Intelli-

gence. Generally, in Computer Vision, the dominance of Convolutional Neural

Networks was questionable, where the CNN architecture was considered state of

the art a decade ago. In Nature Language Processing, a significant improvement

was made though “Attention Is All you need” paper [32], in which the Trans-

former architecture was first introduced along with the attention mechanism.

The transformer architecture consists of an Encoder and a Decoder and the

models who adapted this architecture had a remarkable performance in many

NLP tasks, outperforming all the previous NLP architectures such as RNN and

LSTM [28]. However, the transformer architecture had a great impact in the

field of Computer Vision as well, where the research community tried to replace

the CNN architectures with the powerful Vision-Transformer architectures.

In the same way, the domain of image captioning was affected by the transformer

architecture. The initial image captioning architectures have utilised certain

approaches, combining pre-trained CNN models with LSTMs or RNNs [28].

However, the overall performance of those models was insufficient and the errors

of their outputs were often noticed. Therefore, the research community was

looking for alternative techniques, knowing that the effectiveness of those models

had certain limitations. After the release of the transformer architecture, the

encoder and decoder [32] elements were employed for image captioning tasks

and the results were incredible, overtaking all the previous models in terms of

performance. Most of the time, the position of the encoder is set to a vision

model, whereas the position of the decoder is set to a language model. The

8
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binding between the encoder and the decoder is succeeded through the cross

attention mechanism.

Additionally, the domain of Visual Question Answering [2] has adapted stan-

dard approaches to answer their desired visual questions. A common technique

is to perceive this challenge as a classification task. In other words, in this

approach you have to integrate additional Neural Network layers along with a

softmax layer in order to classify the input image and question to a particular

answer. Obviously, this approach has limitations and its biggest issue is that

it defines a closet set of answers. Therefore, for Visual Question Answering

tasks, the Transformer architecture is not commonly applied and the enriched

vocabulary of a pre-trained decoder is underutilised.

1.2 Motivation

With the rise of the encoder and the decoder via transformer architecture, the

domain of image captioning has many aspects under investigation. Certain

questions arise from the research community with respect to that particular

mechanism. Which is the optimal model? Which encoder or which decoder is

the best suitable for this task? How big in terms of capacity should be the vision

models or the language models? How many layers should the encoder or the

decoder have? Can we use pre-trained vision models or large language models

and if we can, how to utilise them? Therefore, in this project, our main goal is

to explore and investigate all the possible options, in order to have an efficient

solution for any image captioning sub-task.

Many image captioning models have integrated large vision and language mod-

els with a total of millions of parameters. As a result, the training time of this

procedure grows exponentially and the overall approach is already heavyweight.

Therefore, in this project, we explored a lightweight solution for image caption-

ing tasks, where not only the training, but also the inference time is much less

than the previous approaches. In this way, we can offer an implementation,

which can be trained very easily and deliver detailed captions for any user.

With respect to the Visual Question Answering task [2], the usual way is to

handle it as a classification task. A main objective of this project is to alter

this approach. We implemented a method, in which the decoder can generate

outputs with respect to an image and a question. In this way, we have a tran-

sition from classification to the conventional encoder-decoder method, in which

Christos Morfopoulos 9
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the answer/outputs are generated in an auto-regressive manner. This has as a

result to adapt the full encoder-decoder mechanism without any addition such

as dense Neural Network layers for classification.

Consequently, as we have relative approaches both for image captioning and for

visual question answering, we tried to attach both methods into a single unified

approach, where the unified model can handle both image captioning and visual

question answering tasks. We achieved that through multitask learning [5],

utilising a unified loss function and adjusting the weights for both tasks. In this

way, the model can be trained for both tasks and exploit the possibility to learn

more representations through the relative assignments.

Lastly, in this project, we tried to employ the power of image generative models.

The Diffusion models [26] can generate any image with respect to a caption.

As we aim to achieve better performance for the image captioning models, we

invoked the impressive stable diffusion models [24], to generate images so we can

have additional training data. Moreover, we implemented different diffusion

pipelines on how to select the best possible image via the image generation

process.

1.3 Existing Work

The main model that we have used as a backbone, is based on the paper “Clip-

cap: CLIP prefix for Image Captioning” [17]. The structure of this lightweight

model consists of a frozen pre-trained vision model, a frozen pre trained language

model and a trainable transformer in between. As an image encoder the authors

have selected the CLIP model [21], which was trained in more than 400 million

image-text pairs and its main goal is to understand and generate meaningful

connections between images and their corresponding textual descriptions. As

for the decoder, it is set to a pre-trained GPT2 Language model [22]. The

main novelty of that particular paper lies on the trainable Transformer, which

essentially is an encoder with eight encoder layers. The main goal of that

Transformer is to map the embedding space of the CLIP with the respective

space of the GPT2. This is why it is also called a “Mapping” network.The

outcome , as the title suggests, is to generate a semantic prefix which is passed

to the GPT2 Language model to produce the description.

In the last few months, a paper was announced by Microsoft with the title “GIT:

A Generative Image-to-text Transformer for Vision and Language” [35]. This

Christos Morfopoulos 10
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architecture follows the conventional approach of encoder-decoder technique, in

which the image encoder is set to the large variant of the CLIP model and the

text decoder to the large variant of BERT [9]. The main GIT model variant

has been trained roughly on 0.8 billion image-text pairs. The model can deliver

both image captioning and visual question answering tasks. The main training

is based on image captioning, but the fine-tuning applies on the visual question

answering tasks with a modification on the attention mask.

To sum up, the GIT [35] as well as the Clipcap [17] are architectures completely

different, both specialised for image captioning tasks. Any architecture has its

own advantages and disadvantages and it can be adapted for any particular task

or situation. For instance, the Clipcap architecture stands out in terms of agility

and computational cost, whereas the GIT architecture excels in performance.

Nevertheless, a notable drawback with respect to previous architectures is that

we do not have a single architecture that is mainly designed for visual question

answering [2]. The GIT models are designed and trained mainly for image

captioning tasks and finally fine tuned for visual questioning tasks. This has

as a result to define visual-language models that are specialised for one relative

task and partially trained for other tasks. In this way, we do not have the

opportunity to combine those customised models and train them in parallel

through multi task learning in order to leverage their performance.

1.4 Contributions

Having outlined some of the most significant goals of this project, overall our

main contributions are as follow:

• We conduct extensive experiments with respect to our main model ar-

chitecture on three different image-text datasets COCO [16], VizWiz [12]

and TextCaps [29], applying all possible combinations of decoder capaci-

ties and distinct Diffusion pipelines.

• We introduce a modified architecture, in order to deliver visual question

answering tasks. With small alterations of our main mechanism, but keep-

ing the same approach, the model can provide an answer with respect to

a specific visual content and question.

• We present a unified approach to deliver both image captioning and visual

question answering tasks. With the utilisation of multi task learning, a

model can provide a detailed description or an enriched answer.

Christos Morfopoulos 11
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• We design two distinct diffusion pipelines to generate an image with re-

spect to a caption. The vanilla diffusion pipeline has integrated certain

settings and prompt-engineering prefixes, whereas the “Clipscore” diffu-

sion pipeline follows a rationale of generating multiple images and selecting

an optimal image with respect to the CLIP embeddings [21].

• Finally, through all our experiments, we can verify that a certain deriva-

tive model that we introduce, which has adapted the large variant of a

decoder (GPT2-XL) [22] as well as leveraged additional training images

via “CLIPscore” diffusion pipeline, can outperform any model variation

of its category and it is considered to be the most efficient model.

1.5 Structure

In this project, our goal is to identify the optimal combination to achieve high

performance in both image captioning and visual question answering tasks, en-

suring comparability among all models. The chapters of this work are organised

as follows:

• Introduction, makes an introduction and definition of our tasks while also

presenting the challenges, related work and contributions of this work.

• Background, presents the story of image captioning and visual question

answering in detail, ranging from former methods to current state of the

art solutions.

• Architecture, presents the key components of our approach.

• Implementation, highlights the modifications and advancements in our

method.

• Experiments, presents details about our main datasets and our experi-

mental setup.

• Results, demonstrates our findings based on our extensive experiments.

• Conclusion, outlines our findings.

Christos Morfopoulos 12



Chapter 2

Background

2.1 Transformer

2.1.1 Core Concept

Several years back, language modelling in Natural Language Processing, was

mainly based with architectures such as RNN and LSTM [28]. Although these

architectures were considered state of the art, there were fundamental limi-

tations in the sequence computation. Certain disadvantages were no parallel

processing and a lot of training time. Additionally, RNNs and LSTM [28] ar-

chitectures have a short reference window, which were incapable of using the

entire context of the story while generating the text.

A major turning point in the deep learning research area was when the “Atten-

tion is all you need” paper [32] was published by Google in 2017. A new novel

neural network called the Transformer, which is an attention based encoder-

decoder type architecture, was introduced. This architecture was originally

designed for Machine Translation tasks, outperforming all the previous archi-

tectures. The key element of Transformer [32] architecture, which makes that

particular architecture superior in contrast to the previous, is the attention

mechanism. The power of the attention mechanism is that it doesn’t suffer

from short term memory as RNNs and LSTM [28]. It has an infinite reference

window, therefore a bigger capacity, which leads to capture the entire input

context while decoding their final output. In this way, the original transformer

architecture not only can handle parallel computation for sequential input data,

where RNNs [28] need to process the input data in order, but also have signif-

icantly better performance. Finally, this state of the art architecture managed

13



Enhancing and unifying Vision-Language tasks with Diffusion models

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

Figure 1: The Transformer [32] architecture, it mainly consists of an Encoder
(Left) and a Decoder (Right).

to leverage the power of attention mechanism to make better predictions.

The main modules of this architecture are the encoder and the decoder layers.

The authors of the paper proposed six stacked encoder as well as six stacked

decoder blocks. Each layer has integrated the attention mechanism which is

applied several times. At high level, the main goal of the Encoder [32] is to map

an input sequence into an abstract continuous representation that holds all the

learned information of that input, whereas the decoder utilises that continuous

representation and generates autoregressively a single output while also taking

into account its previous output.

The main pre-processing steps of the sequence input consist of the Word Em-

bedding as well as the Positional Encoding [32] modules. The input of the

architecture is a sequence of words and it is required to convert those words

into vectors. This transition has as a result to have a continuous representation

of each word. The conversion is developed in such a way that similar vectors

can have similar representations. A standard limitation is that the embedding

vector can handle up to 512 tokens per sequence.

For obvious reasons, the order of the words has a great impact on the meaning

of a sentence. Therefore, a very important step is to capture the position of the

tokens in a sequence. To achieve this, the authors of the paper have developed

a process in which they add positional information of the respective words in

Christos Morfopoulos 14



Enhancing and unifying Vision-Language tasks with Diffusion models

a sentence, simply by adding a new vector to the current embedding vector.

Taking into consideration the current position p of the embedding as well as the

index i of the position embedding dimension and finally applying cosine and

sine functions, we can capture the word ordering. The positional encodings are

calculated using the following equations:

PE(p,2i) = sin
( p

100002i/dmodel

)
(2.1)

PE(p,2i+1) = cos
( p

100002i/dmodel

)
(2.2)

These equations represent the positional encodings for even and odd indices,

respectively. Here, p represents the position of the token in the sequence, i rep-

resents the dimension, and dmodel represents the dimensionality of the model’s

embeddings. By integrating these equations into the embedding vectors, the

model gains valuable positional information, enhancing its understanding of

word sequences.

2.1.2 Encoder Layer

The mechanics of an encoder block are composed of a Multi-Head Attention [32]

module and a fully connected Feed Forward network layer, followed by a Nor-

malisation Layer and its residual connections. The Multi-Head Attention [32]

module is responsible for applying the attention mechanism with respect to the

input data, in which the attention weights are calculated. In this way, the model

can learn to associate each individual word in the input sequence to other words

in the sequence. The residual connections help the network to train by allowing

gradients to flow through the network directly, whereas the Normalisation layer

helps to stabilise the network. The Feed Forward network layer has integrated

several Linear layers with ReLu activation functions in between. Its main task

is to further process the attention output. All the operations within an en-

coder block aim to encode the input to a continuous representation along with

attention information.

