
THÈSE DE DOCTORAT DE

l’École Normale
Supérieure Rennes
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Hanwei ZHANG
«Deep Learning in adversarial context »

Thèse présentée et soutenue à Rennes, le
Unité de recherche : IRISA

Rapporteurs avant soutenance :

Michel Crucianu CNAM, PR
Cecilia Pasquini University of Trento, Assistant professor

Composition du Jury :
Président :
Examinateurs : Changbo Wang ECNU, PR

Yuan Xie ECNU, PR
Aimin Zhou ECNU, PR
Patrice Quinton ENS, PR émérite

Dir. de thèse : Laurent Amsaleg CNRS, IRISA, Rennes, DR
Co-dir. de thèse : Yannis Avrithis Inria, IRISA, Rennes, ARP

Teddy Furon Inria, IRISA, Rennes, CR

ACKNOWLEDGEMENTS

I would like to give my sincere thanks to my supervisors, Laurent Amsaleg, Yannis Avrithis,
and Teddy Furon, for their outstanding guidance and advice over three years. They not only
inspired me, helped me to develop further on my academic journey but also provided personal
support so that I went through the difficult moments. I will always remember what they taught
during my PhD and carry them as a fortune for the rest of my life. I feel lucky to be a student of
my supervisors, in addition to their scientific knowledge and curiosity, I will also never forget
the kindness and supportiveness they have shown.

A special thanks to my reviewers and jury members, Patrice Quinton, Michel Crucianu,
Cecilia Pasquini, Changbo Wang, Yuan Xie, and Aimin Zhou for evaluating my work and giving
valuable feedback.

I would also like to thank the PRoSFER program between East China Normal University
and École normale supérieure de Rennes so that I have the opportunity to study for my PhD in
an international environment. I would like to thank Aimin Zhou who inspired me to go further
in academics and supported me to join the PRoSFER program. Thank you Patrice Quinton for
helping me find the PhD position and introducing me to Laurent. Besides, I would like to thank
the Chinese Scholar Council for funding my thesis, as well as IRISA/INRIA for welcoming me
to the Lab. Furthermore, I would like to thank Inria which supported me for an extra six months
extension for my PhD due to the effect of Covid-19.

In particular, I would like to thank the ladies who have a superpower and help me to solve
administrative issues. They are Deborah France-piquet, Aurelie Patier, Lucy Liu, and Xiaoling
Liu. Thank you Deborah for welcoming me to ENS de Rennes, helping me to settle down in
Rennes, and making me feel at home. Thank you Aurelie for everything. You make my life easier.
Thank you Lucy and Xiaoling for helping me and caring about my study as well as my life.

I would like to thank all the former and current team members of LinkMedia not only for
all the nice discussions and the time spent together but also for the care and supports for me. I
would like to give a special thank to Oriane Simeoni and Marzieh Gheisari khorasgani. I feel
lucky to go through my PhD with Oriane and Marzieh, who share their love and energy with me.

Last but not least, I would like to thank my family and friends who provided me with their
support and unconditional love throughout my life.

3

TABLE OF CONTENTS

Résumé en français 9

1 Introduction 17
1.1 Deep learning and deep neural network . 17

1.2 Adversarial examples . 18

1.3 Overview and contributions . 20

2 Background 23
2.1 Machine learning . 24

2.2 Classification of images by DNN . 25

2.3 Vulnerabilities in ML: A bit of history and vocabulary 28

2.4 Adversarial images: definition . 30

2.5 Attacks . 32

2.5.1 White, grey, and black box . 32

2.5.2 White box: target distortion/target success 34

2.5.3 Target Distortion attacks . 36

2.5.4 Target Success attacks . 38

2.5.5 Other attacks . 43

2.6 Defenses . 45

2.6.1 Reactive defenses . 45

2.6.2 Proactive Defenses . 46

2.6.3 Obfuscation technique . 48

2.7 Positioning . 49

2.7.1 Challenges . 49

2.7.2 Our approaches and contributions . 51

I Attack 54

3 Evaluation 55

5

TABLE OF CONTENTS

3.1 Datasets . 56

3.2 Networks . 57

3.2.1 Off-the-shelf network . 57

3.2.2 Robust models . 59

3.3 Evaluation metrics . 60

3.3.1 Standard evaluation metrics . 60

3.3.2 Our evaluation metrics . 60

3.3.3 Other evaluation metrics we introduce 61

4 Smooth Adversarial Examples 63
4.1 Introduction . 63

4.1.1 Related work on imperceptibility . 66

4.2 Background on graph Laplacian smoothing 67

4.3 Integrating smoothness into the attack . 69

4.3.1 Simple attacks . 69

4.3.2 Attack targeting optimality . 69

4.4 Experiments . 72

4.4.1 Attacks and parameters . 72

4.4.2 White box scenario . 73

4.4.3 Adversarial training . 78

4.4.4 Transferability . 78

4.5 Adversarial magnification . 80

4.6 Conclusion . 81

5 Boundary Projection Attack 83
5.1 Introduction . 83

5.1.1 Graphical abstract illustrating the attacks. 83

5.1.2 Related work . 84

5.2 Method . 86

5.2.1 Stage 1 . 86

5.2.2 Stage 2 . 87

5.2.3 Discussion . 89

5.3 Experiments . 90

5.3.1 Parameters of the attacks . 91

5.3.2 Experimental investigations . 91

6

TABLE OF CONTENTS

5.3.3 Benchmark . 92

5.4 Predicting distortion after quantization . 95

5.5 Defense evaluation with adversarial training 99

5.6 Adversarial image examples . 100

5.7 Conclusion . 100

II Defense 103

6 Patch Replacement 105
6.1 Introduction . 105

6.1.1 Random noise vs. adversarial perturbation 105

6.2 Adversarial defense: related work . 109

6.2.1 Basic transformation . 109

6.2.2 Pixel Deflection . 111

6.2.3 D3 . 111

6.2.4 Feature denoising . 112

6.3 Our method: patch replacement . 112

6.3.1 Features, slices and patches . 113

6.3.2 Codebook . 114

6.3.3 Replacement Strategies . 117

6.3.4 Reconstruction . 119

6.3.5 Multi-layers . 120

6.4 Experiments . 120

6.4.1 Dataset, networks and attacks . 120

6.4.2 Optimization of the codebook for single layers 122

6.4.3 Strategies . 125

6.4.4 Multi-layer patch replacement . 127

6.5 Comparison with other defense methods . 130

6.6 Defense against smart attack . 131

6.7 Conclusion . 133

7 Conclusion and perspectives 135

Conclusion 135

7

TABLE OF CONTENTS

Bibliography 139

List of Abbreviations 155

List of Symbols 159

List of Figures 162

List of Tables 162

List of Publications 164

8

RÉSUMÉ EN FRANÇAIS

L’apprentissage artificiel (ou encore Machine Learning (ML) en anglais) est une branche de
l’intelligence artificielle (ou Artificial Intelligence (AI) en anglais) qui apprend à partir de données
pour identifier des modèles, faire des prédictions ou prendre des décisions avec un minimum
d’intervention humaine. Toutes les techniques de ML prennent des données en entrée mais visent
la réalisation de tâches différentes : classification, régression, regroupement, réduction de la

dimensionnalité et classement, etc..

Grâce aux données présentes en masse et aux ressources de calcul importantes, de plus en plus
d’applications faisant appel à de l’apprentissage artificiel apparaissent dans notre vie quotidienne.
Ces applications libèrent les gens des tâches répétitives et compliquées et leur permettent
d’acquérir facilement des informations utiles. Par exemple, les systèmes de reconnaissance
faciale aident les humains à s’identifier et à obtenir des autorisations. Les moteurs de recherche
rassemblent et organisent les informations liées à une requête donnée par l’indexation, la
recherche et la mise en correspondance. Les applications de navigation recommandent le meilleur
chemin vers leur destination pour un véhicule autonome.

La vision par ordinateur (ou Computer Vision (CV) en anglais) étudie comment les ordi-
nateurs peuvent acquérir, traiter, analyser et comprendre les images numériques. Les progrès
réalisés dans le domaine de l’apprentissage artificiel facilitent le développement d’algorithmes
s’appuyant sur de la vision par ordinateur pour notamment réaliser la tâche de classification

d’images. Lorsque cette tâche est mise en oeuvre par des réseaux neuronaux profonds, alors on
arrive à reconnaitre automatiquement et avec un très haut degré d’exactitude le contenu visuel
d’images. Pour cela, il faut entrainer le système en lui faisant tout d’abord analyser des milliers
d’images d’animaux, de lieux, de personnes, de plantes, etc.

Apprentissage profond

Au cours des dernières décennies, les Deep Neural Network (DNN)s se sont dévelop-
pés rapidement dans le domaine de la classification d’images. Convolutional Neural Network

(CNN) [LBBH98] obtient des caractéristiques visuelles utiles et sémantiques. Un Convolu-
tional Neural Network (CNN) profond typique possède de nombreuses couches et des archi-

9

Résumé en français

tectures complexes, comme AlexNet [KSH12], Inception [SVI+16], Deep Residual Network
(ResNet) [HZRS16a], DenseNet [HLVDMW17] et autres. Ce sont là quelques exemples bien
connus de Deep Learning (DL) ou de DNNs.

Au cours des dernières décennies, les réseaux profonds se sont développés rapidement
dans le domaine de la classification d’images. En particulier, les réseaux profonds convolution-
nels [LBBH98] réussissent à extraire des caractéristiques visuelles utiles à la classification et à
l’interprétation sémantiques des images. Ces caractéristiques existent dans un espace représen-
tationnel de grande dimension. Cet espace est analysé par les algorithmes qui calculent des
gradients permettant de séparer les images en classes différentes.

Sur cette base, des réseaux aux nombreuses couches et aux architectures complexes, comme
AlexNet [KSH12] et Inception [SVI+16], ont été proposés et sont particulièrement performants.
Ils réussissent à classer presque correctement toute image donnée au réseau, avec une probabilité
de confiance élevée. Les performances de classement sur ImageNet [RDS+15], un jeu de données
difficile et réaliste, sont proches de celles des humains.

La performance des réseaux profonds est souvent en relation avec leur profondeur : plus le
réseau est profond, meilleure est la performance. Cependant, la complexité élevée de ces réseaux
due à l’empilement d’un grand nombre de couches pour acquérir des caractéristiques visuelles
sémantiques entraîne des difficultés d’apprentissage. Cela pourrait être dû à la disparition des
gradients pendant la rétropropagation, appelée problème de disparition des gradients. Il existe
de nombreuses variantes de l’architecture originale des réseaux profonds qui ainsi tentent
de contourner ce problème. Cela inclut les unités résiduelles de ResNet [HZRS16a] et les
Transformers [VSP+17]. Les unités résiduelles court-circuitent certaines couches pendant le
processus d’entrainement, qui est ainsi plus simple, accéléré et offre la possibilité d’explorer un
plus grand espace de caractéristiques. Cependant, cela rend également ResNet plus vulnérable
aux perturbations. Les Transformer [VSP+17] utilisent le concept d’auto-attention qui aide
les réseaux à se concentrer sur les caractéristiques importantes. Dans l’ensemble, toutes ces
avancées augmentent les performances de tâches telles que la classification. Les réseaux profonds
réussissent non seulement à traiter des données d’image, mais aussi à traiter des images contenant
du bruit, des occultations ou d’autres artefacts visuels.

Exemples adversaires

En 2013, des chercheurs ont découvert qu’une légère modification des images conduisait
les classificateurs à faire des prédictions erronées [SZS+13]. La grande surprise était que ces

10

Résumé en français

Figure 1 – Cette image provient de la présentation Attacking Machine Learning : On the Security
and Privacy of Neural Networks de Nicholas Carlini. Elle montre que lorsqu’une perturbation
adverse est ajoutée à l’image d’un chat, cette image est ensuite classée comme étant un chien.

modifications étaient d’une faible amplitude et étaient presque imperceptibles à l’œil humain.
Cette découverte a révélé la vulnérabilité des réseaux profonds. C’est le début de l’étude des
phénomènes adverses.

Les phénomènes adverses affectent largement les algorithmes d’apprentissage artificiel. Ils
ont un impact sur différents médias, tels que l’image [SZS+13, GSS14, TPG+17], l’audio [CW18,
YS18, YLCS18], et le texte [RDHC19, ZSAL20, ASE+18]. En outre, les attaquants ne se con-
tentent pas de produire des exemples adversaires sauvegardés sous forme de données numériques,
des images e.g., dans un ordinateur, mais ils créent également des exemples adversaires dans
le monde physique, tels que les patchs adversaires [TVRG19]. Il s’agit d’images imprimées et
d’objets 3D [KGB16, SBBR16], capturés par des capteurs visuels comme les caméras, et qui
affectent les applications qui les utilisent.

Une Perturbation adverse (ou encore adversaire) est une perturbation invisible qui incite
les réseaux profonds à classer l’entrée perturbée dans une catégorie incorrecte. Par exemple,
grâce à des perturbations adverses, on peut amener le classificateur à classer un chat comme
un chien, comme dans Figure 1 1. En outre, les phénomènes adverses se transmettent entre les
classificateurs. Les attaques qui tirent parti d’une certaine vulnérabilité d’un réseau particulier
peuvent tromper d’autres réseaux, quels que soient l’architecture ou l’ensemble d’entraînement
qu’ils utilisent – on parle alors de la propriété de transférabilité de ces exemples adversaires.

Modifier un contenu visuel en un autre est un gros problème [EEF+18, TVRG19, TRC19a,
YLDT18, GSS14]. Un attaquant dont le but est de tromper le classificateur pour qu’il prenne des
décisions inappropriées peut facilement perpétrer une perturbation adversaire. Ceci est inquiétant
et dangereux, surtout lorsque les décisions du réseau mettent des vies en jeu. Par exemple, le fait
de mettre des petits morceaux de papier d’une forme et d’une couleur particulières sur certains
panneaux de signalisation empêche de les reconnaître [BMR+17]. Porter un tissu décoré d’un
médaillon avec une texture particulière rend une personne invisible pour l’algorithme qui vise
à détecter la présence de piétons [XZL+20]. Compte tenu de tous ces risques potentiels, il est

1. Source : https://nicholas.carlini.com/slides/2019_rsa_attacking_ml.pdf

11

https://nicholas.carlini.com/slides/2019_rsa_attacking_ml.pdf

Résumé en français

crucial de comprendre les problèmes fondamentaux des exemples adversaires pour s’assurer que
les algorithmes traitent les contenus de manière équitable et correcte. Les tâches de recherche
typiques en matière d’exemples adversaires comprennent les attaques et les défenses. Les
chercheurs étudient ces deux tâches afin i) d’apporter des contributions pratiques et ii) de
comprendre ce phénomène.

Attaques. Les attaques visent à créer des perturbations adverses leurrant un réseau cible. Elles
formalisent l’invisibilité et la mauvaise classification comme un problème d’optimisation. La
difficulté des attaques dépend du fait que les attaquants connaissent ou non l’architecture des
réseaux. Le cas de base est que les attaquants ont accès à l’architecture et aux paramètres des
réseaux, ce qui est une configuration en boîte blanche. Ils profitent de ces informations pour
élaborer des perturbations adverses.

L’attaque d’un réseau sans en connaître l’architecture et les paramètres, on parle alors de
configuration en boîte noire, est un cas plus complexe. La notion de transférabilité implique
que les échantillons adversaires se généralisent très bien sur différents réseaux et sur différents
modèles d’apprentissage automatique [GSS14, TPG+17]. Cela indique que les échantillons
adverses générés pour tromper un classificateur connu ont une certaine probabilité de tromper
également un classificateur inconnu. Cela fournit un outil pour attaquer des réseaux dans un
cadre de boîte noire.

Les attaques existantes parviennent à créer des perturbations adverses même si la contrainte
est stricte. De façon surprenante, par exemple, une attaque d’un pixel [SVS19] change la
prédiction des réseaux en modifiant seulement un pixel de l’image d’entrée. La perturbation
universelle [MFFF17, HD18] révèle qu’une perturbation particulière est suffisante pour entraîner
une mauvaise classification sur chaque image d’un ensemble de données considéré.

Défenses. Les défenses visent à améliorer la robustesse des réseaux contre les attaques adverses.
Elles ajoutent un composant supplémentaire pour défendre les réseaux contre les attaques
adverses ou améliorent la robustesse intrinsèque des réseaux.

Les défenses introduisant un composant supplémentaire conservent les réseaux inchangés.
L’application d’un prétraitement aux images est une défense particulière dans cette catégorie. Là,
ces défenses traitent les perturbations adverses comme un type particulier de bruit et tentent de
les supprimer par le biais de transformations [MC17, GRCvdM17, STL+19]. Les défenses qui
considèrent les exemples adverses comme des données malveillantes utilisent un détecteur pour
reconnaître les exemples adverses et les rejeter ou les corriger [XEQ17, LLS+18]. Ces défenses

12

Résumé en français

sont bon marché et s’adaptent facilement à des réseaux donnés, mais elles sont généralement
vulnérables dans les paramètres de la boîte blanche [ACW18].

Les défenses améliorant la robustesse intrinsèque tentent de rendre plus robuste la phase
d’entrainement [GSS14, MMS+17], d’augmenter la robustesse de l’architecture [PMW+16], ou
d’agir sur la fonction de perte [HXSS15, MMS+17, TKP+17]. L’entrainement adversaire [GSS14,
MMS+17], comme défense typique dans cette catégorie, améliore la méthode d’entrainement en
incluant des exemples adversaires comme partie des données de d’entraînement. L’hypothèse
derrière cette défense est que la vulnérabilité de DNN est due à l’insuffisance des données
d’entraînement. Ces défenses ont des performances correctes en termes de robustesse et de
précision, mais elles sont généralement coûteuses car elles nécessitent d’entrainer les réseaux à
partir de zéro.

Aperçu et contributions

Dans cette thèse, nous tentons de comprendre les phénomènes adversaires. Nous explorons
à la fois comment générer des exemples adversaires et comment s’en défendre. L’analyse des
multiples facettes de l’adversité donne les éléments clés à étudier :

— Vitesse. La rapidité est importante tant pour les attaques adverses que pour les défenses.
Bien que les processus chronophages, comme l’optimisation de la création d’une pertur-
bation adverse et l’entraînement d’un modèle, produisent des résultats de haute qualité,
il n’est pas envisageable de générer un exemple adverse, de vérifier les entrées ou de
construire un modèle robuste si cela prend un temps extrêmement long.

— Invisibilité. L’ampleur de la distorsion est largement utilisée comme mesure d’invisibilité
mais elle n’est pas équivalente à l’invisibilité. L’invisibilité indique que la perturbation
est imperceptible pour les humains d’un point de vue neurologique et psychologique. La
mesure de l’invisibilité en informatique reste une question ouverte.

— Distorsion. L’être humain perçoit à peine les perturbations lorsque l’ampleur est faible.
L’ampleur de la distorsion est également importante pour les défenses. Normalement,
les défenses contre les perturbations adverses avec une plus grande distorsion sont plus
robustes contre les effets adverses. Il s’agit d’une mesure importante tant pour les attaques
adverses que pour les défenses.

— Transférabilité. La transférabilité décrit la possibilité que des exemples adverses générés
pour tromper un réseau cible réussissent à tromper d’autres réseaux. La transférabilité est

13

Résumé en français

cruciale pour les attaques dans le cadre de configurations en boîte noire, c’est-à-dire que
les attaquants ne peuvent acquérir que les paires d’entrée-sortie des réseaux.

Nos travaux sont motivés par les concepts de vitesse, distorsion et invisibilité. Nous testons la
transférabilité de nos perturbations adverses. Pour améliorer la qualité des perturbations adverses,
nous travaillons dans deux directions : produire des perturbations adverses invisibles et créer
efficacement des perturbations adverses de faible ampleur. Pour se défendre contre les attaques,
nous proposons un algorithme léger qui permet d’obtenir des performances décentes en termes
de robustesse et de précision. Nous mettons l’accent sur la vitesse et la performance.

Pour permettre aux lecteurs de mieux comprendre nos travaux, nous donnons d’abord un
aperçu du contexte adversaire dans le cadre de l’apprentissage artificiel profond dans chapitre 2.
Cela inclut 1) une présentation succinte de ce que sont l’apprentissage artificiel et les réseaux
profonds, 2) la définition de base du problème adverse et 3) l’examen de haut niveau des travaux
connexes existants sur la génération de perturbations adverses et l’augmentation de la robustesse
contre les attaques.

Le taux de réussite des attaques et l’ampleur de la distorsion sont deux critères standard
pour mesurer la qualité d’une perturbation adversaire. Dans la chapitre 3, nous présentons
l’évaluation standard des perturbations adversaire, y compris le jeu de données, les réseaux et les
mesures d’évaluation. De plus, dans chapitre 3.3, nous proposons nos métriques d’évaluation qui
permettent une comparaison équitable entre les attaques ciblées distorsion et les attaques ciblées

succès.

Nous étudions deux algorithmes effectuant des attaques afin de gagner en compréhension
dans invisibilité (voir chapitre 4) et la création vitesse (voir chapitre 5).

Chapitre 4 : Smooth adversarial perturbation. Dans le chapitre 4, nous étudions la défini-
tion de l’invisibilité et la formulons comme une fonction de contrainte afin qu’elle puisse être
ajoutée de manière simple aux attaques existantes. Nous conjecturons que les perturbations
adverses sont invisibles lorsque la similarité entre les pixels des perturbations et leurs pixels
voisins est analogue au graphe de similarité de leurs images originales. Nous réussissons à
générer des perturbations adverses lisses d’une petite magnitude de distorsion. Ces perturbations
adverses lisses sont invisibles à l’œil nu, même si les exemples adverses sont artificiellement
agrandis.

Chapitre 5 :Boundary Projection (BP) attack. Pour accélérer les attaques sans dégrader la
qualité des exemples adverses, nous améliorons l’algorithme d’optimisation avec la connaissance

14

Résumé en français

spécifique de la perturbation adverse. Dans le chapitre 5, nous proposons Boundary Projection

(BP) une attaque qui change les directions de recherche en fonction de la solution actuelle.
Lorsque la solution actuelle n’est pas adversaire, l’attaque BP recherche longuement la direction
des gradients afin de diriger la solution actuelle pour traverser la frontière des réseaux. Lorsque
la solution actuelle est adversaire, l’attaque BP cherche le long de la frontière pour diriger la
solution actuelle afin de diminuer la magnitude de la distorsion. Ainsi, BP évite de gaspiller
des calculs sur l’oscillation causée par le fait de suivre uniquement les gradients. Cela permet à
l’attaque BP de gagner en vitesse. Les expériences montrent que l’attaque BP réussit à créer une
perturbation adverse de très faible amplitude mais avec un taux de réussite élevé et rapidement.

Pour avoir une compréhension plus complète des problèmes adversaires, nous étudions
ensuite les stratégies de défense. Le chapitre 6 présente une défense par remplacement de patch.

Chapitre 6 : Patch replacement. Les réseaux profonds sont plus robustes au bruit aléatoire
qu’aux perturbations adverses. Pour en comprendre la raison, nous étudions la transition de la
magnitude de distorsion (bruit aléatoire/perturbation adverse) à travers les couches du réseau.
Inspirés par le comportement différent du bruit aléatoire et des perturbations adverses à l’intérieur
du réseau, nous proposons une défense réactive appelée remplacement de patch dans le chapitre 6.
Le remplacement de patchs tente d’éliminer les effets adverses lors de l’inférence en remplaçant
les patchs d’entrées suspectes (images/caractéristiques) par leurs voisins les plus similaires
dans les données d’entraînement légitimes. L’utilisation de données d’entraînement augmente
la complexité des attaques même si les attaquants sont conscients de la défense par remplace-
ment de patch. Comme nous ne prenons pas seulement en compte les images mais aussi les
features intermédiaires des réseaux, le remplacement de patch est plus robuste que les autres
défenses basées sur la transformation des entrées. Un inconvénient est que l’empoisonnement
de l’ensemble de données au moment de la formation perturbe la stratégie de remplacement de
patch. Cela permet d’accéder à des portes dérobées adverses.

Enfin, nous donnons la conclusion et nous proposons quelques perspectives dans le chapitre 7.
En bref, nos contributions à la compréhension des problèmes d’apprentissage adverses sont i)
de définir l’invisibilité d’un autre point de vue et de proposer une approche pour produire une
perturbation adversaire lisse selon notre définition ; ii) de proposer un algorithme pour générer
rapidement des exemples adversaires avec un taux de réussite élevé et une faible distorsion ; iii),
nous réussissons à proposer une défense réactive qui n’est pas coûteuse et améliore la robustesse
contre les attaques sans dégrader sévèrement la précision du réseau.

15

CHAPTER 1

INTRODUCTION

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that learns from data to
identify patterns, make predictions or decisions with minimum human intervention. All the ML
techniques take data as input and aim at different tasks, i.e. classification, regression, clustering,

dimensionality reduction and ranking, etc..

Benefiting from massive data and high computation resources, ML applications are becoming
omnipresent in our daily life. These applications free people from repetitive and complicated
work and allow them to acquire useful information easily. For instance, face recognition systems
assist humans in identification and authorization. Search engine gathers and organizes infor-
mation related to a given query by indexing, searching, and matching. Navigation applications
recommend the best path to their destination for an autonomous vehicle.

Computer Vision (CV) studies how computers can acquire, process, analyze and understand
digital images. Advances in ML facilitate the development of CV, especially image classification

task. Deep Learning (DL) is a kind of powerful ML technique. It allows the design of Deep

Neural Network (DNN) which can recognize the visual content of images automatically. Learning
from thousands of images of animals, places, people, plants, etc., DNNs are able to detect with
high confidence what an unknown image contains.

1.1 Deep learning and deep neural network

In the last decades, DNNs developed rapidly in the domain of image classification. Con-

volutional Neural Network (CNN) [LBBH98] obtains useful and semantic visual features. A
typical deep CNN has numerous layers and complex architectures, like AlexNet [KSH12], In-
ception [SVI+16], ResNet [HZRS16a], DenseNet [HLVDMW17] and others. These are few
well-known examples of DL or DNNs. These networks calculate gradients from the high dimen-
sional representational space of images to find how to separate classes. Recent DNN models
achieve tasks of classification, detection and segmentation with a high confidence. The perfor-
mance of DNN models on ImageNet [RDS+15], a challenging and realistic dataset, is close to

17

Introduction

that of humans.

The performance of DNNs is often in relation to their depth: the deeper the network is,
the better the performance is. However, high complexity of DNNs due to deep stacking of
large number of layers to acquire semantic visual features cause difficulty in training. This
could be due to vanishing gradients during the back-propagation, named gradient vanishing

problem. Many variations of the original architecture of DNN exist, trying to circumvent such
problems. This includes residual units from ResNet [HZRS16a] and transformers [VSP+17].
Residual units skipping layers during training process effectively simplify networks, speed up the
training process and offer to explore larger feature space. However, it also makes ResNet more
vulnerable to perturbations. Transformer [VSP+17] uses the concept of self-attention which aids
the networks to focus on important features. Overall, all these advances in DNNs augment the
performance of tasks like classification. DL not only succeeds in processing massive image data
but also manages to deal with images containing noise, occlusions, or other visual artifacts.

1.2 Adversarial examples

In 2013, researchers found that with a slight modification of the images lead to classifiers
making erroneous prediction [SZS+13]. The big surprise was that these modifications were of
a small amplitude and are almost imperceptible to human eyes. This discovery revealed the
vulnerability of DNNs.

Adversarial phenomena widely affect ML. This impacts different media, such as image [SZS+13,
GSS14, TPG+17], audio [CW18, YS18, YLCS18], and text [RDHC19, ZSAL20, ASE+18]. Fur-
thermore, attackers not only produce adversarial examples saved as digital data, e.g. images,
in a computer but also create adversarial examples in the physical world, such as adversarial
patches [TVRG19]. These are printed pictures and 3D objects [KGB16, SBBR16], captured by
visual sensors like cameras, and affect the ML applications using them.

Adversarial perturbation is an invisible perturbation that misleads DNNs to classify perturbed
input into an incorrect category. For example, through adversarial perturbations one could make
the classifier to classify a cat as a dog as in Figure 1.1 1. Furthermore, adversarial phenomena
transfer among classifiers. Attacks that take advantage of a certain vulnerability of a DNN may
deceive other DNNs whatever architectures or training set they use.

Modifying one visual content to another is a big problem [EEF+18, TVRG19, TRC19a,
YLDT18, GSS14]. An attacker whose goal is to delude the classifier to make inappropriate

1. Source: https://nicholas.carlini.com/slides/2019_rsa_attacking_ml.pdf

18

https://nicholas.carlini.com/slides/2019_rsa_attacking_ml.pdf

Introduction

Figure 1.1 – This image comes from the presentation Attacking Machine Learning: On the
Security and Privacy of Neural Networks from Nicholas Carlini. It shows with adversarial
perturbation an image of cat is classified as a dog.

decisions can perpetrate adversarial perturbation conveniently. This is disturbing and dangerous,
especially when network decisions put lives at stake. For example, putting small pieces of paper of
a particular shape and color on some road signs prevents them from being recognized [BMR+17].
Wearing a medallion decorated cloth with a particular texture makes a person invisible to the
algorithm which aims at detecting the presence of pedestrians [XZL+20]. Considering all these
potential risks, it is crucial to understand the fundamental problems of adversarial examples
to make sure algorithms process contents fairly and correctly. The typical research tasks in
adversarial ML include attacks and defenses. Researchers study these two tasks in order to i)
make practical contributions and ii) understand this phenomenon.

Attacks. Attacks intend to create adversarial perturbations towards a target DNN. They for-
malize the invisibility and misclassification as an optimization problem. The difficulty of attacks
depends on whether attackers know the architecture of the networks or not. The foundational case
is that attackers have access to the architecture and parameters of the networks, i.e. white-box

setting. They benefit from this information to craft adversarial perturbations.

Attacking a network without knowing the architecture and parameters, i.e. black-box setting,
is a more complex case. Transferability implies that adversarial samples generalize very well
across different networks and across different machine learning models [GSS14, TPG+17]. This
indicates that adversarial samples generated to deceive a local classifier have a certain probability
to deceive an unknown classifier too. It provides a tool to attack DNN in black-box setting.

Existing attacks succeed to create adversarial perturbations even if the constraint is strict.
These extraordinary adversarial perturbations manifest different properties of adversarial phe-
nomena and the vulnerability of DNNs. Surprisingly, for instance, a one-pixel attack [SVS19]
changes the prediction of networks by only modifying one pixel of the input image. Universal
perturbation [MFFF17, HD18] reveals that one particular perturbation is enough to lead to
misclassification on every image from a given dataset.

19

Introduction

Defenses. Defenses aim to improve the robustness of DNN against adversarial attacks. They
either add an extra component to assist networks against adversarial attacks or improve the
intrinsic robustness of networks.

Defenses introducing an extra component retain networks unchanged. Applying pre-processing
to images is a particular defense in this category. They treat adversarial perturbation as a particular
kind of noise and attempt to remove it via transformations [MC17, GRCvdM17, STL+19]. Ones
who regard adversarial examples as malicious data employ a detector to recognize adversarial
examples and reject or correct them [XEQ17, LLS+18]. These defenses are cheap and easily
adapt to given networks, however, are usually vulnerable under the white-box settings [ACW18].

Defenses improving the intrinsic robustness attempt to ameliorate the training method [GSS14,
MMS+17], augment architecture [PMW+16], or advance loss function [HXSS15, MMS+17,
TKP+17]. Adversarial training [GSS14, MMS+17], as a typical defense in this category, ame-
liorate the training method by including adversarial examples as a part of training data. The
assumption behind this defense is that the vulnerability of DNN is due to the insufficiency of
training data. These defenses perform decently on both robustness and accuracy, however, are
usually expensive because they need to train networks from scratch.

1.3 Overview and contributions

In this thesis, we attempt to understand adversarial phenomena. We explore both how to
generate adversarial examples and how to defend them. From the analysis of the multiple facets
of adversarial ML, we find that the key elements to investigate include:

Speed. Speed matters for both adversarial attacks and defenses. Although time-consuming
processes, like optimization of creating adversarial perturbation and training a DNN model,
produce high-quality results, it is not feasible if it takes an extremely long time to generate an
adversarial example, verify inputs, or build a robust model.

Invisibility. The magnitude of distortion is widely used to estimate the invisibility of perturbation
but it is not equivalent to invisibility. Invisibility indicates the perturbation is imperceptible to
humans from a neurological and psychological point of view. It is still an open question to
measure invisibility in computer science.

Distortion. As an alternative plan to measure the quality of invisibility, numerous attacks estimate
the magnitude of distortion. Humans hardly perceive perturbations when the magnitude is small.
The magnitude of distortion also matters for defenses. Normally, defenses against adversarial
perturbations with larger distortion are more robust against adversarial effects. It is an important

20

Introduction

metric for both adversarial attacks and defenses.

Transferability. Transferability describes the possibility that adversarial examples generated to
fool a target network successfully deceive other networks. Transferability is crucial to attacks
under black-box settings, i.e. attackers can only acquire the input-output pairs of networks.

Our works are motivated by the concepts of speed, distortion and invisibility. We test the
transferability of our adversarial perturbations. To improve the quality of adversarial perturba-
tions, we work in two directions, i.e. producing invisible adversarial perturbations and creating
adversarial perturbation efficiently with low magnitude. To defend against attacks, we propose a
lightweight algorithm that achieves a decent performance on both robustness and accuracy. We
emphasize speed as well as performance.

To let readers have a better understanding, we first give an overview of the adversarial
context in DL in chapter 2. This includes 1) the minimum knowledge of ML and DNN needed
to understand our work, 2) the basic definition of the adversarial problem and 3) the high-level
review on existing related works both on generating adversarial perturbations and augmenting
robustness against attacks.

Success attack rate and magnitude of distortion are two standard criteria to measure the quality
of adversarial perturbation. In chapter 3, we introduce the standard evaluation to adversarial
perturbations, including dataset, networks and evaluation metrics. Furthermore, in section 3.3,
we propose our evaluation metrics that allow a fair comparison between targeted distortion

attacks and targeted success attacks.

