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Résumé

Les capacités de vision par ordinateur se sont améliorées au cours de la dernière
décennie, une meilleure utilisation du matériel permettant aux ordinateurs de traiter
davantage d’images plus rapidement, entraînant l’avènement de l’apprentissage pro-
fond. De plus, au cours de cette période, des architectures de modèles telles que les
réseaux de neurones convolutifs et les transformers ont été introduites, permettant
aux applications de vision par ordinateur de réaliser des tâches plus complexes. En par-
ticulier, les modèles de reconnaissance d’images sont désormais capables d’identifier
et de reconnaître des éléments sur une image, même dans des conditions difficiles.
Ces facteurs ont contribué à l’introduction de ces modèles dans la société.

Avec la diffusion des technologies de l’ apprentissage profond au sein de la société,
une nouvelle exigence a émergé pour ces méthodologies. Puisqu ’elles interagissent
désormais et affectent directement les vies humaines, il est impératif de comprendre
leur fonctionnement et de fournir des explications. Pour répondre à ces questions, un
nouveau domaine de recherche a vu le jour: l ’interprétabilité et l ’IA explicable.

Dans cette thèse, notre objectif est de comprendre et de développer des modèles
d’interprétabilité pour les modèles de reconnaissance d’images de pointe. Nous
présentons et expliquons brièvement certains des modèles de reconnaissance d’images
les plus performants et pertinents pour les Réseaux de Neurones Convolutifs et les
Transformers. Ensuite, nous examinons les approches actuelles en matière d’ inter-
prétabilité conçues pour fournir des explications, ainsi que leurs protocoles d’ éval-
uation. Nous faisons des observations sur ces méthodes et protocoles d’évaluation,
mettant en évidence les difficultés rencontrées et suggérant des idées pour surmonter
leurs limitations.

Opti-CAM Notre première contribution, s’ appuie sur le raisonnement des Cartes
d’ Activation de Classe. En particulier, cette proposition optimise le coefficient de
pondération requis pour calculer une carte de saillance, générant une représentation
qui maximise la probabilité spécifique à la classe. Cette carte de saillance offre les
meilleurs résultats selon les mesures d’interprétabilité, et met en évidence que le
contexte est pertinent pour décrire une prédiction. De plus, une nouvelle métrique
pour compléter l’évaluation de l’interprétabilité est dévoilée, remédiant aux lacunes
de cette procédure.
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Cross Attention Stream Notre deuxième contribution, est un ajout aux modèles
actuels de reconnaissance d’images, améliorant les mesures d’interprétabilité. Inspiré
par des modèles novateurs performants tels que les Transformers, nous construisons
un flux qui calcule l’interaction d’une représentation de classe abstraite avec les
caractéristiques profondes des réseaux neuronaux convolutionnels. Cette représen-
tation est finalement utilisée pour effectuer la classification. Notre flux affiche des
améliorations lors de l’évaluation quantitative, tout en préservant les performances
de reconnaissance à travers différents modèles.

Gradient Denoise Enfin, notre dernière contribution présente un nouveau paradigme
d’ entraînement pour les réseaux neuronaux profonds. De plus, ce paradigme débruite
les informations de gradient des modèles profonds dans l’espace d’entrée. La représen-
tation de rétropropagation guidée de l’image d’entrée est utilisée pour régulariser
les modèles lors de leur phase d’ entraînement. En conséquence, nos modèles en-
traînés affichent des améliorations pour l’ évaluation interprétable. Nous appliquons
notre paradigme à de petites architectures dans un cadre contraint, ouvrant la voie au
développement futur dans des ensembles de données à grande échelle, ainsi qu’avec
des modèles plus complexes.

Mots clés: Apprentissage Profond, reconaissance d’image, interpretabilité, explica-
bilité.
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Abstract
Computer Vision capabilities improved in the past decade, a better utilization of hard-
ware enabled computers to process more images faster, ensuing the dawn of deep
learning. Moreover, over this timespan, model architectures such as convolutional
neural networks and transformers have been introduced, enabling computer vision
applications to conduct more complex tasks. In particular, image recognition models
are now capable of identifying and recognizing elements on an image, even on chal-
lenging conditions. These factors have contributed towards the introduction of these
models into society.