The consecutive encoder blocks allow the model to capture different attention

aspects, which has as a result a final enriched representation with respect to

the input data. In this way, the transformer network potentially boosts its

predictive power, while helps the decoder layers focus on the appropriate words

in their input, during the decoding process.
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Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

√
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1√

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1√

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

∑dk
i=1 qiki, has mean 0 and variance dk.

4

Figure 2: The Multi-Head Attention mechanism that is applied in the Trans-
former [32] architecture, (Left) Scaled Dot-Product Attention. (Right) Multi-
Head Attention consists of several attention layers running in parallel.

2.1.3 Multi Head Attention

The sub-module of Multi Head Attention [32], which lies within the encoder

layer, applies a specific attention mechanism commonly called self attention.

Self-attention empowers the model to establish associations between each dis-

tinct word in the input and other words contained in the input. To achieve it,

the input is fed to three distinct fully connected layers in order to create query,

key and value vectors. The main idea is to map the query with the key vectors

via a certain pipeline and finally connect the output with the respective value

vectors.

The query, value, and key vectors undergo a dot product matrix multiplication

to produce a score matrix. The score matrix, denoted as Attention(Q, K, V),

determines how much focus each word should have on other words. Each word

is assigned a certain score corresponding to other words, calculated using the

formula:

Attention(Q, K, V) = softmax

(
QKT

√
dk

)
V

where Q, K, and V represent the query, key, and value vectors respectively.

Here,
√
dk is the scaling factor, ensuring stable gradients and preventing ex-

ploding effects in the process. The softmax function scales the scores, produc-

ing attention weights ranging from zero to one. This scaling operation modifies

the score values, inflating high values and depressing low values. Finally, the

last step in the scaled dot-product attention involves a matrix multiplication
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between the obtained attention weights and the value vector (V ), refining the

focus of the model on specific words.

Each self attention process is also called attention head. In order to get a fully

Multi Head Attention [32], as its title suggests, we have to apply the same

process several times. To achieve this, we split the query, key and value vectors

into N vectors and employ the same self attention process individually. Each

attention head in the process would learn something different, therefore enable

the encoder to gain more representation power. After we applied N attention

heads, we concatenate its output and as a last part of the Multi Head Attention

process we apply a Linear Layer to shrink back the concatenated output back

to its original size.

2.1.4 Decoder Layer

The goal of the decoder [32] is to generate text sequences with respect to the

encoded representations. Although its layers are very similar to the encoder

layers, there are main differences.

The components of the decoder are two Multi Head Attention [32] sub-modules

and a fully connected Feed Forward neural network, followed by Normalisation

layer and its residual connections, in the same way as in encoder’s. However, its

Multi Head Attention [32] modules are slightly different and each module serves

a distinct task. The first Multi Head Attention of the decoder, also known as

Masked Multi Head Attention, applies a certain attention mask not only to

hide future tokens for the attention output but also to avoid introducing bias

into the architecture. This act is mainly because the decoder operates in an

autoregressive manner. Moreover, in the consecutive Multi Head Attention [32]

the input of the decoder is the output of the final encoder block. In other

words, the decoder utilises the encoder output as query and key vectors in

conjunction with output of the first Multi Head Attention as value vector. This

process matches the encoder output to the decoder input, allowing the decoder

to decide which encoder input is relevant to put focus on. This mechanism is

also known as Cross Attention [32] mechanism.

Finally, the Linear Layer acts as a classifier, which is as big as the number

of classes/words, and applying a softmax layer, we can take the index of the

highest word probability. Obviously, the model picks the word with the highest

probability as the best candidate for the next token in the sequence. In the

same way as in the encoder layers, the decoder layers can be stacked allowing
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Figure 3. LSTM model combined with a CNN image embedder
(as defined in [12]) and word embeddings. The unrolled connec-
tions between the LSTM memories are in blue and they corre-
spond to the recurrent connections in Figure 2. All LSTMs share
the same parameters.

image and each sentence word such that all LSTMs share
the same parameters and the output mt−1 of the LSTM at
time t − 1 is fed to the LSTM at time t (see Figure 3). All
recurrent connections are transformed to feed-forward con-
nections in the unrolled version. In more detail, if we denote
by I the input image and by S = (S0, . . . , SN ) a true sen-
tence describing this image, the unrolling procedure reads:

x−1 = CNN(I) (10)
xt = WeSt, t ∈ {0 . . . N − 1} (11)

pt+1 = LSTM(xt), t ∈ {0 . . . N − 1} (12)

where we represent each word as a one-hot vector St of
dimension equal to the size of the dictionary. Note that we
denote by S0 a special start word and by SN a special stop
word which designates the start and end of the sentence. In
particular by emitting the stop word the LSTM signals that a
complete sentence has been generated. Both the image and
the words are mapped to the same space, the image by using
a vision CNN, the words by using word embedding We.
The image I is only input once, at t = −1, to inform the
LSTM about the image contents. We empirically verified
that feeding the image at each time step as an extra input
yields inferior results, as the network can explicitly exploit
noise in the image and overfits more easily.

Our loss is the sum of the negative log likelihood of the
correct word at each step as follows:

L(I, S) = −
N∑

t=1

log pt(St) . (13)

The above loss is minimized w.r.t. all the parameters of the
LSTM, the top layer of the image embedder CNN and word
embeddings We.

Inference There are multiple approaches that can be used
to generate a sentence given an image, with NIC. The first
one is Sampling where we just sample the first word ac-
cording to p1, then provide the corresponding embedding
as input and sample p2, continuing like this until we sample
the special end-of-sentence token or some maximum length.
The second one is BeamSearch: iteratively consider the set
of the k best sentences up to time t as candidates to generate
sentences of size t + 1, and keep only the resulting best k
of them. This better approximates S = arg maxS′ p(S′|I).
We used the BeamSearch approach in the following experi-
ments, with a beam of size 20. Using a beam size of 1 (i.e.,
greedy search) did degrade our results by 2 BLEU points on
average.

4. Experiments
We performed an extensive set of experiments to assess

the effectiveness of our model using several metrics, data
sources, and model architectures, in order to compare to
prior art.

4.1. Evaluation Metrics

Although it is sometimes not clear whether a description
should be deemed successful or not given an image, prior
art has proposed several evaluation metrics. The most re-
liable (but time consuming) is to ask for raters to give a
subjective score on the usefulness of each description given
the image. In this paper, we used this to reinforce that some
of the automatic metrics indeed correlate with this subjec-
tive score, following the guidelines proposed in [11], which
asks the graders to evaluate each generated sentence with a
scale from 1 to 41.

For this metric, we set up an Amazon Mechanical Turk
experiment. Each image was rated by 2 workers. The typ-
ical level of agreement between workers is 65%. In case
of disagreement we simply average the scores and record
the average as the score. For variance analysis, we perform
bootstrapping (re-sampling the results with replacement and
computing means/standard deviation over the resampled re-
sults). Like [11] we report the fraction of scores which are
larger or equal than a set of predefined thresholds.

The rest of the metrics can be computed automatically
assuming one has access to groundtruth, i.e. human gen-
erated descriptions. The most commonly used metric so
far in the image description literature has been the BLEU
score [25], which is a form of precision of word n-grams
between generated and reference sentences 2. Even though

1 The raters are asked whether the image is described without any er-
rors, described with minor errors, with a somewhat related description, or
with an unrelated description, with a score of 4 being the best and 1 being
the worst.

2In this literature, most previous work report BLEU-1, i.e., they only
compute precision at the unigram level, whereas BLEU-n is a geometric
average of precision over 1- to n-grams.

Figure 3: The conventional architecture of “Show and Tell” [34] for image cap-
tioning. (Left) Extracting features from CNN, (Right) LSTM [28] decoder.

the model to learn to extract and focus on different combinations of attention.

2.2 Image Captioning

2.2.1 Former Approaches

A very important and fundamental task in the domain of deep learning is image

captioning. Image captioning is the process of generating a textual description

for a given image. Several approaches have been proposed to solve this task.

Almost a decade ago, a standard and verified approach, which was considered

state of the art, was to utilise a Convolutional Neural Network to obtain the

feature semantics of an image as well as to utilise a Recurrent Neural Network

to generate the sequence of words. The key element of every image captioning

process is to link the image feature vectors to its respective caption.

An official architecture, which followed the above technique, was proposed in

a paper titled “Show and Tell: A Neural Image Caption Generator” [34] by

Google in 2015. This architecture utilised LSTMs instead of plain RNN archi-

tecture in conjunction with Convolutional Neural Network. The union of a CNN

and LSTM in its simplest terms takes the image as the input and outputs a de-

scription of what the image depicts. At high level, the CNN acts as an encoder

and the LSTM [28] as a decoder. At the initial steps of the architecture the

CNN creates the feature vector from the image, which is called an embedding.

Usually, it is pre-trained Convolutional Neural Network, which is trained in a

large number of images for other tasks such as object detection or classification.

Then, the encoded image is transformed through a Linear Layer in order to pass

as an input to the LSTM [28] decoder. With respect to the extracted features
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from the CNN, the LSTM produces a sequence of words that describe what was

in the image.

Although pre-trained CNNs can capture high-level semantic information in im-

ages and LSTMs can handle sequential data, there were certain limitations in

generating contextually relevant captions for images. A main disadvantage is

that designing and training a CNN-LSTM [28] architecture can be complex and

computationally expensive. Additionally, due to the short reference window of

an LSTM [28], the architecture can have low performance, with often errors in

large captions and a requirement of large training time, consuming a lot of com-

putational resources. This had as a result the research community to investigate

and focus on alternative approaches for image captioning.

2.2.2 Encoder-Decoder

The innovative approach of encoder-decoder in the Transformer architecture

can be remarked as revolutionary. The rise of attention mechanisms solved suc-

cessfully a lot of NLP tasks such as sequence to sequence problems or machine

translation. The research community suggested exploring this approved mech-

anism in other aspects of deep learning and not exclusive in text to text tasks.

The initial questions were based on how to use an encoder that focuses only on

images and mainly how can we link an image encoder with a textual decoder.

Image captioning is analogous to other sequence to sequence tasks except the

only difference is that instead of translating from a language to language we are

translating from an image to a language. The key element of the encoder decoder

architecture [32] that allows the model to apply such a transition, is the cross

attention layer. Via the cross attention mechanism, we can tie the embeddings of

the vision encoder as well as the embeddings of the textual decoder. Therefore,

in the cross-attention head, the encoder embeddings are used as key and value

vectors and the decoder embeddings are used as query vectors. Using these

inputs, the model is forced to generate a caption and also to understand the

correlation between words in captions and objects in the input images.

There are a lot of combinations between the vision encoders and the textual

decoders. The conventional way to build an image captioning system that fol-

lows an encoder-decoder style, is to train from scratch both the vision encoder

and the textual decoder. Although there are techniques that can connect a

pre-trained vision encoder like ViT [10] or CLIP [21] with a pre-trained textual

decoder like BERT [9] or GPT2 [22], the main issue is that each pre-trained
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element has been trained in a different high dimensional space. Therefore, the

short path is to train from scratch the respective encoder and decoder, with

their own model capacities.

In this way, the contemporary approach to build an image captioning system

is via the encoder-decoder [32] architecture, which is a main element of the

transformer [32] model family. In contrast to the previous image captioning

approaches, the encoder-decoder style not only can be more agile and flexible in

terms of model complexity and computation resources, but also more effective

in terms of performance, outperforming all the former approaches.

2.2.3 ClipCap

Most image captioning systems are built with the conventional way of encoder-

decoder architecture. The straightforward solution of encoder-decoder can be

beneficial, but it has its own drawbacks, such as the training of both elements

from scratch. The training of those elements can consume a lot of computational

resources as well as be quite expensive. On the other hand, fine tuning an

already pretrained Encoder/Decoder could save a lot of training time as well as

take advantage of the enriched representations from the diverse datasets that

have been trained on.

An approach, which took advantage of pre-trained elements in its architecture,

was proposed in a paper titled “Clipcap: CLIP prefix for Image Captioning” [17]

in 2021. The main idea is to utilise a pretrained image encoder like CLIP [21],

which has been trained on millions of image text pairs, as well as a pre trained

textual decoder like GPT2 [22], which also has been trained in huge publicly

available training corpus from the internet, and combine them. In contrast to

the conventional way, the combination of two already pre-trained elements can

be challenging, as it should create a shared latent space of both vision and text.