We investigate two algorithms performing attacks in order to gain understanding in invisibility

(see chapter 4) and creation speed (see chapter 5).

Smooth adversarial perturbation. In chapter 4, we study the definition of invisibility and
formulate it as a constraint function so that it can be added in a straightforward way to existing
attacks. We conjecture that adversarial perturbations are invisible when the similarity between
the pixels of perturbations and their neighbor pixels is analogous to the similarity graph of their
original images. We succeed in generating smooth adversarial perturbation and surprisingly
with a small magnitude of distortion. These smooth adversarial perturbations are invisible to the
naked eyes even if the adversarial examples are artificially magnified.

Fast, low-distortion adversarial examples. To accelerate the attacks without degrading the
quality of adversarial examples, we improve the optimization algorithm with the specific knowl-

21

Introduction

edge of adversarial perturbation. In chapter 5, we propose Boundary Projection (BP) attack that
changes search directions according to the current solution. When the current solution is not ad-
versarial, BP attack searches long the direction of gradients to direct the current solution to cross
the boundary of networks. When the current solution is adversarial, BP attack searches along
the boundary to direct the current solution to decrease the magnitude of distortion. Comparing
to the state-of-the-art attacks, BP attack avoids wasting calculation on the oscillation caused by
only following gradients. That earns speed for BP attack. Experiments show BP attack succeeds
in creating adversarial perturbation with a very small magnitude but a high success attack rate
speedily.

To have a more complete understanding of the adversarial ML problems, we then investigate
defense strategies. Chapter 6 presents a patch replacement defense.

Patch replacement. DNNs are more robust to random noise than adversarial perturbations. To
understand it, we investigate the transition of the magnitude of distortion (random noise/adversarial
perturbation) through the DNN. Inspired by the different behavior of both random noise and
adversarial perturbations inside DNN, we propose a reactive defense named patch replacement

in chapter 6. Patch replacement attempts to eliminate adversarial effects at inference by replacing
patches of suspicious input (images/features) with their most similar neighbors in legitimate
training data. The usage of training data increases the complexity of attacks even if attackers are
aware of patch replacement defense. Since we not only consider images but also intermediate
features of networks, patch replacement is rather robust than other defenses based on input
transformation. One disadvantage is that poisoning the dataset at training time causes troubles to
the patch replacement strategy. This connects to adversarial backdoors.

Finally, we give the conclusion and we propose a few perspectives in chapter 7. In brief, our
contributions in understanding adversarial ML problems are i) defining invisibility in another
view and proposing an approach to produce smooth adversarial perturbation under our definition;
ii) proposing an algorithm to generate adversarial examples fast with a high success rate and low
distortion; iii), we succeed to propose a reactive defense that is not expensive and improves the
robustness against attacks without degrading the accuracy of the network severely.

22

CHAPTER 2

BACKGROUND

This chapter presents an overview of the background material that is needed to understand
our contributions as well as positioning them in the field of adversarial attack and defense. We
begin this chapter by elucidating the main features of ML and DNN based image classification
in section 2.1 and section 2.2 respectively. We also present a survey of the domain of adversarial
attacks and defenses, and the vocabulary used in section 2.3.

After defining in section 2.4 what are the adversarial images, those that can deceive classifiers,
this chapter draws up in section 2.5 a panorama of attacks intended to deceive a classifier whose
technology is based on DNN. In response, many studies have proposed defenses, which are
presented in section 2.6. With all this knowledge, we give our point of view and discuss our
contributions in section 2.7.

The reader is reminded that the focus of this chapter is to give a holistic overview and the
background to the field, we postpone until latter chapters to provide a precise description and
details of the existing solutions that are related to our contributions. A few reasons for this kind
of treatment is as follows.

First, this background section is written such that it provides the reader a high-level percep-
tion of the most important facets of adversarial attacks and defenses, without disrupting that
presentation with particular low-level details that are specific to this or that existing technique.
Second, we naturally compare our contribution to existing solutions. It is very important to
precisely detail these existing solutions, by presenting at a very fine grain their assumptions, their
parameters, their algorithmic structure. Once the general overview is understood, it is much easier
to present such details. It is for this reason we postpone the discussion of Carlini and Wagner
attack (C&W) and Decoupling Direction and Norm (DDN) attack schemes to chapter 4 and
chapter 5. We apply the same rationale to the defense schemes as well and postpone the detailed
presentation of the existing defense techniques and their comparison with our contributions to
chapter 6.

23

Background

2.1 Machine learning

ML is a sub-branch of AI. ML is an interdisciplinary field of applied mathematics, statistics,
and algorithmics. It allows a computer to perform a task learning from a representative data.
Normally the set of rules that the machine requires to execute a task is impossible to enumerate
"manually" as it is complex (for example machine translation). Even when one can define them
it leads to a combinatorial behavior when considering all possible options to arrive at an optimal
set (for example chess, go, . . .). ML requires on the analysis of colossal amount of data to build
a model for performing the task using these set of rules/options. One requires numerous and
diverse data to better estimate the model and realize an automated execution of the target task.

Normally ML comprises two-phase process. The learning or training phase where the model
first learns from the training data [MRT18]. The second phase is testing phase which tests the
well-trained model on unseen data. This process sometimes realized by intertwining learning
and testing phase better learn the model.

Based on the available information about the data during the learning phase there are two
families of learning. Supervised learning [RN02] uses data-label pairs, where the supervision is
manually provided. This supervision in classification is in the form of labels or categorical values
that are discrete; in regression the supervision provided through continuous values. In contrast,
in unsupervised learning [HS+99] there does not exist manual supervision. This type of learning
is useful as it is not always possible to label massive amounts of data, many approaches are
proposed with varying degrees of supervision. One such approach is semi-supervised learning
(where not all data is labeled) or this approach is also referred to as partially supervised approach.

The applications of the field are extremely varied, as tasks are. This includes classification,
recognition, translation, grouping, analysis, prediction, the list is almost infinite. Learning applies
to data of very different kinds: symbolic, numeric, continuous, or discrete data, graphs, trees,
feature vectors, including images, sounds, texts, time series, etc.

In this chapter, we focus on the classification of images. The classification output is labels
associated with the categories of images. These categories could be for example airplane, boat,
road, table, chair, building, person, dog, cat, balloon, cutlery, daisy, tomato, etc. We remain in
the scope of a supervised learning environment. Once the model has been learned, it classifies
new, unknown, unlabeled images into the correct visual category or categories.

Any ML process is built from a few fundamental notions that we present in detail in this
chapter. We begin with the notion of the objective function. An objective function, in general, is
designed to measure the model’s performance, i.e. it represents the capability of the model to

24

Background

achieve the target task. It is often easier to adopt a mathematical representation of the problem.
When gradually optimizing the objective function, we learn a set of parameters of the model. An
objective function is often a decreasing function of an error related to the measure of completion
of the task. The opposite of a root mean square error or a cross entropy are two classical examples
of objective functions. These functions are designed to be continuous with respect to the model
parameters. Thus allowing to detect if a variation in the parameters of the model improves
performance on the task.

Learning means gradually adjusting the parameters of the model such that the new values of
these parameters increase the quality of the model as perceived through the objective function.
An optimization process is, therefore, to find the optimum parameters without making the search
process too costly. The adjustment of parameters is aimed at, for instance, finding a better
position of the hyperplane separating the two classes of data.

At the end of optimization, the model performs better on the training data. However, it
is expected by the model to have good generalization capabilities to deal with the unseen or
new data. Sometimes due to the nature of optimization, the model may have little or no ability
to generalize well. This phenomenon is called over-fitting [ES02] which should be avoided.
Generalization is improved through techniques such as cross-validation, regularization, random
pruning, and others.

2.2 Classification of images by DNN

In this section, we discuss DNNs and image classification task. We also provide an overview
of some important notions. We invite the reader to the book by Goodfellow and colleagues
for greater detail and precision [GBCB16]. Besides, this section introduces the mathematical
notations necessary to later describe attacks and defenses.

In the color space (red, green, blue), an image I of L rows and C columns is represented by a
three-dimensional array existing in the space [0, 1, . . . , 255]3×L×C . Pixels are integers between
0 and 255 (if encoded on one byte). The output of the classifier is a class, i.e. categorical label.
The k possible categories (airplanes, boats, cars, tables, chairs, buildings, people, dogs, cats, etc.)
are arbitrarily ordered and the output of the classifier is an integer between 1 and k, noted ˆ̀.

The image classifier built on a DNN is here schematically decomposed into three parts.
The first part performs a pre-processing that adapts the input image to the neural network. It
often includes a sub-sampling of the image to a given size c × c (typically 224 × 224), and
above all reduces the pixel dynamics to the range [0, 1] (historical choice but other choices are

25

Background

possible, such as reducing to [−1, 1]). This can be done by dividing the pixel value by 255. More
elaborate transfer functions, which sometimes differ from one color channel to another, are also
used. The output of this pre-processing is x = T(I), classically noted as a column vector with
m = 3× c× c components in [0, 1]m.

The second part is the neural network. A neuron is a small automaton that combines the
data it receives from other neurons, produces a value that is then transmitted to one or more
neurons, each of which will combine it with the values received from other neurons, and so
on, which together make a network. The neurons are often organized in layers, connected to
each other [Hop82], and we name such kinds of layers as fully-connected layers. It is the great
multitude of these layers that gives existence to the deep term. For example, there are networks
made up of hundreds of interconnected layers, each composed of thousands of artificial neurons.

A neuron is therefore a small automaton that first operates a linear combination of the values
received (from other neurons for example) which are weighted by synaptic weights, then summed.
The value produced is then passed to an activation function or threshold function. This function
introduces a non-linearity in the neuron’s behavior, which is essential. Activation functions such
as sigmoid activation, hyperbolic tangent activation, or activation based on a Linear Rectification

Unit (ReLU) [NH10] are often used. These non-linear functions are continuous non-decreasing
and almost everywhere differentiable.

Apart from fully-connected layers, there are convolutional layers that are the core component
of a CNN [LBBH98]. A convolutional layer contains a set of learnable filters (or kernels) that
have a small receptive field but convolve across the width and height of the input. In detail, during
the forward pass, each filter is convoluted across the width and height of the input, computing
the dot product between the filter and the input. With this design, the filters are learned to detect
some specific type of features in same spatial positions. The pooling layer is another type of
layer which is important to CNNs. It is a form of non-linear down-sampling. There are several
non-linear functions to implement pooling, for instance, max pooling. Max pooling partitions
the input into a set of patches (or sub-regions) and each patch outputs its maximum value. The
pooling layer is designed to reduce the resolution of representation so that it is possible to reduce
the computation in the network.

The output of the neural network is a k-component real vector called logit vector: u =
R(x,θ) ∈ Rk. The larger the value of the j-th logit u(j) is, the more likely the input x is of class
j. The symbol θ is a parameter representing the set of synaptic weights (of all neurons of all
layers).

The third part translates the logits into a vector of probabilities p ∈ [0, 1]k such that

26

Background

∑k
j=1 p(k) = 1. The value p(j) is the probability that the input image is of class j. This

translation is done with the function softmax [GBCB16], p = S(u), defined by, ∀ 1 ≤ j ≤ k:

p(j) = eu(j)∑k
i=1 e

u(i) . (2.1)

It is the gradual adjustment of the synaptic weights θ, parameters of the R(·) function, which
forms the heart of the supervised learning, the first and last parts being non-parametric. These
weights are gradually adjusted so that the final value produced at the output of the classifier
ultimately corresponds to the label associated with the input data.

The network is used in propagation mode when the input data passes through it layer by layer
and the network produces at the end of the chain the probability vector p. The error between the
output p and what should have been produced is measured. For a label ` associated with input x,
the output is ideally a probability vector p?` where p?`(j) = 1 and where the other components
of this vector are null. The cross entropy [GBCB16] h(p,p?`) = −∑k

j=1 p
?
`(j) log(p(j)) is a

metric quantifying how p is different from p?. The loss for the label ` and input x is measured
by J (x, `,θ) = h(S(R(x,θ)),p?`).

Backpropagation [GBCB16] consists of tracing back through the networks, from downstream
to upstream, the error made by a neuron at its synapses and therefore to the upstream neurons
which are connected to them. The gradient of the cross entropy with respect to each weight in
the network is calculated. This is greatly simplified by the chain rule because the network is a
composition of functions, and layers. Thus the set of these weights θ is updated iteratively by an
algorithm of gradient descent to reduce cross entropy. At iteration i:

θ(i+1) = θ(i) − η∇θJ (xj(i), `j(i),θ), (2.2)

where {xj(i), `j(i)} is a training data randomly drawn at the i-th iteration of the stochastic gradient
descent and η > 0 is the learning rate. During the training, networks process the data in full/mini
batch. By changing the size of the batch, we define the number of samples to work through
before updating the internal model parameter. Batch normalization [IS15] is proposed to mitigate
the problem of internal covariate shift, where parameter initialization and the shift of inputs’
distribution through layers affect the learning rate of the network.

The weight update between forward propagation (calculation of S(R(x,θ))) and backward
propagation (calculation of∇θh(S(R(x,θ)),p?`)) ensures the learning process with respect to
weights θ to converge to a local minimum of cross entropy calculated over the training data.

27

Background

Once the training is done the trained model is input with new/test data during the test phase;
the output of this is a probability vector p in which the predicted class is the class with the
highest probability:

ˆ̀= f(x) := arg max
1≤i≤k

p(i). (2.3)

2.3 Vulnerabilities in ML: A bit of history and vocabulary

In this section, we discuss the vulnerabilities of DNNs. In fact, all ML algorithms have flaws
and are vulnerable to intentional attacks. It was while researchers were working on the automatic
classification of e-mails to separate spam from real messages that the first flaws were revealed.
In 2004, Dalvi and his colleagues and also Lowd and Meek showed that it was possible to fool a
linear classifier detecting flaws [DDS+04, LM05]. At that time, DNNs were not popular, and
the techniques of choice for ML relied in particular on Support Vector Machine (SVM) based
classifiers.

Ten years later, the field of adversarial ML is gaining the attention it deserves, because at
this moment the incredible power of DNNs is revealed making them the most used ML models.
Hence it is vital to study their vulnerabilities and fix them. Adversarial learning, sometimes
also refers to Generative Adversarial Networks (GAN) [GPAM+14] where a generator and a
discriminator contest with each other in a zero-sum game, but for us, it refers to adversarial

machine learning, namely a machine learning technique that attempts to deceive models by
adversarial inputs. Around 2014, researchers were working on the forgery of images likely to
deceive a classifier based on a deep neural network.

To reiterate, adversarial images are the images that have been manipulated so that classifiers
recognize them wrongly after analyzing them. For example when the classifier network is
presented with an image of a cat and the network responds by categorizing the image as the
image of airplane. In these cases the manipulation is such that it is almost invisible and when
one looks at it, it looks like an image of a cat. The network, however, asserts with very strong
confidence that it is an airplane. Figure 2.1 illustrates this, where the American flag, when
intentionally modified, is recognized as a vending machine or, alternatively, as a sandal. One can
notice the imperceptibility of an attack.

Historically, one of the first explorations of facets of the vulnerability of ML algorithms
was made by Barreno and his colleagues [BNS+06]. In their seminal article, they discuss the
vulnerability of ML algorithms during the learning phases (they discuss about poisoning), the test
phases (they talk about evasion), they distinguish targeted attacks from untargeted attacks, they

28

Background

(a) (b) (c)

(d) (e)

Figure 2.1 – Original image and adversarial images; the manipulations are almost imperceptible
and the classification is wrong. a) Original image, correctly classified as a ’flag’. b) Adversarial
image, created by the C&W method, classified by the network as a ’vending machine’. c)
Adversarial image, created by the PGD2 method, classified by the network as a ’sandal’. d)
Distortion (contrast enhanced to make it more visible) existing in image (b) created using C&W
method. e) Distortion (contrast enhanced to make it more visible) existing in image (c) created
by PGD2 method.

29

Background

propose techniques to evaluate the power of these attacks and mention some defense mechanisms.
They also differentiate vulnerabilities according to an attacker’s knowledge of the system he/she
wants to deceive, distinguishing between "white box" and "black box" attacks. We will return to
these terms later in this chapter.

A very good historical perspective can be read in Biggio and Roli’s article [BR18]. An
excellent state-of-the-art exists thanks to Serban and his colleagues [SP18].

2.4 Adversarial images: definition

Let f : Rm → {1, · · · , k} be a classifier from the vector of pixels composing an image
to a discrete label among the k possible classes. For an image x ∈ Rm with a target label
` ∈ {1, · · · , k}, an adversarial perturbation r is produced by solving the following optimization
problem:

min ‖r‖p
such that f(x + r) = `

(x + r) is an image.

(2.4)

This equation describes both targeted and untargeted attacks as well as white box and black
box attacks.

Targeted attacks aim to make the adversarial image x + r classified exactly in the given cate-
gory ` (for example, the attacker wants a dog image to be classified as a cat image). Untargeted

attacks aim to make the adversarial image x + r classified in any class, as long as the predicted
class ` is different from class f(x) which x belongs to (for example, the attacker wants a dog
image to be classified as anything but a dog).

White box attacks consider the scenario where the attacker knows everything about the
classifier network. The attacker can reproduce it, set it up and test an attack, and once successful
can deploy it. Black box attacks, on the other hand, consider that the attacker does not know the
details of the network. The attacker has a copy of the trained classifier, which is not be "exposed"
but can be used as an oracle, i.e. submit the images and observe their predictions as long as
needed. Some articles also consider "grey boxes", i.e. a context where the attacker has a partial
knowledge of the network. We shall return to all this later, in subsection 2.5.1.

The main part of Equation 2.4 is to minimize a distortion term. The norms normally used
are the L2, L1, or L∞ norm that are applied as a criterion to measure the distortion [GSS14,
CW17]. When the measurement gives a very low distortion, it is almost invisible to human’s

30

Background

eyes. Nevertheless, these criterion do not account well for the human’s perception of images.
Distortions of small norms can sometimes be very visible. Therefore, it is relevant to measure
distortion according to account for the way our visual system functions from a neurological
and psychological point of view [WBSS04, SBR18, FBHD19]. But such metric is unfortunately
much more complex to calculate. Lp norms are therefore often preferred in practice.

Equation 2.4 defines adversarial images via an optimization problem. The attack is the process
used to find the solution to this problem. The input x existing in a very large m-dimensional
space, finding this solution is difficult because the f(·) function is not explicit. It is very likely
that the attack finds an approximate solution, i.e. it finds a perturbation r of greater distortion
than the strict minimum given by the solution of Equation 2.4. A first criterion to evaluate the

quality of an attack is therefore the distortion it generates.

A second criterion is given by the second line of Equation 2.4. An attack reaches its goal
(targeted or untargeted) if f(x + r) = `. This problem is so difficult to solve that an attack can
sometimes fail to produce an adversarial image (x + r). The second criterion for evaluating the

quality of an attack is thus the probability of its success.

These two criteria are intimately linked by a trade-off. It is easy to build an attack that always
succeeds: it is the attack that replaces x with a completely different image x′ whose predicted
class is `, but the distortion ‖x′ − x‖p is huge and clearly visible to the naked eye. It is easy to
build a zero distortion attack: it is the attack that substitutes x for the same x, but the probability
of success is zero (unless x is misclassified by the network). These two extreme attacks are of no
interest, but they illustrate this trade-off. The probability of success is an increasing function of
the distortion.

The third criterion is the complexity of the algorithm measured by its memory consumption
or by the computing time required. The algorithms listed below are often iterative. Counting
the number of iterations that are necessary to produce a visually good adversarial image is a
valuable indicator. The lower the complexity, the faster the attack, but then often the probability
of success is low or the distortion is high.

Two main principles are proposed to tackle Equation 2.4, i.e. target distortion and target

success. Target distortion attacks (see subsection 2.5.3) focus on maximizing the success attack
rate with a fixed distortion. Target success attacks (see subsection 2.5.4) focus on minimizing the
distortion and always generate adversarial images.

Before presenting different attacks, let us return to the last term of Equation 2.4. It is said
that (x + r) is an image. Let’s see what this means and what it implies.

This definition, which is based on x = T(I) and not on the I image, is historical. It reflects

31

Background

the fact that the community working on computer vision and the one working on neural networks
are not interested in the pre-processing part because there is nothing to learn or train. Thus
the condition (x + r) is an image simply means that x + r ∈ [0, 1]m, just like x. It would be
possible to return to a "real" digital image (with pixel values between 0 and 255) by simply
applying the inverse pre-processing T−1(·).

In reality, from our point of view, things are not that simple. We have described pre-processing
as an integral part of the classifier. Thus x is an internal variable to which the attacker does not
have access. However, the attacker’s goal is to corrupt the input image I and not x. Also, the
method consisting in firstly finding x + r, then applying reverse pre-processing to form an image
is sometimes impossible because there is no image such that its pre-processing gives x + r. We
will come back to this later in this chapter.

2.5 Attacks

This section presents a quick overview of techniques for making adversarial images. We are
not exhaustive, we describe attacks that are somehow exemplary of what the literature proposes,
a very vast and rapidly expanding literature. All the techniques presented here are based on the
Equation 2.4 and they enrich it in various ways.

2.5.1 White, grey, and black box

The white box model, as it is introduced in section 2.4, considers the case where attackers
know exactly the architecture and parameters of the targeted network. In this case, attackers
are able to not only access the input-output pairs from the targeted network but also access the
gradient of the network.

The black box model is much stricter than the white box model. The attacker knows nothing
about the targeted network. Here, it is impossible to calculate gradients and therefore impossible
to apply the techniques mentioned so far. Nevertheless, the attacker can use the targeted network
as an oracle and observe the way it labels an image.

The grey box and black box models assume that the attacker has much less information
from his side. For the grey box model, we assume that the attacker knows some elements of
the targeted network. For example, the network uses a pre-trained, off-the-shelf model, but
with defense mechanisms that are secret. The attacker can partly reproduce the behavior of the
targeted network to implement his attacks.

32

Background

Two designs of the black box. If "black box" means to observe the inputs/outputs of a system,
what are these outputs? Some consider that the output to which the attacker has access is the
predicted probability vector, others consider that the output is the predicted class ˆ̀= f(x).

The very nature of these outputs makes a big difference, as noted in the article by Ilyas and
colleagues [IEAL18]. The predicted class f(x) is a piece-wise constant function. Almost surely,
the attacker cannot see if a small amplitude perturbation r is going in the right direction since it
does not necessarily change the output. This is not the case for the predicted probability vector.

The output is the probability vector. In this case, there is not much difference with white box
attacks. The attacker calculates an objective function as in the previous section and looks for the
perturbation that minimizes it. The only difference is that now the gradient is no longer available.
The attacker then uses so-called zero-order numerical methods such as differential evolution
algorithms [SP97] sometimes combined with genetic algorithms. These algorithms randomly
draw perturbations, calculate their objective functions, select the perturbations that obtained
the lowest values and recombine them with random mutations. This selection-recombination-
mutation cycle is repeated.

For example, the One-pixel attack [SVS19] is the counterpart of the Jacobian-based Saliency
Map Attack (JSMA) where the pixels (or even the pixel) to be modified are found thanks to
a genetic algorithm. Similarly, Engstrom’s work [ETT+17] is the black box counterpart of
Xiao’s [XZL+18] geometric attacks in the white box. Also, Zhao and his colleagues [ZDS18]
train a generator to produce adversarial perturbation just like [BF17] while the discriminator is
a black box classifier.

An alternative to genetic algorithms is to estimate the gradient of the objective function in
certain directions:

∂J (x)
∂x(i) ≈

J (x + ∆ei)− J (x−∆ei)
2∆ . (2.5)

To estimate the gradient, it is necessary to calculate the deviation for all pixels 1 ≤ i ≤ m,
which is expensive. Chen and colleagues show that this can be avoided [CZS+17]. They apply
a stochastic gradient descent where the directions ei are drawn iteratively and randomly. This
attack is called Zeroth Order Optimization (ZOO). Another attack in this category is the one
designed by Narodytska and Kasiviswanathan [NK17].

The output is the predicted class. Szegedy and his colleagues were among the first to find
that adversarial images created to attack a specific network are also adversarial for another
network [SZS+13]. But it was Papernot and his colleagues who first explored the transfer

33

Background

properties of attacks by studying so-called grey box and black box attacks [PMG16]. The work
of Liu and colleagues is also worth mentioning as a remarkable paper on this subject [LCLS16].
A similar phenomenon, traditional in machine learning, is well known: it is possible, to some
extent, to transfer what has been learned by one network to another.

Papernot and his colleagues rely on the observation of the proportion of adversarial images
fooling the first system that also succeeds in fooling the second. To be more precise, they
distinguish transfers between learning systems built on the same fundamental principle from
transfers between systems built on different principles (a transfer between a deep network and a
SVM-based system for example).

The results of their study [PMG16] show that transfers are possible and easy between neural
systems. On the other hand, although still possible, the transfer of attacks is more difficult
between systems built on models that cannot be derived, mathematically speaking, such as those
built from SVM, K-nearest neighbors, decision trees (this contrasts for example with networks
for which it is easy to calculate the gradient).

This observation makes it possible to attack black-box learning systems. By multiplying the
requests to the targeted classifier, the attacker can build a model of it: a new classifier is trained
to imitate the black box in the sense that the outputs of this classifier under construction must
eventually be identical to those of the targeted black box. Then, the attacker uses this new model,
but as a white box, to forge adversarial images with the hope that they also fool the black box
network thanks to the transferability.

2.5.2 White box: target distortion/target success

In white box scenario, the attacker has access to the probability vector p computed by the
model. Since the original image is of class `g, the vector p must get away from p?`g (the image
is less recognized as being from the `g class). At the end, the predicted vector p must be close
to p?` . As in supervised learning, the attacker also works with an objective function defined via
cross entropy:

J (x, `) = h(p,p?`)− h(p,p?`g) (2.6)

= log(p(`g))− log(p(`)). (2.7)

Decreasing the objective function is equivalent to increasing the predicted probability for
the class ` and decreasing that of the original class `g. Note that a perturbation makes the image

34

Background

adversarial if J (x + r, `) < 0.

The definition of the objective function is more delicate for untargeted attacks. Decreasing
only h(p,p?`g) is not enough. A first trick is to target the most probable class that is different
from `g. Hence an objective function:

J (x) = log(p(`g))−max
`6=`g

log(p(`)). (2.8)

There are other objective functions in the literature. For example, we will see the DeepFool
attack (DeepFool) [MDFF16] in section 2.5.4 which notes that a class with a high predicted
probability is not necessarily an easier class to reach.

In the following, we mainly describe cases where the network is perfectly known to the
attacker ("white box attack") and the attacks are untargeted ("untargeted attacks").

Two big families. The core of Equation 2.4 is formed, on the one hand, by minimizing
distortion and, on the other hand, by successfully fooling the system. Thus, algorithms that
produce adversarial images are divided into two families, depending on whether they aim at
never exceeding a specified distortion, or whether they aim at producing adversarial images
almost surely without limiting the distortion (although a minimal distortion is a target). Let’s
characterize these two families before listing a few algorithms.

Target Distortion. All algorithms in this family aim to maximize the probability of success
while not exceeding a fixed distortion. This distortion is not necessarily an explicit parameter of
the attack, but it is governed by some of its parameters. This is generally expressed by:

min J (x + r)

such that ‖r‖p ≤ ε,
(2.9)

where J is the attacker’s loss function and ε is the maximum allowed distortion.

The performance of this type of attacks is measured by their probability of success Psuc =
P(f(x+r) 6= `g) which depends, of course, on the value given to ε. If the attack does not succeed
for a given upper bound ε, then this value can be increased and the algorithm starts again with a
new higher ε. It is worth notify that the ε having finally allowed the creation of an adversarial
image is not necessarily minimal.

35

Background

Target Success. In this family, the algorithms aim for success and always produce an adversar-
ial image at the cost of an arbitrary distortion, but minimal. This is expressed by:

min ‖r‖p
such that J (x + r) < 0.

(2.10)

The performance of these algorithms is characterized by the average distortion over success-
fully attacked images.

These two families of attacks use as a basic principle of Taylor development to the first order
of the objective function:

J (x + r) = J (x) + r>∇xJ (x) + o(‖r‖). (2.11)

The perturbations r that diminish the objective function J (x + r) are therefore directed
towards the opposite of the gradient, i.e. −∇xJ (x). Since this approximation is local, it is only
valid for low amplitude perturbations.

Starting from the value of the objective function, a backpropagation process is initiated
which goes back to the matrix representing the image while keeping the weights of the neural
network unchanged along the way. It is thus this matrix that modifies the original image so that
the system is, in fine, deluded. The perturbation is thus a function of the gradient. Thanks to
self-differentiation [GBCB16], the calculation of the gradient is automatic. On the other hand,
the complexity of this process is just the double of the complexity of the forward propagation.
Let us now list the main algorithms belonging to these two families.

2.5.3 Target Distortion attacks

FGSM. The first algorithm using the gradient to generate the perturbation and build an adver-
sarial image has been proposed by Goodfellow and colleagues in 2014 [GSS14]. It is called
Fast Gradient Sign Method (FGSM). This method is very simple and is based on a perturbation
calculated as follows:

y = x + r = x− ε sign(∇xJ (x)). (2.12)

It is the perturbation that minimizes the first-order objective function for the constraint
‖r‖∞ = ε.

We recognize here the main elements for the process of attacks targeting distortion (see

36

Background

Equation 2.9). By studying the gradient of the objective function J , and taking its opposite, it is
then possible to determine how to modify the input of the network to decrease J and hopefully
lead to misclassification. The value of ε controls the maximum permissible distortion. This
method is very simple and creates adversarial images very quickly that sometimes mislead the
classifier. Nevertheless, it is rather crude, since it determines the perturbation to be applied from
a single observation of the gradient.

I-FGSM. It is possible to refine FGSM iteratively. Iterative Fast Gradient Sign Method (I-

FGSM) [KGB16] is the iterative version of FGSM. In contrast to Equation 2.12, the perturbation
is not directly calculated. Iterative Fast Gradient Sign Method (I-FGSM) initializes y0 := x
and then iterates by progressing in the opposite direction of the gradient with stepsize α. The
recurrence is therefore:

yi+1 := projB∞[x;ε](yi − α sign∇xJ (yi)), (2.13)

where projA is the projection on the regionA followed by a term-by-term thresholding to remain
in the hypercube [0, 1].

Here, the regionA is the ballB∞[x; ε] of L∞ norm centered in x and radius ε > α. Projection
on the ball B∞[x; ε] is defined as

projB∞[x;ε](y) := x + clip[−ε,ε](y− x). (2.14)

Thus, when the current solution remains inside the ball, the projection is not active. While the
iterations calculate perturbations that get outside the ball, then the projection brings them back
to its surface. This iterative approach is also known as Basic Iterative Method (BIM) [PFC+18].

I-FGSM and BIM perform targeted or untargeted attacks, depending on the definition of the
attacker’s loss function.

PGD. Projected Gradient Descent (PGD) is also an iterative method but it projects the gradient
onto an L2 norm ball [MMS+17]:

yi+1 := projB2[x;ε](yi − αn(∇xJ (yi))), (2.15)

37

Background

where n(x) := x/ ‖x‖2, and

projB2[x;ε](y) :=

y ‖y− x‖2 < ε

x + εn(y− x) otherwise.
(2.16)

.

The L2 norm ball used for projection is B2[x; ε], centered in x and of radius ε. Again, the
attack does not end when yi hits the B2[x; ε] ball for the first time. It continues and seeks to
minimize the objective function while remaining on the ball.

M-IFGSM. Iterative approaches progress along the gradient at a fixed step α (see Equa-
tion 2.13 and Equation 2.15). Setting this value is difficult: too small, the algorithms will stall
and not find an adversarial image because the number of iterations is limited; too large, the
algorithms will go fast but the gradient cannot be finely followed, which can create oscillations.

Approaches such as Momentum Iterative FGSM (M-IFGSM) [DLP+18] incorporate a step-
wise adaptation mechanism: in the first iterations, it is advantageous to progress rapidly along
the gradient. Later, however, it is better to take small steps to better follow the gradient and reach
a local minimum.

2.5.4 Target Success attacks

The techniques in this family are typically more expensive. If the computation is not limited,
for sure an adversarial image with the minimum distortion can be found.

L-BFGS. Szegedy and colleagues tackle the problem of creating adversarial images using a
Lagrangian formulation [SZS+13]. Distortion is no longer a constraint but is integrated in the
objective function:

L(r) := J (x + r) + λ ‖r‖2 . (2.17)

For a given value of λ > 0, the unconstrained objective minimization is tackled by the
numerical method Limited-memory Broyden-Fletcher-Goldfarb-Channo (L-BFGS). It is an
iterative method of gradient descent.

A large value for λ means that the minimum r? of the objective function might not be an
adversarial perturbation because too much weight is given to the Euclidean distortion. Conversely,
a value that is too small gives a minimum r? making J (x + r) very negative but also a large
distortion. This is illustrated in Figure 2.2. A linear search finds a suitable Lagrange multiplier.

38

Background

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 2.2 – Illustration of L-BFGS in 1D. The perturbation r is co-linear to the gradient of the
objective function. The x-axis is the norm of r. The red curve describes the objective function
J (x + r). It decreases and becomes negative when r is strong enough to be adversarial. The
dotted black curve describes the distortion ‖r‖2, The blue and magenta curves describe the
function J (x + r) + λ ∗ ‖r‖2 for two values of λ. The first value is too low (in blue): the
minimum is "far after" the red asterisk; the perturbation is adversarial but of great distortion.
The second value is too large (in magenta): the minimum is "far before" the red asterisk; the
perturbation is not adversarial.

This means that the program performing the attack has two nested loops, which explains its great
complexity.