With the permeation of deep learning technologies within society, a new requirement
emerged for these methodologies. Since they are now interacting and affecting human
lives directly, it is mandatory to understand their functioning and provide explana-
tions. To address these questions a new research field has emerged: interpretability
and explainable AI.

In this thesis, our goal is to understand and further develop interpretability models
for state-of-the-art image recognition models. We introduce and briefly explain some
of the most relevant high performance image recognition models for both Convolu-
tional Neural Networks and Transformers. Then, current interpretability approaches
designed to provide explanations, as well as their evaluation protocols. We make
observations upon these methods and evaluation protocols, highlighting difficulties
upon them and suggesting ideas to address their limitations. In the following chapters
we present our contributions.

Opti-CAM Our first contribution, builds upon the reasoning of Class Activation
Mappings. In particular, this proposal optimizes the weighting coefficient required to
compute a saliency map, generating a representation that maximizes class specific
probability. This saliency map performs the best across interpretability metrics on
multiple datasets. Plus, it highlights that context is relevant towards describing a
prediction. Additionally, a novel metric to complement interpretability evaluation is
unveiled, addressing shortcomings in this procedure.

Cross Attention Stream Our second contribution, is an addition to current image
recognition models, enhancing interpretability measurements. Inspired novel high
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performing models such as Transformers, we construct a stream that computes the
interaction of an abstract class representation, with deep features of convolutional
neural networks. This representation is ultimately used to perform classification.
Our Stream displays improvements on quantitative evaluation, as well as preserves
recognition performance across different models.

Gradient Denoising Lastly, our final contribution presents a novel training paradigm
for deep neural networks. Moreover, this paradigm denoises the gradient information
of deep models in the input space. The guided backpropagation representation of
the input image is used to regularize models during their training phase. As a result,
our trained models display improvements for interpretable evaluation. We apply our
paradigm to small architectures in a constrained setting, paving the way for future
development in large scale datasets, as well as with more complex models.

Keywords: Deep Learning, image recognition, interpretability, explainability.
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Introduction

Human curiosity has led to the desire of understanding the world we inhabit, prompt-
ing us to seek explanations for the phenomena we encounter. We derive this from
the information we gather through sensory processing. Since most of the sensory
information humans process pertains to vision, it could be argued that we live within
a visual world. Conversely, this human curiosity has led to the development of tech-
nologies that have fundamentally altered the world: we have drastically changed
our surroundings by building and adapting them to our needs. Moreover, societal
development has been closely intertwined with technology: on one hand, the first
human settlements date back to the surge of agriculture; while on the other hand, the
industrial revolution started paving the world towards the modern era.

Computation, Computer Vision and Artificial Intelligence Currently, one
technology that has taken prominence is computation, as it affects our lives directly
and indirectly. This can be seen in our reliance on devices such as computers and
cellphones. These products are the result of scientific breakthroughs and innovation.
Nevertheless, to do science we need to process information, for which we have de-
veloped disciplines like mathematics and physics, which in turn can be aided with
computation. Conversely, innovation within the last century has propelled computa-
tion further with the emergence of electronic computers. Aided by improvements in
transistors and the rapid development of microprocessors, computers have become
faster, smaller and more accessible; allowing for their adoption within society. In
recent years, this technology has undergone a revolution with the surge and popular-
ization of Artificial Intelligence (AI), a promising field with countless possibilities for
changing and improving human lives.

Artificial Intelligence refers to a discipline in computer science, aimed at developing
systems capable of performing tasks, usually achieved with human intelligence. For
example, AI systems learn from data: they recognize patterns and make decisions
based on the data itself. Moreover, AI benefits from techniques such as Machine
Learning, Deep Learning, Natural Language Processing and Computer Vision. How-
ever, what do we mean when we say a system learns? In techniques such as Machine
Learning, the goal is to develop models that given a certain collection of data, answer
a specific task. Consequently, these models learn by updating their parameters based
on the hidden structure of data and its statistics.
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One particular field where Artificial Intelligence displays promise is Computer Vi-
sion. Computer vision aims to replicate human vision capabilities with a machine.
This endeavor can be understood alongside three axes: Recognition, Reorganization
and Reconstruction (Malik et al. 2016); the three fundamental tasks of this discipline.
Through recognition, we identify and assign semantic values to elements in our envi-
ronment. Conversely, on regrouping we organize elements in space, according to their
characteristics or concepts. Finally, through reconstruction we identify elements in a
scene, producing a model of the external world. In computer vision, we employ mod-
els to approximate these axes. Moreover, with the adoption of AI in computer vision,
the capabilities of these models to emulate human vision have increased drastically,
leading to their adoption in tasks such as recognition of individuals, processing of
mail and medical diagnosis. In this thesis we take special interest in the task of image
recognition. On one hand, it is the dimension that is the easiest to understand. On
another hand, given its simplicity, it is used to prototype and produce methodologies
intersecting the complementary dimensions of computer vision study.