To achieve that, the authors of the paper suggested a small Transformer network

or a tiny Multi-layer perceptron in order to bridge the gap, as the Encoder and

the Decoder latent spaces are independent. Usually, the selection between a

small trainable transformer or a tiny trainable MLP varies depending on the

size of the training dataset and the respective task. However the solution that

the authors proposed is a Transformer, which actually is an Encoder with eight

blocks and has also the best predictive power among the other options.

The ClipCap [17] approach can be defined as a lightweight architecture, in which

its encoder and decoder remain frozen. Therefore, it is an agile and flexible
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solution for image captioning tasks, where the training time of a transformer

is significantly less in contrast to the conventional image captioning systems.

Finally, the alternative approach of Clipcap [17], can be quite competitive in

terms of performance, as its predictive power can be leveraged depending on

the respective model capacities and the size of the training data.

2.2.4 GIT

As we mentioned, a standard architecture for image captioning is based on

the transformer[32] model family, and in the cooperation of the encoder and

decoder. The mechanism of the encoder-decoder is heavily relied on the cross

attention mechanism, which was defined on the previous sections. In this way,

the architecture can manage to link a vision encoder with a textual decoder,

without any modification in its base architecture. Although that alternative

approaches exist such as the architecture of ClipCap[17], which utilise the power

of pre-training process, the vanilla strategy of an encoder-decoder[32] has certain

positive aspects.

Several months back, a paper was announced with the title “GIT: A Gener-

ative Image-to-text Transformer for Vision and Language” [35] by Microsoft.

The GIT [35] architecture follows the conventional architecture of encoder and

decoder [32] and the main novelty of the paper is that the GIT model can han-

dle both image captioning tasks and visual question answering tasks as well.

Another characteristic of the GIT model is the remarkable performance that

achieved in the image captioning as well as in the visual question answering

evaluation metrics. The main reason for that performance is the large amount

of image-text pairs that the GIT model has been trained on. The vision en-

coder of GIT architecture is set to the large variant of the CLIP [21] model

and the textual decoder is set to the large model variance of the BERT [9]

model. Therefore, the large model capacities of the GIT [35] architecture allow

the model to score better performance, as the encoder-decoder approach can

be considered as resource-data hungry models, without reaching any limitation.

The more training data you provide to the model, the better results the model

can achieve. In this way, the GIT model has developed enriched and powerful

embeddings that can boost its predictive power, outperforming all the previous

models and particularly in the image captioning domain.

While the main strategy of the GIT [35] architecture is based on image caption-

ing, the Visual Question Answering tasks can be delivered by GIT [35]. The

main training phase of the GIT is set to understand image-text pairs, whereas
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the process of visual question answering has been acquired during the fine-

tuning phase. Moreover, the GIT [35] architecture doesn’t offer a solid visual

question answering solution, but only a partial solution mainly through image

captioning.

Finally, there are a lot of approaches with respect to image captioning systems.

Every approach, conventional or not, has its own advantages and disadvantages

and their efficiency heavily depends on the requirements of an image captioning

system.

2.3 Visual Question Answering

In the domain of vision language understanding, apart from image captioning

systems there are a lot of advancements in the Visual Question Answering [2]

as well. It is obvious that a system can be very beneficial if a user can also ask

any question to a given image. A detailed caption of an image can be helpful,

but what if a user can ask unlimited answers with respect to that image? It

seems challenging, but the research community has made remarkable progress

to define an approach to Visual Question Answering [2] systems.

Because of the large scope of question-answer pairs, most VQA [2] literatures

adopt a certain constraint, in which they define a closed set of answers. There-

fore, the majority of VQA systems work with a fixed answer set where exactly

one of the possible answers is guaranteed to be correct. In other words, a Visual

Question Answering task is transitioned to a multiple choice answer system,

which can’t generate any answer with respect to a question but only deliver the

most likely answer.

In the same way as in the conventional image captioning approaches, the com-

mon Visual Question Answering architectures follow a standard technique of

utilising a pretrained Image Encoder, extracting its feature vectors, and finally

connecting to a LSTM or RNN [28] architecture. The LSTM architecture is

often used to decode a question for any given image. The binding between the

the image encoder and the LSTM [28] is established through a point wise mul-

tiplication layer, following a fully connected Neural Network with several layers

and a softmax layer, to obtain probabilities for the final answer. The commonly

used VQA architecture is very similar to the conventional Image Captioning

architectures except that the VQA architectures should handle as input and a

question apart from the image.
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The limitation of the Visual Question Answering approaches is obvious and

disappointing. A competitive VQA [2] system should generate any potential

answer with no constraints as well as have a deeper understanding of an input

image. The effect of the transformer[32] architecture has lately had a big impact

in the VQA [2] systems, but the adaptation of a closed answer set is still a high

standard. Certainly, there is a need for improvement in the Visual Question An-

swering architectures, overcoming limitations like those and making the whole

task less challenging.

2.4 Image Generation

2.4.1 Diffusion Models

In the scope of Image Generation, the Diffusion Models [26] are one of the

biggest developments in deep learning in the past several years. Essentially,

those generative models can produce any image with respect to a textual de-

scription. Therefore, the combinations of descriptions of images can be endless.

A synthetic image based on a user prompt can be very impressive and creative.

The image generation process can be applied in several domains such as data

augmentation, synthetic dataset or even art creation.

Until the rise of the Diffusions [26] models, the prevailing architecture in image

synthesis was the Generative Adversarial Networks [6] also known as GANs.

This type of network utilises a generator and a discriminator to produce a gen-

erative image. Its a iterative process, in which the generator creates an image

until the discriminator allows that the produced image is valid and acceptable.

However, the recent progressions in the generative domain showed that the dif-

fusion models can beat GANs [6] for image synthesis. In the paper “GLIDE:

Towards Photo realistic Image Generation and Editing with Text-Guided Dif-

fusion Models” [18] the GLIDE diffusion model was first introduced. A main

advantage of a diffusion process is that its generated images are much more

photo realistic in contrast to the former approaches like GANs.

Fundamentally, Diffusion modelss [26] work by destroying training data through

the progressive addition of Gaussian noise and then learning to recover the

data by reversing this noising process. At inference, the Diffusion modelss [26]

generate data by simply passing randomly sampled noise though the learned

denoising process.
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Figure 2: The directed graphical model considered in this work.

This paper presents progress in diffusion probabilistic models [53]. A diffusion probabilistic model
(which we will call a “diffusion model” for brevity) is a parameterized Markov chain trained using
variational inference to produce samples matching the data after finite time. Transitions of this chain
are learned to reverse a diffusion process, which is a Markov chain that gradually adds noise to the
data in the opposite direction of sampling until signal is destroyed. When the diffusion consists of
small amounts of Gaussian noise, it is sufficient to set the sampling chain transitions to conditional
Gaussians too, allowing for a particularly simple neural network parameterization.

Diffusion models are straightforward to define and efficient to train, but to the best of our knowledge,
there has been no demonstration that they are capable of generating high quality samples. We
show that diffusion models actually are capable of generating high quality samples, sometimes
better than the published results on other types of generative models (Section 4). In addition, we
show that a certain parameterization of diffusion models reveals an equivalence with denoising
score matching over multiple noise levels during training and with annealed Langevin dynamics
during sampling (Section 3.2) [55, 61]. We obtained our best sample quality results using this
parameterization (Section 4.2), so we consider this equivalence to be one of our primary contributions.

Despite their sample quality, our models do not have competitive log likelihoods compared to other
likelihood-based models (our models do, however, have log likelihoods better than the large estimates
annealed importance sampling has been reported to produce for energy based models and score
matching [11, 55]). We find that the majority of our models’ lossless codelengths are consumed
to describe imperceptible image details (Section 4.3). We present a more refined analysis of this
phenomenon in the language of lossy compression, and we show that the sampling procedure of
diffusion models is a type of progressive decoding that resembles autoregressive decoding along a bit
ordering that vastly generalizes what is normally possible with autoregressive models.

2 Background

Diffusion models [53] are latent variable models of the form pθ(x0) :=
∫
pθ(x0:T ) dx1:T , where

x1, . . . ,xT are latents of the same dimensionality as the data x0 ∼ q(x0). The joint distribution
pθ(x0:T ) is called the reverse process, and it is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ; 0, I):

pθ(x0:T ) := p(xT )

T∏

t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (1)

What distinguishes diffusion models from other types of latent variable models is that the approximate
posterior q(x1:T |x0), called the forward process or diffusion process, is fixed to a Markov chain that
gradually adds Gaussian noise to the data according to a variance schedule β1, . . . , βT :

q(x1:T |x0) :=

T∏

t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

Training is performed by optimizing the usual variational bound on negative log likelihood:

E [− log pθ(x0)] ≤ Eq
[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

[
− log p(xT )−

∑

t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

]
=: L (3)

The forward process variances βt can be learned by reparameterization [33] or held constant as
hyperparameters, and expressiveness of the reverse process is ensured in part by the choice of
Gaussian conditionals in pθ(xt−1|xt), because both processes have the same functional form when
βt are small [53]. A notable property of the forward process is that it admits sampling xt at an
arbitrary timestep t in closed form: using the notation αt := 1− βt and ᾱt :=

∏t
s=1 αs, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (4)

2

Figure 4: The backward process of a diffusion model [26], in which we sequen-
tially denoise the input image.

In more detail, a Diffusions [26] model consists of a forward/diffusion process, in

which an image is gradually noised by a sample noise from the Normal Distribu-

tion, and a backward/reverse diffusion process, in which the noise is gradually

removed. Therefore, the model learns to fully predict the noise at each step

and it needs several steps in order to get high quality images. The utilisation of

the noising/denoising process is based on the fully convolutional Unet architec-

ture [25], in which the input and the output image have the same dimensions. In

the Unet architecture, we initially downsample the original image via convolu-

tion layers and then we upsample it back again. The backward diffusion process

takes the textual description into account, which is encoded and modified as an

embedding. Moreover, each attention layer of the Unet [25] is also attending to

the respective embedding. In this way, the diffusion models can have a better

guidance of the generated images. Finally, the diffusion models learn to predict

the noise itself and the loss function is calculated between the predicted noise

(ϵθ(xt, t)) and the actual noise (ϵ) as follows:

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (xt, t)∥22

]
. (2.3)

To sum up, Diffusion models have impressive image generation capabilities and

can easily outperform GANs [6], with more photo realism in its generations.

Additionally, the Generative Adversarial Network requires a delicate balance

between the discriminator and the generator and it is highly sensitive to even

minor changes. However, the diffusion process may have less parameters than

the GANs [6], its inference time period is much longer, which can be stated as

a certain limitation of the process.
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2.4.2 Latent Diffusion Models

The architecture of Diffusion models was considered state of the art for gen-

erative images, however the research community has successfully made certain

improvements on the backbone of its process. Although the diffusion model was

considered to be scalable in contrast to previous approaches, there were certain

limitations in the process such as to have long inference time and to be com-

putationally expensive. In the paper “High-Resolution Image Synthesis with

Latent Diffusion Models” [24] a new version of diffusion model was introduced,

utilizing the Latent Diffusion [24] approach. The main goal of that innovative

approach was to handle those limitations and deliver a diffusion process that

can be much faster and require less resources.

The main culprits of the high computational cost of the diffusion process were

the Unet architecture in conjunction with the dimensions of an image. Because

it is too costly to transform and retain an high resolution image in the Unet

architecture [25], the authors of the Glide [18] diffusion model experimented

on low dimensional images. That is the main reason why the authors of the

“High-Resolution Image Synthesis with Latent Diffusion Models” [24], invoked

the Variational AutoEncoders in the diffusion process. The core concept of the

Latent Diffusion Models [24] is to surrender the idea of working in the image

space and work on a latent space instead. In this way, the process does not

utilise the original dimension of the image but a lower dimensional represen-

tation of it. The Variational AutoEncoder is essentially an Encoder-Decoder

network that is trained to encode images in a lower-dimensional space and then

decode them back to reconstruct the original high resolution image. In the La-

tent Diffusion architecture, the Variational AutoEncoder is trained separately

before the diffusion process. Once it is trained, it remains frozen, while the

diffusion model is trained in its lower dimensional latent space. Nevertheless,

the remaining process persists intact and the diffusion model predicts the noise

of the image with respect to its description. The loss function of the latent

diffusion models is calculated as follows:

LLDM := EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t)∥22

]
. (2.4)

To sum up, the latent diffusion approach allows the model to be faster at infer-

ence and not to require a lot of resources. Additionally, a major asset is that the

latent diffusion models can process high resolution images and finally generate

images with better quality. Lastly, the Stable Diffusion [24] is an open-source
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generative model, which is based on the latent diffusion approach and can pro-

duce impressive synthetic images. All of our diffusion experiments in our work

were set with a particular version of the Stable Diffusion [24] model.
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Chapter 3

Architecture

3.1 Main Model

There are a lot of strategies to design an effective image captioning system.