C&W. The well-known Carlini and Wagner attack (C&W), later noted C&W, continues this
idea [CW17]. A change of variable eliminates the box constraint that x + r must remain in
[0, 1]m, replacing (x + r) by σ(z), where z ∈ [0, 1]n and σ is the element-wise sigmoid function.
Here we denote the cost function of C&W as

L(z, λ) := Jµ(f(σ(z)), `g) + λ ‖σ(z)− x‖2 , (2.18)

39

Background

where classification loss Jµ encourages the logit u(`g) of ground truth to be less than any other
logit u(k) for k 6= `g by at least margin µ ≥ 0. It is defined as

Jµ(u, `g) := [u(`g)−max
k 6=`g

u(k) + µ]+, (2.19)

where [·]+ denotes the positive part, i.e. [x]+ := x if x > 0, 0 otherwise. This function is similar
to the multi-class SVM loss by Crammer and Singer [CS01], where µ = 1 and, apart from the
margin, it is a hard version of negative cross-entropy J where softmax is producing the classifier
probabilities. It does not have the problem of being flat in the region of class `g.

When the margin is reached, loss Jµ vanishes, and the distortion term pulls σ(z) back towards
x as shown in Figure 2.3, causing oscillations around the margin.

Parameter λ controls the quality of adversarial examples. If λ is too large, the optimizer will
return a solution with small distortion but failing in misclassification. While λ is too small, the
optimizer will return an adversarial solution but a large distortion. For a given λ, C&W uses the
numerical method Adam [KB15] to find the minimum of the objective function in Rm and update
the best solution with the current optimal solution if it is better. This is repeated for different λ 1

by line search, which is expensive.

DDN. Decoupling Direction and Norm (DDN) [RHO+19]), is an iterative attack very similar
to PGD2 seen above. The formulation of DDN is:

yi+1 := projS2[x;ρi](yi − αn(∇xJ (yi))). (2.20)

Here, the projection is performed on the sphere S2[x; ρi] of radius ρi and centered in x even if
yi+1 is inside the ball. The main difference with the formulation of PGD2 given by Equation 2.15
is that the radius of this sphere changes from one iteration to another. This radius at iteration i is
obtained by calculating ρi = (1− γ)‖yi − x‖ when yi is adversarial. When this is not the case,
then ρi = (1 + γ)‖yi − x‖, with a hyper-parameter γ ∈ (0, 1).

DeepFool. This is a untargeted white box attack that uses a more elaborate objective function.
In Equation 2.8, a untargeted attack uses the objective function in order to modify the adversarial
image into the most likely class. Thus the objective function has a positive but low value in x. It
seems easier to make it negative.

1. Referred to as c in [CW17].

40

Background

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 2.3 – Illustration of C&W in 1D. The perturbation r is co-linear with the gradient of the
objective function. It is the same configuration as in Figure 2.2, except that the margin µ = 0.5
for the threshold of Equation 2.18. Remark its effect: the blue minimum is closer to the red
asterisk.

x x x

Figure 2.4 – Two-dimensional illustration of adversarial attacks on a binary classifier. From left
to right: PGD2, C&W, DDN. The regions associated with the two classes are in red and blue.
The level lines indicate the predicted probabilities. The objective is to find an adverse point in
the red region that is as close as possible to the starting point x. In grey (respectively black) the
paths taken for a low (respectively high) distortion ε for PGD2 [KGB16] (radius of the green
circle) or for a parameter λ for C&W [CW17].

41

Background

0 50 100 150 200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

Figure 2.5 – Illustration of DeepFool. The blue and red curves correspond to the objective
function J (x, `) for two different classes `1 and `2 when the perturbation r is co-linear to
their gradient. The x-axis corresponds to the norm of r. Note that p(`g) = 0.8, p(`1) = 0.1,
p(`2) = 0.05. Since p(`1) > p(`2), it seems interesting to target class `1: the blue objective
function starts from a lower value. This is a mistake because it cancels "further" than the red `2
class. To find this out, DeepFool calculates the gradient in x, which is equivalent to approaching
the objective function by its tangent in ‖r‖ = 0 (dotted line).

With DeepFool, Moosavi-Dezfooli shows that this reasoning is wrong. How easy it is to
make the objective function negative depends not only on its initial value but also on its slope. In
the first order for a targeted class, according to Equation 2.11, the minimum distortion necessary
in L2 norm is reached when r ∝ −∇xJ (x, `) with:

‖r‖ = J (x, `)
‖∇xJ (x, `)‖ . (2.21)

It is best to target the class ` that will cause the addition of the smallest distortion. This is
illustrated in Figure 2.5. But this formula is only a first-order approximation. Moreover, it must
be estimated for all or a subset of classes except of course the class `g.

42

Background

ILC. Iterative Least-likely Class (ILC) [PFC+18] proposes another choice of objective function.
The class assigned to the attacked image can be sometimes semantically close to the original `g
class. An image of a swallow taken for an image of a sparrow seems to us more harmless than if
the same image of a swallow is taken for an image of a car. Thus, Iterative Least-likely Class
(ILC) prefers to target the least likely class for the original image.

JSMA. Papernot and his colleagues propose a targeted attack for low distortion in L0 norm.
The attack discovers pixels that play an important role in the classification [PMJ+16]. This
approach called Jacobian-based Saliency Map Attack (JSMA) estimates the Jacobian matrix of
the function x→ p. This calculation determines which elements of x have the most influence
not only to increase the predicted probability of the target class p(`) but also to decrease the
predicted probabilities of all other classes.

Few pixels have this property, but modifying them is extremely effective in luring the classifier.
However, they must be modified with a large amplitude, which produces a "salt and pepper"
noise in the image. This modification is often very visible but can pass for an error in the coding
of the photo.

This technique is remarkable because it is quite fascinating that changing the value of a few
pixels or even a single pixel is enough to cause misclassification.

2.5.5 Other attacks

Some other attacks are in the same vein but with variations either on the definition of the
objective function or on the definition of the distortion. Finally, this panorama of attacks closes
with a description of some techniques that take different paths to achieve their goals. They are
separate because it is not easy to classify them into one of the two families presented above.

Universal attacks. Moosavi-Dezfooli and colleagues have shown that it is possible to create a
single adversarial perturbation that works regardless of the image feed to the network [MFFF17].
To do this, they repeatedly apply the DeepFool algorithm (see section 2.5.4) to all images of the
training data until a particular perturbation causes a large portion of the images to be misclassified.
More formally, their approach looks for the perturbation r, bounded by ε, such as:

min ‖r‖p ≤ ε

such that Px∼Pdata(f(x + r) 6= lg) ≥ 1− δ,
(2.22)

43

Background

where, δ indicates the proportion of images of the training data that have become adversarial
images and belong to the Pdata sample of all images.

Overall, the algorithm succeeds in finding unique adversarial perturbation, often visually
very different from each other, thus facilitating universal attacks.

Geometric attacks. So far the attacks change the pixel values additively: y = x + r. They are
sometimes called value-metric attacks. Geometric attacks do not change the pixel value but their
position by slight local rotations and translations. An optical flow applies a displacement field to
the pixels of the original image: the pixel at position (k, l) is moved to position (k, l) + ∆(k, l)
in the adversarial image.

Xiao and his colleagues seek to optimize this optical flow by observing the variations in
classification probabilities [XZL+18]. The objective function integrates J (x, `) and a part
regulating the optical flow so that it generates small continuous displacements. Once again, a
numerical method like L-BFGS is used. Adversarial images often look perfect.

Attacks by generative networks. Generative Adversarial Networks (GAN) [GPAM+14] are a
class of glsml algorithms that learn to estimate a probability distribution from samples submitted
to them. The learned distribution forms a model that the network can then use to generate new
samples that are completely synthetic but belong to the same distribution. Training with a very
large collection of images of faces of existing people, a generative network can then synthesize
new artificial but realistic faces.

GANs are composed of two distinct parts, a generator that learns the distribution and generates
a new sample, and a discriminator that estimates whether the sample it is observing comes from
the generator or directly from the training set. The discriminator shares its information with the
generator. These two parts compete against each other, in that the generator tries to create an
artificial sample that the discriminator will not be able to distinguish from a real sample. The
discriminator, therefore, forces the generator to improve the quality of the synthesis.

Based on this general idea, it seems natural to use these generative networks to generate
adversarial images. The generator creates adversarial images that appear legitimate to us. This is
what Baluja and Fischer [BF17], for example, do. They train a generator to create images that
deceive a particular network by modifying them via a residual network [HZRS16a].

We are therefore very far from the gradient calculation mechanism of the first attacks. The
advantage of this generative approach is to produce an adversarial image in real-time. But it also
suffers numerous disadvantages. The training time is very long. This approach only makes sense

44

Background

if the attacker has a large number of adversarial images to create. Moreover, a learned network
only targets a given class and is only valid against a particular classifier.

2.6 Defenses

There are as many defenses as attacks. This section gives an overview of them. Schematically,
we can distinguish three families of defenses:

— Reactive techniques: these techniques are based on some pre-processing that is carried
out upstream of the network. These either block images if adversarial content is detected
or filter and clean the images, hoping to remove the adversarial perturbation.

— Proactive techniques: These techniques build networks that are inherently more robust
to adversarial attacks. Approaches that add many adversarial images during the learning
phase are examples in this category.

— Obfuscation Technique: These techniques mask or blur important parameters that an
attacker needs to generate adversarial images.

Another point of view is to distinguish whether the defense is an added module connected to
the network (and thus the classifier works with or without defense), or whether the defense is an
integral part of the network resulting in a profound transformation of the classifier.

2.6.1 Reactive defenses

This family includes techniques that detect the adversarial image and/or apply pre-processing
to images submitted to the network in order to remove content that makes them adversarial.

Detection techniques introduce an additional class other than the existing classes of the
classification. This class is not necessarily labeled "adversarial images", but simply "suspicious
class". The fundamental hypothesis is that the attacker’s goal is not to lead the classifier to
recognize adversarial images as this suspicious class. The attack fails if the adversarial image is
predicted as an image from this class. Detection is sometimes justified as follows: i) images are
points in a large [0, 1]m space concentrated along some manifolds, ii) attacks push these images
out of their manifold. Detectors learn to distinguish these manifolds by collecting statistics
computed either in the image domain or in the hidden layers.

The pre-processing filters the images to remove the adversarial perturbation without altering
the visual content. Here, the images are never rejected, they are hopefully clean and therefore
harmless. In theory, filtering amounts to projecting an image onto the manifolds of natural images

45

Background

mentioned above. Once again, some technologies filter images before classification, others filter
the representations that go through the networks.

In reality, reactive techniques mix pre-processing and detection. It is possible to build a
detector from pre-processing by measuring the amount of filtered noise in the image. We list
examples of reactive defenses without any clear distinction.

Learning the manifold of natural images. is the challenge of many defenses. The advantage
is that the learning phase consumes only pristine images. Thus, the defense is not biased
towards one or more specific attacks. MagNet [MC17] uses auto-encoders to project the image
and bring it closer to the manifold of natural images. Variations use sparse representations of
image patches such as D3 [MDST18], estimations based on Gaussian mixtures [GLB19], or
generative adversarial networks such as PixelDefend [SKN+17] or Defense-GAN [SKC18]. Less
mainstream, the authors of [DMY+19] search on the Internet for the images most similar to the
query, then decide its class by a majority vote on the predictions of similar images.

Interaction with the classifier. A simple detection method is Feature Squeezing [XEQ17].
Many simple filters are applied to degrade or simplify the image, hence the name "squeezer"
(compression, slight blurring filter, ...) before submitting it to the network. Then, deviations at
the output of the network are observed with respect to the predicted probability vector given for
the original image. Any significant deviation suggests that the tested image is adversarial. The
papers [GRCvdM17, LLS+18] are very similar. SafetyNet [LIF17] is based on the analysis of
active neurons in the classifier. They encode the typical activation patterns of a deep layer of a
network processing clean images and compare this description to the current description when
processing an unknown image. This comparison is done via a radial kernel SVM. Bypassing this
defense forces the attacker to integrate the response of all the normalized units of the network into
the attack, which is difficult in practice. This defense works well even when the scale is large. A
more recent version of this defense idea is called Network Invariance Checking (NIC) [MLT+19].

2.6.2 Proactive Defenses

Proactive defenses aim to improve the intrinsic robustness of the models. They attempt to
propose a better architecture or new training process so that both the accuracy and the robustness
of the neural network are improved at the same time [XTG+20, SNG+19].

46

Background

Reducing the amplitude of the gradients. If the loss function of the network produces strong
gradients, then a very small perturbation is enough to greatly alter the output of the network.
This explains the vulnerability of the network to attacks. Reducing the amplitude of the gradients
makes the network more robust.

One of the earliest approaches is "distillation", which is originally a technique for trans-
ferring what was learned from a large network to a smaller network [HVD15]. Very roughly,
distillation trains the small network not with the image labels but with the probability vectors
predicted by the large network, which are more informative than simple labels. Papernot and
his colleagues [PMW+16] rely on distillation but apply this transfer on the same network archi-
tecture. Thus, the first version of the network is trained on labels, the second on the knowledge
learned from the first. This "auto-transfer" is done at high temperature in the softmax function,
which reduces the amplitude of the gradients of the loss function of the network. Nevertheless,
Carlini and Wagner have designed attacks that fail defenses by distillation (see the C&W attack,
section 2.5.4).

Gu and Rigazio propose to train networks with a new constraint: each layer must be "contract-
ing" in the sense of a Lipschitzian function [GR14, TSS18]. This is integrated during training
by a penalty that aims to reduce the variation of its response to perturbations that it receives
at the input. Overall, this increases the robustness of the network and requires that the applied
distortion be significantly higher for an attack to succeed.

Adversarial training. Training with more data allows a network to better generalize, to refine
the boundaries between classes in the representation space. Data augmentation is a classical trick
adding near copies of images that have undergone small translations or rotations.

The idea is the same here by augmenting training with adversarial images. The network thus
learns that despite the perturbation, such an image is in such a category. The principle is simple,
but the implementation is difficult. An attack targets a network, which during training is by
definition evolving. Each time the weights of the networks are updated, the adversarial versions
of the training images must be recalculated. The attack must therefore be ultra-fast. This is why
Goodfellow and his colleagues [GSS14] proceed with the simplest of attacks: FGSM.

This idea leads to the concept of robust optimization through a min-max formulation where
the learning objective is:

min
θ

∑
j

max
rj |‖rj‖<ε

J (xj + rj, `j,θ), (2.23)

where {xj, `j} is the training dataset.

47

Background

In a way, the learning process tries to make all the images in the ball with center xj and
radius ε be classified as xj . We can also cite various works exploring these same ideas [HXSS15,
MMS+17, TKP+17]. Let us also mention the approach of Lee and colleagues [LHL17] where
a generative network creates adversarial images that feed a classifier performing adversarial
training.

There are still a lot of poorly investigated details about adversarial training. The robustness
brought in is sometimes contested. The network is more robust against simple attacks, but still
vulnerable to more complex attacks. The robustness is obvious on training pictures but it does
not generalize well. A price has to be paid: the network is more robust against attacks but less
accurate on the original images. The consensus has not yet been established with certainty
because adversarial training is tricky to carry out. Many variations exist, gradually increasing
the number of adversarial images while increasing the strength of the attacks from a very large
number of original images. All this is expensive, the benefits do not always compensate for the
extra costs.

2.6.3 Obfuscation technique

The creation of adversarial images in a white box setup is usually based on the exploitation
of the gradient of the differentiable loss function. Introducing strong non-linearities makes the
network non-differentiable and blocks the calculation of a gradient. This family of techniques has
been explored by Goodfellow and colleagues (see [BRRG18]). Athalye and colleagues [ACW18]
have explored this subject and show the inefficiency of this approach: in the white box setup,
nothing obliges the attacker to use the gradient of the objective function. The network can be
modified and any non-linearity is replaced by a smoother function.

The defense becomes more serious when it is based on the insertion of a secret key into
the classifier, as in cryptography. This is the only way to block white box attacks. The attacker
knows all the details of the network except a high entropy secret parameter. This is difficult to
combine with ML and often requires re-training the network from scratch or in part each time a
secret key is drawn [SZMA18, TRHV20].

Another possibility is to make the classifier random. For each call to the network, the final pre-
diction depends on a random seed that the attacker cannot know. This may be a slight modification
of the input image or modifications inside the network: Dhillon and his colleagues [DAL+18] pro-
pose to remove randomly some neurons (those that react weakly) and to increase proportionally
the importance of the reaction of the preserved neurons.

48

Background

2.7 Positioning

After providing a holistic overview and the background to the field, we illustrate our viewpoint
towards the existing work and position our contributions inside the field.

2.7.1 Challenges

In this chapter, we mention many attacks and defenses separately, however, researches on both
sides do not develop alone. Most defenses measure their robustness based on attacks [MMS+17],
while attacks are proposed to crack existing defenses [ACW18]. It is like a game between attacks
and defenses. They learn from each other and improve themselves. The other works studying the
theories or improving the evaluation of robustness also provide extra information for defenses
and attacks to augment their performance. As the game between attacks and defenses continues,
we get better attacks and defenses and new knowledge about neural networks.

When it comes to producing adversarial examples, the important question is what kind of
adversarial examples are worth to generate. Attackers and defenders have different answers to
this question.

For attackers, all adversarial examples matching the definition in Equation 2.4, i.e. misleading
neural networks with invisible perturbation, are perfect. As we discussed in the previous sections,
the definition of the adversarial problem is not certain. There is still space to explore. For instance,
how to define and measure invisibility is still an open question. Most of the existing works relate
the invisibility to magnitude, and they measure the invisibility by minimizing the L2 norm of the
distortion. Perturbations of small magnitude are indeed more likely imperceptible, however, it
is a practical definition of invisibility for machines rather than a definition depicting truthfully
invisibility for humans. Some existing works define invisibility as smoothness in the sense of
low frequency [GFW18, HZJ18], however, sometimes it is still visible to humans.

Defenders attach more importance to adversarial examples which give them extra information
to improve the robustness of neural networks. Adversarial training [GSS14, MMS+17], as we
mentioned in section 2.6, includes adversarial examples as a part of training data. That improves
the robustness and provides extra information on how neural networks learn more precise
boundaries. However, experiments show that adversarial training gains robustness against attack
used to generate adversarial examples during the training phase, while being still vulnerable
to other unknown attacks. Furthermore, adversarial training also loses accuracy on legitimate
examples. In our point of view, it is due to adversarial training using adversarial examples
generated by FGSM or PGD. These target distortion attacks cannot certify the success rate by

49

Background

design. As a result, in practice, a large ε is chosen for adversarial training. These adversarial
examples with large distortion introduce noises and might cause oscillation during the training.
In this perspective, adversarial training needs adversarial examples that are closest to the original
data point so that they could correct boundaries more cautiously.

For both attackers and defenders, speed is always important when producing adversarial
examples. Attackers do not want to wait days to attack the target classification system. Training
for neural networks is not cheap in general, if it takes hours to generate adversarial exam-
ples, adversarial training is not feasible for defenders. However, the optimization problem of
producing adversarial examples is not easy to solve directly. It includes a box-constrain, i.e.
(x + r) is an image in Equation 2.4 and the complex neural network is part of the optimiza-
tion. When we directly solve it via an existing optimization algorithm [CW17, SZS+13], it is
time-consuming to find optimal solutions. It is true that methods like DeepFool [MDFF16],
FGSM [GSS14], PGD [MMS+17], etc., speed up the algorithm with some approximation, how-
ever, adversarial examples generated by these approaches are not optimal solutions. It is worth
investigating how to improve the efficiency of attacks producing optimal adversarial examples.

When it comes to defending adversarial examples, we need to define what is a good defense.
We have mentioned many defenses; there are many others, sometimes simple variations, some-
times more original contributions as well. In general, the evaluation of their effectiveness leaves
a series of questions. Many of them are evaluated on very small test sets, resist only this or
that class of attacks, are too expensive to be usable in practice, etc. There is not yet a rigorous
protocol to evaluate the quality of a defense technique that makes a network more robust to
adversarial attacks. It is very difficult to compare the respective merits of different defensive
strategies.

Even though it is difficult to evaluate what is a good defense quantitatively, we can define an
ideal defense qualitatively. An ideal defense should not degrade the network’s quality and improve
the network’s robustness. The addition of defense strategies sometimes leads to a degradation of
the network’s quality: the classification performance on natural (unattacked) images of a defended
network is worse than that of a defenseless network. This observation is contested because nothing
implies, fundamentally, such a tension (even if some theoretical papers claim the contrary).
Recently, there exist works to improve both the quality and the robustness of networks by
changing the training scheme [XTG+20, SNG+19]. AdvProp [XTG+20] uses separate auxiliary
batch norm for adversarial examples, as they have different underlying distributions than normal
examples. The "free" adversarial training [SNG+19] updates the network parameters while
generating adversarial examples. For each iteration, the network is updated by the gradient with

50

Background

respect to the network parameters while the adversarial perturbation is updated by the gradient
with respect to the input. It overheads the cost of generating adversarial examples by recycling
the gradient information computed when updating model parameters. However, both defenses
need to train a network from scratch, which is expensive.

On the other hand, an ideal defense should be robust under different settings and not too
costly. In section 2.6, we categorize defense works as reactive defenses and proactive defenses.
The reactive defense introduces an external model, normally a transformation module or a
detector, to protect the network away from the adversarial attack. Reactive defenses are cheap to
apply but most of them are proven vulnerable when attackers are aware of their existence. In the
white-box setting, the detector is easily regarded as a part of the classification system and applied
backpropagation to acquire gradients for generating undetectable adversarial examples. For
transformations that are non-differentiable, attackers consider them as part of the classification
system in the forward while replacing them with identity function in the backward [ACW18]. In
this way, these defenses are also vulnerable. Proactive defenses improving the intrinsic robustness
of the models are normally expensive because they need to train the neural network from scratch
when the architecture of the network or the training process is changed. These defenses are
either only proposed by the company with plenty of GPU like Google, and FaceBook, either
only verified on small datasets like MNIST, and CIFAR.

Some approaches opt for a more formal point of view and try to certify the robustness of
the network as long as the distortion remains under a limit whose value must be calculated.
Still, in their infancy, we nevertheless cite the studies that have been carried out [WK17, RSL18,
KBD+17, HKWW17, RHK18, SND17].

To answer these questions, we make our assumptions, verify them through experiments and
then correct them according to our observations.

2.7.2 Our approaches and contributions

We start with our definition of invisibility. Adversarial images produced with existing attacks
are not invisible. When we enlarge adversarial images, the perturbations are obvious even with
small magnitudes. The situation is even worse if we magnify images with a local kernel at
each point. By investigating this case, we find that adversarial perturbations are perceptive
due to independent perturbations neighboring pixels. Humans are sensitive to high-frequency
information in images. In this perspective, we enforce invisibility by making perturbation similar
over neighbor pixels. To do this, we build a graph to maintain the pixel similarity of the original
image. This succeeds in producing smooth adversarial examples that not only are smooth

51

Background

according to our definition but also achieve better performance concerning success rate and
distortion. This brings new knowledge to the type of adversarial examples we can produce.

Besides, when we compare our attack to others, we realize we can improve the evaluation

protocol. Success rate and L2 norm of distortion are usually treated as two important criteria.
Normally, we compare the value of one of them when the other is fixed. We argue that it is limited.
For instance, if we compare the success rate under an extremely large (or small) distortion, two
attacks might give very similar results, i.e. around 100% (or 0%). Moreover, it is hard to compare
the attacks from target distortion attacks to those from target success attacks. As we mentioned
in section 2.5, target distortion attacks set the threshold of distortion so that we compare the
success rate to measure the capability of these attacks; while target success attacks to aim to
attack successfully so that we compare the average distortion. If the parameter ε for the target
distortion attacks like PGD [MMS+17] is optimized, the target distortion attacks become target
success attacks. In this way, we propose a fair evaluation protocol to compare attacks from the
two different families.

When we implement the algorithm to generate smooth adversarial perturbation, we build
on C&W [CW17], and we suffer from its inefficiency. In practice, the reason why C&W is not
efficient enough is due to the redundant optimization algorithm. It applies a linear search to find
a decent parameter λ in Equation 2.18. For each parameter, Equation 2.18 gives a different
optimization problem and C&W applies the existing optimization algorithm Adam with 10000
maximum iterations to solve the optimization problem. DDN [RHO+19] proposes an attack
combining the gradient of the neural network and the distortion. It is efficient compared to lots
of targeted success attacks. However, it only uses the gradient as the searching direction that
leads to oscillations around the boundary and, as a result, wastes the computation.

Loss and distortion have different importance during the attack process. When the current
solution is still in the region of the original class, we attach more importance to the loss. When
the current solution crosses the boundary and becomes adversarial, the target becomes to reduce
the distortion while maintaining misclassification. To achieve that, we propose a Boundary

Projection (BP) that searches adversarial examples along the boundary. Experiments show that
BP attack is very efficient. It provides speed, small magnitude of distortion and high success rate.

On the other hand, we also notice the quantization problem of adversarial images. When
adversarial images are generated inside a neural network, they are represented as continuous
matrices in the range [0, 1]. However, true images are represented in a discrete format in the
range 0, 1, · · · , 255. Plenty of attacks evaluate their performance without saving images, and this
makes a difference in the performance. We should not ignore the difference caused by quantizing

52

Background

the adversarial images onto true images.
We also work on defense. We investigate how adversarial perturbation performs inside a

neural network, and try to eliminate the adversarial effects through a cheap model. We find that
in the different layers of neural networks, random noises have different behavior than adversarial
perturbation. On images or in the first layer, neural networks can withstand random noises. Differ-
ent from the defenses based on transformation using clean training data [MDST18, GRCvdM17],
patch replacement removes adversarial effects by replacing the inputs by untouched training data.
It gives us more chance to improve the robustness while maintaining the accuracy on legitimate
images. Besides, since there is no need to train the neural network from scratch, the defense
is not expensive. The usage of the patches of untouched data in the testing phase increases the
complexity of the attack even if the attacker is aware of our defense. This increases the robustness
in white/gray-box settings. Experiments show this defense performs better on adversarial attacks
with small distortion.

Our works make the field of adversarial attacks and defenses more complete. We give a
new definition of the invisibility of adversarial perturbation, propose an efficient optimization
algorithm to solve adversarial problems, explore the defense on the features, propose a fair
evaluation protocol, and underline the quantization problem of adversarial images. We not only
get better results, and improve the performance but also bring new knowledge.

53

PART I

Attack

54

CHAPTER 3

EVALUATION

The previous chapter includes an overview of some well-established adversarial attack
strategies. They are diverse in their assumptions, in their approaches. However, most of them
try to do their best to minimize the magnitude of distortion existing in successful adversarial
samples. In other words, all contributions aim at achieving the lowest distortion and highest
success rate.

We were among the first to consider invisibility and speed. The contributions about adversarial
attacks presented in this manuscript have the same two targets. On the one hand, we propose
a new technique to craft adversarial samples where the distortion is hardly visible – we target
here invisibility. This technique is described in detail inside the chapter 4. On the other hand, we
propose another technique that is very efficient to create adversarial samples – we target here
speed. This technique is described in detail inside the chapter 5.

To compare our contributions to the existing solutions, we need evaluation metrics that
refer to the quality of adversarial images, i.e. the success of the attacks and the resulting visual
distortion, etc.

Before we introduce these evaluation metrics, we also need to clarify some publicly available
datasets as well as some off-the-shelf network architectures that we use in our experiments.
We also would like to elaborate on the quantization problem of adversarial images, i.e. the
quantization applied to adversarial images when saving them into image files might affect the
quality of adversarial images.

Last but not least, we introduce the standard evaluation metrics that mainly focus on the
success rate and magnitude of the adversarial perturbation. We propose our evaluation metrics
that improve the standard evaluation. We also discuss other evaluation metrics that refer to speed
and invisibility.

55

Part I, Chapter 3 – Evaluation

3.1 Datasets

We basically test on three public and widely used datasets, i.e. MNIST [LCB10], CI-
FAR10 [Kri09] and ImageNet [DDS+09].

MNIST is a dataset consisting of 28× 28 grayscale images of handwritten digits, i.e. range
from 0 to 9. It contains 60, 000 training images and 10, 000 testing images.

Figure 3.1 – Here are ten examples of MNIST from different classes.

CIFAR10 is a collection of low-resolution (32× 32) color images in 10 classes, i.e. airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. It contains 60, 000 training images,
in which 6, 000 images of each class, and 10, 000 testing images uniformly from 10 classes.

Figure 3.2 – Here are ten examples of CIFAR10 from different classes.

ImageNet indicates the dataset from the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC 2012). There are 1, 000 categories, with a typical category, such as "balloon" or

56

3.2. Networks

"strawberry". It contains 10, 000, 000 images as the training data, 50, 000 images as validation
data, and 100, 000 images as test data. The images vary in resolution, and the average image
resolution on ImageNet is 469× 387 pixels. Normally, it is necessary to apply a pre-processing
that down samples them to the same resolution: 299× 299× 299× 3.

Figure 3.3 – Here are ten examples of ImageNet from different classes.

For our experiments, we follow the setting of adversarial attacks and defense competi-
tion [KGB+18a] where 1, 000 images are used as the test data to evaluate the quality of ad-
versarial attacks. These 1, 000 images are well-selected, they are easy to classify to networks.
Networks achieve high accuracy on this test set. The exactly same 1, 000 images from the com-
petition are used in chapter 4 and chapter 5. We call it the test set for attacks. The attacks are
built on TensorFlow [ABC+16], where the pre-trained models are trained on images with size
299× 299× 3.

3.2 Networks

To reproduce the experiments, we list here adequate details of the networks we use. We first
introduce the off-the-shelf networks used as target network. Then we introduce the robust models
against attacks. We use different models on different dataset.

3.2.1 Off-the-shelf network

MNIST [LCB10]. We use a simple network with three convolutional layers and one fully-
connected layer. The first convolutional layer has 64 feature kernels (or filters) of size 8 and

57

Part I, Chapter 3 – Evaluation

strides 2 1; the second has 128 feature kernels of size 6 and strides 2; the third has 128 feature
kernels of size 5 and stride 1. It uses LeakyRelu activation [MHN13]. The loss function is the
cross-entropy.

We train the network with the 60, 000 images of the training set. After a random initialization,
training lasts 6 epochs with batch size 128, learning rate 0.001, and the optimizer is Adam.
Between epochs, the training data are shuffled. This simple network achieves an accuracy of
0.99. This setting is following an example of Cleverhans [PFC+18] that gives decent results.

CIFAR10 [Kri09]. We use a simple CNN network with nine convolutional layers, two max-
pooling layers, two dropout layers, ending in global average pooling, and a fully connected layer.
Batch normalization [IS15] is applied after every convolutional layer. It also uses LeakyRelu.
The loss function is the cross-entropy. All the kernels of the convolutional layers are initialized
with the HeReLuNormal initializer, and their kernel size is 3. For the first three convolutional
layers, the number of filters is 128 and the padding mode is ‘same’ 2. For the following three
convolutional layers, the number of filters is 256 and the padding mode is ‘same’. For the last
three convolutional layers, the padding mode is ’valid’. The seventh layer has 512 filters, while
256 filters for the eighth layer, and 128 filters for the last layer. The parameter α for LeakyRelu
is 0.1, and the rate for dropout is 0.5. The pool size of the max-pooling layer is 2, the shape of
the stride is 2 and the padding mode is ‘valid’. The pool size of the average pooling layer is 2
and the shape of the stride is 6 and the padding mode is ‘valid’.

We trained the model with the 60, 000 images of the training set. After a random initialization,
training lasts 200 epochs with batch size 128, learning rate 0.001, and the optimizer is Adam.
Between epochs, the training data are shuffled. Its accuracy is 0.927.

ImageNet [DDS+09]. We use InceptionV3 [SVI+16] and ResNet V2-50 [HZRS16b] with the
pre-trained model from TensorFlow-Slim image classification library 3, whose accuracy are 0.96
and 0.93 respectively on the test set for attacks; 0.78 and 0.76 on random images.

1. Here, the stride is a parameter that sets the shift of the kernel. For instance, if a stride is set to 1, the kernel
will move one pixel, or unit, at a time.

2. The padding is needed when the size of filters does not perfectly fit the input. Two modes of padding are used
in practice, i.e.’same’ and ’valid’. The ’same’ mode tries to add extra columns and rows to input with value zero
when the input size does not fit the filter size. The ’valid’ mode tries to drop the columns and rows of input that can
not fit the filter.

3. https://github.com/tensorflow/models/tree/master/research/slim

58

https://github.com/tensorflow/models/tree/master/research/slim

3.2. Networks

3.2.2 Robust models

We use the same network for MNIST and CIFAR10, but the training differs. We follow the
adversarial training methods [MMS+17, GSS14], i.e. the models are trained with training data
and their adversarial version generated by PGD2 or FGSM.

MNIST. On MNIST, it is trained from scratch with the same setup but with training data and
their adversarial examples. For adversarial training, PGD2 iterates 40 times with ε = 0.3 while
α = 0.01. The training batch size is 50 over 100 epochs. 4 FGSM defense model uses FGSM
with ε = 0.3. We also train adversarial training models with DDN and BP. DDN and BP defense
model use these attacks with 20 iterations and the same parameters as described in the attack
methods.

CIFAR10. On CIFAR10, FGSM and PGD2 defense models are trained from scratch. FGSM
defense model uses FGSM with ε = 0.3. PGD2 iterates 100 times, with ε = 8/255 while
α = 2/255. The training batch size is 128 over 200 epochs. 5 Between epochs, the training data
are shuffled.

For DDN and BP defense model, we follow the training suggested by [RHO+19]. The model
is first trained on clean examples, then fine-tuned for 30 iterations with adversarial examples. The
parameters are initialized randomly. The optimizer is Momentum Optimizer, the initial learning
rate is 0.001 and the momentum is 0.9. It is trained with 200 epochs and the batch size 128.
Between epochs, the training data are shuffled. DDN and BP defense model use these attacks
with 20 iterations and the same parameters as attack methods.

ImageNet. The robust model for ImageNet is ensemble adversarial training [TKP+17], which
is directly taken from TensorFlow library 6.

Experiments of attacks run on TensorFlow1.8.0-py2.7 over CUDA 9.0.176; Cleverhans [PFC+18]
produces the existing attacks 7.

4. This parameter setting is from MadryLab (https://github.com/MadryLab/mnist_challenge)
following the paper "Towards Deep Learning Models Resistant to Adversarial Attacks".