Computer Vision is one major field that modern AI has impacted greatly, shown by the
progress it has seen in the last decade. In particular, with Convolutional Neural Net-
works (CNNs), a breakthrough on image recognition occurred. Efficient computation
of this operation enabled its usage on larger collections of data, allowing computer
vision models to improve their capabilities. Furthermore, these models have benefit-
ted from constant development, in turn allowing to perform more complex tasks over
time. On one hand, this has led to the creation of technologies robust enough to build
autonomous vehicles. On the other hand, complex tasks such as medical diagnosis
are receiving AI tools to facilitate them. More recently, another breakthrough has
taken place with the introduction of the transformer architecture. In particular, this
architecture allows for a high degree of abstraction, successively avoiding issues that
convolutions face, such as inductive bias and difficulties towards generalization. As
a result of this, transformers have overcome convolutions in terms of performance
but complexity as well. Consequently, its no longer so much a question whether can a
model achieve a given task?, but rather a question on how can this model perform this
task?. The main issue regarding these questions lies within the size and complexity
of deep models, where providing interpretable explanations has lead to the surge
of a novel field of research (O. Li et al. 2018, Guidotti et al. 2018, Bodria et al. 2021),
interpretability and explainable AI.

Explainable AI Following the permeation of intelligent vision systems into society
and their direct impact into human lives; understanding their inner-working and
limitations has become critical. In particular, since their complexity has increased
alongside their performance, we are interested in unfolding this property in order to
answer questions regarding their outputs; specially when failure cases can negatively
affect a life. For instance, considering the medical practice and the involvement of
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AI in automated diagnosis, a misdiagnosis of a pathology can potentially derive in
an incorrect treatment and loss of life. This is originally referred to, as the Desiredata
of Interpretability Research, first proposed in The Mythos of Model Interpretability
(Lipton 2018). Furthermore, in this work Lipton establishes the different properties
a model should present in order to be considered interpretable: Transparency and
Post-Hoc Interpretability. Current Interpretability research is grouped alongside these
two properties.

Lipton suggests that a transparent model is one that can be summarized or explained
in its entirely using few words or operations. However, due to the complexity dis-
played by current computer vision models, providing such interpretations for a model
is challenging; in particular, most AI models nowadays contain parameters often
counted in millions if not billions. Additionally, the computation of the sequence of
operations requiring these parameters to produce an output is also complex in the
sense that a forward pass often requires 109 operations (OpenAI 2018). On a more
active manner, Transparency can be attained by the introduction of modifications to a
model or its training procedure (Y. Zhang et al. 2021). Several works achieve this with
the introduction of small decision trees to summarize the forward pass of a model; as
well as with the addition of regularization terms during training encouraging elements
of the model to represent semantic concepts (Bau et al. 2017, Wu, Hughes, et al. 2018).
We expand upon this on subsection 1.3.1