Either conventional or alternative approaches, all should deliver the same task.

The main approach that we follow in order to conduct our experiments is based

on the usage of pretrained models. The main idea behind the architecture is to

employ pretrained models such as vision pretrained models and large language

models, in order to combine them so they can generate meaningful captions to

a visual content. A pre-trained language model such as GPT2 [22] along with a

large vision encoder such as CLIP [21], can have a wide understanding of both

visual and textual data.

A key element of our architecture is the binding between the vision and the

language model is established through a Mapping Network, which is either a tiny

multi layer perceptron or a small transformer [32]. We should mention that any

key component can be finetuned or remain frozen, but the optimal solution is to

keep the main elements frozen (CLIP [21] and GPT2 [22]) and to train only the

mapping network, allowing a lighter architecture with less trainable parameters.

Hence, our approach only requires rather quick training to produce a competitive

model. Without additional annotations or pretraining, it efficiently generates

enriched captions. In contrast to previous approaches that have been proposed

for image captioning, which usually require object detection, large datasets or

bigger architectures and eventually lead to extensive training time and a large

number of parameters, our model can achieve comparable results to state-of-the-

art methods on challenging datasets as Conceptual Captions and COCO [16],

while it is simpler, faster and lighter. The agility of our proposed model in terms
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of architecture, can be beneficial as any user can train from scratch a competitive

image captioning model on any dataset or even from various datasets domains.

The vision encoder in our proposition is the base model variant of the CLIP [21]

model. The CLIP [21] model is designed for image-text retrieval and it is

trained in more than 400 million image-text pairs using a contrastive loss.

CLIP [21] is developed to impose a shared representation for both images and

text prompts. Hence, its visual and textual representations are well correlated

and since CLIP [21] was trained over an extremely large number of images, we

took the advantage of its rich embeddings.

As the textual decoder of our framework is a large language model, the textual

encoder of CLIP [21] is not utilised, since there is no input text and the output

text is generated by the language model. Thus, we make use of a powerful

autoregressive language model such as GPT2 [22].

The input of the Mapping Network is actually the CLIP’s embeddings and

consecutively the output of the Mapping Network is the input of the text de-

coder. Essentially, the Mapping Network, or in other words the trainable Trans-

former [32], projects the CLIP embeddings along with learnable constants in

order to produce a prefix for each caption. In more detail, these particular

constants have a dual role not only to retrieve meaning information from the

CLIP embedding through Multi Head Attention, but also to learn to adjust the

fixed language model to the new data. The prefix, which is the output of the

transformer, is basically a fixed size embedding sequence, which is then concate-

nated to the caption embeddings during the training phase. Finally, the result

of the concatenation is the input to the language model in order to generate

tokens. The main challenge of this particular approach is to translate or “map”

the representations of CLIP with the representations of the language model.

We should mention that both CLIP and GPT2 [22] have rich and diverse rep-

resentations, but their latent spaces are independent, as they were not jointly

trained. That is the main reason why the key component of this architecture is

the Mapping Network, whose main goal is to translate the CLIP [21] embedding

to the GPT-2 [22] space.

As we described above, there are several options that we propose for a Mapping

Network, either a Multi Layer Perceptron or a Transformer [32]. Surprisingly,

the most efficient approach, which also achieved the best results, is the one with

a frozen GPT2 [22] and a trainable Transformer. The alternative approach

with a MLP as a Mapping Network and a fine tuned GPT2 marked lower per-
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CLIP

"A cat is sleeping on top of a blanket on a bed."Const.

GPT2
Prefix embeddings

Caption tokens

Mapping
Network

Figure 2. Overview of our transformer-based architecture, enabling the generation of meaningful captions while both CLIP and the
language model, GPT-2, are frozen. To extract a fixed length prefix, we train a lightweight transformer-based mapping network from
the CLIP embedding space and a learned constant to GPT-2. At inference, we employ GPT-2 to generate the caption given the prefix
embeddings. We also suggest a MLP-based architecture, refer to Sec. 3 for more details.

In this paper, we leverage powerful vision-language pre-
trained models to simplify the captioning process. More
specifically, we use the CLIP (Contrastive Language-Image
Pre-Training) encoder, recently introduced by Radford et
al. [29]. CLIP is designed to impose a shared representa-
tion for both images and text prompts. It is trained over
a vast number of images and textual descriptions using a
contrastive loss. Hence, its visual and textual representa-
tions are well correlated. As we demonstrate, this correla-
tion saves training time and data requirements.

As illustrated in Fig. 2, our method produces a prefix
for each caption by applying a mapping network over the
CLIP embedding. This prefix is a fixed size embeddings
sequence, concatenated to the caption embeddings. These
are fed to a language model, which is fine-tuned along with
the mapping network training. At inference, the language
model generates the caption word after word, starting from
the CLIP prefix. This scheme narrows the aforementioned
gap between the visual and textual worlds, allowing the em-
ployment of a simple mapping network. To achieve even a
lighter model, we introduce another variant of our method,
where we train only the mapping network, while both CLIP
and the language model are kept frozen. By utilizing the
expressive transformer architecture, we successfully pro-
duce meaningful captions, while imposing substantially less
trainable parameters. Our approach is inspired by Li et
al. [20], which demonstrates the ability to efficiently adapt
a language model for new tasks by concatenating a learned
prefix. We use GPT-2 [30] as our language model, which
has been demonstrated to generate rich and diverse texts.

As our approach exploits the rich visual-textual repre-
sentation of CLIP, our model requires significantly lower
training time. For instance, we train our model on a single
Nvidia GTX1080 GPU for 80 hours over the three million
samples of the massive Conceptual Captions dataset. Nev-
ertheless, our model generalizes well to complex scenes, as

can be seen in Fig. 1 (e.g., practicing yoga on the beach at
sunset). We evaluate our method extensively, demonstrating
successful realistic and meaningful captions. Even though
our model requires less training time, it still achieves com-
parable results to state-of-the-art approaches over the chal-
lenging Conceptual Captions [33] and nocaps [1] datasets,
and marginally lower for the more restricted COCO [7, 22]
benchmark. In addition, we provide a thorough analysis of
the required prefix length and the effect of fine-tuning the
language model, including interpretation of our produced
prefixes. Overall, our main contributions are as follow:

• A lightweight captioning approach that utilizes pre-
trained frozen models for both visual and textual pro-
cessing.

• Even when the language model is fine-tuned, our ap-
proach is simpler and faster to train, while demonstrat-
ing comparable results to state-of-the-art over chal-
lenging datasets.

2. Related Works
Recently, Radford et al. [29] presented a novel approach,

known as CLIP, to jointly represent images and text de-
scriptions. CLIP comprises two encoders, one for visual
cues and one for text. It was trained over more than 400
million image-text pairs guided by unsupervised contrastive
loss, resulting in rich semantic latent space shared by both
visual and textual data. Many works have already used
CLIP successfully for computer vision tasks that require
the understanding of some auxiliary text, such as generat-
ing or editing an image based on a natural language con-
dition [5, 14, 28]. In this paper, we utilize the powerful
CLIP model for the task of image captioning. Note that our
method does not employ the CLIP’s textual encoder, since
there is no input text, and the output text is generated by a

Figure 5: Our plain architecture for image captioning as presented in Clip-
cap [17]. We train a lightwegiht transformer [2]-based mapping network to gen-
erate prefix embeddings from CLIP [21] embeddings of the input image. As a
last step, the frozen GPT2 [22] language model generates a caption with respect
to the prefix.

interpretation is meaningful when both the mapping net-
work and GPT-2 are trained. In this case, the interpretation
contains salient words that associate with the content of
the image. For Instance, motorcycle and showcase in the
first example. However, when we only train the mapping
network, the interpretation becomes essentially unreadable
since the network is also charged with maneuvering the
fixed language model. Indeed, a considerable part of the
prefix embeddings is shared across different images for the
same model, as it performs the same adjustment to GPT-2.

Prefix length. Li and Liang [20] showed that increasing
the size of the prefix length, up to a certain value, improves
the performance of the model in an underlying task. More-
over, the saturation length might differ between tasks. For
the image captioning task, we conduct an ablation over the
prefix lengths using the COCO dataset over two configura-
tions of our method: Ours; Transformer and Ours; MLP
+ GPT2 tuning. The results are summarized in Fig. 7. For
each prefix size and configuration, we train the network for
5 epochs and report the BLEU@4 and CIDEr scores over
the test and train sets.

As can be seen in Fig. 7a, increasing the prefix size while
allowing tuning of the language model results in overfitting
to the training set, due to the large number of trainable pa-
rameters. However, when the language model is frozen, we
experience improvement for both the training and test evalu-
ations, as can be seen in Fig. 7b. Naturally, extremely small
prefix length yields inferior results as the model is not ex-
pressive enough. In addition, we point out that the MLP
architecture is inherently more limited as it is not scalable
for a long prefix. For example, a prefix size of 40 implies
a network with over 450M parameters, which is unfeasible
for our single GPU setting. The transformer architecture al-
lows increasing the prefix size with only marginal increment
to the number of the parameters, but only up to 80 — due
to the quadratic memory cost of the attention mechanism.

Mapping network. An ablation study for the mapping
network architecture is shown in Tab. 1(C),(D). As can be
seen, with language model fine-tuning, the MLP achieves
better results. However, the transformer is superior when
the language model is frozen. We conclude that when em-
ploying the fine-tuning of the language model, the expres-
sive power of the transformer architecture is unnecessary.

Implementation details. We used the prefix length of
K = 10 for the MLP mapping networks, where the MLP
contains a single hidden layer. For the transformer map-
ping network, we set the CLIP embedding to K = 10 con-
stants tokens and use 8 multi-head self-attention layers with
8 heads each. We train for 10 epochs using a batch size
of 40. For optimization, we use AdamW [18] with weight
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(a) MLP mapping network with fine-tuning of the language model.
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(b) Transformer mapping network with frozen language model.

Figure 7. Effect of the prefix length on the captioning performance
over the COCO-captions dataset. For each prefix length, we report
the BLEU@4 (red) and CIDERr (blue) scores over the test and
train (dashed line) sets.

decay fix as introduced by Loshchilov et al. [24], with a
learning rate of 2e−5 and 5000 warm-up steps. For GPT-2
we employ the implementation of Wolf et al. [41].

5. Conclusion
Overall, our CLIP-based image-captioning method is

simple to use, doesn’t require any additional annotations,
and is faster to train. Even though we propose a simpler
model, it demonstrates more merit as the dataset becomes
richer and more diverse. We consider our approach as
part of a new image captioning paradigm, concentrating on
leveraging existing models, while only training a minimal
mapping network. This approach essentially learns to adapt
existing semantic understanding of the pre-trained models
to the style of the target dataset, instead of learning new se-
mantic entities. We believe the utilization of these powerful
pre-trained models would gain traction in the near future.
Therefore, the understanding of how to harness these com-
ponents is of great interest. For future work, we plan to
incorporate pre-trained models (e.g., CLIP), to other chal-
lenging tasks, such as visual question answering or image to
3D translation, through the utilization of mapping networks.
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Figure 6: The impact of the prefix length on the captioning performance in terms
of BLEU[20] and CIDEr [33] scores, as shown in the Clipcap [17].

formance. Additionally a derivative of that approach, where the language model

is also fine-tuned, seems to be less effective. Mainly because of the fact that

the underlying mapping is less challenging, as we easily control both networks.

Therefore, the best possible option is a small Transformer with eight encoder

blocks and a frozen GPT-2 model.

As the Mapping Network produces a certain prefix with respect to its CLIP

embeddings [21], its respective prefix length is negotiable. The prefix length

can take various length values and each setting will have a different impact in

the performance of our model. The best recommendation for the prefix length

is to set it to 10, as it marks the highest evaluation metrics and also avoids over-

fitting issues. In order we to make such conclusions, we provided a thorough

analysis of the required prefix lengths and the effects that they produce in the

language model.