5. This parameter setting is from MadryLab (https://github.com/MadryLab/cifar10_
challenge) following the paper "Towards Deep Learning Models Resistant to Adversarial Attacks".

6. https://github.com/tensorflow/models/tree/master/research/adv_imagenet_
models

7. Cleverhans v1.0.0 is used for chapter 4. Cleverhans v2.0.0 is used for chapter 5. When we worked on
experiments in chapter 4, only Cleverhans v1.0.0 existed and it was a reliable tool to implement adversarial attacks.
When we started the work in chapter 5, Cleverhans upgraded to Cleverhans v2.0.0. They improved their codes and
the old version was covered. So we shifted to the higher version.

59

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models

Part I, Chapter 3 – Evaluation

3.3 Evaluation metrics

This section presents the evaluation metrics used to evaluate the quality of adversarial images.
We start with the standard evaluation metrics, i.e. success rate, and distortion. We discuss the
metrics and propose our new evaluation metrics.

3.3.1 Standard evaluation metrics

According to the definition of adversarial images (see Equation 2.4) two criteria to evaluate
their quality: distortion and probability of its success.

These two criteria are intimately linked by a trade-off. It is easy to build an attack that always
succeeds: it is the attack that replaces x with a completely different image x′ whose predicted
class is `, but the distortion ‖x′ − x‖p is huge and clearly visible to the naked eye. It is easy to
build a zero distortion attack: it is the attack that substitutes x for the same x, but the probability
of success is zero (unless x is misclassified by the network). These two extreme attacks are of no
interest, but they illustrate this trade-off.

It is respectively difficult to compare a target distortion attack (see subsection 2.5.3) to a
target success attack (see subsection 2.5.4). Target distortion attacks and target success attacks
attach different importance towards success rate and distortion. It is instinctive to fix the success
rate and compare the minimum distortion in order to measure the capability of target success
attacks. On another hand, fixing the upper bound of distortion (by setting parameter ε), the
success rate indicates the capability of target distortion attacks. It is hard to control the success
rate for target distortion attacks while it is hard to control the distortion for target success attacks.
Besides, the selection of the value of reference distortion or success rate might give different
perspectives.

3.3.2 Our evaluation metrics

It is difficult to define a fair comparison of attacks targeting distortions and attacks targeting
success. For the first family, we run a given attack several times over the test set with different
target distortion ε as we described in section 2.5. The attack succeeds on image xo ∈ X if it
succeeds on any of the runs.

Given a test set of N ′ images, we only consider its subset X of N images that are classified
correctly without attack. The accuracy of the classifier on pristine images is thus N/N ′. Let Xsuc

be the subset of X with Nsuc := |Xsuc| where the attack succeeds and let D(x) := ‖x− y‖ be

60

3.3. Evaluation metrics

the distortion for image x ∈ Xsuc where y is the closest adversarial example the attack succeeded
to forge. The global statistics are the success probability Psuc and conditional average distortion

D

Psuc := Nsuc

N
, D := 1

Nsuc

∑
x∈Xsuc

D(x). (3.1)

Here, D is conditioned on success. Indeed, distortion makes no sense for a failure.

We define the operating characteristic of a given attack over the set X as the function
P : [0, Dmax] → [0, 1], where Dmax := maxx∈Xsuc D(x). Given D ∈ [0, Dmax], P(D) is the
probability of success subject to distortion being upper bounded by D,

P(D) := 1
N
|{x ∈ Xsuc : D(x) ≤ D}|. (3.2)

This function increases from P(0) = 0 to P(Dmax) = Psuc. If we choose one intermediate point
with upper bounded distortionDupp ∈ (0, Dmax), then the relative success rate is Pupp := P(Dupp).
This is equivalent to standard evaluation metrics.

3.3.3 Other evaluation metrics we introduce

MAD. According to the paper [FBHD19], that compares fifteen metrics (including Structural
Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Weighted Peak
Signal-to-Noise Ratio (wPSNR)) to the subjective perceptual evaluation of a panel of users, Most

Apparent Distortion (MAD) [LC10] is the metric best reflecting user assessment about the quality
of adversarial images.

MAD attempts to explicitly model two separate measures of perceived distortion, i.e. one for
near-threshold distortions in high-quality images and another for suprathreshold distortion in
low-quality images. MAD uses a weighted geometric mean of the two different distortions to
capture the interacting strategies of measurement. A low MAD score means better fidelity. It is
used in chapter 4 to evaluate the invisibility of smooth adversarial perturbation.

Complexity. The complexity of an attack measured by its memory consumption or by the
computing time required is also an important criterion. The attacks listed in section 2.5 are
often iterative. Counting the number of iterations that are necessary to produce a good visual
quality adversarial image is a valuable indicator more reliable than memory or runtimes as it is
independent of the software implementation and the hardware.

The lower the complexity, the faster the attack, but then often the probability of success is

61

Part I, Chapter 3 – Evaluation

low or the distortion is high. It is used in chapter 5 to evaluate the efficiency of BP attack.

62

CHAPTER 4

SMOOTH ADVERSARIAL EXAMPLES

This work investigates the visual quality of the adversarial examples. Recent papers propose
to smooth the perturbations to get rid of high frequency artefacts. In this work, smoothing has a
different meaning as it perceptually shapes the perturbation according to the visual content of
the image to be attacked. The perturbation becomes locally smooth on the flat areas of the input
image, but it may be noisy on its textured areas and sharp across its edges.

This operation relies on Laplacian smoothing, well-known in graph signal processing, which
we integrate in the attack pipeline. We benchmark several attacks with and without smooth-
ing under a white-box scenario and evaluate their transferability. Despite the additional con-
straint of smoothness, our attack has the same probability of success at lower distortion. This
work [ZAFA20a] is published on EURASIP Journal on Information Security.

4.1 Introduction

Adversarial examples where introduced by Szegedy et al. [SZS+13] as imperceptible pertur-
bations of a test image that can change a neural network’s prediction. This has spawned active re-
search on adversarial attacks and defenses with competitions among research teams [KGB+18b].
Despite the theoretical and practical progress in understanding the sensitivity of neural networks
to their input, assessing the imperceptibility of adversarial attacks remains elusive: user studies
show that Lp norms are largely unsuitable, whereas more sophisticated measures are limited
too [SBR18].

Machine assessment of perceptual similarity between two images (the input image and its
adversarial example) is arguably as difficult as the original classification task, while human
assessment of whether one image is adversarial is hard when the Lp norm of the perturbation is
small. Of course, when both images are available and the perturbation is isolated, one can always
see it. To make the problem interesting, we ask the following question: given a single image, can

the effect of a perturbation be magnified to the extent that it becomes visible and a human may

decide whether this example is benign or adversarial?

63

Part I, Chapter 4 – Smooth Adversarial Examples

(a) Original image (b) Original, magnified

(c) C&W [CW17] (d) sC&W (this work)

(e) DeepFool [MDFF16] (f) Universal [?]

(g) FGSM [GSS14] (h) I-FGSM [KGB16]

Figure 4.1 – Given a single input image, our adversarial magnification (cf . section 4.5) reveals
the effect of a potential adversarial perturbation. We show (a) the original image followed by (b)
its own magnified version as well as (c)-(h) magnified versions of adversarial examples generated
by different attacks. Our smooth adversarial example (d) is invisible even when magnified.

64

4.1. Introduction

Figure 4.1 shows that the answer is positive for a range of popular adversarial attacks. In
section 4.5 we propose a simple adversarial magnification producing a “magnified” version
of a given image, without the knowledge of any other reference image. Assuming that natural
images are locally smooth, this can reveal not only the existence of an adversarial perturbation
but also its pattern. One can recognize, for instance, the pattern of Figure. 4 of [MFFF17] in our
Figure 4.1(f), revealing a universal adversarial perturbation.

Motivated by this example, we argue that popular adversarial attacks have a fundamental
limitation in terms of imperceptibility that we attempt to overcome by introducing smooth

adversarial examples. Our attack assumes local smoothness and generates examples that are
consistent with the precise smoothness pattern of the input image. More than just looking
“natural” [ZDS18] or being smooth [HZJ18, GFW18], our adversarial examples are photorealistic,
low-distortion, and virtually invisible even under magnification. This is evident by comparing
our magnified example in Figure 4.1(d) to the magnified original in Figure 4.1(b).

Given that our adversarial examples are more constrained, an interesting question is whether
they perform well according to metrics like probability of success and Lp distortion. We show that
our attack is not only competitive but outperforms Carlini and Wagner attack (C&W) [CW17],
from which our own attack differs basically by a smoothness penalty.

Contributions. As primary contributions, we

— investigate the behavior of existing attacks when perturbations become “smooth like” the
input image; and

— devise one attack that performs well on standard metrics while satisfying the new con-
straint.

As secondary contributions, we

— magnify perturbations to facilitate qualitative evaluation of their imperceptibility;

— show that properly integrating the smoothness constraint is not as easy as smoothing the
perturbation generated by an attack; and

— define a new, more complete/fair evaluation protocol.

The remaining text is organized as follows. section 4.2 explains Laplacian smoothing, on
which we build our method. section 4.3 presents our smooth adversarial attacks, and section 4.4
provides experimental evaluation. Conclusions are drawn section 4.6. Our adversarial magnifica-

tion used to generate Figure 4.1 is specified in section 4.5.

65

Part I, Chapter 4 – Smooth Adversarial Examples

4.1.1 Related work on imperceptibility

Adversarial perturbations are often invisible only because their amplitude is extremely small.
Few papers deal with the need of improving the imperceptibility of the adversarial perturbations.
The main idea in this direction is to create low or mid-frequency perturbation patterns.

Zhou et al. [ZHC+18] add a regularization term for the sake of transferability, which removes
the high frequencies of the perturbation via low-pass spatial filtering. Heng et al. [HZJ18]
propose a harmonic adversarial attack where perturbations are very smooth gradient-like images.
Guo et al. [GFW18] design an attack explicitly in the Fourier domain. However, in all cases
above, the convolution and the bases of the harmonic functions and of the Fourier transform are
independent of the visual content of the input image.

In contrast, the adversarial examples in this work are crafted to be locally compliant with
the smoothness of the original image. Our perturbation may be sharp across the edges of xo
but smooth wherever xo is, e.g. on background regions. It is not just smooth but photorealistic,
because its smoothness pattern is guided by the input image.

An analogy becomes evident with digital watermarking [QAR18]. In this application, the
watermark signal pushes the input image into the detection region (the set of images deemed
as watermarked by the detector), whereas here the adversarial perturbation drives the image
outside its class region. The watermark is invisible thanks to the masking property of the input
image [CMB+08]. Its textured areas and its contours can hide a lot of watermarking power, but
the flat areas can not be modified without producing noticeable artefacts. Perceptually shaping
the watermark signal allows a stronger power, which in turn yields more robustness.

Another related problem, with similar solutions mathematically, is photorealistic style transfer.
Luan et al. [LPSB17] transfer style from a reference style image to an input image, while
constraining the output to being photorealistic with respect to the input. This work as well as
follow-up works [PP18, LLL+18] are based on variants of Laplacian smoothing or regularization
much like we do.

It is important to highlight that high frequencies can be powerful for deluding a network, as
illustrated by the extreme example of the one pixel attack [SVS19]. However this is arguably
one of the most visible attacks.

66

4.2. Background on graph Laplacian smoothing

4.2 Background on graph Laplacian smoothing

Popular attacks typically produce noisy patterns that are not found in natural images. They
may not be visible at first sight because of their low amplitude, but they are easily detected
once magnified (see Fig. 4.1). Our objective is to craft an adversarial perturbation that is locally
as smooth as the input image, remaining invisible through magnification. This section gives
background on Laplacian smoothing [ZBL+03, KLL08], a classical operator in graph signal

processing [SM13, SNF+13], which we adapt to images here. Section 4.3 uses it generate a
smooth perturbation guided by the original input image.

Graph. Laplacian smoothing builds on a weighted undirected graph whose n vertices corre-
spond to the n pixels of the input image xo. The i-th vertex of the graph is associated with feature
xi ∈ [0, 1]d that is the i-th row of xo, that is, xo = [x1, . . . ,xn]>. Matrix t ∈ Rn×2 denotes the
spatial coordinates of the n pixels in the image, and similarly t = [t1, . . . , tn]>. An edge (i, j)
of the graph is associated with weight wij ≥ 0, giving rise to an n × n symmetric adjacency
matrix W, for instance defined as

wij :=

kf(xi,xj)ks(ti, tj), if i 6= j

0, if i = j
(4.1)

for i, j ∈ {1, . . . , n}, where kf is a feature kernel and ks is a spatial kernel, both being usually
Gaussian or Laplacian. The spatial kernel is typically nonzero only on nearest neighbors, resulting
in a sparse matrix W. We further define the n× n degree matrix D := diag(W1n) where 1n is
the all-ones n-vector.

Regularization [ZBL+03]. Now, given a new signal z ∈ Rn×d on this graph, the objective of
graph smoothing is to find another signal r, which is close to z, while at the same time being
smooth according to the neighborhood system represented by the graph. Precisely, given z, we
define the output signal sα(z) := arg minr∈Rn×d φα(r, z), with

φα(r, z) := α

2
∑
i,j

wij ‖r̂i − r̂j‖2 + (1− α) ‖r− z‖2
F (4.2)

where r̂ := D−1/2r and ‖·‖F is the Frobenius norm. The first summand is the smoothness term.
It encourages r̂i to be close to r̂j when wij is large, i.e. when pixels i and j of input xo are
neighbours and similar. This encourages r to be smooth wherever xo is. The second summand is

67

Part I, Chapter 4 – Smooth Adversarial Examples

the fitness term that encourages r to stay close to z. Parameter α ∈ [0, 1) controls the trade-off
between the two.

Filtering. If we symmetrically normalize matrix W asW := D−1/2WD−1/2 and define the
n × n regularized Laplacian matrix Lα := (In − αW)/(1 − α), then the expression (4.2)
simplifies to the following quadratic form:

φα(r, z) = (1− α) tr
(
r>Lαr− 2z>r + z>z

)
. (4.3)

This reveals, by letting the derivative ∂φ/∂r vanish independently per column, that the smoothed
signal is given in closed form:

sα(z) = L−1
α z. (4.4)

This solution is unique because matrixLα is positive-definite. Parameter α controls the bandwidth
of the smoothing: function sα is the all-pass filter for α = 0 and becomes a strict ‘low-pass’ filter
when α→ 1 [IAT+18].

Variants of the model above have been used for instance for interactive image segmenta-
tion [Gra06, KLL08, VC17], transductive semi-supervised classification [ZGL03, ZBL+03], and
ranking on manifolds [ZWG+03, ITA+17]. Input z expresses labels known for some input pixels
(for segmentation) or samples (for classification), or identifies queries (for ranking), and is null
for the remaining vertices. Smoothing then spreads the labels to these vertices according the
weights of the graph.

Normalization. Contrary to applications like interactive segmentation or semi-supervised
classification [ZBL+03, KLL08], z does not represent a binary labeling but rather an arbitrary
perturbation in this work. Also contrary to such applications, the output is neither normalized nor
taken as the maximum over feature dimensions (channels). If L−1

α is seen as a spatial filter, we
therefore row-wise normalize it to one in order to preserve the dynamic range of z. We therefore
define the normalized smoothing function as

ŝα(z) := diag(sα(1n))−1sα(z). (4.5)

This function of course depends on xo. We omit this from notation but we say ŝα is smoothing

guided by xo and the output is smooth like xo.

68

4.3. Integrating smoothness into the attack

4.3 Integrating smoothness into the attack

The key idea of the paper is that the smoothness of the perturbation is now consistent with the
smoothness of the original input image xo, which is achieved by smoothing operations guided
by xo. This section integrates smoothness into attacks targeting distortion (section 4.3.1) and
attacks targeting success (section 4.3.2), but in very different ways.

4.3.1 Simple attacks

We consider here simple attacks targeting distortion or success based on gradient descent of
the loss function. There are many variations which normalize or clip the update according to
the norm used for measuring the distortion, a learning rate or a fixed step etc. These variants are
loosely prototyped as the iterative process

g = ∇xL(f(x(k)
a), `g), (4.6)

x(k+1)
a = clip[0,1]

(
x(k)
a − n(g)

)
, (4.7)

where clip[0,1] is a clipping function and n a normalization function according to the variant.
Function clip[0,1] should at least produce a valid image: clip[0,1](x) ∈ X = [0, 1]n×d.

Quick and dirty. To keep these simple attacks simple, smoothness is loosely integrated after
the gradient computation and before the update normalization:

x(k+1)
a = clip[0,1]

(
x(k)
a − n(ŝα(g))

)
. (4.8)

This approach can be seen as a projected gradient descent on the manifold of perturbations that
are smooth like xo. When applied to PGD2, we call this attack qPGD2 where the ‘q’ stands for a
‘quick and dirty’ integration of the smoothness constraint.

4.3.2 Attack targeting optimality

This section integrates smoothness in the attacks targeting optimality like C&W. Our starting
point is the unconstrained problem in Equation 2.18 [CW17]. However, instead of representing
the perturbation signal r := x − xo implicitly as a function σ(w) − xo of another parameter
w, we express the objective explicitly as a function of variable r, as in the original formulation
of Equation 2.17 in [SZS+13]. We make this choice because we need to directly process the

69

Part I, Chapter 4 – Smooth Adversarial Examples

perturbation r. On the other hand, we now need the element-wise clipping function clip[0,1](x) :=
min([x]+, 1) to satisfy the constraint x = xo + r ∈ X Equation 2.17. Our problem is then

min
r

λ ‖r‖2 + L(f(clip[0,1](xo + r)), `g), (4.9)

where r is unconstrained in Rn×d.

Smoothness penalty. At this point, optimizing Equation 4.9 results in ‘independent’ updates
at each pixel. We would rather like to take the smoothness structure of the input xo into account
and impose a similar structure on r. Representing the pairwise relations by a graph as discussed
in section 4.2, a straightforward choice is to introduce a pairwise loss term

µ
∑
i,j

wij ‖r̂i − r̂j‖2 (4.10)

into Equation 4.9, where we recall that wij are the elements of the adjacency matrix W of xo,
r̂ := D−1/2r and D := diag(W1n). A problem is that the spatial kernel is typically narrow to
capture smoothness only locally. Even if parameter µ is large, it would take a lot of iterations
for the information to propagate globally, each iteration needing a forward and backward pass
through the network.

Smoothness constraint. What we advocate instead is to apply a global smoothing process at
each iteration: we introduce a latent variable z ∈ Rn×d and seek for a joint solution with respect
to r and z of the following

min
r,z

µφα(r, z) + λ ‖r‖2 + L(f(clip[0,1](xo + r)), `g), (4.11)

where φ is defined by Equation 4.2. In words, z represents an unconstrained perturbation, while
r should be close to z, smooth like xo, small, and such that the perturbed input xo + r satisfies
the classification objective. Then, by letting µ → ∞, the first term becomes a hard constraint
imposing a globally smooth solution at each iteration:

min
r,z

λ ‖r‖2 + L(f(clip[0,1](xo + r)), `g) (4.12)

subject to r = ŝα(z), (4.13)

70

4.3. Integrating smoothness into the attack

where ŝα is defined by Equation 4.5. During optimization, every iterate of this perturbation r is
smooth like xo.

Optimization. With this definition in place, we solve for z the following unconstrained prob-
lem over Rn×d:

min
z

λ ‖ŝα(z)‖2 + L(f(clip[0,1](xo + ŝα(z))), `g). (4.14)

Observe that this problem has the same form as Equation 4.9, where r has been replaced by
ŝα(z). This implies that we can use the same optimization method as the C&W attack. The only
difference is that the variable is z, which we initialize by z = 0n×d, and we apply function ŝα at
each iteration.

Gradients are easy to compute because our smoothing is a linear operator. We denote the loss
on this new variable by L(z) := L(f(clip[0,1](xo + ŝα(z))), `g). Its gradient is

∇zL(z) = Jŝα(z)> · ∇xL(f(clip[0,1](xo + ŝα(z))), `g), (4.15)

where Jŝα(z) is the n× n Jacobian matrix of the smoothing operator at z. Since our smoothing
operator as defined by Equation 4.4 and Equation 4.5 is linear, Jŝα(z) = diag(sα(1n))−1L−1

α is
a matrix constant in z, and multiplication by this matrix is equivalent to smoothing. The same
holds for the distortion penalty ‖ŝα(z)‖2. This means that in the backward pass, the gradient of
the objective Equation 4.14 w.r.t. z is obtained from the gradient w.r.t. r (or x) by smoothing,
much like how r is obtained from z in the forward pass Equation 4.13.

Matrix Lα is fixed during optimization, depending only on input xo. For small images like in
the MNIST dataset [LBBH98], it can be inverted: function ŝα is really a matrix multiplication.
For larger images, we use the Conjugate Gradient (CG) method [NW06] to solve the set of linear
systems Lαr = z for r given z. Again, this is possible because matrix Lα is positive-definite,
and indeed it is the most common solution in similar problems [Gra06, CK16, ITA+17]. At
each iteration, one computes a product of the form v 7→ Lαv, which is efficient because Lα is
sparse. In the backward pass, one can either use CG on the gradient, or Auto-Differentiate (AD)

through the forward CG iterations. We choose the latter because it is the simplest implementation-
wise. The two options have the same complexity and should have the same run-time in theory.
In practice, Tensorflow AD takes 0.43s on average for 50 CG iterations on ImageNet and
InceptionV3, while CG forward takes 0.33s.

71

Part I, Chapter 4 – Smooth Adversarial Examples

Discussion. The clipping function clip[0,1] that we use is just the identity over the interval [0, 1]
but outside this interval its derivative is zero. Carlini & Wagner [CW17] therefore argue that the
numerical solver of problem Equation 4.9 suffers from getting stuck in flat spots: when a pixel of
the perturbed input xo + r falls outside [0, 1], it keeps having zero derivative after that and with
no chance of returning to [0, 1] even if this is beneficial. This limitation does not apply to our
case thanks to the L2 distortion penalty in Equation 4.9 and to the updates in its neighborhood:
such a value may return to [0, 1] thanks to the smoothing operation.

4.4 Experiments

Our experiments focus on the white-box setting, where the defender first exhibits a network,
and then the attacker mounts an attack specific to this network; but we also investigate a
transferability scenario. All attacks are untargetted, as defined by loss function Equation 2.19.

4.4.1 Attacks and parameters

Attacks. The following six attacks are benchmarked:

— L∞ distortion: FGSM [GSS14] and I-FGSM [KGB16].

— L2 distortion: an L2 version of I-FGSM [PFC+18], denoted as PGD2 (projected gradient
descent).

— Optimality: The L2 version of C&W [CW17].

— Smooth: our smooth versions qPGD2 of PGD2 (subsection 4.3.1) and sC&W of C&W
(subsection 4.3.2). Note that the smoothness constraint integration differs a lot between
qPGD2 and sC&W.

Parameters. On MNIST, we use ε = 0.3 for FGSM; ε = 0.3, α = 0.08 for I-FGSM; ε =
5, α = 3 for PGD2; confidence margin m = 1, learning rate η = 0.1, and initial constant c = 15
(the inverse of λ in (2.18)) for C&W. For smoothing, we use Laplacian feature kernel, set α =
0.95, and pre-compute L−1

α . On ImageNet, we use ε = 0.1255 for FGSM; ε = 0.1255, α = 0.08
for I-FGSM; ε = 5, α = 3 for PGD2; m = 0, η = 0.1, and c = 100 for C&W. For smoothing,
we use Laplacian feature kernel, set α = 0.997, and use 50 iterations of CG. These settings are
used in subsection 4.4.4.

72

4.4. Experiments

4.4.2 White box scenario

Qualitative results and perceptual evaluation. Figure 4.2 and Figure 4.3 show MNIST and
ImageNet examples respectively, focusing on worst cases. Both sC&W and qPGD2 produce
smooth perturbations that look more natural. However, smoothing of qPGD2 is more aggressive
especially on MNIST, as these images contain flat black or white areas.

This is due to the ‘quick and dirty’ integration of the smoothness constraint: On some images,
the perturbation update ŝα(g) is weakly correlated with gradient g, which is does not help in
lowering the classification loss. Consequently, the perturbation becomes stronger in order to
succeed. For the same reason, qPGD2 completely fails on natural images like Figure 4.3(a) and
(c). It consumes way more distortion than PGD2, and although this perturbation is smoother, it is
becomes visible.

By contrast, the proper integration of the smoothness constraint in sC&W produces totally
invisible perturbation. For images like Figure 4.3(a) or (c), sC&W consumes more distortion
than C&W, but the perturbation remains less visible according to the MAD score. The reason is
the ‘phantom’ of the original that is revealed when the perturbation is isolated.

The superior perceptual quality of our smooth adversarial examples is also confirmed quanti-
tatively: On ImageNet, 93% of the images produced by sC&W have lower MAD score than the
ones by C&W. Figure 4.4 shows that when the MAD score of sC&W is greater than the one of
C&W, it usually happens for very small score values (below 0.1), meaning that both are almost
equally imperceptible.

Table 4.1 – Success probability Psuc and average L2 distortion D.
MNIST ImageNet

C4 InceptionV3 ResNetV2
Psuc D Psuc D Psuc D

FGSM 0.89 5.02 0.97 5.92 0.92 8.20
I-FGSM 1.00 2.69 1.00 5.54 0.99 7.58
PGD2 1.00 1.71 1.00 1.80 1.00 3.63
C&W 1.00 2.49 0.99 4.91 0.99 9.84

qPGD2 0.97 3.36 0.96 2.10 0.93 4.80
sC&W 1.00 1.97 0.99 3.00 0.98 5.99

Quantitative results on success and distortion. The global statistics Psuc, D are shown in
Table 4.1. Operating characteristics over MNIST and ImageNet are shown in Figure 4.5 and Fig-
ure 4.6 respectively.

73

Part I, Chapter 4 – Smooth Adversarial Examples

PGD2 * qPGD2 C&W sC&W
D=6.00 D=6.00 D=0.36 D=0.52

PGD2 qPGD2 * C&W sC&W
D=2.25 D=6.00 D=3.33 D=2.57

PGD2 qPGD2 C&W * sC&W
D=4.00 D=6.00 D=4.22 D=3.31

PGD2 qPGD2 C&W sC&W *
D=4.00 D=6.00 D=4.15 D=4.85

Figure 4.2 – For a given attack (denoted by * and bold typeface), the adversarial image with the
strongest distortion D over MNIST. In green, the attack succeeds; in red, it fails.

74

4.4. Experiments

original image C&W:D=3.64 sC&W:D= 4.59 PGD2 :D=2.77 qPGD2 :D=5.15

C&W: MAD=14.80 sC&W: MAD= 0.28 PGD2: MAD=0.32 qPGD2: MAD=5.61

(a)
original image C&W:D=6.55 sC&W:D= 4.14 PGD2 :D=2.78 qPGD2 :D=2.82

C&W: MAD=0.05 sC&W: MAD= 0.01 PGD2: MAD=0.00 qPGD2: MAD=0.00

(b)
original image C&W:D=6.55 sC&W:D= 10.32 PGD2 :D=2.77 qPGD2:D=31.76

C&W: MAD=0.93 sC&W: MAD= 0.40 PGD2: MAD=0.00 qPGD2: MAD=8.44

(c)

Figure 4.3 – Original image xo (left), adversarial image xa = xo + r (above) and scaled
perturbation r (below; distortion D = ‖r‖ and MAD scores) against InceptionV3 on ImageNet.
Scaling maps each perturbation and each color channel independently to [0, 1]. The perturbation
r is indeed smooth like xo for sC&W. (a) Despite the higher distortion compared to C&W, the
perturbation of sC&W is totally invisible, even when magnified (cf . Figure 4.1). (b) One of
the failing examples of [HZJ18] that look unnatural to human vision. (c) One of the examples
with the strongest distortion over ImageNet for sC&W: xo is flat along stripes, reducing the
dimensionality of the ‘smooth like xo’ manifold.

75

Part I, Chapter 4 – Smooth Adversarial Examples

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

C&W

sC
&

W

Figure 4.4 – MAD scores [LC10] of sC&W vs. C&W for all images of ImageNet. For 93% of
the images below the diagonal, sC&W is less perceptible than C&W according to MAD score.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0

0.2

0.4

0.6

0.8

1

D

P
su

c C&W
sC&W
FGSM
I-FGSM
PGD2
qPGD2

Figure 4.5 – Operating characteristics of the attacks over MNIST. Attacks PGD2 and qPGD2 are
tested with target distortion D ∈ [1, 6].

76

4.4. Experiments

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

D

P
su

c C&W
sC&W
FGSM
I-FGSM
qPGD2
PGD2

Figure 4.6 – Operating characteristics over ImageNet attacking InceptionV3 (solid lines) and
ResNetV2-50 (dotted lines).

We observe that our sC&W, with the proper integration via a latent variable (4.14), improves
a lot the original C&W in terms of distortion, while keeping the probability of success roughly
the same. This result, consistent in all experiments, is surprising. We would expect a price to be
paid for a better invisibility as the smoothing is adding an extra constraint on the perturbation.
This price can be rather high in the literature: In order to preserve the success rate, Table 1
of [GFW18] reports an increase of distortion by a factor of 3 when integrating smoothness in the
attack. An explanation may be that the smoothing operation of [GFW18] is independent of the
input image; while in our case, smoothing is guided by the input.

On the contrary, the ‘quick and dirty’ integration (4.8) dramatically spoils qPGD2 with big
distortion especially on MNIST. This reveals the utmost importance of properly integrating the
smoothness constraint. It cannot be just a post-processing filtering of the perturbation.

The price to pay for smoothing is the run-time: using Tensorflow and 50 CG iterations on
ImageNet and InceptionV3, sC&W takes 205s per image on average, while C&W takes 47s.
This is with our own implementation of CG without particular optimization effort. Runtime was
not within our objectives.

We further observe that PGD2 outperforms by a vast margin the C&W attack, which is
supposed to be close to optimality. This may be due in part to how the Adam optimizer treats L2

norm penalties as studied in [LH17]. This interesting finding is a result of our new evaluation
protocol: C&W internally optimizes its parameter c = 1/λ independently per image, while for
PGD2 we externally try a small set of target distortions D on the entire dataset. This is visible
in Figure 4.5, where the operating characteristic is piecewise constant. Our comparison is fair,

77

Part I, Chapter 4 – Smooth Adversarial Examples

given that C&W is more expensive.

As already observed in the literature, ResnetV2 is more robust to attacks than InceptionV3:
The operating characteristic curves are shifted to the right and increase at a slower rate.

Table 4.2 – Success probability and average L2 distortion D when attacking networks adversari-
ally trained against FGSM.

MNIST - C4 ImageNet - InceptionV3
Psuc D Psuc D

FGSM 0.15 4.53 0.06 6.40
I-FGSM 1.00 3.48 0.97 29.94
PGD2 1.00 2.52 1.00 3.89
C&W 0.93 3.03 0.95 6.43

qPGD2 0.99 2.94 0.69 7.86
sC&W 0.99 2.39 0.75 6.22

4.4.3 Adversarial training

The defender now uses adversarial training [GSS14] to gain robustness against attacks. Yet,
the white-box scenario still holds: this network is public. The training set comprises images
attacked with “step l.l” model [KGB16] 1. The accuracy of C4 on MNIST (resp. InceptionV3 on
ImageNet) is now 0.99 (resp. 0.94).

Table 4.2 shows interesting results. As expected, FGSM is defeated in all cases, while
average distortion of all attacks is increased in general. What is unexpected is that on MNIST,
sC&W remains successful while the probability of C&W drops. On ImageNet however, it is the
probability of the smooth versions qPGD2 and sC&W that drops. I-FGSM is also defeated in
this case, in the sense that average distortion increases too much.

4.4.4 Transferability

This section investigates the transferability of the attacks under the following scenario:
the attacker has now a partial knowledge about the network. For instance, he/she knows that
the defender chose a variant of InceptionV3, but this variant is not public so he/she attacks
InceptionV3 instead. Also, this time he/she is not allowed to test different distortion targets. The
results are shown in Table 4.3.

1. Model taken from: https://github.com/tensorflow/models/tree/master/research/
adv_imagenet_models

78

https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models

4.4. Experiments

Table 4.3 – Success probability and average L2 distortionD of attacks on variants of InceptionV3
under transferability.

Bilateral filter Adv. training
Psuc D Psuc D

FGSM 0.77 5.13 0.04 10.20
I-FGSM 0.82 5.12 0.02 10.10
PGD2 1.00 5.14 0.12 10.26
C&W 0.82 4.75 0.02 10.21

qPGD2 0.95 5.13 0.01 10.17
sC&W 0.68 2.91 0.01 4.63

0 2 4 6 8 10 12 14

0

0:2

0:4

0:6

0:8

D

P
su

c

C&W
sC&W

Figure 4.7 – Operating characteristics of C&W and sC&W on ImageNet with InceptionV3 under
bilateral filter transferability, corresponding to Table 3.

79

Part I, Chapter 4 – Smooth Adversarial Examples

The first variant uses a bilateral filter (with standard deviation 0.5 and 0.2 in the domain and
range kernel respectively; cf . section 4.5) before feeding the network. This does not really prevent
the attacks. PGD2 remains a very powerful attack if the distortion is large enough. Smoothing
makes the attack less effective but the perturbations are less visible. The second variant uses the
adversarially trained InceptionV3, which is, on the contrary, a very efficient counter-measure
under this scenario.

Figure 4.7 shows the operating characteristics of C&W and sC&W corresponding to the
bilateral filter results of Table 4.3. We see that within a distortion budget of 5, sC&W succeeds
with 67% probability, whereas C&W with 50%. Yet, at larger distortion budgets, C&W keeps on
forging more adversarial images whereas sC&W stops making progress. This is understandable:
C&W creates strong artefacts clearly visible when the distortion is larger or equal to 5, as shown
in Figure 4.3. The upfront defense filters out some of these strong perturbations, but the rest
remain successful. These images are adversarial by definition, yet not useful in practice because
they are too much distorted.