Regarding post-hoc interpretability, Lipton suggests to leverage upon the complex
structure of models and consequently provide explanations utilizing the already exist-
ing parameters within the network. This approach in turn allows for a large variance in
methodologies since information can be extracted in a plethora of different manners
in current CNNs and transformers. Moreover, this variance of explanations can be
observed in the nature of the explanation itself: post-hoc interpretations are often
presented via text as captions, and in images often using saliency maps, to name a few
(Bach et al. 2015, Ribeiro et al. 2016 B. Zhou, Khosla, et al. 2016). On subsection 1.3.2
we explore these methods in more detail. Nevertheless, since explanations are com-
puted to highlight relevant information describing the inference process of a model,
they are not aligned to what a human would consider following the same questioning.
For instance, an individual might identify the whiskers and ears of a cat as its defining
characteristic; but a model can conversely highlight the snoot or eyes instead. On
top of this, post-hoc interpretations can be obtained for any class a model consider:
be it the correct one pertaining to an object of interest or one completely unrelated.
Still, on practice researchers tend to focus on the first case mentioned, while instances
where a model fails to provide a correct prediction should the ones where interest
should be focused on.
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Thesis objectives This PhD thesis aims at studying image recognition models and
building upon them to propose novel model interpretability approaches. In particular,
we aim at improving both recognition and interpretability capabilities of model pre-
dictions. While existing approaches may present these properties, some limitations
still remain: a high computational cost, a lack of consensus regarding evaluation pro-
cedures, and a disconnect between human interpretability and model interpretability.

Regarding the aforementioned computational cost, we can approximate this issue
following Lipton’s interpretable properties. On one hand, transparency approaches
often require training of additions to the network or of the network itself. We observe
that this computational cost comes from these alterations: in order to explain the
model, its performance should be maintained or not worsened. As a result of this,
the model parameters are taken into consideration during this phase, although they
are not modified. Moreover, an optimized training procedure can be introduced to
achieve this; as well as the modifications themselves can be simple but meaningful.
On the other hand, complexity on post-hoc interpretability approaches presents some
variance. In particular, since they are built on the already existing parameters and com-
putational graph of a model; their combination building up to an approach produces
this variability. Moreover, we highlight that simple approaches often require direct
computations within the model: a forward pass and a backward pass. Nevertheless,
more complex approaches often involve several forward passes in order to generate
a representation. In this aspect, we argue that these complex methodologies could
be further simplified or made sparse in order to reduce their cost. To answer this
requirement, in Chapter 4 and Chapter 3 we propose methodologies requiring one
training procedure per dataset, and presenting lightweight inferences. Additionally,
on Chapter 2, we propose a saliency map method that although a bit more expensive
than traditional approaches, displays state-of-the-art interpretability properties.

On the topic of consensus of evaluation, it has been observed that with the release
of novel interpretability approaches, comparisons are not consistent between arti-
cles. For instance, we observe inconsistencies in the measurements of Grad-CAM++
(Chattopadhay et al. 2018) when compared to its values reported on the article of
Score-CAM (H. Wang, Du, et al. 2019). However, this is not the only case as this is
repeated alongside multiple studies (K. H. Lee et al. 2021,H. Wang, Naidu, et al. 2020,
Naidu et al. 2020). Because of this, a direct comparison across several methodologies
does not exist. Therefore, there is no clarity regarding the true performance of ap-
proaches. To address this, a benchmark using a standardized evaluation procedure
should be performed to clear these shortcomings. In this thesis we conduct standard-
ized experimentation, experiments with equal evaluation objectives follow the same
procedure as observed in Chapter 2 and Chapter 3

Furthermore, explainable methods do not suffer only from lack of consensus of stan-
dardization. In particular different families of approaches evaluate different objectives.
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On one hand, some post-hoc interpretability methods measure the effects of predic-
tion probability, by considering the product of a saliency map with an input image. On
the other hand, other methodologies assess interpretability by measuring the accuracy
of the explanations they provide instead. In this aspect, we argue that a standardized
procedure should present have clearly defined objectives: measure the impact of
explanations in prediction probability, and assess their recognition properties. We
address this challenge setting our experimentation objectives clear: in Chapter 2 we
evaluate recognition and localization properties of Opti-CAM, in Chapter 3 our Cross
Attention Stream is subjected interpretable to object recognition evaluation, as in
Chapter 4 as well.

Finally, on alignment between human and model interpretations, we observe that
based on the learning procedures both actors perceive, interpretations differ. On one
hand, human learning is not standard; associations of concepts may differ according to
societal factors, as well as biochemical ones: important factors describing a prediction
differ between individuals. On the other hand, although semantic concepts can be
similarly highlighted by different models; these attributions share similarities in how
they are addressed to what the model deems important. Taking into consideration
this remark, we argue that human-centric interpretability approaches should be made
explicitly different to model-centric ones. On top of this, model interpretability claims
should be sustained with quantitative evaluation procedures. In this work, we present
interpretability proposals aligned to model interpretability, and we validate each of
our claims using quantitative methods.