To sum up, having outlined all the core elements of our framework, its main

advantage is agility. A lightweight solution with significantly less parameters
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in contrast to other approaches. How quickly can be trained, how easily can

adapt to new input data and how efficient and competitive it can be with such

a limited training interval.
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Chapter 4

Implementation

4.1 Key Adjustment

We have reached a certain point, where we can propose an efficient image cap-

tioning system. However our initial motivation was to implement a unified

image-to-text model, which can deliver not only descriptive captions, but also

can handle any question that user can provide with respect to an input image.

In this way, we can have a complete and effective vision-language model that

can be integrated in any framework.

In more detail, our image captioning approach takes the relative CLIP’s embed-

ding [21] of an image, produces a prefix and concatenates it with the original

caption. In order to generate a caption, the attention mask of the GPT2 [22]

language model should attend to the whole concatenated tensor of its prefix and

its tokens. The padding technique is a helpful method to retain a global length

of the tokens. In an attempt to apply the padding technique we should define

a maximum length of the sequence tokens. The length of the tensor is defined

by the minimum between the average sequence length along with an inflated

standard deviation and the maximum sequence length of the captions.

The transition from image captioning to visual question answering [2] has not

a straightforward solution. A vital adaptation that we applied was to extend

and modify the attention mask so that it can encompass both the question and

the answer of any training example. In this way, we concatenate the prefix,

the question and the answer along with the special token id of the GPT2 [22]

tokenizer that defines the end of sentence. With that delicate modification we

accomplished to retain the “schema” between our image captioning system and
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Figure 7: Our proposed modified architecture for VQA tasks. We refine the at-
tention masks specifically for question-answer pairs, not captions. This strategic
adjustment enables the model to generate answers more effectively and accu-
rately.

our potential visual question answering approach. After the adjustment of the

GPT2’s attention mask, the next steps remain intact. We calculate the cross

entropy loss function in each step, from the predicted logits of the GPT2 [22]

and the respective target tokens.

As a result, we altered our image captioning approach so that it can handle

visual question answering tasks. The key point of this VQA [2] proposal is that

it can generate its output and not classify it. Thus, having a Visual Question

Answering architecture that can generate its answer word by word in a autore-

gressive manner can be considered as an innovative solution, that exceeds the

standards of any VQA system.

4.2 Multitask Learning

Our initial milestone was to define two distinct approaches for image caption-

ing and visual question answering with respect to the same model structure.

Hence, our next goal is to establish a unified model that integrates our two

main approaches. To achieve that we have to employ the multi task learning

technique [5], in which a model can be trained on several tasks in parallel. It

may seems a challenging task, but the actual key points of multi task learning

are relatively easy to implement.

Typically, a model can be trained to do a single task which is convenient, but we
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want to use a single model to solve multiple problems for various reasons, such as

efficiency and better generalisation. The main constraint of multi task learning

is that the selected tasks of any model should be relative. It is common to

notice in Computer vision literature, where vision models are trained in parallel

via multi task learning for tasks such as image classification, object detection

and image segmentation. An important step in order to implement multi task

learning is to share some of the learned parameters or even layers of the model

between the respective tasks. In this way, we can define a unified multi task

model, where we not only can improve its efficiency, but also save in general

memory, computations and power. Intuitively, the closer the tasks are the more

features it can share [31]. In our case, the image captioning and visual question

answering tasks are very similar. Therefore, our unified model can learn different

semantics of its respective task, thus boosting its general performance.

Another requirement of multi-task learning is the need to define an overall

loss function, which combines multiple loss functions corresponding to different

tasks. To maintain the scalability of the model, it is essential to assign weights

to the relative tasks. If one loss function significantly outweighs the others, it

could dominate the training process, even though certain loss functions might be

more crucial or converge faster. Therefore, it is crucial to adjust the weights on

each loss function through trial and error. The overall loss function (LTotal) is

calculated as a weighted sum of individual losses (L1 and L2) with the constraint

that the weights (w1 and w2) must sum up to 1, as shown in the equation below:

LTotal = w1 · L1 + w2 · L2 , where w1 + w2 = 1 (4.1)

In order to avoid any confusion in our work, we designed two distinct data load-

ers, each one designed for its task. Therefore, in our multi task implementation

we have an image captioning and a visual question answering data loader, in

which all the required transformations are being made. Iteratively, we fetch

batches from the data loaders so that our model can learn its tasks alternately.

In this point we have to mention that in our case only the Mapping Network

can share its learnable layers in the scope of multi task learning. The other

main elements of our architecture remain frozen (GPT2). As a final step we

calculate the cross entropy loss of every task and we adjust them with weights

so that we can have the overall loss function. We conducted several experiments

in our multi task approach in order to define the optimal weights of its tasks.

The main criterion was the combined performance of our unified model in its

relative tasks.
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Figure 8: A high level overview of our multi task learning architecture. In
the training phase, the data loaders for image captioning and visual question
answering operate in tandem, delivering batches to the model alternately. This
approach allows the model to derive its final loss by aggregating the individual
losses.

In conclusion, integrating two distinct models—image captioning and visual

question answering—into one can be highly advantageous. A unified model that

not only can handle two different tasks, but also can have better generalisation

is impressive. As our tasks are different but relative, we had to try to define

a model so that it can learn different representations of its respective task,

enhancing its predictive power.

4.3 Synthetic Datasets via Diffusion

4.3.1 Reproduction of the Datasets

A main aspect of our work is the extensive usage of the generative diffusion

models. In order to boost the predictive capabilities of our image captioning -

visual question answering framework, we employed a pre-trained Stable diffusion

model [24] so that we generate images by our training descriptions. In this

way we can recreate from scratch our datasets, so that we can provide more

training observations to our models. Unfortunately, this concept applies only

for our image captioning training examples as the question answer pairs can not

facilitate the diffusion process for obvious reasons.

In many cases, a generative image may not be as realistic as it should be.
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Therefore, we should find ways to enhance our diffusion process in order to

produce the best possible results. Hence, we can apply a certain prefix to our

descriptions such as “High photo realistic” so that we can force the respective

diffusion model to generate more realistic outputs. Alternatively, there can

be a finetuning in the defaults settings of the stable diffusion pipeline. The

main diffusion model that we employed in our process is the “Compvis/stable-

diffusion-v1-4” [24], which as its name suggests is a Stable diffusion model.

Moreover, we utilised our fine tuned diffusion process for all of our training

datasets. As a result, we have synthetic datasets with newly generated images

based on their captions, from the original datasets of COCO [16], VizWiz [12]

and Text Caps [29]. In more technical detail, with respect to our generated

images, we calculated its Clip embeddings and then we concatenated those gen-

erated features with the original features from the respective dataset. We should

mention that the process of generating images is computationally expensive and

time consuming. For this reason, for large datasets like the COCO dataset we

applied a threshold of generating 100 thousand images, whereas for smaller

datasets such as VizWiz and Text Caps we reproduced the whole dataset. The

synthetic datasets based on the smaller datasets have approximately 100 thou-

sand generated images, therefore we can assume that we retain homogeneity in

our diffusion approach. We present in Figure 9,a sample of generated images

from the COCO dataset,with respect to their original images and captions.

Enriching our arsenal in the scope of training efficiency is more than significant.

Populating our training data with newly generated images based on the defined

captions, can be considered as a valuable asset in the whole process.

4.3.2 Clipscore

Although we have created and fine tuned our diffusion pipeline, we tried to

optimise it even further. The main reason is that a one shot generated image

may not be so sufficient to be integrated as a training example. Many generated

images can be so noisy that it can be considered as a distrurbed image. Addi-

tionally, a lot of generated images can be not so realistic after all. The more

complex is the caption of the image, the more noisy the generated image will be.

In order to prevent this issue we advanced our process utilising the resources of

CLIP [21].

To counteract the sensitivity of diffusion models [26] to noise, we populated the

generated images. Instead of one shot generated image per caption, we gener-

ated five potential images per caption. Therefore, we have five candidate images
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“A closeup of a red fire hydrant including the chains.”

“A little dog is laying on a man’s arm.”

“A bathroom with a border of butterflies and blue paint on the walls above it.”

Figure 9: A sample of generated images from COCO [16], with captions shown
underneath. (Left) Original image; (Right) Generated image.
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Stable Diffusion
Model

CLIP

Best
Clipscore

“ High photo realistic, a menu 
in a coffe shop offering 

different types of cofeee. ”

No. 1 No. 2 No. 3 No. 4 No. 5

Figure 10: An illustration of our Clipscore pipeline. Employing a stable diffusion
model, we generate five candidate images corresponding to a textual input. The
Clipscore for each generated image is computed as the cosine similarity between
its CLIP [21] embeddings and the original caption. Ultimately, the image with
the highest Clipscore value is chosen.

and we should pick the more representative one. To achieve this, we employed

the CLIP model, whose main attribute is to calculate the cosine similarity of an

image-text pair. This process is also known as ClipScore and it measures how

similar an image is with a text prompt, that actually describes the respective

image.Thus, calculating the Clipscore values of the five candidate images we can

easily pick the best possible generated image.

To sum up, we strengthen our diffusion pipeline in order to have more rep-

resentative and reliable training observations in our datasets. Our ClipScore

approach is a lightweight and optimal solution that can be applied in many

cases that require the usage of generated images. It is an efficient and effective
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technique that produces not only realistic but also qualitative generated images.
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Chapter 5

Experiments

5.1 Datasets

5.1.1 COCO

The COCO [16] dataset is a large-scale object detection, segmentation and

captioning dataset. For obvious reasons, we utilised only the captioning sub

dataset. In more detail, the COCO dataset has several versions, we selected

the COCO - 2014 challenge, which was presented in the CVPR conference.

Essentially, this is a collection of image-text pairs, where each caption describes

the respective image in a unique way. The training dataset consists of 82.783

images and on average there are about five distinct captions per image, with a

total of 414.113 training observations. In the same way, the validation dataset

consists of 40.504 images, with an overall of 202.654 observations. In the same

way as in the ClipCap [17],we didn’t utilise the test dataset. Thus, we performed

our final evaluation metrics only to the validation dataset.

Additionally, the COCO dataset can provide a Visual Question Answering

dataset, the VQA challenge. The VQA [2] challenge has also several versions, we

picked the most recent the VQA-v2 challenge [2]. The majority of this collection

relies on the COCO images. The training and the validation datasets are almost

identical with 82.783 and 40.504 images respectively. The annotations of this

dataset provide pairwise a certain question and several answers with respect to

an image. We picked the only one answer from the annotations, as the rest

answers can be considered as duplicate answers. However, the VQAv2 dataset

provides a test dataset, where we evaluate our VQA trained models. The test

dataset consists of 81.434 images with a certain question per image.
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GT: a dog is looking
at a blue frisbee.
Q: Is the dog looking
at a tennis ball or fris-
bee?
A: frisbee

GT: a giraffe eating
food from top of the
tree
Q: How many animals
are in this photo?
A: 2

GT: a man is doing a
trick on
a skateboard
Q: Does the guy have
a tattoo?
A: yes

GT: A person on skis
in the snow with trees
in back.
Q: What is she hold-
ing?
A: poles

GT: A painting of an
array of flowers in a
vase.
Q: What color are the
flowers?
A: yellow and white

GT: A waterfront
walkway and garden
area next to
a river.
Q: Is the water calm?
A: yes

Figure 11: A sample from COCO [16] dataset, along with its captions and
question-pairs.

5.1.2 TextCaps

The official dataset of TextCaps [29], as its title suggests, is designed especially

for Image Captioning. We focused on the latest version of Textcaps v0.1, which

was presented in the 2021 TextCaps challenge. The dataset consists of train,

validation and test sets. However, only the training and the validation datasets

were utilised. The training set entails 21.953 distinct images, whereas the val-
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idation set entails 3.166 distinct images. There are exactly 5 different captions

per image, where each caption describes the respective visual content with a

different perspective. Totally, there are 109.765 image-text pairs in the training

dataset and 15.830 pairs in the validation dataset.