4.5 Adversarial magnification

Given a single-channel image x : Ω→ R as input, its adversarial magnification mag(x) :
Ω→ R is defined as the following local normalization operation

mag(x) := x− µx(x)
βσx(x) + (1− β)σΩ(x) , (4.16)

where µx(x) and σx(x) are the local mean and standard deviation of x respectively, and σΩ(x) ∈
R+ is the global standard deviation of x over Ω. Parameter β ∈ [0, 1] determines how much local
variation is magnified in x.

In our implementation, µx(x) = b(x), the bilateral filtering of x [TM98]. It applies a local
kernel at each point p ∈ Ω that is the product of a domain and a range Gaussian kernel. The
domain kernel measures the geometric proximity of every point q ∈ Ω to p as a function of
‖p− q‖ and the range kernel measures the photometric similarity of every point q ∈ Ω to p as a
function |x(p)− x(q)|. On the other hand, σx(x) = bx((x− µx(x))2)−1/2. Here, bx is a guided

version of the bilateral filter, where it is the reference image x rather than (x− µx(x))2 that is
used in the range kernel.

When x : Ω→ Rd is a d-channel image, we apply all the filters independently per channel,
but photometric similarity is just one scalar per point as a function of the Euclidean distance

80

4.6. Conclusion

‖x(p)− x(q)‖ measured over all d channels.
In Figure 4.1, β = 0.8. The standard deviation of both the domain and range Gaussian kernels

is 5.

4.6 Conclusion

Smoothing helps masking the adversarial perturbation by shaping it ‘like’ the input image.
However, this rule holds only when smoothness is properly integrated in the attack. Filtering
the perturbation by post-processing is not a sound idea, even if it is done in accordance with
the original image, even if it is done at each attack iteration. A sounder integration is to inject
smoothness as a constraint inside the loss function.

It is impressive how sC&W improves upon C&W in terms of distortion and imperceptibility
at the same time while maintaining the same success rate. To our knowledge and as far as a white
box scenario is considered, this is the first time smoothness comes for free from this viewpoint.
Yet, a price to be paid is the larger complexity.

Smoothing allows the attacker to delude more robust networks thanks to larger distortions
while still being invisible. However, its impact on transferability is mitigated. The question raised
in the introduction is still open: Figure 4.1 shows that a human does not make the difference
between the input image and its adversarial example even with magnification. This does not
prove that an algorithm will not detect some statistical evidence.

81

CHAPTER 5

BOUNDARY PROJECTION ATTACK

Adversarial examples of DNNs are receiving ever increasing attention because they help in
understanding and reducing the sensitivity to their input. This is natural given the increasing
applications of DNNs in our everyday lives. When white-box attacks are almost always successful,
it is typically only the distortion of the perturbations that matters in their evaluation.

In this work, we argue that speed is important as well, especially when considering that fast
attacks are required by adversarial training. Given more time, iterative methods can always find
better solutions. We investigate this speed-distortion trade-off in some depth and introduce a new
attack called Boundary Projection (BP) that improves upon existing methods by a large margin.
Our key idea is that the classification boundary is a manifold in the image space: we therefore
quickly reach the boundary and then optimize distortion on this manifold. This work [ZAFA20b]
is published on IEEE Transactions on Information Forensics and Security.

5.1 Introduction

Adversarial examples [SZS+13] are small, usually imperceptible perturbations of images
or other data [CW18] that can arbitrarily modify a classifier’s prediction. They have been
extended to other tasks like object detection or semantic segmentation [XWZ+17b], and image
retrieval [LJL+19, TRC19b]. They are typically generated in a white-box setting, where the
attacker has full access to the classifier model and uses gradient signals through the model to
optimize for the perturbation. They are becoming increasingly important because they reveal the
sensitivity of neural networks to their input [SGOS+18, FMDF16, ABB+17] including trivial
cases [AW18, ETT+17] and they easily transfer between different models [MFFF17, TPG+17].

5.1.1 Graphical abstract illustrating the attacks.

To better understand how our attack works, Figure 5.1 illustrates qualitatively a number of
existing attacks technically described in section 2.5. On this toy 2d classification problem, the

83

Part I, Chapter 5 – Boundary Projection Attack

x x x x

(a) PGD2 (b) C&W (c) DDN (d) BP (this work)

Figure 5.1 – Adversarial attacks on a binary classifier in two dimensions. The two class regions
are shown in red and blue. Contours indicate class probabilities. The objective is to find a point
in the red (adversarial) region that is at the minimal distance to input x. Gray (black) paths
correspond to low (high) distortion budget ε for PGD2 [KGB16] (a, in green) or parameter λ for
C&W [CW17] (b). The simulation is only meant to illustrate basic properties of the methods. In
particular, it does not include Adam optimizer [KB15] for C&W.

class boundary and the path followed by the optimizer starting at input x can be easily visualized.

PGD2, an `2 version of I-FGSM [KGB16], a.k.a. PGD [MMS+17], is controlled by a distor-
tion budget ε and eventually follows a path on a ball of radius ε centered at x (cf . Figure 5.1(a)).
section 5.3 shows that testing different ε values is an expensive strategy for finding the optimal
distortion budget per image.

C&W [CW17] depends on a parameter λ that controls the balance between distortion and
classification loss. A low value leads to failure. A higher value indeed reaches the optimal
perturbation, but with oscillations across the class boundary (Figure 5.1(b)). Therefore, an
expensive line search over λ is performed internally.

DDN [RHO+19] increases or decreases distortion on the fly depending on success and
while pointing towards the gradient direction (Figure 5.1(c)). It arrives quickly near the optimal
perturbation but still suffers from oscillations across the boundary.

On the contrary, Boundary Projection (BP), introduced in this work (cf . Figure 5.1(d)), cares
more about quickly reaching the boundary, not necessarily near the optimal solution, and then
walks along the boundary, staying mostly in the adversarial (red) region. It therefore makes
steady progress towards the solution rather than going back and forth.

5.1.2 Related work

Optimization on manifolds. In the context of deep learning, stochastic gradient descent on
Riemanian manifolds has been studied, e.g. RSGD [Bon13] and RSVRG [ZRS16]. It is usually
applied to manifolds whose geometry is known in analytic form, for instance Grassmann [Bon13]
or Stiefel manifolds [HF16]. In most cases, the motivation is to optimize a very complex function

84

5.1. Introduction

like a classification loss on a well-studied manifold, e.g. matrix manifold [AMS09]. On the
contrary, we optimize a simple quadratic function (the distortion) on a complex manifold not
known in analytic form, i.e. a level set of the classification loss.

DDN. Instead of using the existing optimizer to tackle the optimization for generating ad-
versarial examples, Decoupling direction and norm (DDN) [RHO+19] searches the optimal
solution based on the gradient of network. The method, as it is introduced in section 2.5, is quite
simple and efficient. It is iterating similarly to PGD, but the radius is adapted according to the
current distortion. Another difference is that each iteration is concluded by a projection onto
X (rather than X̂) by element-wise clipping to [0, 1] and rounding. This hints they consider the
quantization problem of adversarial images.

DDN attempts to optimize the adversarial problem based on the gradient of neural network
and distortion. It is more efficient and problem-related. However, only search long the gradient
might lead to the oscillations around the boundary. To improve this, we propose to optimize
around the class boundary when the current solution is adversarial.

Optimizing around the class boundary is not a new idea. All of the above attacks do so in
order to minimize distortion; implicitly, even distortion targeted attacks like PGD do so, if the
minimum parameter ε is sought. Even black-box attacks do so [BRB18], without having access
to the gradient function.

Contributions. To our knowledge, we are the first to

— Study optimization on the manifold of the classification boundary for an adversarial attack,
providing an analysis under the constraints of staying on the tangent space of the manifold
and of reaching a distortion budget.

— Investigate theoretically and experimentally the quantization impact on the perturbation.

— Achieve at the same speed as I-FGSM [KGB16] (20 iterations) and under the constraint of
a quantization, less distortion than state-of-the-art attacks including DDN, which needs
100 iterations on ImageNet.

The remaining text is organized as follows. Section 5.2 presents our Boundary Projection

(BP). Section 5.3 provides primary experimental evaluation. Section 5.4 explains the details of
predicting distortion after quantization. Section 5.5 shows the defense evaluation with adversarial
training and section 5.6 shows the adversarial images. Conclusions are drawn section 5.7.

85

Part I, Chapter 5 – Boundary Projection Attack

5.2 Method

Our attack is an iterative process with a fixed number K of iterations. Stage 1 aims at quickly
producing an adversarial image, whereas Stage 2 is a refinement phase decreasing distortion.
The key property of our method is that while in the adversarial region during refinement, it tries
to walk along the classification boundary by projecting the distortion gradient onto the tangent
hyperplane of the boundary. Hence we call it boundary projection (BP).

5.2.1 Stage 1

This stage begins at y0 = x and iteratively updates in the direction of the gradient of the loss
function as summarized in Algorithm 1. The gradient is 2-normalized (line 3) and then scaled by
two parameters (line 4): a fixed parameter α > 0 and a parameter γi that is increasing linearly
with iteration i ≤ K as follows

γi := γmin + i

K + 1(1− γmin) < 1, (5.1)

where γmin ∈ (0, γmax). This makes the updates slow at the beginning to keep distortion low,
then faster until the attack succeeds. Parameter α is set empirically to a value large enough so
that Stage 1 returns an adversarial image in less than K iterations with high probability. This
schedule of γi is meant to adjust the level of distortion to each original image, since a single
value would be hard to fit all cases. After the update, clipping is element-wise (line 4).

Algorithm 1 Stage 1
Input: x: original image to be attacked
Input: `g: true label (untargeted)
Output: y with f(y) 6= `g or failure, iteration i

1: Initialize y0 ← x, i← 0
2: while (f(yi) = `g) ∧ (i < K) do
3: ĝ← n(∇xL(f(yi), `g)) . n: 2-normalization
4: yi+1 ← clip[0,1](yi − αγiĝ)
5: i← i+ 1
6: end while

86

5.2. Method

Algorithm 2 Stage 2
Input: `g: true label (untargeted), i current iteration number
Input: yi: current adversarial image, ε: distortion budget
Output: yK

1: while i < K do
2: ri ← yi − x . perturbation
3: ĝ← n(∇xL(f(yi), `g)) . direction
4: ρ← 〈ri, ĝ〉
5: if f(yi) 6= `g then . OUT

6: ε← γi ‖ri‖ . distortion control
7: v? ← x + ρĝ
8: z← v? + n(yi − v?)

√
[ε2 − ρ2]+

9: yi+1 ← QOUT(z,yi) . quantization (5.7)
10: else . IN

11: ε← ‖ri‖ /γi . distortion control

12: z← yi −
(
ρ+

√
ε2 − ‖ri‖2 + ρ2

)
ĝ

13: yi+1 ← QIN(z,yi) . quantization (5.10)
14: end if
15: i← i+ 1
16: end while

5.2.2 Stage 2

Once Stage 1 has succeeded, Stage 2 continues by iteratively considering two cases: if yi
is adversarial, case OUT aims at minimizing distortion while staying in the adversarial region.
Otherwise, case IN aims at decreasing the loss while controlling the distortion. Both work with a
first order approximation of the loss around yi:

L(f(yi + ∆), `g) ≈ L(f(yi), `g) + ∆>g, (5.2)

where g = ∇xL(f(yi), `g). The perturbation at iteration i is ri := yi−x. Stage 2 is summarized
in Algorithm 2. Cases OUT and IN illustrated in Figure 5.2 are explained below.

Case OUT. takes as input yi outside class `g region, i.e. f(yi) 6= `g (line 5). It outputs yi+1

which is a quantized version of vector z (line 9). The construction of z stems from two constraints.
First, we control the distortion of the next perturbation imposing the constraint ‖z− x‖ = ε, so
that z will lie on the hypersphere S[x; ε]. This radius uses again the scheduling Equation 5.1,
ε = γi ‖ri‖ < ‖ri‖, such that updates decelerate to convergence once the attack has already

87

Part I, Chapter 5 – Boundary Projection Attack

succeeded. We also impose that z lies on

P := {v ∈ Rn : 〈v− yi, ĝ〉 = 0}, (5.3)

the tangent hyperplane of the level set of the loss at yi, normal to ĝ. This second constraint aims
at maintaining the value of the loss, up to the first order.

Consider the projection v? := x + ρĝ of x onto hyperplane P , where ρ := 〈ri, ĝ〉. If ρ < ε,
the hypersphere intersects the hyperplane as shown in Figure 5.2(a), and both constraints are
met. From the infinity of points in this intersection, we pick the one closest to yi:

z = v? + n(yi − v?)
√
ε2 − ρ2. (5.4)

If ρ ≥ ε, then S[x; ε] ∩ P = ∅. We prefer to relax the constraint on the distortion, and choose
z = v?, which is by definition the closest point of P to x. Note that v? = yi if ri, ĝ are collinear.

This is formally summarized as follows:

z := arg min
v∈V
‖v− yi‖ (5.5)

V := arg min
v∈P
|‖v− x‖ − ε| . (5.6)

Here, V is the set of points on P having distortion close to ε. If ρ < ε, V = S[x; ε] ∩ P 6= ∅
as illustrated in Figure 5.2(a), otherwise V = {v?}. The solution z has a unique closed form,
implemented in line 8.

Directly quantizing vector z onto X by Q(·), the component-wise rounding, modifies its
norm (see section 5.4). This pulls down our effort to control the distortion. Instead, the process
QOUT(z,yi) in line 9 looks for the scale βOUT of the perturbation to be applied such that ‖Q(yi +
β(z− yi))‖ = ‖z‖. This is done with a simple line search over β. Then,

QOUT(z,yi) := Q(yi + βOUT(z− yi)). (5.7)

Case IN. takes as input yi inside class `g region, i.e. f(yi) = `g (line 10). We control distortion
ε = ‖ri‖ /γi > ‖ri‖ Equation 5.1 such that updates decelerate as in Case OUT. We then solve
the problem:

z := arg min
v∈S[x;ε]

〈v, ĝ〉 , (5.8)

88

5.2. Method

x

yig

V

ε

z

P

v?
x

yi
g

ε

z

(a) (b)

Figure 5.2 – Refinement stage of BP. Case OUT when |V | > 1 (a); case IN (b).

i.e., find the point z at the intersection of sphere S[x; ε] and the ray through yi in the direction
opposite of g as shown in Figure 5.2(b). The solution is simple:

z = yi −
(
ρ+

√
ε2 − ‖ri‖2 + ρ2

)
ĝ, (5.9)

Vector z moves away from yi along direction −ĝ by a step size so to reach S[x, ε]. Case IN is
not guaranteed to succeed, but invoking it means that Stage 1 has succeeded.

Again a direct rounding jeopardizes the norm of the update z− yi. Especially, quantization
likely results in Q(z) = Q(yi) if ‖z− yi‖ < βmin = 0.1 (see ??). Instead of a line search as in
method OUT, line 13 just makes sure that this event will not happen:

QIN(z,yi) = Q(yi + βIN(z− yi)), (5.10)

with βIN = max(1, βmin/‖z− yi‖).

5.2.3 Discussion

The heuristic scheduling Equation 5.1 builds on a simpler idea of DDN [RHO+19], where
parameter γ is constant across iterations. This scheduling controls the distortion: In stage 1,
updates are small at the beginning to keep distortion low, then larger until the attack succeeds. In
stage 2, updates are decreasing as γi tends to 1. It increases the distortion when the current image

89

Part I, Chapter 5 – Boundary Projection Attack

is correctly classified (IN) and decreases the distortion when the current image is adversarial
(OUT).

The fact that (γi)i is strictly increasing shows that, in Stage 2, an IN iteration (distortion grows
by 1/γi) followed by an OUT iteration (distortion decays by γi+1 < 1) is indeed equivalent to a
milder IN in the sense that the distortion grows γi+1/γi > 1 smaller than 1/γi. Similarly, OUT

followed by IN is equivalent to a mild OUT in the sense that distortion decays by γi/γi+1 < 1.
Both cases lead towards the class boundary by a factor that tends to 1. If the algorithm keeps
alternating between OUT and IN and we only look at the OUT iterates (remember, all attacks
output the successful iterate of least distortion), this is equivalent to strictly decreasing distortion.
This behavior is more stable than having a constant parameter as in DDN.

From all the possible increasing sequences that go to 1 as i goes to the maximum number
of iterations, we pick the simplest one: a linear sequence. All this behaviour is controlled by a
single parameter, which simplifies the algorithm. That is the only heuristic.

5.3 Experiments

In this section we compare our method boundary projection (BP) to the attacks presented in
section 2.5, namely: FGSM [GSS14], I-FGSM [KGB16], PGD2 Equation 2.15, C&W [CW17],
and DDN [RHO+19]. This benchmark is carried out on three well-known datasets, with a
different neural network for each.

We evaluate an attack by its runtime, two global statistics Psuc and D, and by an operating
characteristic curve D → P(D) measuring distortion vs. probability of success as described
below.

Since we focus on the speed-distortion trade-off, we measure the required time for all attacks.
For the iterative attacks, the complexity of one iteration is largely dominated by the computation
of the gradient, which requires one forward and one backward pass through the network. It is
thus fair to gauge their complexity by this number, referred to as iterations or ‘# Grads’. Indeed,
the actual timings of 100 iterations of I-FGSM, PGD2, C&W, DDN and BP are 1.08, 1.36,
1.53, 1.46 and 1.17 s/image on average respectively on ImageNet, using Tensorflow, Cleverhans
implementation for I-FGSM and C&W, and authors’ implementation for DDN.

We measure distortion when the adversarial images are quantized by rounding each element
to the nearest element in X . This makes sense since adversarial images are meant to be stored or
communicated as images rather than real-valued matrices. DDN and BP adversarial images are
already quantized. For reference, we report distortion without quantization in section 5.4.

90

5.3. Experiments

5.3.1 Parameters of the attacks

Below we specify the attacks parameters for each dataset. chapter 3 details the networks and
training parameters.

For the distortion constrained attacks i.e. FGSM, I-FGSM and PGD2, we test a set of ε and
calculate Psuc and D according to our evaluation protocol (cf . section 3.3). For C&W, we test
several parameter settings and pick up the optimum setting as specified below. For DDN, the
parameter settings are the default [RHO+19], i.e. ε0 = 1.0 and γ = 0.05.

MNIST [LCB10]. α = 0.08 for I-FGSM, α = ε/2 for PGD2. For C&W: for 5× 20 iterations 1,
learning rate η = 0.5 and initial constant λ = 1.0; for 1× 100 iterations, η = 0.1 and λ = 10.0.

CIFAR10 [Kri09]. α = 0.08 for I-FGSM, α = ε/2 for PGD2. For C&W: for 5× 20 iterations,
learning rate η = 0.1 and initial constant λ = 0.1; for 1× 100 iterations, η = 0.01, and λ = 1.0.

ImageNet [KGB+18a] α = 0.08 for I-FGSM, α = 3 for PGD2. For C&W: for 5× 20 iterations,
learning rate η = 0.01 and initial constant λ = 20; for 1× 100 iterations, η = 0.01 and λ = 1.0.

Table 5.1 – Success probability Psuc and average distortion D of our method BP on ImageNet
with different quantization strategies.

Grads Psuc D

Rounding in the end
20 1.00 1.44

100 1.00 1.43

Rounding at each iteration
20 1.00 0.41

100 1.00 0.32

Rounding with QIN, QOUT
20 1.00 0.35

100 1.00 0.28

5.3.2 Experimental investigations

Before addressing the benchmark, this section investigates on the role of quantization and of
the parameters in BP.

Quantization. Table 5.1 shows the critical role of quantization in our method BP. Since this
attack is iterative and works with continuous vectors, one may quantize only at the end of the
process, or at the end of each iteration. Another option is to anticipate the detrimental action of
quantizing by adapting the length of each step accordingly, as done by QIN(·) and QOUT(·) in

1. C&W performs line search on λ: “5× 20” means 5 values of λ, 20 iterations for each.

91

Part I, Chapter 5 – Boundary Projection Attack

Algorithm. 2. The experimental results show that the key is to quantize often so to let the next
iterations compensate. Anticipating and adapting gives a substantial extra improvement.

Parameter Study. There are two parameters in BP: α and γmin. Both determine the step size
of stage 1, while γmin also determines the step size of stage 2. We consider 4 values for α, i.e.
1, 2, 3, 4 and 9 values for γmin, i.e. 0.1, 0.2, ..., 0.9. For each pair of values, we evaluate BP with
20 iterations on a validation set, which we define as a random subset sampled of the training set:
10000 images for MNIST and CIFAR10, and 1000 images for ImageNet. As shown in Figure 5.3,
success probability is close to one in all cases, while average distortion is in general stable up to
γmin = 0.8. We choose α = 2 and γmin = 0.7 for all experiments.

5.3.3 Benchmark

This section compares different attacks mentioned in this paper, with or without quantization,
on various classifiers.

Table 5.2 – Success probability Psuc and average distortion D with quantization. Pupp is the
success rate under distortion budget Dupp = 2 for MNIST, 0.7 for CIFAR10, and 1 for ImageNet.

MNIST CIFAR10 ImageNet
Attack # Grads Psuc D Pupp Psuc D Pupp Psuc D Pupp

FGSM 1 0.99 5.80 0.00 0.95 5.65 0.00 0.88 9.18 0.00

I-FGSM
20 1.00 3.29 0.17 1.00 3.54 0.00 1.00 4.90 0.00

100 1.00 3.23 0.18 1.00 3.53 0.00 1.00 4.90 0.00

PGD2
20 1.00 1.80 0.63 1.00 0.66 0.76 0.63 3.63 0.00

100 1.00 1.74 0.66 1.00 0.60 0.84 1.00 1.85 0.00

C&W
5×20 1.00 1.94 0.56 0.99 0.56 0.81 1.00 1.70 0.00

1×100 0.98 1.90 0.57 0.87 0.38 0.76 0.97 2.57 0.00

DDN
20 0.82 1.40 0.70 1.00 0.63 0.74 0.99 1.18 0.05

100 1.00 1.41 0.87 1.00 0.21 0.98 1.00 0.43 0.97

BP (this work)
20 1.00 1.45 0.86 0.97 0.49 0.87 1.00 0.35 0.96

100 1.00 1.37 0.91 0.97 0.30 0.97 1.00 0.28 1.00

Attack evaluation with quantization. Table 5.2 summarizes the global statistics of the bench-
mark. Figure 5.4 offers a more detailed view per dataset with operating characteristic.

In terms of average distortion, all iterative attacks perform much better than the single-step
FGSM. The performances of C&W are on par with those of I-FGSM, which is unexpected for

92

5.3. Experiments

0.2 0.4 0.6 0.8
1.4

1.5

1.6

1.7

1.8

γmin

D

0.2 0.4 0.6 0.8
0.96

0.97

0.98

0.99

1

γmin

P
su

c

α = 1
α = 2
α = 3
α = 4

(a) MNIST (b) MNIST

0.2 0.4 0.6 0.8

1

1.5

2

2.5

γmin

D

0.2 0.4 0.6 0.8
0.96

0.97

0.98

0.99

1

γmin

P
su

c

α = 1
α = 2
α = 3
α = 4

(c) CIFAR10 (d) CIFAR10

0.2 0.4 0.6 0.8

0.5

1

1.5

2

2.5

γmin

D

0.2 0.4 0.6 0.8
0.96

0.97

0.98

0.99

1

γmin

P
su

c

α = 1
α = 2
α = 3
α = 4

(e) ImageNet (f) ImageNet

Figure 5.3 – Success probability Psuc and average distortion D for different values of parameters
α and γmin of BP with 20 iterations.

93

Part I, Chapter 5 – Boundary Projection Attack

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

(a) MNIST

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

(b) CIFAR10

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

C&W

DDN

FGSM

I-FGSM

PGD2

BP

(c) ImageNet

Figure 5.4 – Operating characteristics on MNIST, CIFAR10 and ImageNet. The number of
iterations is 5× 20 for C&W and 100 for I-FGSM, PGD2, DDN and our BP.

this more elaborated attack design. The reason is that C&W is put under stress in our benchmark.
It usually requires a bigger number of iterations to deliver high quality images. Note that it is
possible to avoid the line search on parameter λ as shown in row 1× 100. However, it requires a
fine tuning so that this single value works over all the images of the dataset. This is not possible
for ImageNet.

DDN and our method BP are clearly ahead of the benchmark. DDN yields lower distortion
on MNIST at fewer iterations, but its probability of success is not satisfying. DDN is indeed
better than BP only on CIFAR10 at 100 iterations. Figure 5.4 reveals that the two attacks have
similar operating characteristic on all datasets but this is because it refers to 100 iterations.

In terms of success rate, FGSM fails on MNIST; on CIFAR10, I-FGSM and PGD2 fail as
well; finally on ImageNet, C&W fails too. DDN also fails on ImageNet at 20 iterations.

Increasing the number of iterations helps but not at the same rate for all the attacks. For
instance, going from 20 to 100 iterations is waste of time for I-FGSM while it is essential for
decreasing the distortion of DDN or making PGD2 efficient on ImageNet. Most importantly, our
attack BP brings a dramatic improvement in the speed vs. distortion trade-off. Just within 20
iterations, the distortion achieved on ImageNet is very low compared to the others. section 5.4
shows the speed vs. distortion trade-off in more detail.

94

5.4. Predicting distortion after quantization

Statistics of BP stages are as follows: On CIFAR-10 and MNIST, Stage 1 takes 7 iterations
on average. On ImageNet, Stage 1 takes on average 3 iterations out of 20, or 8 iterations out of
100. section 5.6 shows examples of images along with corresponding adversarial examples and
perturbations for different methods.

5.4 Predicting distortion after quantization

This section aims at predicting when the quantization cancels the perturbation, assuming that
they are independent of each other. Iteration i starts with a quantized image yi ∈ X , adds update
δ ∈ Rn, and then quantizes s.t. yi+1 = Q(yi + δ). Quantization [Ume12] is done by rounding
with step ∆ := 1/(l − 1) 2):

yi+1,j = yi,j + ej (5.11)

if uj ∈ (ej −∆/2, ej + ∆/2] with ej ∈ ∆Z. Border effects where yi,j + ej /∈ X are neglected.

We now take a statistical point of view where the update is modeled by a random vector
U uniformly distributed over the hypersphere of radius ρ, the norm of the perturbation before
quantization. The quantization noise is now random, denoted byEj ∈ ∆Z for pixel j, introducing
a distortion

D2 =
n∑
j=1

(yi+1,j − yi,j)2 =
n∑
j=1

E2
j . (5.12)

The expectation of a sum is always the sum of the expectations, whatever the dependence
between the summands: E(D2) = ∑n

j=1 E(E2
j) = nE(E2

j). This expectation is not null if
P(|Ej| ≥ ∆) > 0 since E(D2) ≥ n∆2P(|Ej| ≥ ∆).

This r.v. Ej takes a value depending on the scalar product Sj := U>cj , where cj is the
j-th canonical vector. This scalar product lies in [−ρ, ρ], so that P(Ej ≥ ∆) = 0 if ∆/2 > ρ.
Otherwise, |Ej| ≥ ∆ when |Sj| ≥ ∆/2, which happens when U lies inside the dual hypercone
of axis cj and semi-angle θ = arccos(c) with c := ∆/2ρ. The probability of this event is equal
to the ratio of the solid angles of this dual hypercone and the full space Rn. This quantity can be
expressed via the incomplete regularized beta function I:

P(|Ej| ≥ ∆) =

1− Ic2(1/2, (n− 1)/2), if c ≤ 1

0, otherwise

For large n, this probability approximately equals 2Φ(−
√
nc).

2. l is the quantization level, for instance, here is 256.

95

Part I, Chapter 5 – Boundary Projection Attack

In the end, the lower bound of E(D2) after quantization depends on ∆, n, and ρ the norm
of the perturbation before quantization. When n = 3 ∗ 2992 (i.e. ImageNet), this lower bound
equals ∆2 (i.e. the smallest distortion if not null) for ρ = 0.1. When the update has a smaller
norm, quantization is likely to eliminate it, yi+1 = yi, and the attack wastes one iteration.

Attack evaluation without quantization. Table 5.3 is the equivalent of Table 5.2 but without
the integral constraint: the attack is free to output any real matrix provided that the pixel values
all belong to [0, 1]. When the distortion is large, there is almost no difference.

When an attack delivers low distortion on average with real matrices, the quantization
may lower the probability of success. This is especially true with the iterative attacks finding
adversarial examples just nearby the border between the two classes. Quantization jeopardizes
this point and sometimes brings it back in the true class region. More importantly, the impact of
the quantization on the distortion is no longer negligible. This is clearly visible when comparing
Table 5.3 and Table 5.2 for DDN and BP over ImageNet.

Similarly, Figure 5.5 is the equivalent of Figure 5.4 without the integral constraint. By
comparing the two figures, it can be seen that PGD2 and C&W, but also DDN and BP, are
improving on ImageNet by having significantly lower distortion. This agrees with measurements
of success rate in Table 5.3, where PGD2 and C&W are not failing as they do in Table 5.2 with
quantization. Our BP is still the strongest attack over all datasets.

Table 5.3 – Success probability Psuc and average distortionD without quantization. Pupp measured
at Dupp = 2 for MNIST, 0.7 for CIFAR10, and 1 for ImageNet.

MNIST CIFAR10 ImageNet
Attack # Grads Psuc D Pupp Psuc D Pupp Psuc D Pupp

FGSM 1 0.99 5.81 0.00 0.97 4.78 0.00 0.85 3.02 0.00

I-FGSM
20 1.00 3.22 0.27 1.00 3.54 0.00 1.00 4.47 0.00

100 1.00 3.16 0.29 1.00 3.53 0.00 1.00 4.47 0.00

PGD2
20 1.00 1.76 0.63 1.00 0.51 0.77 0.64 3.94 0.36

100 1.00 1.70 0.66 1.00 0.43 0.85 0.95 1.11 0.61

C&W
5×20 1.00 1.93 0.56 1.00 0.56 0.81 1.00 1.37 0.23

1×100 1.00 1.89 0.57 0.97 0.38 0.84 1.00 1.87 0.06

DDN
20 0.82 1.39 0.70 1.00 0.62 0.74 1.00 0.76 0.95

100 1.00 1.41 0.87 1.00 0.20 0.98 1.00 0.28 0.99

BP (this work)
20 1.00 1.41 0.86 0.97 0.33 0.87 1.00 0.20 1.00

100 1.00 1.35 0.91 0.97 0.18 0.97 1.00 0.16 1.00

96

5.4. Predicting distortion after quantization

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

(a) MNIST

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

(b) CIFAR10

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

C&W

DDN

FGSM

I-FGSM

PGD2

BP

(c) ImageNet

Figure 5.5 – Operating characteristics on MNIST, CIFAR10 and ImageNet without quantization.
The number of iterations is 5× 20 for C&W and 100 for I-FGSM, PGD2, DDN and our BP.

Attack evaluation on robust models. Table 5.4 is similar to Table 5.2 but is evaluating attacks
on robust models. In particular, on MNIST and CIFAR10, we use the same models as described
in subsection 5.3.1, which we adversarially train according to [MMS+17]. On ImageNet, we use
off-the shelf 3 InceptionV3 obtained by ensemble adversarial training on four models [TKP+17].

In general,DDN and BP outperform all other attacks in terms of either average distortionD or
success rate Pupp. On ImageNet in particular, all other attacks have significantly higher distortion
and fail in terms of success rate. DDN has significantly greater distortion than BP and fails in
terms of success rate at 20 iterations, while at 100 iterations BP still has lower distortion. DDN
and BP have similar performance on CIFAR10. On MNIST, DDN fails in terms of probability of
success at 20 iterations, while at 100 iterations BP is superior.

Figure 5.6 shows a more detailed view of operating characteristics, similarly to Figure 5.4
for models trained on natural images. We can see that BP is still ahead of the competition. It is
close to DDN, but this is because Figure 5.6 refers to 100 iterations. The two attacks outperform
all others by a large margin.

3. https://github.com/tensorflow/models/tree/master/research/adv_imagenet_
models

97

https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models

Part I, Chapter 5 – Boundary Projection Attack

Table 5.4 – Success probability Psuc, average distortionD, and success rate Pupp under adversarial
training with PGD as the reference attack, following [MMS+17] for MNIST and CIFAR10; and
ensemble adversarial training [TKP+17] for ImageNet. Pupp measured at Dupp = 2 for MNIST,
0.7 for CIFAR10, and 1 for ImageNet.

MNIST CIFAR10 ImageNet
[MMS+17] [MMS+17] [TKP+17]

Attack # Grads Psuc D Pupp Psuc D Pupp Psuc D Pupp

FGSM 1 0.48 5.69 0.05 0.98 6.21 0.00 0.44 2.98 0.00

I-FGSM
20 1.00 4.99 0.08 1.00 4.53 0.00 1.00 4.92 0.00

100 1.00 4.99 0.08 1.00 4.56 0.00 1.00 4.93 0.00

PGD2
20 0.99 2.76 0.19 1.00 1.03 0.41 0.76 2.14 0.00

100 1.00 2.68 0.20 1.00 1.02 0.41 0.98 1.59 0.00

C&W
5×20 0.99 2.75 0.27 0.98 1.41 0.22 0.98 2.85 0.00

1×100 0.94 2.22 0.34 0.60 0.77 0.27 0.97 2.41 0.00

DDN
20 0.43 1.61 0.32 0.97 0.92 0.41 0.99 1.10 0.23

100 1.00 2.12 0.48 1.00 0.87 0.42 1.00 0.34 0.98

BP (this work)
20 1.00 2.17 0.46 1.00 0.94 0.41 1.00 0.35 0.94

100 1.00 2.00 0.51 1.00 0.88 0.43 1.00 0.23 0.99

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

(a) MNIST

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

(b) CIFAR10

0 2 4 6
0

0.2
0.4
0.6
0.8

1

D

P
su

c

C&W

DDN

FGSM

I-FGSM

PGD2

BP

(c) ImageNet ens4

Figure 5.6 – Operating characteristics of attacks against robust models: adversarial training with
PGD as the reference attack [MMS+17] for MNIST and CIFAR10, and ensemble adversarial
training [TKP+17] for ImageNet. The number of iterations is 5 × 20 for C&W and 100 for
I-FGSM, PGD2, DDN and our BP.