Dissertation Outline This dissertation is aimed towards the development of in-
terpretable image recognition models and is organized in the following manner: In
Chapter 1 we introduce a background for image recognition models (Section 1.2) and
the ensuing approaches developed to study the interpretability on them (Section 1.3).
Additionally, we introduce evaluation procedures for these approaches which will be
further used to evaluate our proposals.

In Chapter 2, we propose Opti-CAM as a methodology that generates optimized
saliency maps highlighting the relevant regions on an image towards image classifica-
tion. In Section 2.4 we extend existing evaluation metrics with a novel measurement
for model confidence. On Sections 2.6 and 2.7 we evaluate the effect of these contri-
butions towards interpretability assessment. Opti-CAM overall presents an approach
that highlights saliency relating to the classifier, thus the saliency map generated
performs the best in terms of interpretability metrics although is not highly aligned to
human interpretations. On top of this, our novel metric Average Gain complements
current interpretability evaluation metrics, quantifying benefits in prediction confi-
dence using saliency maps. We follow this procedure to further evaluate our proposals.

Chapter 3 introduces the Cross Attention Stream, an approach that boosts existing
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architectures interpretable properties. We set up the modulus of this approach in
Section 3.2 alongside its deployment on Section 3.3. In Sections 3.5 and 3.6 we demon-
strate the benefits of using this proposal. In particular, our CA stream is a transparency
approach that is evaluated through post-hoc interpretability evaluation methods.
Moreover, our approach learns an abstract representation of the predicted class by the
model; enhancing prediction probability, and improving interpretability properties.

Chapter 4 characterizes a gradient denoising approach with a gradient denoising
methodology as an approach to enhance the training procedure of current models
while improving interpretability properties. In Section 4.2, we define the gradient de-
noising protocol alongside the regularization proposals to do so. Section 4.3 illustrates
the effects of this paradigm in the trained models and its effects on interpretability.
This approach provides a preliminary study on the introduction of a regularization
term during model training to improve upon both recognition and interpretability
properties. Furthermore, this approach is mostly exploratory and still requires further
developments to be consequently employed in larger collections of data.

Finally, we draw conclusions on our work and detail future research perspectives.
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1.1 Introduction
Understanding the processes behind visual recognition has been a prominent re-
search question throughout human history. From the preliminary questionings by
greek philosophers (Finger 2001) to physics based studies like those by Newton and
Locke (Swenson 2010), and more recently with theories like Unconscious Inference
(Gullstrand 1909) and Gestalt (Wagemans et al. 2012), many proposals to understand
and describe this process have been brought forth. In modern times, vision has been
studied on a medical level following neuroscience. To illustrate, in order to understand
responses to stimuli, areas of the brain such as the striate cortex have been subject to
inquiry (Hubel et al. 1959). Moreover, vision recognition is not only studied in fields
such as physics, medicine and psychology; with advancements on computer science,
computational approaches and theories started emerging regarding this domain. One
such study that proved seminal in this domain is that of David Marr (Poggio 1981,
Marr 2010). Most notably, Marr addressed vision on three levels: computational,
algorithmic and implementation. In particular, upon the computational level, Marr
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pondered around issues that the visual system answers and their explanation; this
ultimately led to the formulation of fundamental tasks within computer vision such
as object recognition and reconstruction.

Following Marr’s proposals and the ensuing research on computer vision, researchers
centered their attention at developing methodologies towards performing these fun-
damental tasks. Starting with preliminary works on reconstruction of 3D objects in
space, the development of computer vision models then followed specialized ap-
proaches for specific tasks. In this thesis, we are interested on models designed at
performing image recognition and, more specially, in understanding their functioning
and providing explanations for their inner workings.

Image recognition models capabilities have improved over time with constant devel-
opment, closely aligned with the increase in computing power. This evolution has lead
to steady advancements in both performance and complexity. On its early approaches,
image recognition models relied on handcrafted feature extraction methods in con-
junction with traditional machine learning algorithms. However, this reliance on
these features ultimately limits these methodologies capabilities to capture intricate
visual patterns. One particular approach that had a strong initial impact and high
performance was Histograms of Oriented Gradients (HOG) (Dalal et al. 2005). In this
methodology, gradient information is used to train a Support Vector Machine (SVM) to
perform pedestrian recognition. While achieving high performance in the dataset it is
designed, HOG ultimately fails in data collections where complexity is higher (Dollar
et al. 2012).