As we described, the evaluation of our models was applied on the validation

dataset. However, all the evaluation metrics were obtained by a popular plat-

form, where all the Text Caps challenges are hosted. EvalAI [36], is an open-

source framework that facilitates the evaluation of machine learning models

by providing an interface for hosting and participating in various AI challenges,

thereby promoting collaborations and benchmarking in the research community.

Therefore, all the respective teams that participate in the 2021 TextCapts chal-

lenge, should submit their predictions on the validation dataset with a certain

format, in order to receive their corresponding evaluation metrics.

5.1.3 VizWiz

The VizWiz [12] dataset is a multidimensional dataset with a lot of domains,

such as Image Classification, Object Detection, Image captioning and Visual

Question Answering. Therefore, we make our experiments both in Image Cap-

tioning and Visual Question Answering subdatasets. The original dataset split

into three categories of train, validation and test dataset. In this case, as usual

the training dataset is set for training the respective models, the validation

dataset for evaluating across the epochs and the test dataset is utilised to eval-

uate the performance of the models. The training dataset consists of 23.431

distinct images with on average 5 captions per image and a total of 117.155

training observations, whereas the validation dataset consists of 7.750 distinct

images and a total of 38.750 observations. Finally, the test dataset consists of

8.000 distinct images and 40.000 captions. However, the VizWiz dataset can be

considered as a “noisy” dataset, not only because of the errors in its descriptions,

but also because there are a lot of blurry photos with not semantic meaning at

all. In many observations, there is a boolean flag of ”is-reject”, where you can

reject that particular observation, as we did in our experiments.

In the same way as in the TextCaps [29] dataset, we participated in the VizWiz-

VQA as well as in the VizWiz-Caption challenge through the EvalAI [36] plat-

form. As it is mandatory, if a team aims to publish its evaluation scores for any

particular challenge, it should provide the predictions with respect to its dataset.
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GT: Man wearing a
blue, Blue Jays jersey
out on the grass

GT: he library is a
brick building with a
blue banner on it.

GT: A sign in a for-
eign language the sign
says no fishing

GT: A smartphone
with times and dis-
tances on the screen

GT: A watch with
a brown leather band
shows 10:38.

GT: A child at a table
with three Starbucks
beverages.

Figure 12: A sample from TextCaps [29] dataset, along with its captions and
question-pairs.
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Therefore, we followed all the necessary steps to provide our results of the test

datasets for the VizWiz-VQA and VizWiz-Caption challenges respectively.

GT: Outdoor US
Postal Service letter
collection box
Q: What is this?
A: Post office box
drop

GT: A computer
screen with a black
window
Q: What does the
text say?
A: octavarium

GT: An advertising
message appears on a
computer screen.
Q: Is there a button to
push?
A: No

GT: Piece of white
paper with black font
lettering and two pic-
tures on it
Q: What does it say?
A: About giving away
refurbished computers

GT: A person is sit-
ting in achar facing
the stage area.
Q: What is picture of?
A: Person sitting in
front stage

GT: A page of written
characters with a pair
of metal rim glasses on
top.
Q: What is this?
A: Arabic writing.

Figure 13: A sample from VizWiz [12] dataset, along with its captions and
question-pairs.
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5.2 Evaluation Metrics

A required step to monitor and validate the performance of our models is to

apply evaluation metrics on every training phase. In this way we evaluate the

quality of our generated text outputs as well as monitor the general improvement

of our models in the scope of training efficiency. In our work, our primary

output with respect to the models is textual, as we have defined various image

to text models both in image captioning and visual question answering tasks. In

general, our textual outputs are either descriptive captions or straight answers

with respect to image-question pairs. The most common evaluation metrics

that are applied on textual data, are based from NLP applications such as text

summarization and machine translation.

Thus, all the metrics that we used for validation are widely used. Our main

metrics are Rouge-L [15], Bleu [20], METEOR [3] and CIDEr [33], which we

will describe extensively in the following submodules. As we have discussed

above a lot of research works and publications employ a certain framework,

in which they provide their outputs in a specific format and internally many

evaluation metrics are calculated. In this way, the research community not only

can retain transparency in their final results, but also can avoid any marginal

error through the manual calculation of the metrics. The EvalAI [36] framework

is a trustworthy environment in which many challenges with respect to datasets

and tasks are being hosted. Therefore, a public challenge of a task is required

for any participant to upload its results. The majority of our tasks in our work

are represented as an EvalAI challenge. Except for COCO [16] image captioning

which is not represented, all the other respective tasks are being hosted in the

EvalAI framework. From our side we provided our final results in the EvalAI

infrastructure in order to be consistent and also have clarity in our achievements.

As we have outlined in the previous sub-modules, the generated outputs of the

VQA [2] task are computed autoregressively. However it is not commonly used

to apply evaluation metrics such as Rouge-L and Bleu. It is feasible to calculate

all these metrics, but we aligned with the concept of any VQA challenge in

the EvalAI framework to handle these tasks as classification tasks. Accuracy is

the main metric of any VQA challenge [2] and it is calculated internally via a

specific formula as well as the assistance of human annotations.

Accuracy = min

(
# humans that provided that answer

3
, 1

)
(5.1)
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5.2.1 Bleu

For many NLP tasks, we can use common metrics like accuracy or F1-score, but

what do you want to measure the quality of a generated output? Essentially

those common metrics fail to capture the quality of a text output. Bleu [20] is

probably the most common metric with respect to text evaluation.Its extensive

usage belongs to the machine translation domain, but it is applicable for image

captioning tasks as well.

The main concept of Bleu [20] metric is to compare the n-grams of the generated

captions with the n-grams of the referenced captions. A n-gram is just a set of

ordered words in a sequence. With respect to the length of a n-gram, we can

define a unigram, bigram, trigram or even a 4-gram. As their titles suggest,

the prefix defines the length of a n-gram. The computation of Bleu is based

essentially on the n-gram precision. A n-gram precision is the ratio of the

number of words that match between the generated and referenced caption to

the number of words of the generated caption. Originally, the precision metric

ranges from zero to 1, so higher precision means more qualitative captions. The

unigram precision formula is calculated as follows:

Uni-gram Precision =
Number of words that match

Number of words in generated caption
(5.2)

In many cases we can notice over-regenation of outputs or in other words re-

peated words. To handle this issue, Bleu metric has integrated a modified

n-gram precision that limits the number of times that it counts a specific word.

Mainly because we should take into account the order of a sentence, we should

apply all of the variations of n-grams. Last step of Bleu calculation is to

apply the geometric mean of the respective n-grams. Therefore we can also

have variations of the Bleu metric depending on the range of the n-gram preci-

sions.Consecutively, with respect to the n-gram precisions we can define Bleu-1,

Bleu-2, Bleu-3 and Bleu-4 evaluation metrics as follows:

BLEU-1 = p1 (5.3)

BLEU-2 = 2
√
p1 · p2 (5.4)

BLEU-3 = 3
√
p1 · p2 · p3 (5.5)

BLEU-4 = 4
√
p1 · p2 · p3 · p4 (5.6)
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To sum up, the Bleu metric has its own advantages and disadvantages. It is

very effective, commonly used by the research community and straightforward to

compute it. However, it doesn’t incorporate the semantics of a sentence, which

is very important especially for image captioning and also it doesn’t consider

the recall of the n-grams.

5.2.2 Rouge

In the same scope as Bleu’s, the calculation of Rouge metric is based on the com-

parison of the n-grams between the generated and the referenced captions.Apart

from machine translation tasks, it is widely used also in text summarizations

tasks. In contrast to Bleu metric, Rouge [15] takes into account both the preci-

sion and recall of the n-grams within a sentence.

The recall n-gram is just the ratio of the number of words that match between

the generated and the referenced output to the number of words in the referenced

output. To combine the recall and the precision of n-grams we can utilise the

F1-score, which is just the harmonic mean of those two elements. Therefore the

Rouge-1 metric is actually the F1-score of the uni-grams. In the same way, we

can employ the bi-grams so that we can define the Rouge-2 metric. However,

in our work we utilise neither Rouge-1 nor Rouge-2 metrics. We applied the

enhanced Rouge-L [15] metric, which does not compare n-grams, but instead

treats each summary as a sequence of words. Essentially, in the calculation of

recall and precision, it looks at the longest common sub-sequence ,also known

as LCS, within a sentence.The longest common sub-sequence is a sequence that

appears in the same relative order, but not necessarily contiguous. Thus, we

can calculate the Rouge-L recall and precision equations as follows:

ROUGE-L Recall =
LCS(gen,ref)

Number of words in referenced captions
(5.7)

ROUGE-L Precision =
LCS(gen,ref)

Number of words in generated captions
(5.8)

The main advantage of Rouge-L over Rouge-1 and Rouge-2, is that it doesn’t

depend on consecutive n-grams matches, so it can capture the sentence structure

more accurately.
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5.2.3 Meteor

In the same rationale with the calculations of BLEU and Rouge, the ME-

TEOR [3] evaluation metric is based on the comparisons of the uni-grams be-

tween the referenced and generated caption.It combines both precision and recall

uni-grams, computing in its final step the respective Fmean score.

Its main attribute is that it can handle semantic similarity, as it has its own syn-

onymy database that accounts for synonyms or even for paraphrases.Furthermore,

it calculates the root of every word in the captions, invoking the stemming tech-

nique.The main difference of the METEOR [3] metric in contrast to the rest

metrics is that it adds more weight to the recall of an uni-gram.In this way, the

Fmean score is altered by certain coefficients and its formula is displayed below:

Fmean =
10PR

R + 9P
(5.9)

Additionally, the METEOR evaluation metric incorporates a penalty function to

account for the ordering within a sequence. The penalty function p is calculated

as:

p = 0.5

(
c

um

)3

(5.10)

where c represents the number of matching uni-grams, and um is the total

number of uni-grams. The final METEOR score is obtained by multiplying the

Fmean-score with 1 − p, where METEOR = Fmean(1 − p).

5.2.4 CIDEr

In contrast to all previous evaluation metrics, the CIDEr [33] metric is the most

interesting and important measurement. It is especially designed for image

captioning tasks and all the research community put an extra focus on it, to

validate the performance of their models.It utilises all the n-grams variations,

ranging from uni-gram to 4-gram.

CIDEr [33] metric is an automatic metric used to evaluate the quality of machine

generated captions. Mainly, it measures the similarity between a generated cap-

tion and a set of reference captions. By the term “automatic”, we mean that

it doesn’t require human evaluation at all, as it can handle context similarity

itself.Its main attribute is that it is consensus based, meaning that it is de-

signed to capture the consensus view of the reference texts. In other words, it

gives higher scores to generated captions that are similar to multiple reference
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captions rather than just one reference caption.

The CIDEr [33] metric integrates stemming, computing the root word in both

generated and reference captions. CIDEr [33] represents each sentence using

its set of n-grams and computes the overlap between the n-gram sets of the

generated and reference sentence. It employs the TF-IDF [30] approach to

assign weights to the n-grams based on their importance. The cosine similarity

of each n-gram of length n adjusted with its respective TF-IDF [30] weights is

calculated using the formula:

CIDErn (ci, Si) =
1

m

∑

j

gn (ci) · gn (sij)

∥gn (ci)∥ ∥gn (sij)∥
(5.11)

where ci is the generated caption, Si is the set of reference captions, m is the

number of reference captions, and n represents the length of n-grams. The

CIDEr metric for a caption ci is then calculated as:

CIDEr (ci, Si) =

N∑

n=1

wn CIDErn (ci, Si) (5.12)

5.3 Experiments Setup

In all of our experiments we tried to be consistent and to maintain a homogene-

ity. Therefore, we followed a global approach to define settings and parameters

in our implementations. However, with respect to our tasks and to our under-

lying model capacities, certain settings may be modified.

The majority of our implementations utilised the powerful NVIDIA A100 32GB

RAM as its main GPU. The internal default settings of the Mapping Network are

an integrated Transformer [32] with 8 Encoder blocks and the Clip prefix of the

Mapping Network output to have a length of 10. The main criterion of our tasks,

either image captioning or visual question answering, is set to cross entropy,

whereas their training phase lasts for about 10 epochs. For optimization, we

use AdamW with weight decay fix, with a learning rate of 2e-5 and 5000 warm

up steps. The batch size of the processes is based on which GPT-2 [22] decoder

variation we will use. Therefore, the GPT-2 decoder has a batch size of 23,

whereas the GPT-2 XL decoder has a batch size of 8.