98

5.5. Defense evaluation with adversarial training

Speed vs. distortion trade-off. Figure 5.7(a) is a graphical view of some results reported in
Table 5.2 with more choices of number of iterations between 20 and 100, and only for ImageNet
where our performance gain is the most significant. Just within 20 iterations, its distortion D is
already so much lower than that of other attacks, that its decrease (−20% at 100 iterations) is not
visible in Figure 5.7. On the contrary, more iterations are useless for I-FGSM, and PGD2 achieves
low distortion only with more than 50 iterations. Figure 5.7(b) confirms that the probability of
success is close to 1 for both DDN and BP for the numbers of iterations considered.

20 40 60 80 100
0
1
2
3
4
5

Grad

D

20 40 60 80 100
0.9

0.92
0.94
0.96
0.98

1

Grad

P
su

c

DDN
BP
I-FGSM
PGD2
C&W

(a) (b)

Figure 5.7 – (a) Average distortion vs. number of iterations on ImageNet. I-FGSM is not
improving with iterations because it is constrained by ε. (b) Corresponding probability of
success.

5.5 Defense evaluation with adversarial training

We also test under adversarial training [GSS14]. The network is re-trained with a dataset
composed of the original training set and the corresponding adversarial images. This training is
special: at the end of each epoch, the network is updated and fixed, then the adversarial images
for this new update are forged by some reference attack, and the next epoch starts with this new
set. This is tractable only if the reference attack is fast. We use it with FGSM as the reference
attack.

It is more interesting to study DDN and BP as alternatives to FGSM: at 20 iterations, they
are fast enough to play the role of the reference attack in adversarial training. In this case, we
follow the training process suggested by [RHO+19]: the model is first trained on clean examples,
then fine-tuned for 30 iterations with adversarial examples. As shown in Table 5.5, DDN and BP
perform equally better than FGSM on CIFAR10, in terms of either average distortion or success
rate. Among the reliable attacks (i.e. whose Psuc is close to 1), the worst attack now requires a
distortion three times larger than the distortion of the worst attack without defense. In the same

99

Part I, Chapter 5 – Boundary Projection Attack

way, on MNIST, the distortion of the worst case attack doubles going from 1.37 (baseline) to
2.73 (BP defense). In most cases, BP is a better defense than DDN, forcing the attacker to have
20% more distortion. Note that for a given defense, the strongest attack is almost always BP.

Table 5.5 – Success probability Psuc, average distortionD, and success rate Pupp under adversarial
training defense with I-FGSM, DDN, or BP as the reference attack. Pupp measured at distortion
Dupp = 2 for MNIST, and 0.7 for CIFAR10.

MNIST CIFAR10
Attack→ PGD2 DDN BP PGD2 DDN BP
↓ Defense 20 100 20 100 20 100 20 100 20 100 20 100

baseline
Psuc 1.00 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97
D 1.80 1.74 1.40 1.41 1.45 1.37 0.66 0.59 0.63 0.21 0.49 0.30
Pupp 0.63 0.66 0.70 0.87 0.86 0.91 0.76 0.84 0.74 0.98 0.87 0.97

FGSM
Psuc 1.00 1.00 0.51 1.00 0.89 1.00 1.00 1.00 1.00 1.00 0.99 1.00
D 1.92 1.85 1.28 1.60 1.92 1.58 0.68 0.62 0.59 0.24 0.67 0.24
Pupp 0.48 0.53 0.44 0.72 0.53 0.73 0.72 0.79 0.80 0.98 0.72 0.99

DDN
Psuc 0.99 1.00 0.29 1.00 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00
D 3.03 2.89 1.68 2.38 2.69 2.27 0.95 0.94 0.77 0.71 0.75 0.68
Pupp 0.12 0.14 0.20 0.32 0.28 0.34 0.52 0.52 0.54 0.55 0.56 0.58

BP
Psuc 0.94 0.96 0.36 1.00 0.95 1.00 1.00 1.00 0.97 1.00 1.00 1.00
D 3.14 3.12 1.65 2.81 2.98 2.73 0.96 0.94 0.75 0.70 0.76 0.69
Pupp 0.15 0.15 0.24 0.27 0.25 0.26 0.55 0.55 0.57 0.59 0.56 0.59

5.6 Adversarial image examples

Figure 5.8 shows the worst-case ImageNet examples for BP along with the images generated
by all methods and the corresponding normalized perturbations. FGSM has the highest distortion
over all methods and BP the lowest. DDN has the highest∞-norm distortion. Observe that for
no method is the perturbation visible, although this is a worst-case example.

5.7 Conclusion

The main idea of BP is to travel on the manifold defined by the class boundary while seeking
to minimize distortion. This travel is operated by the refinement stage, which alternates on
both sides of the boundary, but attempts to stay mostly in the adversarial region. Referring to
section 2.5, BP is in effect doing for the success constrained problem what PGD2 is doing for

100

5.7. Conclusion

original image FGSM: I-FGSM: PGD2: C&W: DDN: BP:
D=6.08 D= 5.05 D= 3.23 D=1.74 D=2.11 D=1.00

D=6.08 D= 4.97 D= 3.23 D=1.84 D=2.02 D=0.86

D=6.07 D= 5.01 D= 3.24 D=2.04 D=1.45 D=0.82

D=6.09 D= 4.98 D= 3.24 D=2.45 D=1.75 D=0.82

D=6.04 D= 5.00 D= 3.22 D=1.82 D=1.67 D=0.81

Figure 5.8 – Original (left), adversarial (top row) and scaled perturbation (below) images against InceptionV3
on ImageNet. The five images are the worst 5 images for BP requiring the strongest distortions, yet these are
smaller than the distortions necessary with all other methods (The red color means that the forged image is not
adversarial). Perturbations are inverted (low is white; high is colored, per channel) and scaled in the same way for a
fair comparison.

101

Part I, Chapter 5 – Boundary Projection Attack

the distortion constrained problem: BP minimizes distortion on the class boundary manifold (a
level set of the classification loss), while PGD2 minimizes the classification loss on a sphere (a
level set of the distortion).

BP also takes into account the detrimental effect of quantization. By doing so, the amplitude
of the perturbation is controlled from one iteration to another. The main advantage of our attack
is the small number of iterations required to achieve both reliability (probability of success close
to one) and high quality (low average distortion).

102

PART II

Defense

103

CHAPTER 6

PATCH REPLACEMENT

The architecture of recent DNN proved to be robust, that is, images are correctly classified
even when they contain a fair amount of random noise. The very same architectures, however,
completely fail classifying images that contain imperceptible adversarial perturbations.

This work investigates the difference between random noise and adversarial perturbation. It
highlights some of the respective properties of random noise and adversarial perturbation by
observing how they propagate through a DNN and how and when they get amplified. Based on
this information, we propose a new adversarial defense mechanism called patch replacement

that transforms the features of the input image at various levels to get rid as much as possible of
adversarial artifacts. Patch replacement improves robustness in white/gray-box scenarios using
the training data. Without training DNN models, patch replacement is not expensive.

6.1 Introduction

Improving the robustness of neural networks against random noise is easier than improving
the robustness against adversarial perturbation. Popular DNN architectures, such as AlexNet [KSH12]
or Inception [SVI+16], are much more robust to random noise or to transformations such as
random cropping, reshaping, rotations, than they are to adversarial perturbations. Although the
magnitude of typical adversarial perturbation is much smaller than that of typical random noise,
the impact of adversarial perturbation is much greater on the output of the network.

So a fundamental question can be raised: What is so different between random noise and

adversarial perturbation since their impact on classification is so contrasting?

6.1.1 Random noise vs. adversarial perturbation

To investigate this question, we design a simple experiment to check what happens inside
the neural network when we inject random noise or adversarial perturbation into the input. We
measure the magnitude of distortions between intermediate activation from legitimate images

105

Part II, Chapter 6 – Patch Replacement

and their (random/adversarial) noisy versions. Let us use xo to denote the original image and r to
denote the perturbation that is either random or adversarial in this experiment. In order to make
the magnitude of distortions comparable, we calculate the relative distortion by normalizing it by
‖fi(xo)− fi(xo + r)‖2/‖fi(xo)‖2, where fi refer to the activation at the ith layer.

We run an experiment with ResNet-50 which is a DNN model with 50 layers. We observe the
distortion at various levels, i.e. 0th, 1st, 4th, 7th, 10th, 22th, 40th, 49th and 50th layer. We select
these layers according to the basic architecture component of ResNet-50, i.e. convolutional
layer and ResNet block. ResNet block consists of convolutional layers. At the beginning and the
end, we measure the difference of distortion before and after a convolutional layer because the
resolution changes greatly. In the middle, we measure the difference before and after ResNet
blocks because the difference is rather small. It is worth mentioning that layer zero is the image,
layer one is the output of the first convolution layer and the 50th layer gives the logit vector
before prediction.

0 10 20 30 40 50

0

0.2

0.4

0.6

ith − layer

d
is
to
r
ti
o
n

adversarial
random

Figure 6.1 – Relative average distortion over 1000 ImageNet images of intermediate activations

of a neural network for noisy input images. The red line presents the adversarial perturbation
generated by the DDN attack [RHO+19]. The blue line corresponds to random noise following a
normal distribution with mean 0 and variance 0.05. The neural network is ResNet-50, whose
accuracy on 1000 original legitimate images is 75.7%, on images with random noise is 68.0%
and on adversarial images is 0.1%.

Figure 6.1 shows that the magnitude of adversarial perturbations increase slowly at the
beginning and increase quickly at the end, while the magnitude of random noise increases
quickly at the beginning, stabilizes in the middle, then decreases at the end. It is not surprising.

106

6.1. Introduction

Adversarial perturbation is optimized to behave in this way, i.e. small at the beginning and large
at the end. Random noise increases significantly at the early layer because the max pooling that
picks the largest values locally amplifies the magnitude of distortion. It decreases just before
the last layer because the average pooling takes the average value of the local window and it
weakens the effect of that noise.

However, even at the level of the image itself, the magnitude of the random noise is way
larger than that of adversarial perturbations. This is true anywhere in the network except in the
last layers where the adversarial distortion increases drastically. Interestingly, even if the random
and adversarial distortions are roughly identical at the last layer, the prediction is totally different.
This phenomenon may be because, in the last layer, i.e. the logit layer, adversarial perturbations
mainly accumulate on a particular class so that the logit of this class is greater than the logit of
the ground truth. By contrast, random noise distributes among different classes. As a result, the
logit of ground truth class remains the highest.

To confirm this, we measure the entropy of the predicted class probability distribution and
take the average of over 1000 images from ImageNet. We get 0.76 on legitimate images, 0.69 on
adversarial images, and 0.93 on images with random noise. Considering there are 1000 classes,
even though the difference of these numbers is not great, it may be sufficient to conclude that
random noise results in more evenly distributed perturbation on the predicted probabilities, while
adversarial perturbations affect fewer classes but by a larger amount.

Motivation. According to this simple experiment, we conjecture that networks are robust to
perturbations if those do not accumulate in a specific class. Adversarial perturbations succeed to
accumulate and affect key features so that they fool networks. These key features, grasped by
networks from the training data, contain adequate semantic information [BU05, LCW+20] that
encourage networks to make correct predictions. To protect neural networks from adversarial
perturbations, we propose not only to transform inputs but also their features and make their
behavior close to images with random noise instead of adversarial perturbation.

The idea of patch replacement is to replace the features extracted from input images, which
are potentially adversarial, with similar features that have been extracted from legitimate images
used at training time. In detail, we divide the features extracted from the images into a lot of
small patches. At training time, a dictionary is computed based on patches of legitimate images
and features, while at testing time, each patch is replaced by a similar one from the dictionary.
Since Figure 6.1 indicates that perturbations at the early layers affect less than perturbations at
the last layers, such transformation should be applied to the early layers. In this way, the input is

107

Part II, Chapter 6 – Patch Replacement

reconstructed by training data, which is unknown to the attacker.

This strategy might degrade the classification performance on legitimate images because it
replaces the inputs with their nearest neighbors according to the L2 norm distance. The similarity
on L2 norm distance is not the same as the semantic similarity. As a result, part of the semantic
information of inputs is lost or altered. To reduce the severity of this loss, we divide the features
into small patches, conjecturing that the substitution will be less harmful. The smaller the patches
are, the more similar the reconstructed images/features are compared to the inputs. As a result,
the model gains robustness to adversarial images while not losing too much on legitimate images.

We expect this patch replacement strategy to be unexpensive since there is no need to train the
neural network from scratch. For the same reason, this defense is also easy to adapt to any neural
network if needed. The usage of the dictionary in the testing phase increases the complexity of
adversarial attacks even if the attacker is aware of the patch replacement defense. It is much
more complicated to circumvent a defense process if the attacker must know the entire set of
images used at training time and if the attack has to alter a very large (but unknown) number of
visual elements inside each image.

Contributions. The contributions of this work are listed as follows:

— We propose a defense method based on a transformation not only onto input images but
also onto features, which is easily adapted to any neural network.

— The training data we use to learn the defense is only natural images, not focusing on any
attack.

— We investigate the impact of patch replacement in different layers.

— We perform the defense on a combination of layers to improve the trade-off between
accuracy on natural and attacked images.

The rest of the chapter is organized as follows. We briefly recap usual methods defending
DNN against adversarial perturbations in section 6.2. We overall observe that most methods
are very costly. We detail a few state-of-the-art input transformation methods that can however
be used in practice due to their simplicity and effectiveness. We then describe the adversarial
defense mechanism, i.e. patch replacement, in section 6.3. That method as well as its few variants
are evaluated in section 6.4. Conclusions are drawn in section 6.7.

108

6.2. Adversarial defense: related work

6.2 Adversarial defense: related work

All defense methods against adversarial perturbations are either expensive or vulnerable
in the white-box/grey-box settings. As we discussed in section 2.6, the ones that aim to gain
robustness require training DNN and are expensive. Many state-of-the-art DNNs are trained
with ImageNet in order to produce high-quality results. Performing adversarial training in this
context [GSS14, TKP+17, MMS+17] is extremely expensive because a very large number of
adverarial samples must be generated to then efficiently defend the network. Other approaches
such as the ones adding regularizers in loss functions to improve robustness [LHL15, CLC+19],
building a more robust model [HVD15, PMW+16], or trainable Gaussian noise injection at each
layer on either activation or weights [HRF19], achieve decent performance on both robustness
and accuracy. They are, however, extremely expensive and hard to adapt to other networks.

In contrast, transformation methods [GRCvdM17, STL+19, XWZ+17a] are cheap and easy
to adapt to existing networks. Such methods apply a transformation to input images so that
legitimate images and their adversarial version have the same classifier prediction. However,
these methods are easily attacked when attackers are aware of their existence [ACW18].

6.2.1 Basic transformation

A defense [GRCvdM17] is proposed to remove the effect of the adversarial perturbation by
using input transformation. They apply five different image transformations, i.e. image cropping
and rescaling, bit-depth reduction, JPEG compression, total variance minimization, and image
quilting.

Feature squeezing [XEQ17] also includes several transformation approaches. The principle
of feature squeezing is to detect adversarial images by comparing the predicted score of the
input image to the predicted score of its transformed version [XEQ17]. Here, we focus on the
transform method, i.e. spatial smoothing, and list the transformation approaches of the two above
works as follows.

Image cropping-rescaling. Image cropping-rescaling alters the spatial positioning of the
adversarial perturbation. At testing time, they average predictions over random image crops.

Bit-depth reduction. Bit-depth reduction performs a simple type of quantization in pixel
values. In [GRCvdM17], Guo and his colleagues reduce images to 3 bits in their experiments.

109

Part II, Chapter 6 – Patch Replacement

JPEG compression. JPEG compression reduces the quality level of the images. They perform
compression at a quality level of 75 out of 100.

Total variance minimization. Total variance minimization combines pixel dropout with total
variation minimization. This method reconstructs the "simplest" image by using a small set of
pixels randomly selected from the original image.

In details, for each pixel location, they assign it a boolean value according to a Bernoulli
random distribution B, when the value is True, i.e. 1, they maintain the pixel value. Then they
get a pixel maintain map M. Next, they use total variation minimization to construction an
image z that is similar to the input image x by solving:

min
z
‖(1−M)× (z− x)‖2 + λTVp(z), (6.1)

where × denotes element-wise multiplication, and TVp(z) denotes the Lp-total variation of z:

TVp(z) =
∑
k=1

(
∑
i=2
‖z(i, :, k)− z(i− 1, :, k)‖p +

∑
j=2
‖z(:, j, k)− z(:, j − 1, k)‖p), (6.2)

in which z(i, j, k) denotes the pixel value in location (i, j, k). And they use p = 2 in their
experiments.

Image Quilting. Image Quilting is a non-parametric technique that synthesizes images by
assembling small patches that are taken from a database of image patches. The algorithm stores
appropriate patches in the database for a predefined set of grid points and computes minimum
graph cuts in all overlapping boundary regions to remove edge artifacts. In the testing phase, the
patches used to create the synthesized image are selected by finding K nearest neighbor in pixel
space of the corresponding patch from the input image in the patch database and picking one of
these neighbors uniformly at random.

Spatial smoothing. Spatial smoothing is known as blurring. Xu and his colleagues describe
two types of spatial smoothing methods, i.e. local smoothing and non-local smoothing.

Local smoothing methods make use of the nearby pixels to smooth each pixel. By selecting
different mechanisms in weighting the neighboring pixels, a local smoothing method is described
as Gaussian smoothing, mean smoothing, or the median smoothing method.

Different from local smoothing, non-local smoothing smooths over similar pixels in a much
larger area instead of just nearby pixels. For a given image patch, it first finds several similar

110

6.2. Adversarial defense: related work

patches then replaces the center patch with the average of those similar patches. In this way, the
noise will cancel out while preserving the edges of an object, under the condition that the mean
of the noise is zero. Similar to local smoothing, there are several possible ways to weight the
similar patches in the averaging operation, such as Gaussian, mean, and median. The parameters
of a non-local smoothing method typically include the search window size (a large area for
searching similar patches), the patch size, and the filter strength (bandwidth of the Gaussian
kernel).

6.2.2 Pixel Deflection

Pixel deflection [PMG+18] benefits from the observation that CNNs are robust to the noise
produced by randomly replacing some pixels of images with pixels randomly selected from
a small neighborhood. By redistributing pixel values, a subsequent wavelet-based denoising
operation is applied to soften this noise as well as the adversarial perturbation.

Let Rr
p be a square neighborhood with apothem r centered at a pixel p. Let U(R) be the

uniform distribution overR. Let I[p] indicate the value of pixel p in image I . Prakash and his
colleagues first sample a pixel p from the image I , p ∼ U(I), then sample a noise n from the
square neighborhood, n ∼ U(Rr

p

⋂
I), finally let I ′[p] = I[n], where I ′ is transformed image.

In this work, the hypothesis is that not all regions of images are equally important to a
classifier and attacks attempt to add adversarial perturbation to the high activation regions. To
make it more powerful, they use Class Activation Maps (CAM) [ZKL+16] as a robust activation
map to determine whether we deflect the pixel.

Both pixel deflection and adversarial perturbation introduce noise into the input image, it
is beneficial to reduce the effect. They first convert the image to Y CbCr space to decorrelate
the channels and then project the image into the wavelet domain using the discrete wavelet
transformation. They soft threshold the wavelets using BayesShrink, and compute the inverse
wavelet transform on the shrunken wavelet coefficients. Finally, the image is converted back to
the RGB format.

6.2.3 D3

Divide, Denoise and Defend (D3) [MDST18] is developed along the idea of image quilting.
Moosavi-Dezfooli and his colleagues divide the input image into multiple patches and denoise
each patch independently with sparse reconstruction using a dictionary of patches. They use either
a novel patch selection algorithm that is optimized to improve the robustness of the classifier, or

111

Part II, Chapter 6 – Patch Replacement

an efficient greedy algorithm, which is a variant of matching pursuit. It is as expensive as image
quilting.

The main difference between patch replacement that we describe in this chapter and D3 (as
well as image quilting) is that we consider not only image space but also feature spaces. If we
only apply patch replacement on images, the way patch replacement built the dictionary is much
simpler and cheaper than that of D3 (as well as image quilting). It is interesting to compare our
method to the two defense approaches. Unfortunately, there is no code of D3 released, while the
author of the defense with image quilting gave up maintaining their code and the official code of
image quilting does not work in the current environment. Patch replacement is built on Pytorch.
The official image quilting is implemented on C++. It is very time-consuming to reimplement
these methods according to the papers.

6.2.4 Feature denoising

He and his colleagues [XWM+19] observe that adversarial perturbations on images lead to
noise in the features constructed by these networks. Motivated by this observation, they propose
a new architecture design, i.e. denoising block, to improve the robustness towards adversarial
perturbation by performing feature denoising. Although it is expensive since it needs to retrain
the network from scratch, the experimental results show it performs well against adversarial
attacks. The success of feature denoising indicates that the transformation of features also is
helpful to increase the robustness.

Inspired by the transformation works and feature denoising, we aim at proposing an efficient
method, namely patch replacement, that weakens the adversarial effect from both images and
features. Applying transformation both on images and features provides more chance to improve
the robustness against attacks. With the dictionary of patches, patch replacement manages to
augment the complexity even if the attacker realizes the defense. More details are given in the
following section.

6.3 Our method: patch replacement

Patch replacement is a defense method transforming the data flowing inside the deep neural
network. The transformation attempts to remove as much as possible the potential adversarial
noise in input images and in their features that are calculated by the network during its classifi-
cation process. The transformation is also such that legitimate images get correctly classified

112

6.3. Our method: patch replacement

into their appropriate class. Overall, this method seeks to maintain the accuracy of classification
while strongly reducing the success rate of adversarial attacks.

In general, an image to classify is turned into a feature map that forward-feeds the various
layers of a network, undergoing convolutions, computations, until the final probabilities are
established and the class identified. The feature map that exists at the start of the network contains
the R, G, and B pixels of the image to classify. The next feature map contains the results of some
convolutions applied to the pixels of the image, and so on. Across the network, the height, width,
and depth of the data in successive feature maps might change. Overall, however, the feature
map feeding one particular layer is a 3D matrix, and it can be divided into a multitude of small
data patches.

The patch replacement approach is not only applied to the input images directly but also ap-
plied to features, which are the intermediate results of convolutions, pooling and fully-connected
layers of a network. It is based on the observation that the adversarial perturbation transfers as
noise in the features and gets amplified (see Figure 6.1) mostly across the last layers. This implies
that the transformation aimed to reduce that adversarial noise should be performed at the level
of the early layers of the networks where the noise is still of a small amplitude. Overall, early
adversarial noise elimination should improve the robustness of the neural network to attacks.

The patch replacement approach attempts to remove that noise by replacing the suspicious
data patches of a specific feature with very similar pre-determined data patches that originate,
however, from the off-line analysis of a very large number of legitimate images. Two comments
are in order. First, two similar patches of features (or images) likely hold quite similar (visual)
information. At inference time, replacing the data patches of features (or images) of the input
image with similar predetermined data patches hence preserves, to some extent, the correctness
of its classification. Second, predetermined patches computed over a set of legitimate images are
untouched by any adversarial attack. By design, there is therefore no adversarial perturbation in
the features (or images) synthesized from these predetermined patches.

Overall, the patch replacement approach removes the adversarial effects by replacing suspi-
cious data patches with legitimate patches and preserves the quality of the classification process
by carefully replacing these suspicious patches with very similar legitimate patches.

6.3.1 Features, slices and patches

To understand the patch replacement approach, we first present the concepts of features,

slices, and patches.
In general, an image is turned into a series of features in the middle layers of a DNN.

113

Part II, Chapter 6 – Patch Replacement

These features contain the information of the input image after some processing that includes
convolutions. As the next features contain the results of convolutions applied to the previous
features (or image for the first convolutional layer), the height H and width W of the data
in successive features might change according to the kernel size of the convolutions and the
depth D according to the number of filter channels. We denote the feature from layer L as
F := R0L(x) ∈ RW×H×D where R0L denotes the part of network from the beginning to layer L
and F is a tensor. It is represented by the gray cuboid in Figure 6.2(a).

Feature can also be perceived as a concatenation of slices over filter channels, i.e. F =
[F1,F2, · · · ,Fm] where Fk denotes a slice. A slice is a collection of features in contiguous filter
channels. Slice Fk := F (k−1)d+1:kd ∈ RW×H×d is from channel (k − 1)d + 1 to kd, in which
d is the depth of the slice and d×m = D. It is represented by the gray rectangular cuboid in
Figure 6.2(b).

Slice Fk can be decomposed into sub-tensors with same depth but smaller width and height
over spacial location. This sub-tensor is called a patch Pijk where i, j denotes the width and
height position and k indicates the patch is from Fk. More precisely, patch Pijk := Fk(i− a :
i+ a, j − a : j + a) is a sub-tensor of size (2a+ 1)× (2a+ 1)× d at spatial location (i, j) from
slice Fk. We obtain different patches by moving the center and the location of the center can be
dense or sparse. In the sparse case, the center moves with step size c, like moving on a grid with
length c. When c = (2a+ 1), there is no overlapping among the patches; while for c < (2a+ 1),
there is overlapping. The no overlapping case is represented as the gray cube in Figure 6.2(c).

Discussion: Why do we need slices? Patches are needed to combat the curse of dimensionality
when identifying similar elements from the database when performing replacement. if F was
the replacement granule, then the nearest neighbor searching would be involving vectors with
dimensionality W × H × D, which is very high. In contrast, slices are of dimensionality
W ×H × d, where d = D/m. Patches are of an even smaller dimensionality since they exist in
a (2a+ 1)2 × d space, and (2a+ 1)2 << W ×H . That dimensionality reduction improves the
quality of the neural network searches.

6.3.2 Codebook

The codebook is an essential component in the patch replacement approach to organize
patches. It is built during the training phase and used to transform the input during the testing
phase. Patch replacement does not need to train network but we need to train the codebook. We

114

6.3. Our method: patch replacement

H

W

D

H

W

D

H

W

D

(a) Feature (b) A slice (c) A patch

Figure 6.2 – In this figure, we illustrate the relationship between a feature and its slices, and
patches. When an image is fed into the neural network, it results in a feature with height H ,
width W and depth D as in (a). Then along with the depth, we can decompose the feature into
several slices, as in (b), the gray rectangular cuboid is a slice. For each slice, we decompose it
into patches with smaller width and height over spacial location, as in (c), the gray cube is a
patch.

forward an image from the training set a single time through the network and collect patches as
data to learn the codebook.

In the training phase, we forward images from the training set throught the network and
collect patches. For each slice Fk, we learn the quantizer qk whose objective is to quantize the
patches that are computed from this slice. Each quantizer qk has its own codebook Ck with K
codewords. In the testing phase, we decompose the feature of a test image into patches and use
the corresponding quantizer to find their nearest neighbors in the training data and replace them.

We investigate two different options to build a codebook, i.e. product quantization with a
K-means and the use of an E8 lattice. No matter which codebook we use, the quantizer qk
returns the quantized patches qk(P) in same size, so the replacement and reconstruction are
always the same.

Product Quantization (PQ). After decomposing the feature into patches, it is intuitive to train
a K-means model as codebook Ck and then we treat the set of Ck as a codebook C. As a whole,
searching for the nearest neighbor of each patch with the codebook C shares exactly the same
principle with product quantization [JDS10]. Comparing to use only one K-means model as
codebook for all the patches, product quantization gives a huge vocabulary.

115

Part II, Chapter 6 – Patch Replacement

Of course, we can train one universal K-means codebook for all slices. Considering that the
data distributions in different slices are not the same, to achieve a similar performance as the
product quantization setting, we need much more centroids. This increases the cost of searching
for nearest neighbors in the testing phase. As a trade-off between searching cost and performance,
product quantization is better than a universal one.

E8 lattice. E8 lattice is a second option for a codebook. It is a special lattice in R8. This
method maps data points to the nearest nodes on the lattice. The number of the nodes in E8
lattices is the number of codewords in the codebook C.

For the codebook trained on K-means, the patch is regarded as a whole codeword, the shape
of centroids in the codebook can be changed as the shape of patches. Due to its definition, an
E8 lattice only deals with 8-dimensional vectors. If we treat a patch as a codeword, in order to
find its nearest node on E8 lattice, the patch need be first aggregated into 8-dimensional vector,
and then E8 lattice is applied on this 8-dimensional vector. However, it is impossible to directly
convert 8-dimensional vectors to legitimate patches. We do not want to build another model to
mapping each E8 nodes to legitimate patches because cheap is an important advantage of E8
lattice. Instead of building such kind of mapping, we propose to choose d = 8 for the slices so
that patches consist of a series of 8-dimensional vectors and E8 lattice can be directly applied to
them separately. As a result, we replace every 8-dimensional vectors in patches by its nearest
nodes on the E8 lattice and obtain the quantized patches qk(P).

On another hand, there is no training phase for the E8 codebook, the E8 lattice is cheaper
than the K-means codebook.

Discussion. The quality of the codebook influences the quality of the recovered input. To
maintain the accuracy of legitimate images, we need the codebook to contain rich enough details;
to remove the effects of adversarial perturbation, we need the codebook to be not too fine to
preserve the adversarial perturbation. It is a trade-off between the two situations.

The parameter K and the depth d of slices control the quality of the codebook C. The more
codewords are in the codebook C, the better codebook describes the distribution of the data. If we
increase K or decrease d, we succeed to increase the number of codewords in the codebook C.

Similar to K-means, there is also a parameter scale s to control the density of codewords
inside the codebook C. When the scale is greater, the codewords are less numerous.

Adjusting the parameters, i.e. K and d for product quantization; c for E8 lattice, is one we to
achieve this trade-off. Since it is expensive for tuning the parameters for product quantization,

116

6.3. Our method: patch replacement

we introduce replacement strategies to aid patch replacement achieve the trade-off.

6.3.3 Replacement Strategies

With the codebook Ck and quantizer qk, we can replace P directly with its nearest patch
qk(P) according to the codebook Ck with replacement strategies. (To simplify the notation, we
denote patches as P in this part.)

Plain strategy. The simplest strategy is to directly replace the original patches with their nearest
codewords, i.e. P ′ = qk(P). This strategy is depicted in Figure 6.3(a).

Other than the plain replacement strategy, we proposed three different strategies with param-
eter ε.

L2 strategy. If the Euclidean distance between P and qk(P) is less than ε, we keep qk(P).
Otherwise, we project qk(P) on the L2 ball of radius ε centered at P . This strategy is formulated
as

P ′ = qL2
k (P) :=

qk(P) ‖qk(P)− P‖ < ε

P + n(qk(P)− P)ε otherwise,
(6.3)

where n(qk(P)− P) := qk(P)−P
‖qk(P)−P‖ . This strategy is shown in Figure 6.3(b).

L∞ strategy. If the Chebyshev distance between P and qk(P) is less than ε, we keep qk(P).
Otherwise, we project qk(P) on the L∞ square of radius ε centered at P . This strategy is
formulated as

P ′ = qL∞k (P) := P + clip[−ε,ε](qk(P)− P). (6.4)

This strategy is shown in Figure 6.3(c).

Linear strategy In this case, we use a linear interpolation between the original patches P and
their nearest codeword qk(P), as

P ′ = qLinear
k (P) := P + ε(qk(P)− P). (6.5)

This strategy is depicted in Figure 6.3(d).

117

Part II, Chapter 6 – Patch Replacement

(a) qk (b) qL2
k

(c) qL∞k (d) qLineark

Figure 6.3 – The visualization of the four replacement strategies, i.e. plain replacement qk, qL2
k ,

qL∞k , and qLineark . The black points: codewords of the codebook Ck. The red points: original
patches Pijk. The green points: replacing patches P ′ijk. The dashed lines in (b) and (c) depict the
L2 and L∞ boundary with radius ε. In (b), the dashed circles show the L2 circle with radius ε.
If the nearest codeword is inside this L2 norm circle, we replace P with qk(P), otherwise, we
project qk(P) to the L2 norm circle. In (c), the dashed boxes show the L∞ norm square with
threshold ε. If the nearest codeword is inside this L∞ norm square, we replace P with qk(P),
otherwise, we clip qk(P) to the L∞ norm square. In (a), we always replace P with qk(P) and in
(d), the replacing patch P ′ijk is calculated by a linear interpolation between P and qk(P).

118

6.3. Our method: patch replacement

Discussion. Changing the parameter of the codebook C, for instance,K ofK-means codebook,
we can control the extent of how fine or coarse the vocabulary is. However, it is expensive to get
the best quantization by adjusting the codebook. Aside from the codebook C, the replacement
strategy is a better way to control quantization. For each patch, if ‖Pijk − qk(Pijk)‖ is too large,
the quantized patch qk(Pijk) is far away from original patch Pijk. Due to the limited number of
training data, when the codebook is more coarse than the data manifold, a patch Pijk might not
be similar to any codeword in the codebook Ck, which decreases the accuracy on both original
and adversarial images.

To avoid this, we introduce the replacement strategy with parameter ε. This helps the algo-
rithm not to distort the patch Pijk too much.

L2 and L∞ strategies share the similar idea and they limit the distance between qk(P) and P .
The main difference is L2 strategy regards the patch as a whole, but the L∞ strategy regards the
patch as a set of values. L2 strategy limits the L2 norm distance of the patch under ε, while L∞
strategy limits each value of the patch not changed beyond ε.

Instead of limiting the difference, linear strategy always choose an intermediate solution
between qk(P) and P . It never keeps the nearest codeword qk(P) but interpolates between it and
its original patch P .

Using ε = 0, for all replacement strategies, is equivalent to the original neural network
without any quantization. When ε is large, L2 strategy and L∞ strategy are equal to plain strategy.
Finally, when ε = 1, the Linear strategy is equal to plain strategy.

6.3.4 Reconstruction

After replacing all the patches Pijk with their quantized version P ′ijk, we reconstruct slice
F ′k by merging all the P ′ijk together. When patches are overlapping, we use linear interpolation.
Finally, we reconstruct the new tensor F ′ by concatenating all the slices F ′ = [F ′1,F ′2, · · · ,F ′m]
over filter channels. As a whole, we denote the patch replacement as F ′ = Q(F).