It is not only with the increase of computational power that computer vision has
improved over time. With the development, popularization and spread of the internet;
large collections of data are formed. These aggregations can be extremely specific for
a given end, or quite general representing the common interests of its users. These
compilations have continued to grow both in volume and variety. Still, several curated
collections are introduced by researchers to experiment and control the development
of models such as MNIST (LeCun et al. 1998), BSDS (Martin et al. 2001), Pascal VOC
(Everingham, Van Gool, et al. n.d.) and most notably, ImageNet (Russakovsky et al.
2015) and MS-COCO (T.-Y. Lin, Maire, et al. 2014).

Furthermore, with the resurgence of convolutional neural networks and the ensuing
advent of deep learning, a paradigm shift in this field occurred. This transition led to
the elimination of the need for handcrafted feature extraction; instead, deep learning
allowed Convolutional Neural Networks (CNNs) to act as both feature extractor and
classifiers on themselves. Moreover, based on the aggregation of convolutions as
their fundamental units, a CNN is able to learn hierarchical representations of data,
extracting intricate features directly. Consequently, this shift resulted in improvements
in accuracy and performance in various image recognition tasks.
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However, it was observed that performance of CNNs was achieving a plateau, and the
introduction of novel architectures stagnated over time. Additionally, these models
encountered challenges capturing long range dependencies, in turn limiting their
capacity to construct global representations of data and affecting their generalization
capabilities. Transformers however, have shown remarkable improvements not only
in the image domain but also in language related tasks, revolutionizing these fields
and paving the groundwork for future research and developments. Nevertheless, one
particular CNN that has stood the test of time is ResNet (He, X. Zhang, et al. 2016),
a model that incorporates residual connections between layers, allowing training in
complex tasks and datasets

In section 1.2 we explore some of the most important approaches based on machine
learning designed towards image recognition. In particular, in subsection 1.2.2, we in-
troduce the basis of deep learning and CNNs. Moving on, in subsection 1.2.3 we make
mention of the Transformer architecture, its building block and how it has reshaped
the landscape of image recognition. Finally, in subsection 1.2.4 we display approaches
that make use of combinations of the last two forementioned approaches.

With the adoption of deep image recognition into society; understanding the inner
workings of these models has become a top priority. We shine light into some fields
where this is the case:

• Facial Recognition This is a fine-grained classification task, that can be mostly
associated with identification and re-identification of individuals. In this as-
pect, understanding model predictions is associated with accountability, ethical
considerations and safety. (Selinger et al. 2020, Andrejevic et al. 2020).

• Automated Medical Diagnosis In medical imaging, the education required to
read and provide analysis, often requires experience based on personal exper-
tise (Nakashima et al. 2013). Examples of automated diagnosis encompass
melanoma detection, bone age assessment and most recently, COVID-19 diagno-
sis (Yu et al. 2016, Escobar et al. 2019, S. Huang et al. 2021). The medical domain
is of special care as human lives are directly at stake, therefore understanding
predictions is highly desired.

• Self-driving Vehicles Over the past decade, advancements in this field have lead
to discussions regarding the impact of the adoption of these sorts of vehicles
within smart cities (Duarte et al. 2018, Millard-Ball 2018). Nevertheless, their
navigation is not completely perfect, and it is also possible to attack it, leading
to possible traffic accidents (Dixit et al. 2016); in this case, accountability is then
again taken into consideration.

We observe that interpretability needs in these fields and real world applications fol-
lows Lipton’s discussion on the Desiderata of Interpretability Research (Lipton 2018). In
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this aspect, we expect that the explanations that any given approach help us trust any
model. Conversely, we expect a model to be explained in a causal manner according
to its explanations. In particular, we expect these remarks be informative and shine
light on similar examples that the model processes. Finally, we expect interpretable
explanations to guarantee that outputs of a model are fair and ethical.

As a response to these requirements, the AI act was recently proposed in Europe. In
this document, a set of rules was established such that individual and business safety
rights are respected when it comes to AI (Madiega 2021). Specifically, this act defines
these rules based on a hierarchy of risks posed to society; we present this hierarchy in
Figure 1.1. With the acceptance of these rules, it is intended to address and limit risks
created by AI applications.