In our diffusion generating process, as we have outlined, our main diffusion

model is the “Compvis/stable-diffusion-v1-4” [24]. Nevertheless, the number
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of inference steps in our stable diffusion pipeline have been modified. We have

altered the argument from 50 to 100. In general, results are better the more steps

you use, however the more steps, the longer the generation takes. Furthermore,

we have kept the default guidance scale parameter of the pipeline. Guidance

scale is a parameter that can increase the adherence to input textual prompt

of the user. Thus, following our adjusted settings, we have accepted a trade off

in our diffusion process, between long inference time periods and quality in our

generated images.
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Chapter 6

Results

Our main goal in all of our experiments was to explore all the aspects of our

proposed approaches. We tried to execute all the possible combinations to

validate which is the optimal approach in terms of performance. Through this

extensive investigation process we confirmed the advantages and limitations of

each approach, trying to consolidate the most effective solution for both image

captioning and visual question answering tasks.

As we have discussed in the previous sections, our straightforward experiments

follow our proposed vanilla architecture for image captioning and visual question

answering. Optionally, these two tasks can be combined and trained in parallel

via multi task learning [5]. In this way, the multi task learning technique can be

applied in the respective architectures and it can offer a significant dimension in

our investigation process. Furthermore, the diffusion process can be very useful

for generating additional training data for our experiments. We provide 2 main

variations for the diffusion process, the simple diffusion process, , also known as

‘One-shot generation’, which generates a single image with respect to the input

desciprtion and the Clipscore diffusion process (Section 4.3.2), which generates

five potential images and picks the highest scored image. All of our techniques

can contribute, but also can affect the performance of a model.

A plain modification in our architecture is to alter the pretrained model vari-

ations in our architecture. Although our vision model Clip [21] has been re-

mained intact through all of our experiments, our decoder GPT2 [22] has been

adjusted. Obviously, our expectations were confirmed that the XL model vari-

ant of GPT2 [22], would have more predictive power in their textual generations

as it has bigger capacity than our default decoder (GPT2-Small). In this way,
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we have added another option in our experiments, to leverage the power of

GPT2 [22] language model.

6.1 Comparison

As we have discussed in our previous sections, many approaches have been

proposed both for image captioning and visual question answering. The ar-

chitectures may vary significantly, with different vision encoders and language

models as well as with internal techniques in the architecture, which an affect

the model’s performance. However, the evaluation metrics of a model can be

considered as the main criterion, to conclude which approach should be adapted

for our respective tasks.

At a quick glance from the Table 6.1, we can notice that many models that

considered to be state-of-the-art have lower performance than our baseline ap-

proaches for image captioning. Recent suggested models, such as KOSMOS-

1[13] model, which has also the same number of parameters as in our models,

marked a lower CIDEr[33] score in the COCO[16] validation dataset. Therefore,

we can notice a significant gap in terms of performance, between prior SOA mod-

els and our proposed models. Our main models MTL DF and MTL CS, which

were trained though multi task learning both for image captioning and visual

question answering outperform all the former approaches. The main difference

of those models is that the former has been trained with ‘one-shot generation’

diffusion process, whereas the latter with the diffusion clipscore process that we

described in our previous sections. In more detail, the MTL CS model achieved

a slightly better CIDEr score of 99.67% in contrast to MTL DF which achieved

a CIDEr score of 98.56%.

Table 6.1: Comparison with prior SOA models on image captioning on
COCO [16]. Our model MTL CS, trained through multi-task-learning with ad-
ditional generated images, obtained the maximum CIDEr and Bleu-4 scores.

Method Vision Model Language Model Params B4 CIDEr

VLKD[7] CLIP ViT-B/16 BART-L 0.5B 16.7 58.3
KOSMOS-1[13] CLIP ViT-L/14 Transformer 1.6B 84.7
CAPDEC[19] CLIP RN50 GPT2-L 1.1B 26.4 91.8
VIRTEX[8] RN101 Transformer 94

Baseline CLIP ViT-B/32 GPT2 0.2B 27.98 90.91
Baseline CLIP ViT-B/32 GPT2-XL 1.6B 28.16 91.87
MTL DF CLIP ViT-B/32 GPT2-XL 1.6B 29.66 98.56
MTL CS CLIP ViT-B/32 GPT2-XL 1.6B 29.87 99.67
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In the same manner, in the scope of VQAv2 [2] dataset, the MTL CS model

achieved a competitive performance in the visual question answering as well.

As we can see from the Table 6.2, our main model has successfully gained

the ability to capture the semantics of an image with respect to a question.

Moreover, the model marked a sufficient Accuracy score of 60% in contrast to

other models. We have to mention that other architectures such as the multi

modal Flamingo[1], which was introduced by Deep Mind and has a heavyweight

architecture with more than 80 billion parameters, achieved a lower Accuracy

score in the VQAv2 [2] challenge.

Table 6.2: Comparison with prior SOA models on visual question answering
on VQAv2 [2]. Our model MTL CS, trained though multi-task-learning with
additional generated images, achieved a remarkable Accuracy.

Method Vision Model Language Model Params Accuracy

KOSMOS-1[13] CLIP ViT-L/14 Transformer 1.6B 51.0
FLAMINGO[1] NFNet-F6 Chinchilla 80B 56.3
BLIP-2[14] 1 ViT-L FlanT5 XL 3.3B 62.3
MCB[11] RN152 LSTM 64.7

Baseline CLIP ViT-B/32 GPT2 0.2B 51.7
MTL DF CLIP ViT-B/32 GPT2-XL 1.6B 59.24
MTL CS CLIP ViT-B/32 GPT2-XL 1.6B 60.39

6.2 Qualitative Results

Let us provide you, a sample of our results for our image captioning and vi-

sual question answering tasks. Based on random samples from the validation

COCO[16] dataset and the test VQAv2[2] dataset, our MTL CS model gen-

erated its own captions and answers respectively. From the Figures 14,15 we

can confirm that our model has gained a wide generalisation ability so that it

can interpret correctly not only the main elements of an image but also the

relationship between them. In the context of the visual question answering,

we can validate that it can address a certain question based on a image and

consequently generate a meaningful answer.

1Zero-shot Evaluation
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Naturally, there are some cases, in which our model fails to capture main fea-

tures of an image. Certain images may be too complex for the model to generate

proper captions or answers. In the Figure 16, we can notice certain examples

which the MTL CS model misinterpreted the content of an image.

GT: A person walking
in the rain on the side-
walk.
P: A person walking
down a street with an
umbrella.

GT: The telephone
has a banana where
the receiver should be.
P: A banana is sitting
on a table next to a
phone.

GT: A dirt bike rider
doing a stunt jump in
the air.
P: A person on a mo-
torcycle doing a trick
in the air.

GT: Sunrise on an air-
port tarmac with a
plane at ramp.
P: A plane parked at
an airport tarmac.

GT: An old green car
parked on the side of the
street.
P: A vintage car parked
on the side of the road.

GT: Two people sit-
ting on dock looking
at the ocean.
P: A couple of people
sitting on a bench.

Figure 14: Captioning results generated by our model MTL CS, on random
samples from COCO [16] validation dataset.
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Q: What is on the ele-
phant’s head?
A: Scarf.
P: Scarf.

Q: Is the boy playing
baseball?
A: Yes.
P: Yes.

Q: How many giraffes
can been seen?
A: 2
P: 2

Q: What color is the
man’s jacket?
A: Red.
P: Red.

Q: Is it still snowing in
the picture?
A: Yes.
P: Yes.

Q: What is this ani-
mal?
A: Zebra.
P: Zebra.

Figure 15: VQA results generated by our model MTL CS, on random sample
from VQAv2 [2] test dataset.
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GT: A man sitting on
a toilet in front of the
computer.
P: A man sitting at a
desk using a laptop.

GT: A giraffe with 3
birds on his fur.
P: A group of giraffes
are eating leaves from
a tree.

GT: A bright room
with green walls.
P: A kitchen with a
green table and a ta-
ble.

GT: A metal statue of
two women sitting on
a bench.
P: Two people sitting
on a bench next to a
statue of a statue in a
street.

GT: A young girl sits
in the bottom bunk of
her bunkbed.
P: A person is laying
in a bathroom with a
small cribs in a bath-
room.

GT: A doorway lead-
ing into a delapitated
wall in a room.
P: A broken bath-
room with a damaged
window and a broken
window.

Figure 16: Captioning examples that our model MTL CS failed to generate ef-
fectively.
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6.3 Ablation

In order to better understand the importance of different components in our

proposed architectures, we performed ablation studies. Through our ablation

process, we tried to analyse the contribution and impact of our main modules,

elements or techniques that take part in our architecture. By disabling main

parts of the model or inflating/deflating certain parameters of our approach we

can validate the effects in the model’s performance.

With respect to the Tables 6.3,6.7,6.8 we should mention that we try to im-

plement all possible combinations within our architecture. In other words, we

adjust our decoder model variant as well as apply multi task learning. In this

point we should outline that our multi task learning technique requires both an

image captioning and visual question asnwering dataset. Therefore, it can be

applied only for the COCO and VizWiz dataset and not for the TextCaps. Fur-

thermore, our diffusion strategies can only be applied for image captioning as a

description and not a question-answer pair, is required to generate an image. In

the Tables 6.3,6.7,6.8 our diffusion approach is defined with ‘O’, which stands

for ‘One-shot generation’, and ‘CS’, which stands for ‘Clipscore’.

Table 6.3: Effect of multi task learning (MTL) and diffusion (DF) for image
captioning on COCO [16] along with different GPT2 [22] variants. ‘O’ : ‘One-
shot generation’; ‘CS’: ‘Clipscore’; ‘DF’ : ‘Diffusion’; ‘TR’ : ‘using the original
training set’.

GPT2 MTL DF TR B1 B2 B3 B4 R L M CIDEr

S ✓ 71.72 54.6 39.48 27.98 52.61 24.89 90.91
S O ✓ 71.91 54.63 39.29 27.65 52.45 24.73 90.57
S CS ✓ 70.25 52.48 37.44 25.02 51.59 24.4 87.24
S CS 63.55 44.00 28.63 18.04 45.70 20.04 59.25

XL ✓ 72.11 55.1 40.14 28.16 53.12 25.53 91.87
XL O ✓ 71.07 52.86 37.25 25.62 51.14 23.99 86.42
XL CS ✓ 71.24 55.07 40.39 28.70 52.66 24.19 85.84
XL CS 65.13 45.97 30.69 20.00 46.58 21.50 68.48

S ✓ ✓ 68.92 51.54 36.53 25.4 50.76 23.52 83.15
XL ✓ ✓ 70.94 53.06 37.67 26.17 51.7 24.29 89.75
S ✓ O ✓ 70.61 53.34 38.12 26.68 51.83 24.20 87.54
XL ✓ O ✓ 73.77 56.62 41.36 29.66 53.65 25.67 98.56
S ✓ CS ✓ 71.65 54.36 39.00 27.32 52.07 24.28 88.36
XL ✓ CS ✓ 73.53 56.57 41.45 29.87 53.82 25.88 99.67

From Tables 6.3 and 6.7, we can confirm that all the experiments, which are

based solely on the synthetic datasets, have very low performance. Probably, it

is required to provide at least a partition of the original training data, as the

model should obtain and learn from certain features from the source data. Gen-
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erally, we can confirm from all the Tables that the diffusion Clipscore is more

effective and efficient than the plain Diffusion process. Intuitively, we expected

that outcome, because choosing among five potential generated images is better

and safer than processing a zero shot generated image. With respect to the ab-

lation studies of COCO dataset [16] (Table 6.3), we can confirm that although

the XL decoder improves the performance, the inclusion of the MTL technique

boosts even further. Therefore, the model which incorporates both MTL, dif-

fusion Clipscore and the XL decoder, marks the best score of the CIDEr [33]

metric (99.61%) outperforming all the rest model variants. Nevertheless, the

accuracy of the MTL CS model in the VQA [2] task is also the greatest (60.39%

in Table 6.2).The achievements of the MTL CS model are remarkable, because

it is a single model and has gained more predictive power than any other model.

Consecutively, it is obvious that the Multi task learning approach is more than

productive in the COCO dataset, meaning that the relative tasks of image cap-

tioning and visual question answering should be trained in parallel as the model

shares the additional features of its relative tasks.