The reconstructed feature F ′ continues its way through the network, untouched from now on,
and until it gets to the last layer. Then the network gives its prediction on the feature F ′ as the
prediction towards the original input. Since the reconstructed feature F ′ consists of the nearest
patches of the input’s patches, F ′ perseveres the semantic information of original input while
reducing the adversarial effect.

Discussion: Which layer do we apply the replacement patch on? Since patch replacement
can be applied in any layer, then it is an important question. According to Figure 6.1, we observe

119

Part II, Chapter 6 – Patch Replacement

that in the early layers, the distance between the adversarial feature and the original feature is
much smaller than the later layers. We assume that the adversarial patch and original patch map
onto the same codeword. So it is more efficient to apply the patch replacement to earlier layers.
We verify this hypothesis in our experiments.

6.3.5 Multi-layers

We introduced patch replacement in a single layer, and discussed the choice of the layer.
With a coarse codebook, the robustness of the network against adversarial attack increases
dramatically but the accuracy on legitimate images decreases. The quality of the codebook and
the strategies determine the performance of the patch replacement. Turning these parameters is a
way to achieve the trade-off between accuracy and robustness, and applying patch replacement
on multi-layers is another way to achieve the trade-off.

By apply patch replacement with fine codebook on different layers, it is possible to maintain
the accuracy on legitimate images while improve the robustness against adversarial images little
by little. When we apply patch replacement on more than one layer, we have more degree of
freedom to find the trade-off between removing the adversarial perturbation and preserving the
semantic information of inputs. For instance, we can optimize the codebook and replacement
strategy on the images, and then we optimize the codebook and replacement strategy in the first
layer.

Besides, by applying patch replacement on multi-layers, we increase the complexity of patch
replacement, and as a result, the whole system is more difficult to attack.

6.4 Experiments

In this section, our experiments focus on studying the codebook, strategies and which layers
to apply patch replacement. Before investigating these performances, we first introduce the
experimental settings on dataset, networks and attacks.

6.4.1 Dataset, networks and attacks

Dataset. When it comes to patch replacement, we need a training set to build a codebook as
well as a testing set to verify its performance. We randomly sample 50, 000 from the training
dataset of ImageNet Large Scale Visual Recognition Challenge (ILSVRC 2012) (50 images for
each class) as training data while randomly sampling 1, 000 from the validation dataset (one

120

6.4. Experiments

image per class) as the test dataset. Instead of using the test dataset of adversarial attacks and
defense competition [KGB+18a] as in chapter 4 and chapter 5, we construct our test dataset by
randomly sampling but follow its basic setting, namely selecting one image per class, because
the test dataset of the competition consists of 1, 000 correctly classified images which are biased.
It is not fair to measure the accuracy of a network with defenses, which is an important metric to
evaluate the performance of defenses, based on this dataset.

Since this defense is built on PyTorch [PGC+17], where the pre-trained models are trained
on images with size 224× 224× 3, we sample the ImageNet images to 224× 224× 3.

Networks. We use ResNet-50 [HZRS16b] with the pre-trained model from PyTorch-Torchvision
models 1, whose accuracy is 0.76 on the testing dataset. We measured the performance of different
attacks on the network defended by patch replacement.

To also test the performance of defenses (including patch replacement) against robust net-
work, we take the pre-trained adversarial training model 2 ResNet-50 with adversarial examples
generated by PGD [MMS+17] attack, in which L∞ is used to measure the upper bound of
distortion and the parameter ε is 8.

Attacks. We use the DDN [RHO+19] 3 as the main attack method with 20 iterations by default,
which achieves 0.999 success rate on the test dataset against ResNet-50. Adversarial images are
generated under the white-box setting. We also test with FGSM, PGD, BIM, with a set of ε 4,
and PGD and BIM run 20 iterations. The implementation of FGSM, PGD, and BIM is from
foolbox 5.

All the experiments in this work run on PyTorch1.4.0-py3.7 over CUDA 10.0.130; Foolbox
produces most of the attacks, except DDN [RHO+19] 6. The experiments are supported by Grand
Équipement National de Calcul Intensif (GENCI) 7.

1. https://github.com/Cadene/pretrained-models.pytorch
2. https://github.com/MadryLab/robustness
3. The implementation of DDN attack comes from https://github.com/jeromerony/fast_

adversarial
4. ε ∈ [0.0005, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.08, 0.1]
5. https://github.com/bethgelab/foolbox
6. The implementation of DDN attack comes from https://github.com/jeromerony/fast_

adversarial
7. We use the calculation resources from GENCI:http://www.genci.fr/?lang=en

121

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/MadryLab/robustness
https://github.com/jeromerony/fast_adversarial
https://github.com/jeromerony/fast_adversarial
https://github.com/bethgelab/foolbox
https://github.com/jeromerony/fast_adversarial
https://github.com/jeromerony/fast_adversarial
http://www.genci.fr/?lang=en

Part II, Chapter 6 – Patch Replacement

(a) without overlap (b) with overlap

Figure 6.4 – A feature with overlap and without overlap.

6.4.2 Optimization of the codebook for single layers

In order to obtain a decent codebook, we consider two kinds of models to train codebooks,
i.e. product quantization and E8 lattice. One major difference is about reconstruction. Since
the product quantization regard a patch as a basic unit, when we reconstruct features, the stride
c determines overlapping between patches or not. The results in Figure 6.4 show that when
c < (2a+1), the quantized featuresF ′ are smoother than the quantized features with c = (2a+1).
We prefer the smoother feature since it provides slightly better performance. However, E8 lattice
only apply to 8-dimension vectors inside patches so the quantized features are always without
overlapping.

As we discussed previously, product quantization is more precise and data-based while E8
lattice without training for codebook is cheaper to apply. To verify their performance, we test
on five different layers of ResNet-50, and for each layer, we produce a set of codebooks via
changing the parameters.

Product Quantization (PQ). To train codebook for slices with K-means can be regarded as
applying product quantization to the whole features/images. To optimize the performance of
product quantization, there are two parameters to control the quality of the codebook, i.e. the
number of clusters K for the K-means and the dimension of the patch d. A larger K or a smaller
d results in richer codewords, and that allows to restore more information from inputs. We use
Euclidean distance to calculate similarity in the K-means. All codebooks of each slices are
trained independently. The different codewords we tried for product quantization in different
layers are listed in section 6.4.2.

122

6.4. Experiments

layer K d (D)

0th-layer
392, 785, 3927, 6284, 7855, 11783, 15711, 19639, 26185, 1 (3)
31422, 39278, 58917, 78557, 117835, 157114, 235671

1st-layer
39278, 78557, 117836, 157114, 235671, 314228, 785568 4 (64)
39278, 78557, 117836, 157114, 261856, 392784, 785568 8 (64)

4th-layer
78557 2 (256)
78557, 785568 4 (256)
78557 8 (256)

7th-layer
78557 2 (256)
78557 4 (256)
78557, 785568 8 (256)

10th-layer
78557, 785568 2 (256)
78557, 785568 4 (256)
78557, 785568 8 (256)

Table 6.1 – The number of clusters K and the dimension of the patch d for different layers.

E8 lattice. E8 lattice does not depend on the data. The parameter controlling the scale, i.e. s,
determines the magnitude of the lattice. Smaller scale provides denser codewords. We select
s ∈ [0.1, 0.2, · · · , 0.9].

We measure the accuracy and robustness of different codebooks by comparing the accuracy
between 1, 000 legitimate images and their adversarial version against the ResNet-50 network
and under the protection of patch replacement in different layers. We study the performance of
different codebooks with different value of parameters, i.e. K and d for product quantization
(exact value see section 6.4.2) and s ∈ [0.1, 0.2, · · · , 0.9] for E8 lattice, are plotted in the same
curve for a certain layer. Actually, there are 14 points in the curve of first layer on Figure 6.5(a),
but there are several points are too close to tell the difference. Since there are two parameters K
and d to control the performance of product quantization, it is hard to order the points according
to the points according to the increasing of parameter as E8. So we rank the points according to
the accuracy on legitimate images for product quantization.

The results are depicted in Figure 6.5. It shows that the finer codewords maintain high
accuracy on legitimate images because the finer codewords lose less details of inputs. When
codewords are well-supplied so that all the information of inputs is represented, then the accuracy
on legitimate images is exactly equal to the accuracy of network without patch replacement as the
right bottom point in Figure 6.5(b). We cannot find the same point in Figure 6.5(a) because it is
impossible to train such a product quantization codebook. In this sense, patch replacement cannot
improve the performance on legitimate images. However, when we focus on the accuracy on

123

Part II, Chapter 6 – Patch Replacement

adversarial images, we observe the relationship between the richness of codewords and accuracy
is not monotonous. When the codewords become coarser, the network gains more robustness
against adversarial images which reduces slowly after reaching the peak.

Another tendency which happens in both plots in Figure 6.5 is that the earlier layer the patch
replacement is applied on, the better the performance of patch replacement on adversarial images
is. Note, however, that the performance of patch replacement on legitimate images is very stable in
different layers. It shows that the noise introduced by the patch replacement has similar effects to
random noise on legitimate images. However, in different layers, that effect on adversarial images
changes. It is obvious in Figure 6.5(a) that patch replacement can achieve better performance in
the former layer than the later layer. As shown in Figure 6.1, adversarial perturbations are rather
small in the early stages, it is easy to remove. When adversarial perturbations are amplified in the
later layers, it is harder to eliminate adversarial perturbations by replacing it with most similar
feature patch.

In Figure 6.5(a), we also observe that patch replacement on images performs extremely well.
Only considering W and H , input images have larger size than features, for example four times
larger than the features of first layer. With the same size of the patches with respect to height and
width, patch replacement preserves much more information on images than on features.

Figure 6.5 shows that E8 lattice improves the robustness less than product quantization when
tracking the similar amount of accuracy on legitimate images. However, both dictionaries share
the similar property of patch replacement in different layers. Since the E8 lattice does not need
training, it is used to explore the properties of the patch replacement quickly.

50 60 70

20

40

60

acc ori

a
cc
a
d
v

image

1st-layer

4th-layer

7th-layer

10th-layer

20 40 60 80
0

10

20

30

40

50

acc ori

a
cc
a
d
v

(a) PQ (b) E8

Figure 6.5 – We apply patch replacement on different layers independently with two different
kinds of codebooks. We replace all the patches with their most similar patches in the codebooks.
The accuracy of 1, 000 legitimate images, noted as ’acc ori’, and their adversarial images, noted
as ’acc adv’.

According to Figure 6.5, the best codebook setting for a single layer is product quantization

124

6.4. Experiments

with K = 3927 on images (so patch replacement operates at layer 0). It gives 71.7% accuracy on
legitimate images while 64.2% on their adversarial images. We lose 4% accuracy on legitimate
images and gain 64.1% accuracy on adversarial images.

Before improving further the performance of patch replacement, we study the effect on the
level of noise through the network of patch replacement with best setting for a single layer, i.e.
using product quantization codebook inside layer 0 with K = 3927, d = 1. The effect is depicted
in Figure 6.6. It shows that our patch replacement changes the behavior of the adversarial
perturbation through the neural network. We observed that the green line (noise introduced by
patch replacement) has a similar pattern as the blue line (random noise). We lose 4% accuracy
in the presence of these noises. The difference between quantized legitimate inputs Q(x) and
their quantized adversarial versions Q(x + r) depicted as the brown line is small compared
to others. This perturbation leads to 7.3% drop in accuracy. The black line, which shows the
difference between legitimate images x and their quantized adversarial versions Q(x + r), is
almost overlapping the green line. This implies that quantized legitimate inputs Q(x) and their
quantized adversarial versions Q(x+ r) introduce similar amounts of distortion but in different
directions.

6.4.3 Strategies

We chose the best setting for codebook and we lose accuracy on the legitimate images,
because patch replacement loses part of information of inputs and introduces noise in order
to gain robustness towards adversarial images. If we can reduce the amount of the noise and
preserve more information, the accuracy on the legitimate images improves. This target can be
achieved not only by improving the codebook, but also by applying the strategies introduced in
subsection 6.3.3

We choose two settings of product quantization, i.e. K = 3927 in the image layer and
K = 235671, d = 4 in the first layer to investigate the performance of the strategies. These
codebooks are chosen by finding the right top corner points in Figure 6.5(a). The codebook, with
K = 235671, d = 4 in the first layer, achieves the accuracy 65.7% on legitimate images and
53.7% on their adversarial images. Then, we change the parameter ε to control the strength of
patch replacement.

In details, on the images, ε ∈ [0.0, 0.1, 0.2, · · · , 0.9, 1.0] for L2 and Linear strategies, and ε ∈
[0.0, 0.01, 0.02, · · · , 0.09, 0.1] for L∞ strategy. For the first layer, ε ∈ [0.0, 0.1, 0.2, · · · , 0.9, 1.0]
for L2 and Linear strategies, and ε ∈ [0.0, 0.01, 0.02, · · · , 0.19, 0.2] for L∞ strategy.

As we discussed in subsection 6.3.3, when ε = 0, patch replacement with any replacement

125

Part II, Chapter 6 – Patch Replacement

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ith − layer

d
is
to
r
ti
o
n

Dis(x,x+r)
Dis(x,Q(x))
Dis(x,Q(x+r))
Dis(Q(x),Q(x+r))
random

Figure 6.6 – The blue line corresponds to random noise following a normal distribution with
mean 0 and variance 0.05. The red line corresponds to the adversarial perturbation generated by
DDN [RHO+19] attack. The green line shows the distortion introduced by our patch replacement
on the legitimate images. The black line shows the difference between adversarial images
modified by patch replacement and their original version. And the brown line describes the
difference between legitimate images modified by patch replacement and their adversarial images
also modified by patch replacement.

strategies (other than plain strategy) is equivalent to the original network. When ε is extremely
large, L2 strategy and L∞ strategy are equal to the plain strategy. For Linear strategy, when
ε = 1, linear strategy is equal to plain strategy. Figure 6.7 is consistent with that. The points in
the bottom right corner in both Figure 6.7(a) and Figure 6.7(b) correspond to ε = 0, while the
points in the top left corner correspond to cases equivalent to plain strategy. We notice that, on the
image layer, when ε of L2 strategy is large but not large enough to be equivalent to plain strategy,
i.e. the flat part of magenta line in the Figure 6.7(a), the accuracy on legitimate images decreases
and then increases back to the point of plain strategy. That is the reason why the magenta line
has more points on the left. This phenomena might be a result of non-linearity of the network.

Comparing Figure 6.7(a) and Figure 6.7(b), no strategy dominates the others. That implies
for different codebooks different strategies provide the best performance. It is better to optimize
replacement strategy when we train a new codebook.

We are interested in the points in the top right corner of Figure 6.7(a) and Figure 6.7(b). That

126

6.4. Experiments

71 72 73 74 75 76

0

20

40

60

acc ori

a
cc
a
d
v

66 68 70 72 74 76

0

20

40

60

acc ori

a
cc
a
d
v

L2
L∞
linear

(a) image-layer (b) 1-layer

Figure 6.7 – We choose the two best codewords of product quantization, i.e. K = 3927 in the
image layer and K = 235671, d = 4 in the first layer. Then apply three strategies with different
parameter ε to control the force of patch replacement. The magenta lines correspond to L2
strategy, the cyan lines correspond to L∞ strategy, and olive lines correspond to Linear strategy.
We plot the accuracy on legitimate images and on their adversarial images.

indicates the strategies improving the accuracy on legitimate images (comparing to the plain
strategy) and keeping the robustness on adversarial images the same or improving it slightly.
With replacement strategies, the performance of patch replacement improves more obviously in
the first layer, not on images. When we use L∞ strategy with ε = 0.1, we have 72.0% as accuracy
on legitimate images and 64.0% for adversarial images, i.e. we gain 0.3% accuracy on legitimate
images and lose 0.2% accuracy on adversarial images. If we select the L∞ strategy with ε = 0.17
in the image layer, it gives us 71.7% on legitimate images and 64.5% on adversarial images. We
lose nothing on legitimate images but gain 0.3% on adversarial images. Nevertheless, when we
use L∞ strategy with ε = 0.17, we have 69.3% as accuracy on legitimate images and 55.6% for
adversarial images, i.e. we gain 3.6% accuracy on legitimate images and gain 1.9% accuracy on
adversarial images.

The reason why replacement strategies improve the performance in the first layer and almost
do not improve it on images is that the codebook on images is rich enough to recover the main
information, while the codebook in the first layer is rather coarse. Since replacement strategies
are designed to preserve more information of input, it helps the case in the first layer.

6.4.4 Multi-layer patch replacement

From the previous experiments on a single layer, we know that: 1) applying patch replacement
on images gives us the best performance; 2) strategies help patch replacement in the first layer.

To benefit from both lessons, we carry out experiments to apply patch replacement in two

127

Part II, Chapter 6 – Patch Replacement

layers. We take the best version of patch replacement on images. With it, we lose 4% accuracy
on legitimate images but gain 64.4% accuracy on adversarial images. On top of it, we apply
patch replacement in the first layer. Then we find the best codebook by changing parameter K in
the first layer 8. The results are shown in Figure 6.8. When increasing K, the accuracy does not
change monotonously, this might also be a result of the non-linearity.

59.5 60 60.5 61

57

57.1

57.2

57.3

57.4

acc ori

a
cc
a
d
v

314228
235671
196392
157114
117836

Figure 6.8 – Based on the best codebook on image, i.e. K = 3927, we apply patch replacement
in the first layer, and find the best codebook for this combination. We test different K and plot
the accuracy on legitimate images and their adversarial images.

When we combine the image layer and the first convolutional layer, the codebooks are
trained independently as obtained in the previous experiments. We did not train the codebook
of the first convolutional layer based on the neural network with the patch replacement in the
image layer since it is costly to try all the combinations. On another hand, training the codebook
independently for patch replacement in different layers captures the features of the training data.

Fixing the patch replacement on images as well as the codebook, i.e. K = 314228, of the
first layer, we optimize the replace strategies in the first layer. The result is shown in Figure 6.9.
We select the best strategy, i.e. L∞ strategy with parameter 0.01. It gives 71.8% accuracy on
legitimate images, 66.0% on adversarial images. We improve the performance greatly comparing
to the plain strategy shown in Figure 6.8. By applying patch replacement on both image layer
and the first layer, we improve the performance of patch replacement.

It is possible to include more layers and continue such kind of optimization. However, it is
also expensive, while improvement on performance is small with respect to the cost. Besides,
combining more layers inside the defense increases the complexity of the forward. Considering
all these situations, we stop with two layers, and take it as our final results and test its performance
on different attacks.

8. K ∈ [117836, 157114, 196392, 235671, 314228]

128

6.4. Experiments

60 65 70

56

58

60

62

64

66

acc ori

a
cc
a
d
v

L2
L∞
linear

Figure 6.9 – Based on the best codebook and strategies on the layer 0, i.e. image layer, we add the
layer with the best codebook, and find the best strategy for this combination. The best strategy is
L∞ with parameter 0.01.

Without Defense With Defense
Psuc D Psuc D

DDN 1.00 0.53 0.08 0.57
FGSM 0.95 5.13 0.92 7.98
BIM 1.00 2.50 0.99 6.10
PGD 1.00 3.12 0.83 7.21

Table 6.2 – Test the performance of our patch replacement by apply different attacks, i.e. DDN,
FGSM, BIM, PGD2, towards the network without knowing there is a defense. The success rate
Psuc and average distortion D, which only accounts success adversarial images, are calculated
according our evaluation metrics in section 3.3.

Table 6.2 shows that our defense performs better on the adversarial image with small
distortion. The distortion for eventually forging a successful adversarial image increases a lot
due to this defense because those adversarial examples with smaller distortion are quantized
back to their original images.

Figure 6.10 provides an overview of the performance of patch replacement against different
attacks. The dotted lines of original network are above the solid lines of network with patch
replacement. When fixing a distortion level, e.g. D = 6, BIM achieves 0.8 success on original
network while the success rate goes down to round 0.4 on the network with patch replacement.
Conversely, if we fix the success rate, e.g. Psuc = 0.5, all attacks only need a distortion around
2 on original network, while on network with patch replacement, attacks need more than 6 as
distortion.

129

Part II, Chapter 6 – Patch Replacement

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

D

P
su

c

FGSM
BIM
PGD
DDN

Figure 6.10 – Operating characteristics of the attacks ResNet-50 over the test dataset. The dotted
lines represent the results on the original network while the solid lines represent the results on the
network with patch replacement. Here Psuc is success rate and D is respective L2 norm distortion.

Cost of patch replacement. The main computation cost of patch replacement is to train the
product quantization codebook. We train the codebook with faiss 9. The actual training time
depends on the parameters, i.e. K and d, and the size of features. The codebook also takes GPU
memories. However, comparing to retrain the neural network, the cost is of patch replacement is
cheap.

6.5 Comparison with other defense methods

To investigate further the performance of patch replacement, we compare patch replacement
to other defense methods.

Adversarial Training. We test on ResNet-50 of adversarial training with PGD [MMS+17] 10.

Transformation methods. We test bit-depth reduction of reducing images to 3 bits and 5 bits,
denoted as bit3 and bit5 [GRCvdM17]; median smoothing filter with kernel size of two and
three, denoted as ms2 and ms3 [XEQ17]; pixel deflection 11 [PMG+18] with CAM as a robust
activation map.

Table 6.3 shows that adversarial training with PGD has very bad performance on legitimate
images (45.9%), it defends badly against DDN but pretty well against PGD. It is reasonable

9. https://ai.facebook.com/tools/faiss/
10. We use L∞ version and the parameter ε is 8. Download pre-trained model from https://github.com/

MadryLab/robustness.
11. https://github.com/iamaaditya/pixel-deflection

130

https://ai.facebook.com/tools/faiss/
https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://github.com/iamaaditya/pixel-deflection

6.6. Defense against smart attack

Accuracy (%)
clean DDN PGD

patch replacement 71.8[−3.1] 66.0[+7.4] 46.4[+2.1]

adversarial training [MMS+17]
(PGD) 45.9 19.0 44.3

bit3 [GRCvdM17] 64.7 55.1 32.9
bit5 [GRCvdM17] 74.9 18.9 6.5
ms2 [XEQ17] 74.2 47.9 26.5
ms3 [XEQ17] 71.8 55.6 34.2
pixel deflection [PMG+18] 73.2 58.6 31.0

Table 6.3 – We compare patch replacement to other defenses. We measure the accuracy on
legitimate images with the defense method, and on adversarial images generated by DDN and
PGD attacks under the white box setting. DDN runs for 20 iterations, while the parameter ε for
PGD is 0.03. We bold the best accuracy achieved by defenses except patch replacement, and
put the difference between the accuracy of patch replacement to the best accuracy. For instance,
patch replacement gains 7.4% accuracy with DDN than the best competitor pixel deflection.

since the network is trained with PGD. Simple attacks, like bit5, ms2, achieve better accuracy on
legitimate images than patch replacement but less accuracy on adversarial images. Comparing to
bit5 and ms2, patch replacement gains more than 20% on adversarial images while loses around
3% on legitimate images. Patch replacement is obviously better than bit3 and ms3. When it
comes to pixel deflection, patch replacement gains around 10% on adversarial images and loses
around 1.5% on legitimate images.

6.6 Defense against smart attack

Previously, we test the performance of the defenses under the black-box setting, i.e. attackers
do not know there is a defense. To estimate the performance under the white-box setting, i.e.
attackers are aware of the defenses, we propose to use a kind of smart attack, called Backward

Pass Differentiable Approximation (BPDA) [ACW18] 12. This smart attack generates adversarial
examples by including the defense during the forward pass, and ignores the defense module
during the backward pass if it is impossible to calculate gradients through it. In detail, the defense
module is replaced by an identity function for the backward.

We apply BPDA on patch replacement, as well as the other defense methods, and we compare
the statistics Psuc and D according to our evaluation metrics.

12. https://github.com/Annonymous-repos/attacks-in-pytorch

131

https://github.com/Annonymous-repos/attacks-in-pytorch

Part II, Chapter 6 – Patch Replacement

BPDA
Psuc D

patch replacement 0.89 12.89
bit3 [GRCvdM17] 1.00 1.00
bit5 [GRCvdM17] 1.00 1.00
ms2 [XEQ17] 1.00 1.76
ms3 [XEQ17] 1.00 1.25
pixel deflection [PMG+18] 1.00 0.89

Table 6.4 – Compare the performance of our patch replacement to other defenses by applying
smart attack BPDA. We measure the success rate Psuc and the average distortion D according to
our evaluation metrics in section 3.3. BPDA runs for 20 iterations.

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

D

P
su

c bit3
bit5
ms2
ms3
deflection
patch replacement

Figure 6.11 – Operating smart attack BPDA to ResNet-50 with different defenses over ImageNet.

Table 6.4 shows that BPDA performs worst in the network with patch replacement. BPDA
success attacks the network with other defense with average distortion less than 2 but BPDA
only achieves 0.89 success rate with average distortion more than 12. BPDA have to increase the
distortion six times larger to fool the network with patch replacement defense. This conclusion is
more obvious in Figure 6.11. It indicates that in the white-box setting, the network defended with
patch replacement is harder to attack. Even when the distortion is very large and BPDA succeeds
to attack networks defended with other methods, BPDA only achieves around 70% success rate.

In Figure 6.11, some examples are changed into adversarial examples with extremely small
distortion, even though the network is defended. We check some of these examples and find
them easier to be attacked. The predicted score of the ground truth is very close to the second
one. For instance, the difference for these images is around 0.05, while for others the difference
is around 0.75.

132

6.7. Conclusion

6.7 Conclusion

In this work, we propose a transformation method which succeeds to defend against adver-
sarial attacks. We succeed to include the training data as a part of the defense so that it is more
difficult for attacker even in gray-box setting or white-box setting.

Also, we investigate the impact of noise in different layers. There is no surprise that adver-
sarial noises are very small in the image space also in the early layers, however, their L2 norm
become great when coming to the end of the neural network. Random noises behave almost in
an opposite way, they increase greatly at the beginning and become stable at the later stage.

According to this observation, we apply patch transformation at the beginning of the neural
network, combining two layers to improve the trade-off between accuracy and robustness. Our
experiments show that it works well, especially for the attack methods like DDN.

133

CHAPTER 7

CONCLUSION AND PERSPECTIVES

In this last chapter, we review our contributions made within this manuscript and describe
possible research questions that remain unanswered but interesting to explore in future works.

Conclusion

After investigating the field of adversarial attacks and defenses, we find there are four
important concepts: speed, distortion, invisibility, and transferability.

We attach a lot of importance to speed, whether it be at attack or defense time. In the
manuscript, we propose BP attack which is an efficient algorithm to search for the adversarial
examples. On the other hand, we propose the patch replacement defense method which is a
relatively cheap –so a rather fast– defense mechanism. It does not need to train the network from
scratch and is robust in a white-box setting.

We also improve the invisibility (refer to chapter 4) and the magnitude of distortion (refer to
chapter 5) of adversarial perturbations. We investigate the definition of the adversarial problem
and propose our definition of invisibility for adversarial perturbation. Moreover, we propose
a magnification approach to amplify the adversarial perturbation to make it easier to evaluate
invisibility with the naked eyes. We propose an evaluation protocol to compare the success
rate and magnitude of the distortion of adversarial examples generated by attacks from a
different families target success or distortion. Although we are not targeting the improvement of
transferability of adversarial examples, we measure it when we evaluate the quality of adversarial
images.

In detail, we succeed to generate smooth adversarial perturbation where invisibility is defined
as the smoothness according to the similarity graph of input images. The function to acquire
this invisibility can be integrated into existing adversarial attacks. It provides smooth adversarial
perturbation when it is properly integrated into the attack, namely injecting smoothness as a
constraint inside the loss function. In our experiments, we find that simply integrating that
smoothness function into attacks such as PGD does not perform well even if it is done at each

135

attack iteration. However, when it is integrated into C&W, sC&W not only produces adversarial
perturbation with invisibility but also improves the magnitude of distortion when the success rate
is the same.

Our definition of invisibility allows the attacker to produce adversarial perturbations with
larger distortion but that remain invisible. However, it mitigates the transferability. The question
of how to define invisibility is still open. Although a human does not make the difference between
the original image and its smooth adversarial version even with magnification, it does not prove
that an algorithm will not detect some statistical evidence.

We find that using the existing optimization algorithm to solve the adversarial problem some-
times leads to oscillation on the boundaries of classes and results in the wasting of computations.
To improve the efficiency of the algorithm, we propose a boundary projection (BP) attack that
separates the search process into two cases, i.e. the IN case and the OUT case. In the IN case, the
current solution is not yet adversarial and the main target is misclassifications. So BP searches
along the gradient direction. While in the OUT case, the current solution is adversarial and the
main target is minimizing distortion. So BP searches on the manifold defined by a class boundary.
As a result, BP attempts to stay mostly in the adversarial region when it searches around the
boundary. BP also considers the quantization problem of adversarial example. The amplitude of
the perturbation is controlled at each iteration.

The experiments show that BP succeeds in minimizing distortion on the class boundary
manifold. BP attack generates adversarial examples with a high success rate (close to one)
and low magnitude of distortion with a small number of iterations. This work [ZAFA20b] is
published on IEEE Transactions on Information Forensics and Security.

We propose a relatively cheap defense named patch replacement. It decreases the effects of
adversarial perturbation by decomposing input into patches and replacing them with the most
similar ones from training data. Moreover, we not only consider applying patch replacement on
images but also in the intermediate features.

We investigate how adversarial perturbations and random noises affect the network through
layers. We observe that the magnitude of adversarial perturbations is amplified dramatically in
the later layers, while the magnitude of random noise is in contrast much amplified in the early
layers and stays flat in the later layers. So we apply patch replacement on images and the features
of the first layer. It improves both accuracy of classification and robustness against adversarial
attack comparing to patch replacement only on images or in a single layer. The experiments
show that patch replacement improves the robustness of the network on both black-box settings
and white-box settings.

136

In summary, our work succeeds to make the research of adversarial attacks and defense more
complete. We find that it is easier to build an attack than a defense. Once we know the architecture
and the parameters of the target neural networks, it is always possible to generate adversarial
examples with gradient descent. As long as we benefit from the end-to-end magic of neural
networks, we suffer from adversarial phenomena because we use the same logic to train a neural
network and generate adversarial examples. We minimize the loss function of neural networks
and use the backpropagation to update parameters of neural networks, while we minimize the
optimization function of producing adversarial examples and use the backpropagation to generate
the adversarial perturbation. To our point of view, it is due to the fact that the neural network
does not recognize objects as humans do. By minimizing the difference between the prediction of
neural networks and the ground truth, neural networks learn features themselves. However, these
features include some meaningless and specific information of the dataset, which are helpful in
the particular task but not general to objects.

When we make a defense, we always suffer from a trade-off between the quality and the
robustness of the neural network. If we obfuscate the gradient for the attacker, a part of the
information is lost during training and, consequently, the accuracy of the classification process
drops. Reactive defenses and proactive defenses trade accuracy for robustness. However, works
like AdvProp [XTG+20] succeed in augmenting the quality and robustness of the network at the
same time. Then the question is how much free lunch is there.

Perspectives

We propose three works in this field, they can be improved by some little extensions. For
instance, it is possible to integrate smooth constraint into BP attack. When we simply integrate
smooth constraint with PGD, it does not works well. It indicates that the algorithm should
be modified so that BP attack optimizes the adversarial optimization integrating with smooth
constraint.

It is also interesting to defend with patch replacement against smooth adversarial perturbation.
We conjecture the patch replacement works well on smooth adversarial perturbation because
the perturbation is so smooth that it preserves the semantic information of the images. Patch
replacement replaces the patches of input images by the most similar legitimate patches and
eliminate adversarial effects.

Besides, transferability as an important concept in this field, we did not explore it further. We
measure the transferability for smooth adversarial perturbation and find that when the magnitude

137

of distortion is small, smooth adversarial perturbations sC&W perform better under bilateral
filter transferability than C&W. It is interesting to study how to increase the transferability of
adversarial examples and the relationship between their transferability of adversarial examples
and the robustness of networks.

It is crucial to explore how much we can augment the robustness against adversarial attacks
without degrading the performance on legitimate images. Interpretable neural network could
improve the ability to learn the intrinsic knowledge from data, and the development of adversarial
attacks and defenses will also promote the researches of interpretation on neural networks.

The game between attacks and defenses will never end. Currently, it seems that attackers
dominate the defenders since once there is a defense proposed, the attackers could attack it
days later. However, the distortion needed to be successful increases. Leaving the game between
attackers and defenders continuing, the distortion needed for attackers will be extremely large,
then the defender can claim the classifier is robust.

138

BIBLIOGRAPHY

[ABB+17] Laurent Amsaleg, James E. Bailey, Dominique Barbe, Sarah Erfani, Michael E
Houle, Vinh Nguyen, and Miloš Radovanovic. The Vulnerability of Learning to
Adversarial Perturbation Increases with Intrinsic Dimensionality. In Proceed-

ings of IEEE International Workshop on Information Forensics and Security

(WIFS), Rennes, France, December 2017.

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In Proceedings of the

12th USENIX symposium on operating systems design and implementation

(OSDI 16), pages 265–283, 2016.

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv

preprint arXiv:1802.00420, 2018.

[AMS09] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms

on matrix manifolds. Princeton University Press, 2009.

[ASE+18] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivas-
tava, and Kai-Wei Chang. Generating natural language adversarial examples.
arXiv preprint arXiv:1804.07998, 2018.

[AW18] Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize
so poorly to small image transformations? arXiv preprint arXiv:1805.12177,
2018.

[BF17] Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning
to generate adversarial examples. arXiv preprint arXiv:1703.09387, 2017.

[BMR+17] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
Adversarial patch. arXiv preprint arXiv:1712.09665, 2017.

139

[BNS+06] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D.
Tygar. Can machine learning be secure? In Proceedings of the ACM ASIA

Conference on Computer and Communications Security (AsiaCCS), pages 16–
25. ACM, 2006.