In the same manner, we can confirm the above conclusions with respect to the

Textcaps [29] dataset (Table 6.8). The combination of a XL decoder with the dif-

fusion process of Clipscore significantly improves the model’s performance. The

same applies for the VizWiz [12] dataset (Table 6.7), where the inclusion of XL

decoder and Clipscore facilitates the model. However, we should point out that

the MTL approach has not so positive results with respect to the VizWiz [12]

dataset. As we have outlined in the previous sections, the VizWiz [12] dataset

is not as representative and reliable as the COCO, because of its low qual-

ity image-text pairs. Nevertheless, the MTL CS model variant of the VizWiz

marked the best score in Accuracy (42.93% in Table 6.7) in its VQA task.

Apart from our main ablation studies, in which we implement all the variations

of our proposed architecture, we also investigated other aspects of our approach.

In our next ablation experiments, we focused on the number of additional gen-

erated images via diffusion, the impact of weight loss as well as the impact of

the batch size in the multi task learning process. The main dataset, in which

those ablation process were applied, is the COCO dataset. As we have already

discussed in the previous sections, the COCO dataset is the most reliable and

representative dataset in contrast to the VizWiz and TextCaps dataset. In all

the below ablation experiments, the decoder of our architecture was set to its

smallest model variant.
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As we have outlined in the Section 4.3.1, the upper threshold of generated images

in COCO dataset is 100 thousand images based on their respective captions.

With respect to that limit we tried to decompose the impact of the diffusion

process. As can be seen in Table 6.4, we split our generated images into four

batches of 20, 40, 60 and 80 thousand images. We can validate that the more

training images we obtain through the diffusion process, the better the results

will be. Intuitively, this behaviour is expected as the number of qualitative

training images plays an important role, almost in any neural network process.

Table 6.4: Impact of generated images for image captioning (CIDEr) on
COCO [16].

Gen Images CIDEr

20K 83.54
40K 84.29
60K 85.15
80K 86.5
100K 88.36

In the same manner, we have discussed in the Section 4.2 that the weight losses

between the relative processes should be adjusted. The default setting in our

approach is 0.5 for each task respectively. Inflating the weight with respect to

one task and consecutively deflating the remaining weight, should assign more

emphasis on the inflated task. Therefore in Table 6.5, we can confirm that

assigning more weight to image captioning will have as a result the model to

perform better in image captioning and vice versa.

Table 6.5: Effect of MTL weight sizes for image captioning (CIDEr) and visual
question answering (Accuracy) on COCO [16].

IC Weight VQA Weight CIDEr Accuracy

0.2 0.8 72.91 50.54
0.4 0.6 85.00 50.41
0.6 0.4 86.80 49.34
0.8 0.2 87.20 48.15
0.5 0.5 83.15 48.00

Additionally, we described in our proposed multi task learning technique that

we utilised data loaders with respect to each task. As a result, we experiment
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with the batch sizes that the respective designed data loaders can provide. Gen-

erally, in our experiments the default setting of the batch size was 32 in each

task respectively. In the Table 6.6, we can notice that the best performance

is achieved by a model, in which the batch size of the designed image caption-

ing data loader was 32, whereas the batch size of the designed visual question

answering data loader was 16. Thus, we can confirm that overall the model

requires not only a bigger amount of image captioning observations in contrast

to VQA [2], but also in the ratio of 2 to 1.

Table 6.6: Effect of MTL batch sizes for image captioning (CIDEr) and visual
question answering (Accuracy) on COCO [16].

IC Batch VQA Batch CIDEr Accuracy

16 32 87.50 49.74
16 64 88.48 50.81
32 16 89.52 51.04
64 16 87.61 50.40
32 32 83.15 48.00

Consequently, we tried to explore all the aspects of our above propositions.

Via our ablation processes, our goal was to deeply understand the advantages

as well the limitations of each element. Of course, we took into account the

randomness in our experiments, but our general objective is to define the optimal

configurations in our architecture.
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Table 6.7: Effect of multi task learning (MTL) and diffusion (DF) for image
captioning and visual question answering on Vizwiz [12] along with different
GPT2 [22] variants. ‘O’ : ‘One-shot generation’; ‘CS’ : ‘Clipscore’; ‘DF’ :
‘Diffusion’; ‘TR’ : ‘using the original training set’.

GPT2 MTL DF TR B4 R L M CIDEr ACC

S ✓ 14.33 39.22 16.2 38.34
S O ✓ 16.28 41.15 17.37 44.46
S CS ✓ 17.97 42.6 17.92 45.55
S CS 10.81 37.88 14.86 28.93

XL ✓ 18.51 41.96 18.09 50.74
XL O ✓ 18.51 43.22 19.1 52.38
XL CS ✓ 19.41 43.67 19.29 53.63
XL CS 14.81 39.58 16.32 35.91

S ✓ ✓ 11.25 36.86 13.99 32.27 39.86
XL ✓ ✓ 11.02 35.92 13.56 21.56 36.16
S ✓ O ✓ 10.8 36.51 14.11 29.13 37.42
XL ✓ O ✓ 12.9 37.72 15.32 33.73 41.13
S ✓ CS ✓ 11.05 36.32 13.83 28.38 38.54
XL ✓ CS ✓ 13.98 38.23 15.54 35.69 42.93

Table 6.8: Impact of diffusion (DF) for image captioning on TextCaps [29]
along with different GPT2 [22] variants. ‘O’ : ‘One-shot generation’; ‘CS’ :
‘Clipscore’; ‘DF’ : ‘Diffusion’; ‘TR’ : ‘using the original training set’.

GPT2 DF TR B4 R L M CIDEr

S ✓ 14.41 39.44 17.35 32.32
S O ✓ 13.91 38.98 17.57 33.95
S CS ✓ 14.01 39.52 17.97 34.66
S CS 11.41 37.13 16.37 29.35

XL ✓ 15.13 39.74 18.02 37.23
XL O ✓ 15.33 39.74 18.07 37.81
XL CS ✓ 15.5 39.84 18.22 38.73
XL CS 13.61 38.35 17.45 34.24
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Chapter 7

Conclusion

In our project we demonstrated several approaches and techniques regarding

image captioning and visual question answering tasks. We provided a thorough

analysis of our propositions and we performed extensive experiments to investi-

gate all the aspects of our solutions. Through our experiments we applied not

only our plain architecture, but also an enhanced version of it, where we intro-

duced a unified solution integrating both image captioning and visual question

answering.

In addition, we demonstrated how beneficial and effective is the multi task learn-

ing technique, where we achieved better performances in training a single model

to handle two relative tasks. In more detail, we showed that our MTL CS model

not only outperformed all the prior SOA models in image captioning, but also

achieved a competitive performance in visual question answering. Additionally,

we introduced an efficient diffusion approach, in which we can generate quali-

tative and descriptive images to enrich our original datasets. We validated that

the generated images can contribute significantly to the model’s performance.

To sum up, our vital diffusion strategy in conjuction with the multi task lean-

rning technique can offer a unified model that has more predictive power than

a model which has been solely trained for one task. This proposal is actual

and the main novelty of this project, where our initial motivation was to offer

a single unified model that could be competitive in both tasks.
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Concerning future work and future directions, we propose:

• The conduction of extensive experiments using larger datasets such as

LAION-5B [27]. Large-scale datasets can improve significantly the model’s

performance, as the model can learn different features from billion high

quality image-text pairs.

• The utilization of our clipscore diffusion strategy with respect to visual

question-answer pairs. Related works [4] have been implemented, where

we can construct a new question-answer pair based on a given caption.

Nevertheless, the inverse process would be much more beneficial. In other

words, to create a descriptive caption based on a question-answer pair so

that we can generate an image through our diffusion proposal.

• The usage of large-scale pretrained dialogue models. Large language mod-

els that have been trained on conversations, would give us the ability to

have a conversation with respect to an image and consecutively answer

any questions that may arise.

• An optimization of our proposed diffusion strategy. Given that, a descrip-

tive caption is required for our diffusion process, it would be beneficial if

we can employ large language models, which have been trained for para-

phrase generation [23], to rephrase input captions In this way, our solution

would offer us another perspective on image generation process.
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Appendix A

Appendix

A.1 Sample of Generated Images

Let us present below, certain visual representations Figures 17,18 of our gen-

erated images, from our innovative diffusion Clipscore process (Section 4.3.2),

in the context of VizWiz [12] and TextCaps [29] dataset. With respect to a

descriptive caption of an image, we generate five potential images so that the

image with the highest Clipscore value is selected. We should mention that the

original image is displayed on the left, while the generated image is displayed

on the right, so we can evaluate the quality of the generated images.
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“A poster showing Dracula with his hand lifted behind a spider web.”

“A stack of identical books by author Chinua Achebe.”

“A baseball game being played with a Coca-Cola billboard in the background.”

Figure 17: A sample of generated images from TextCaps [29], with captions
shown underneath. (Left) Original image; (Right) Generated image.
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“A person uses a pair of brown hiking boots.”

“A can of Coca Cola on a counter is shown.”

“Two quarters, a nickel, and a dime sitting on a wooden surface.”

Figure 18: A sample of generated images from VizWiz [12], with captions shown
underneath. (Left) Original image; (Right) Generated image.
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A.2 Additional Results

As we have demonstrated certain qualitative results in Section 6.2, let us pro-

vide below additional outputs from our MTL CS model, which was trained via

multi task learning and in the context of COCO dataset [16]. The partition

of generated images via diffusion clipscore pipeline is integrated in the scope

of its training process. We select randomly images from the validation dataset

of COCO [16] and the test dataset of VQAv2 [2] respectively. The generated

outputs of our model are displayed in Figures 19, 20, 21, 22.

GT: Many sheep
graze in a grassy
pasture in a valley.
P: A herd of sheep
grazing in a field.

GT: An airplane fly-
ing away in a cloudy
sky.
P: A plane flying
through a cloudy sky.

GT: A orange cat tak-
ing a nap on top of a
car.
P: A cat sleeping on
top of a car.

GT: Wild animals
grazing near a lagoon
surrounded by trees.
P: A zebra and a
baby giraffe standing
next to a tree.

GT: A baby holding
a spoon looking at a
cupcake and candle.
P: A young child sit-
ting in front of a
chocolate cake.

GT: Several people
riding on the back of
elephants.
P: A group of ele-
phants walking down
a road.

Figure 19: Captioning results generated by our model MTL CS, on random
sample from COCO [16] validation dataset.
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GT: Two young men
walking down a run-
way toward an air-
plane.
P: Two men are walk-
ing towards a plane.

GT: A chef carrying a
large pan inside of a
kitchen.
P: A woman in a
kitchen cooking some-
thing.

GT: An old military
jet fighter climbing in
altitude.
P: A fighter jet flying
through the air in the
blue sky.

GT: A city street with
people walking and
vehicles on the road.
P: A street with peo-
ple walking.

GT: Creamy cheese-
cake dessert with whip
cream and caramel.
P: A piece of cake on
a plate with a fork.

GT: Dog in parking
lot and on a leash.
P: A dog is standing
in front of a truck of a
parking lot.

Figure 20: Captioning results generated by our model MTL CS, on random
sample from COCO [16] validation dataset.
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Q: Is that a fork or
knife ?
A: Fork.
P: It’s a fork.

Q: What are they do-
ing?
A: Playing Wii.
P: Playing Wii.

Q: What season is
shown here?
A: Winter.
P: Winter.

Q: Whose shadow is
on the ground?
A: Batter’s.
P: Batter’s shadow.

Q: What color is the
traffic light?
A: Red.
P: Red.

Q: What kind of game
is this?
A: Baseball.
P: Baseball.

Figure 21: VQA results generated by our model MTL CS, on random sample
from VQAv2 [2] test dataset.
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Q: What kind of ani-
mal is this?
A: Dog.
P: Dog.

Q: What fashion ac-
cessory is on top ?
A: Tie.
P: Tie.

Q: What room is this
a picture of?
A: Bathroom.
P: Bathroom.

Q: What is behind the
elephants?
A: Trees.
P: Elephant.

Q: Is the man wearing
a helmet?
A: Yes.
P: Yes.

Q: Who is the sponsor
on the wall?
A: Usta.
P: The tennis player.

Figure 22: VQA results generated by our model MTL CS, on random sample
from VQAv2 [2] test dataset.
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