[Bon13] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE

Transactions on Automatic Control, 58(9):2217–2229, 2013.

[BR18] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, 2018.

[BRB18] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adver-
sarial attacks: Reliable attacks against black-box machine learning models. In
Proceedings of International Conference on Learning Representations (ICLR),
2018.

[BRRG18] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer
encoding: One hot way to resist adversarial examples. In Proceedings of

International Conference on Learning Representations (ICLR), 2018.

[BU05] Evgeniy Bart and Shimon Ullman. Cross-generalization: Learning novel classes
from a single example by feature replacement. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR), volume 1,
pages 672–679. IEEE, 2005.

[CK16] Siddhartha Chandra and Iasonas Kokkinos. Fast, exact and multi-scale inference
for semantic image segmentation with deep Gaussian CRFs. In Proceedings of

the European Conference on Computer Vision (ECCV), 2016.

[CLC+19] Hao-Yun Chen, Jhao-Hong Liang, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting
Chen, Wei Wei, and Da-Cheng Juan. Improving adversarial robustness via
guided complement entropy. In Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV), pages 4881–4889, 2019.

[CMB+08] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker.
Digital Watermarking. Morgan Kaufmann Publisher, second edition, 2008.

140

[CS01] Koby Crammer and Yoram Singer. On the algorithmic implementation of
multiclass kernel-based vector machines. Journal of machine learning research,
2(Dec):265–292, 2001.

[CW17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP),
2017.

[CW18] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted
attacks on speech-to-text. In Proceedings of the IEEE Security and Privacy

Workshops (SPW), pages 1–7. IEEE, 2018.

[CZS+17] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo:
Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th ACM Workshop

on Artificial Intelligence and Security, AISec ’17, page 15–26, New York, NY,
USA, 2017. ACM.

[DAL+18] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bern-
stein, Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activa-
tion pruning for robust adversarial defense. arXiv preprint arXiv:1803.01442,
2018.

[DDS+04] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. Adversar-
ial classification. In Proceedings of the international conference on knowledge

discovery and data mining (ACM SIGKDD). ACM, 2004.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR), pages 248–255.
Ieee, 2009.

[DLP+18] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,
and Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings

of the IEEE conference on computer vision and pattern recognition (CVPR),
pages 9185–9193, 2018.

141

[DMY+19] Abhimanyu Dubey, Laurens van der Maaten, Zeki Yalniz, Yixuan Li, and Dhruv
Mahajan. Defense against adversarial images using web-scale nearest-neighbor
search. In Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), pages 8767–8776, 2019.

[EEF+18] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust
physical-world attacks on deep learning visual classification. In Proceedings

of the IEEE conference on computer vision and pattern recognition (CVPR),
pages 1625–1634, 2018.

[ES02] Brian Everitt and Anders Skrondal. The Cambridge dictionary of statistics,
volume 106. Cambridge University Press Cambridge, 2002.

[ETT+17] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Alek-
sander Madry. A rotation and a translation suffice: Fooling cnns with simple
transformations. arXiv preprint arXiv:1712.02779, 2017.

[FBHD19] S. A. Fezza, Y. Bakhti, W. Hamidouche, and O. Déforges. Perceptual evaluation
of adversarial attacks for cnn-based image classification. In Proceedings of

the International Conference on Quality of Multimedia Experience (QoMEX),
pages 1–6, June 2019.

[FMDF16] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Ro-
bustness of classifiers: from adversarial to random noise. arXiv preprint

arXiv:1608.08967, 2016.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep

learning, volume 1. MIT press Cambridge, 2016.

[GFW18] Chuan Guo, Jared S. Frank, and Kilian Q. Weinberger. Low frequency adver-
sarial perturbation. arXiv preprint arXiv:1809.08758, 2018.

[GLB19] Partha Ghosh, Arpan Losalka, and Michael J Black. Resisting adversarial
attacks using gaussian mixture variational autoencoders. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages 541–548, 2019.

142

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in neural information processing systems, 2014.

[GR14] Shixiang Gu and Luca Rigazio. Towards deep neural network architectures
robust to adversarial examples. arXiv preprint arXiv:1412.5068, 2014.

[Gra06] Leo Grady. Random walks for image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence (IEEE Trans. PAMI), 28(11), 2006.

[GRCvdM17] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten.
Countering adversarial images using input transformations. arXiv preprint

arXiv:1711.00117, 2017.

[GSS14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[HD18] Jamie Hayes and George Danezis. Learning universal adversarial perturbations
with generative models. In Proceedings of the IEEE Security and Privacy

Workshops (SPW), pages 43–49. IEEE, 2018.

[HF16] Mehrtash Harandi and Basura Fernando. Generalized backpropagation,\’{E}
tude de cas: Orthogonality. arXiv preprint arXiv:1611.05927, 2016.

[HKWW17] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verifica-
tion of deep neural networks. In Proceedings of the International Conference

on Computer Aided Verification (CAV), pages 3–29. Springer, 2017.

[HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition (CVPR), pages 4700–4708,
2017.

[Hop82] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. volume 79, pages 2554–2558. National Acad Sciences,
1982.

143

[HRF19] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Parametric noise injection:
Trainable randomness to improve deep neural network robustness against adver-
sarial attack. In Proceedings of the IEEE conference on computer vision and

pattern recognition (CVPR), pages 588–597, 2019.

[HS+99] Geoffrey E Hinton, Terrence Joseph Sejnowski, et al. Unsupervised learning:

foundations of neural computation. MIT press, 1999.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[HXSS15] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning
with a strong adversary. arXiv preprint arXiv:1511.03034, 2015.

[HZJ18] Wen Heng, Shuchang Zhou, and Tingting Jiang. Harmonic adversarial attack
method. arXiv preprint arXiv:1807.10590, 2018.

[HZRS16a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition (CVPR), pages 770–778, 2016.

[HZRS16b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 630–645. Springer, 2016.

[IAT+18] Ahmet Iscen, Yannis Avrithis, Giorgos Tolias, Teddy Furon, and Ondrej Chum.
Fast spectral ranking for similarity search. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition (CVPR), 2018.

[IEAL18] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box
adversarial attacks with limited queries and information. In Proceedings of

the International Conference on Machine Learning (ICML), pages 2137–2146.
PMLR, 2018.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference

on machine learning, pages 448–456. PMLR, 2015.

144

[ITA+17] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, Teddy Furon, and Ondrej Chum.
Efficient diffusion on region manifolds: Recovering small objects with compact
cnn representations. In Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR), 2017.

[JDS10] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for
nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine

Intelligence (IEEE Trans. PAMI), 33(1):117–128, 2010.

[KB15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2015.

[KBD+17] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochender-
fer. Reluplex: An efficient smt solver for verifying deep neural networks. In
Proceedings of the International Conference on Computer Aided Verification

(CAV), pages 97–117. Springer, 2017.

[KGB16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in
the physical world. arXiv preprint arXiv:1607.02533, 2016.

[KGB+18a] Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao,
Ming Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al. Adversarial
attacks and defences competition. arXiv preprint arXiv:1804.00097, 2018.

[KGB+18b] Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao,
Ming Liang, Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, Jianyu Wang,
Zhishuai Zhang, Zhou Ren, Alan Yuille, Sangxia Huang, Yao Zhao, Yuzhe
Zhao, Zhonglin Han, Junjiajia Long, Yerkebulan Berdibekov, Takuya Akiba,
Seiya Tokui, and Motoki Abe. Adversarial attacks and defences competition.
arXiv preprint arXiv:1804.00097, 2018.

[KLL08] Tae Hoon Kim, Kyoung Mu Lee, and Sang Uk Lee. Generative image seg-
mentation using random walks with restart. In Proceedings of the European

Conference on Computer Vision (ECCV), 2008.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Cite-

seer, 2009.

145

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[LC10] Eric Cooper Larson and Damon Michael Chandler. Most apparent distortion:
full-reference image quality assessment and the role of strategy. Journal of

electronic imaging, 19(1):011006, 2010.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2:18, 2010.

[LCLS16] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770,
2016.

[LCW+20] Canyu Le, Zhonggui Chen, Xihan Wei, Biao Wang, and Lei Zhang. Continual
local replacement for few-shot learning. arXiv e-prints, pages arXiv–2001,
2020.

[LH17] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam.
CoRR, abs/1711.05101, 2017.

[LHL15] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. A unified gradient
regularization family for adversarial examples. In Proceedings of the 2015

IEEE International Conference on Data Mining, pages 301–309. IEEE, 2015.

[LHL17] Hyeungill Lee, Sungyeob Han, and Jungwoo Lee. Generative adversarial trainer:
Defense to adversarial perturbations with gan. arXiv preprint arXiv:1705.03387,
2017.

[LIF17] Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safetynet: Detecting and re-
jecting adversarial examples robustly. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), pages 446–454, 2017.

146

[LJL+19] Jie Li, Rongrong Ji, Hong Liu, Xiaopeng Hong, Yue Gao, and Qi Tian. Uni-
versal perturbation attack against image retrieval. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), pages 4899–4908, 2019.

[LLL+18] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan Kautz. A
closed-form solution to photorealistic image stylization. arXiv preprint

arXiv:1802.06474, 2018.

[LLS+18] Bin Liang, Hongcheng Li, Miaoqiang Su, Xirong Li, Wenchang Shi, and Xi-
aofeng Wang. Detecting adversarial image examples in deep neural networks
with adaptive noise reduction. IEEE Transactions on Dependable and Secure

Computing, 2018.

[LM05] Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of

the international conference on knowledge discovery and data mining (ACM

SIGKDD), pages 641–647. ACM, 2005.

[LPSB17] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep photo style
transfer. In Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), 2017.

[MC17] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversar-
ial examples. In Proceedings of the Conference on Computer and Communica-

tions Security (SIGSAC), pages 135–147. ACM, 2017.

[MDFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: a simple and accurate method to fool deep neural networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition (CVPR),
2016.

[MDST18] Seyed-Mohsen Moosavi-Dezfooli, Ashish Shrivastava, and Oncel Tuzel.
Divide, denoise, and defend against adversarial attacks. arXiv preprint

arXiv:1802.06806, 2018.

[MFFF17] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR), pages 86–94,
2017.

147

[MHN13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proceedings of the International

Conference on Machine Learning (ICML), volume 30, 2013.

[MLT+19] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
NIC: detecting adversarial samples with neural network invariant checking. In
26th Annual Network and Distributed System Security Symposium, NDSS 2019,

San Diego, California, USA, February 24-27, 2019, 2019.

[MMS+17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

[MRT18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

machine learning. MIT press, 2018.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the International Conference on Ma-

chine Learning (ICML), 2010.

[NK17] Nina Narodytska and Shiva Kasiviswanathan. Simple black-box adversarial
attacks on deep neural networks. In Proceedings of the 2017 IEEE Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1310–
1318. IEEE, 2017.

[NW06] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer, 2006.

[PFC+18] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben
Feinman, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko
Roy, Alexander Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai
Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato,
Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber,
and Rujun Long. Technical report on the cleverhans v2.1.0 adversarial examples
library. arXiv preprint arXiv:1610.00768, 2018.

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

148

Automatic differentiation in pytorch. In Proceedings of the International confer-

ence on Neural Information Processing Systems Workshop Autodiff (NeurIPSW)

2017, 2017.

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277, 2016.

[PMG+18] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James
Storer. Deflecting adversarial attacks with pixel deflection. In Proceedings of

the IEEE conference on computer vision and pattern recognition (CVPR), pages
8571–8580, 2018.

[PMJ+16] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. In Proceedings of the IEEE European Symposium on Security and

Privacy (EuroS&P). IEEE, 2016.

[PMW+16] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep neural
networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP).
IEEE, 2016.

[PP18] Gilles Puy and Patrick Pérez. A flexible convolutional solver with application
to photorealistic style transfer. arXiv preprint arXiv:1806.05285, 2018.

[QAR18] Erwin Quiring, Daniel Arp, and Konrad Rieck. Forgotten siblings: Unifying
attacks on machine learning and digital watermarking. In Proceedings of the

IEEE European Symposium on Security and Privacy (EuroS&P), pages 488–
502, April 2018.

[RDHC19] Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural
language adversarial examples through probability weighted word saliency. In
Proceedings of the 57th annual meeting of the association for computational

linguistics, pages 1085–1097, 2019.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

149

Imagenet large scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[RHK18] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability anal-
ysis of deep neural networks with provable guarantees. arXiv preprint

arXiv:1805.02242, 2018.

[RHO+19] Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert
Sabourin, and Eric Granger. Decoupling direction and norm for efficient
gradient-based l2 adversarial attacks and defenses. In Proceedings of the

IEEE conference on computer vision and pattern recognition (CVPR), pages
4322–4330, 2019.

[RN02] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach.
Prentice Hall, 2002.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses
against adversarial examples. arXiv preprint arXiv:1801.09344, 2018.

[SBBR16] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Acces-
sorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the Conference on Computer and Communications Security

(SIGSAC), pages 1528–1540. ACM, 2016.

[SBR18] Mahmood Sharif, Lujo Bauer, and Michael K. Reiter. On the suitability of
lp-norms for creating and preventing adversarial examples. arXiv preprint

arXiv:1802.09653, 2018.

[SGOS+18] Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon Bottou,
and David Lopez-Paz. Adversarial vulnerability of neural networks increases
with input dimension. arXiv preprint arXiv:1802.01421, 2018.

[SKC18] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Pro-
tecting classifiers against adversarial attacks using generative models. arXiv

preprint arXiv:1805.06605, 2018.

[SKN+17] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kush-
man. Pixeldefend: Leveraging generative models to understand and defend
against adversarial examples. arXiv preprint arXiv:1710.10766, 2017.

150

[SM13] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs.
IEEE transactions on signal processing, 61(7):1644–1656, 2013.

[SND17] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifying some dis-
tributional robustness with principled adversarial training. arXiv preprint

arXiv:1710.10571, 2017.

[SNF+13] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. IEEE

Signal Processing Magazine, 30(3), 2013.

[SNG+19] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training
for free! arXiv preprint arXiv:1904.12843, 2019.

[SP97] Rainer Storn and Kenneth V. Price. Differential evolution - A simple and
efficient heuristic for global optimization over continuous spaces. Journal of

global optimization, 11(4), 1997.

[SP18] Alexandru Constantin Serban and Erik Poll. Adversarial examples - A complete
characterisation of the phenomenon. CoRR, abs/1810.01185, 2018.

[STL+19] Bo Sun, Nian-Hsuan Tsai, Fangchen Liu, Ronald Yu, and Hao Su. Adversarial
defense by stratified convolutional sparse coding. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR), June 2019.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition

(CVPR), pages 2818–2826, 2016.

[SVS19] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel at-
tack for fooling deep neural networks. IEEE Transactions on Evolutionary

Computation, 23(5):828–841, 2019.

[SZMA18] Ilia Shumailov, Yiren Zhao, Robert D. Mullins, and Ross Anderson. The taboo
trap: Behavioural detection of adversarial samples. CoRR, abs/1811.07375,
2018.

151

[SZS+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

[TKP+17] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick
McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint

arXiv:1705.07204, 2017.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color
images. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV), 1998.

[TPG+17] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. The space of transferable adversarial examples. arXiv preprint

arXiv:1704.03453, 2017.

[TRC19a] Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted mismatch adver-
sarial attack: Query with a flower to retrieve the tower. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV), pages 5037–5046,
2019.

[TRC19b] Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted mismatch adver-
sarial attack: Query with a flower to retrieve the tower. In Proceedings of the

IEEE International Conference on Computer Vision (ICCV), 2019.

[TRHV20] Olga Taran, Shideh Rezaeifar, Taras Holotyak, and Slava Voloshynovskiy. Ma-
chine learning through cryptographic glasses: combating adversarial attacks by
key based diversified aggregation. EURASIP Journal on Information Security,
January 2020.

[TSS18] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training:
Scalable certification of perturbation invariance for deep neural networks. In
Proceedings of the Advances in Neural Information Processing Systems, pages
6541–6550, 2018.

[TVRG19] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveil-
lance cameras: adversarial patches to attack person detection. In Proceedings

152

of the IEEE conference on computer vision and pattern recognition worshops

(CVPRW), pages 49–55, 2019.

[Ume12] P Umesh. Image processing in python. CSI Communications, 23, 2012.

[VC17] Paul Vernaza and Manmohan Chandraker. Learning random-walk label prop-
agation for weakly-supervised semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition (CVPR), 2017.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Proceedings of the Advances in neural information processing systems, pages
5998–6008, 2017.

[WBSS04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Im-
age quality assessment: from error visibility to structural similarity. IEEE

transactions on image processing, 13(4):600–612, 2004.

[WK17] Eric Wong and J Zico Kolter. Provable defenses against adversarial examples
via the convex outer adversarial polytope. arXiv preprint arXiv:1711.00851,
2017.

[XEQ17] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adver-
sarial examples in deep neural networks. arXiv preprint arXiv:1704.01155,
2017.

[XTG+20] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and
Quoc V Le. Adversarial examples improve image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition (CVPR),
pages 819–828, 2020.

[XWM+19] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming
He. Feature denoising for improving adversarial robustness. In Proceedings

of the IEEE conference on computer vision and pattern recognition (CVPR),
pages 501–509, 2019.

[XWZ+17a] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigat-
ing adversarial effects through randomization. arXiv preprint arXiv:1711.01991,
2017.

153

[XWZ+17b] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan
Yuille. Adversarial examples for semantic segmentation and object detection. In
Proceedings of the IEEE International Conference on Computer Vision (CVPR),
pages 1369–1378, 2017.

[XZL+18] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
Spatially transformed adversarial examples. arXiv preprint arXiv:1801.02612,
2018.

[XZL+20] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen,
Pin-Yu Chen, Yanzhi Wang, and Xue Lin. Adversarial t-shirt! evading person
detectors in a physical world. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 665–681. Springer, 2020.

[YLCS18] Zhuolin Yang, Bo Li, Pin-Yu Chen, and Dawn Song. Characterizing audio adver-
sarial examples using temporal dependency. arXiv preprint arXiv:1809.10875,
2018.

[YLDT18] Erkun Yang, Tongliang Liu, Cheng Deng, and Dacheng Tao. Adversarial
examples for hamming space search. IEEE transactions on cybernetics, 2018.

[YS18] Hiromu Yakura and Jun Sakuma. Robust audio adversarial example for a
physical attack. arXiv preprint arXiv:1810.11793, 2018.

[ZAFA20a] Hanwei Zhang, Yannis Avrithis, Teddy Furon, and Laurent Amsaleg. Smooth
adversarial examples. EURASIP Journal on Information Security, 2020(1):1–12,
2020.

[ZAFA20b] Hanwei Zhang, Yannis Avrithis, Teddy Furon, and Laurent Amsaleg. Walking
on the edge: Fast, low-distortion adversarial examples. IEEE Transactions on

Information Forensics and Security, 16:701–713, 2020.

[ZBL+03] Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard
Schölkopf. Learning with local and global consistency. In Proceedings of the

International conference on Neural Information Processing Systems (NeurIPS),
2003.

154

[ZDS18] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial
examples. In Proceedings of International Conference on Learning Representa-

tions (ICLR), 2018.

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning
using gaussian fields and harmonic functions. In Proceedings of International

Conference on Learning Representations (ICLR), 2003.

[ZHC+18] Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xiangqi Huang, Xiang
Gan, and Yong Yang. Transferable adversarial perturbations. In Proceedings of

the European Conference on Computer Vision (ECCV), 2018.

[ZKL+16] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In Proceedings of the

IEEE conference on computer vision and pattern recognition (CVPR), pages
2921–2929, 2016.

[ZRS16] Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian svrg: Fast stochas-
tic optimization on riemannian manifolds. In Proceedings of the International

conference on Neural Information Processing Systems (NeurIPS), pages 4592–
4600, 2016.

[ZSAL20] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adver-
sarial attacks on deep-learning models in natural language processing: A survey.
ACM Transactions on Intelligent Systems and Technology (TIST), 11(3):1–41,
2020.

[ZWG+03] Denny Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard
Schölkopf. Ranking on data manifolds. In Proceedings of the International

conference on Neural Information Processing Systems (NeurIPS), 2003.

155

ABBREVIATIONS

AD Auto-Differentiate. 71

AI Artificial Intelligence. 9, 17, 24

BIM Basic Iterative Method. 37, 121, 129, 130

BP Boundary Projection. 14, 15, 22, 52, 59, 62, 83–86, 89–92, 94–102, 135–137, 162, 163, 166

BPDA Backward Pass Differentiable Approximation. 131, 132, 162, 163

C&W Carlini and Wagner attack. 23, 29, 39–41, 47, 52, 64, 65, 69, 71–81, 84, 90–92, 94,
96–99, 101, 136, 138, 161

CAM Class Activation Maps. 111

CG Conjugate Gradient. 71, 72

CNN Convolutional Neural Network. 9, 17, 26, 111

CV Computer Vision. 9, 17

D3 Divide, Denoise and Defend. 7, 111, 112

DDN Decoupling Direction and Norm. 23, 40, 41, 52, 59, 84, 85, 89–92, 94, 96–101, 106, 121,
126, 129–131, 133, 163

DeepFool DeepFool attack. 35, 40, 42, 43, 50, 161

DL Deep Learning. 10, 17, 18, 21

DNN Deep Neural Network. 5, 9, 10, 13, 17–23, 25, 28, 83, 105, 106, 108, 109, 113

FGSM Fast Gradient Sign Method. 36, 37, 47, 49, 50, 59, 64, 72, 73, 76–79, 90–92, 94, 96–101,
121, 129, 130, 163

GAN Generative Adversarial Networks. 28, 44, 46

GENCI Grand Équipement National de Calcul Intensif. 121

I-FGSM Iterative Fast Gradient Sign Method. 37, 64, 72, 73, 76–79, 84, 85, 90–92, 94, 96–101,
163

156

ILC Iterative Least-likely Class. 43

ILSVRC 2012 ImageNet Large Scale Visual Recognition Challenge. 56, 120

JPEG Joint Photographic Experts Group. 109, 110

JSMA Jacobian-based Saliency Map Attack. 33, 43

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Channo. 38, 39, 44, 161

M-IFGSM Momentum Iterative FGSM. 38

MAD Most Apparent Distortion. 61, 73, 75, 76, 161

ML Machine Learning. 9, 17–24, 28, 48

NIC Network Invariance Checking. 46

PGD Projected Gradient Descent. 29, 37, 40, 41, 49, 50, 52, 59, 69, 72–80, 84, 85, 90–92, 94,
96–102, 121, 129–131, 135, 137, 161

PSNR Peak Signal-to-Noise Ratio. 61

ReLU Linear Rectification Unit. 26

ResNet Deep Residual Network. 10, 17, 18, 106, 121–123, 130, 132, 162

SSIM Structural Similarity Index Measure. 61

SVM Support Vector Machine. 28, 34, 40, 46

wPSNR Weighted Peak Signal-to-Noise Ratio. 61

ZOO Zeroth Order Optimization. 33

157

158

LIST OF SYMBOLS

I raw images in the space [0, 1, . . . , 255]3×L×C

T(·) pre-processing which change raw images to inputs
x inputs images in [0, 1]m

` label
`g ground truth label
θ parameters of neural network

S(·) softmax
R(·) function of neural network before the softmax
f(·) function of neural network returning the predicted class
h(·) cross entropy
L(·) loss function
J (·) cost function of neural network
∆ small interval
u logit
p probability vector
r perturbation
ρi intermediate radius during the search
ε parameter to control the distortion

projA projection on the region A
B∞[x; ε] standard L∞ centered in x and radius ε > α

B2[x; ε] The standard L2 ball centered in x and of radius ε
D conditional average distortion
Xsuc subset of X where the attack succeeds
Nsuc Nsuc := |Xsuc|
Psuc success rate of an attack

P(D) probability of success subject to distortion being upper
bounded by D

Pupp success rate within a distortion upper bounded by Dupp

Dupp distortion upper bounded
σ(·) element-wise sigmoid function

159

Chapter 4 Smooth Adversarial Examples
t spatial coordinates of the n pixels in the image

W symmetric adjacency matrix
kf feature kernel
ks spatial kernel
D degree matrix
z new signal
Lα regularized Laplacian

φα(r, z) Laplacian smooth
In identical function
ŝα smoothing guided
g gradient
n L2 normalization

mag(x) magnification function
µx(x) local mean of x
σx(x) standard deviation of x
σΩ(x) global standard deviation of x over Ω

Chapter 5 Boundary Projection Attack
K maximum number for iterations

clip[0,1] clipping
QOUT quantization for the OUT case
QIN quantization for the IN case
v? direction normal to the gradient

Chapter 6 Patch Replacement
F feature tensor
Fk slice tensor
Pijk patch tensor
Ck code book
qk(·) quantizer for slice k
Q(·) quantizer for feature k

160

LIST OF FIGURES

1 Un exemple de perturbation adversaire . 11

1.1 An example of adversarial perturbation . 19

2.1 Original image and adversarial images; the manipulations are almost impercepti-
ble, the classification is wrong. 29

2.2 Illustration of L-BFGS in 1D. 39

2.3 Illustration of C&W in 1D. 41

2.4 Two-dimensional illustration of adversarial attacks on a binary classifier. 41

2.5 Illustration of DeepFool. 42

3.1 Here are ten examples of MNIST from different classes. 56

3.2 Here are ten examples of CIFAR10 from different classes. 56

3.3 Here are ten examples of ImageNet from different classes. 57

4.1 Magnified original image and its magnified adversarial versions. Our smooth

adversarial example (d) is invisible even when magnified. 64

4.2 For a given attack (denoted by * and bold typeface), the adversarial image with
the strongest distortion D over MNIST. In green, the attack succeeds; in red, it
fails. 74

4.3 Original image, adversarial image and scaled perturbation against InceptionV3
on ImageNet. 75

4.4 MAD scores [LC10] of sC&W vs. C&W for all images of ImageNet. 76

4.5 Operating characteristics of the attacks over MNIST. Attacks PGD2 and qPGD2

are tested with target distortion D ∈ [1, 6]. 76

4.6 Operating characteristics over ImageNet attacking InceptionV3 (solid lines) and
ResNetV2-50 (dotted lines). 77

4.7 Operating characteristics of C&W and sC&W on ImageNet with InceptionV3
under bilateral filter transferability, corresponding to Table 3. 79

5.1 Adversarial attacks on a binary classifier in two dimensions. 84

161

5.2 Refinement stage of BP. Case OUT when |V | > 1 (a); case IN (b). 89
5.3 Success probability Psuc and average distortion D for different values of parame-

ters α and γmin of BP with 20 iterations. 93
5.4 Operating characteristics on MNIST, CIFAR10 and ImageNet. 94
5.5 Operating characteristics on MNIST, CIFAR10 and ImageNet without quantization. 97
5.6 Operating characteristics of attacks against robust models. 98
5.7 Average distortion, number of iterations on ImageNet and corresponding proba-

bility of success. 99
5.8 Original (left), adversarial (top row) and scaled perturbation (below) images

against InceptionV3 on ImageNet. 101

6.1 Relative average distortion over 1000 ImageNet images of intermediate activa-
tions of a neural network for noisy input images. 106

6.2 Illustration of the relationship between a feature and its slices, and patches. . . 115
6.3 The visualization of the four replacement strategies. 118
6.4 A feature with overlap and without overlap. 122
6.5 We apply patch replacement on different layers independently with two different

kinds of codebooks. 124
6.6 The behavior of random noise, adversarial perturbation and noise introduced by

patch replacement through network. 126
6.7 Performance of different strategies with different parameter. 127
6.8 Patch replacement on multi-layer. 128
6.9 Searching the best strategy for the first layer based on the best codebook and

strategies on the image. 129
6.10 Operating characteristics of the attacks ResNet-50 over the test dataset. 130
6.11 Operating smart attack BPDA to ResNet-50 with different defenses over ImageNet.132

162

LIST OF TABLES

4.1 Success probability Psuc and average L2 distortion D. 73
4.2 Success probability and average L2 distortion D when attacking networks adver-

sarially trained against FGSM. 78
4.3 Success probability and average L2 distortion D of attacks on variants of Incep-

tionV3 under transferability. 79

5.1 Success probability Psuc and average distortionD of our method BP on ImageNet
with different quantization strategies. 91

5.2 Success probability Psuc and average distortion D with quantization. 92
5.3 Success probability Psuc and average distortion D without quantization. 96
5.4 Success probability, average distortion, and success rate under adversarial train-

ing for MNIST and CIFAR10; and ensemble adversarial training for ImageNet. 98
5.5 Success probability Psuc, average distortion D, and success rate Pupp under

adversarial training defense with I-FGSM, DDN, or BP as the reference attack. 100

6.1 The number of clusters K and the dimension of the patch d for different layers. 123
6.2 Test the performance of our patch replacement by apply different attacks without

knowing there is a defense. 129
6.3 We compare patch replacement to other defenses. 131
6.4 Compare the performance of our patch replacement to other defenses by applying

smart attack BPDA. 132

163

LIST OF PUBLICATIONS

The list of publications:

— Hanwei Zhang, Yannis Avrithis, Teddy Furon, Laurent Amasleg. Smooth adversarial
examples. In EURASIP Journal on Information Security, 2020(1):1-12.

— Hanwei Zhang, Yannis Avrithis, Teddy Furon, Laurent Amasleg. Walking on the edge:
Fast, low-distortion adversarial examples. In IEEE Transactions on Information Forensics

and Security, 2020, 16:701-713.

164

Titre : Apprentissage profond dans un contexte adversaire

Mot clés : Attaque adversaire, apprentissage profond, classification, robustesse, sécurité de

l’apprentissage automatique.

Résumé : Cette thèse porte sur les attaques
adverses et les défenses en apprentissage pro-
fond. Nous proposons d’améliorer les perfor-
mances des attaques adversariales en termes
de vitesse, de magnitude de distorsion et de
invisibilité. Nous contribuons en définissant invi-
sibilité avec lissage et en l’intégrant dans l’opti-
misation de la production d’exemples adverses.
Nous parvenons à créer des perturbations
contradictoires lisses avec une amplitude de
distorsion moindre. Pour améliorer l’efficacité
de la production d’exemples contradictoires,
nous proposons un algorithme d’optimisation,
i.e. BP attaque, basé sur la connaissance du
problème contradictoire. BP attaque recherche
contre le gradient du réseau pour conduire à

une mauvaise classification lorsque la solution
actuelle n’est pas contradictoire. Elle cherche
le long de la frontière pour minimiser la distor-
sion lorsque la solution actuelle est contradic-
toire. BP réussissons à générer des exemples
contradictoires avec une faible distorsion de
manière efficace. De plus, nous étudions éga-
lement les défenses. Nous appliquons le rem-
placement de patchs à la fois sur les images
et les caractéristiques. Il supprime les effets
adverses en remplaçant les patchs d’entrée
par les patchs les plus similaires des données
d’entraînement. Les expériences montrent que
le remplacement de patch est bon marché et
robuste contre les attaques adverses.

Title: Deep Learning in adversarial context

Keywords: Adversarial attack, Deep learning, Classification, Robustness, Machine Learning

Security

Abstract: This thesis is about the adversar-
ial attacks and defenses in deep learning. We
propose to improve the performance of adver-
sarial attack in the aspect of speed, magni-
tude of distortion and invisibility. We contribute
by defining invisibility with smoothness and in-
tegrating it into the optimization of producing
adversarial examples. We succeed in creat-
ing smooth adversarial perturbations with less
magnitude of distortion. To improve the effi-
ciency of producing adversarial examples, we
propose an optimization algorithm, i.e. BP at-
tack, based on the knowledge of the adversarial
problem. BP attack searches against the gra-

dient of the network to lead misclassification
when the current solution is not adversarial. It
searches along the boundary to minimize the
distortion when the current solution is adver-
sarial. BP succeeds to generate adversarial ex-
amples with low-distortion efficiently. Moreover,
we also study the defenses. We apply patch
replacement on both images and features. It re-
moves the adversarial effects by replacing the
input patches with the most similar patches of
training data. Experiments show patch replace-
ment is cheap and robust against adversarial
attacks.

	Résumé en français
	Introduction
	Deep learning and deep neural network
	Adversarial examples
	Overview and contributions

	Background
	Machine learning
	Classification of images by dnn
	Vulnerabilities in ML: A bit of history and vocabulary
	Adversarial images: definition
	Attacks
	White, grey, and black box
	White box: target distortion/target success
	Target Distortion attacks
	Target Success attacks
	Other attacks

	Defenses
	Reactive defenses
	Proactive Defenses
	Obfuscation technique

	Positioning
	Challenges
	Our approaches and contributions

	I Attack
	Evaluation
	Datasets
	Networks
	Off-the-shelf network
	Robust models

	Evaluation metrics
	Standard evaluation metrics
	Our evaluation metrics
	Other evaluation metrics we introduce

	Smooth Adversarial Examples
	Introduction
	Related work on imperceptibility

	Background on graph Laplacian smoothing
	Integrating smoothness into the attack
	Simple attacks
	Attack targeting optimality

	Experiments
	Attacks and parameters
	White box scenario
	Adversarial training
	Transferability

	Adversarial magnification
	Conclusion

	Boundary Projection Attack
	Introduction
	Graphical abstract illustrating the attacks.
	Related work

	Method
	Stage 1
	Stage 2
	Discussion

	Experiments
	Parameters of the attacks
	Experimental investigations
	Benchmark

	Predicting distortion after quantization
	Defense evaluation with adversarial training
	Adversarial image examples
	Conclusion

	II Defense
	Patch Replacement
	Introduction
	Random noise vs. adversarial perturbation

	Adversarial defense: related work
	Basic transformation
	Pixel Deflection
	d3
	Feature denoising

	Our method: patch replacement
	Features, slices and patches
	Codebook
	Replacement Strategies
	Reconstruction
	Multi-layers

	Experiments
	Dataset, networks and attacks
	Optimization of the codebook for single layers
	Strategies
	Multi-layer patch replacement

	Comparison with other defense methods
	Defense against smart attack
	Conclusion

	Conclusion and perspectives
	Conclusion
	Bibliography
	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	List of Publications