Unacceptable Risk

High Risk
Education in society
Development of Safe products
Law Enforcement and Justice applications

Limited Risk
Applications with lack of transparency.
Let people know they are dealing with AI 

Minimal Risk
AI enabled videogames, spam filters.

Figure 1.1: AI act pyramid of risk levels. Adapted from https://digital-strategy.
ec.europa.eu/en/policies/regulatory-framework-ai

With these considerations leading the desiredata of interpretability study, we further
investigate some of the most important works on interpretability. In section 1.3
we explore preliminary ideas of this field. Delving deeper, in subsection 1.3.1 we
discuss efforts aimed at transparency of machine learning approaches. In contrast, in
subsection 1.3.2 we explore and study some of the most relevant studies on post-hoc
interpretability. Conversely, in subsection 1.3.3, we outline the evaluation metrics
used for evaluation the aforementioned works. To understand how these proposals
are evaluated in their claims of interpretability, we introduce and explain evaluation
methodologies in subsection 1.3.3.

1.2 Image Recognition Models
Image recognition is a subtask of computer science that aims at replicating human
vision capabilities with a machine. From its early developments with David Marr’s
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postulates on vision (Poggio 1981, Marr 2010), this field has been approached on a
computational level since the 1980s. Following this, early works in computer vision
paved the way for the application of classical machine learning models on image
recognition. In the beginning, researchers focused on fundamental challenges such as
edge detection and image segmentation. The 1970s and 1980s witnessed pioneering
efforts, with techniques like the Hough Transform for line detection and the devel-
opment of feature-based methods (Duda et al. 1972). These early approaches set
the groundwork for the later integration of classical machine learning models, as
they provided preliminary insight into how visual information could be analyzed and
processed computationally. The emergence of classical machine learning models,
and their application in the 1980s, marked a shift towards more sophisticated image
recognition methodologies.

1.2.1 Traditional Image Recognition models
Traditional image recognition approaches based on traditional machine learning
algorithms are a two-step process. The first step involves the extraction of features
from the data, and the last step lies in the training of a classifier. Examples of this
can be found in methodologies such as the Scale Invariant Feature Transform (SIFT)
(Lowe 1999), Bag of Words (BOW) (Csurka et al. 2004), and HOG. SIFT, stands out
as a powerful keypoint detector that incorporates image alignment. More impor-
tantly, its robustness towards scale and rotation led to widespread adoption in real
world applications (Cruz-Mota et al. 2012). Complementary to SIFT and adopting
ideas based on Natural Language Processing (NLP), the concept behind the BOW
descriptor originated from the identification of keywords on a text, in order to identify
its contents (Harris 1954). On itself BOW extracts features akin to SIFT, clustering
them to generate a dictionary which will ultimately form the possible words to de-
scribe images. Each image is recognized by the frequency of which certain words are
used to describe it. Finally, HOG follows a simpler approach, where image gradient in-
formation is organized in histograms describing the orientation of image components.

Once image descriptors are extracted, classifiers are trained using algorithms such as
SVM (Cortes et al. 1995), Random Forests (Ho 1995) and k-Nearest Neighbors (k-NN)
(Cover et al. 1967, Fix et al. 1989). SVMs are classifiers that operate by finding the most
optimal hyperplane in the feature space to discriminate between classes. However,
challenges arise when the assumption of data being linearly separable is not met. This
difficulty was addressed with the introduction of the kernel trick (Hofmann et al. 2008),
where data is transformed to another space where this is more straightforward.
Complementary to SVMs, Random Forest Trees is a methodology that constructs a
plethora of decision trees, where each tree uses a random subset of the training data,
and each node uses a random subset of features to make a decision. This randomness
ensures diversity among trees, providing a degree of robustness towards overfitting.

27



1 Background – 1.2 Image Recognition Models

On a much simpler note, k-NN operates based on the assumption of data being con-
tained in k different categories. The classification method involves assigning one
category to a data point that is the closest in feature space to a class centroid, obtained
through K-Means (MacQueen et al. 1967).

Although many of the early image recognition models were based on traditional ma-
chine and statistic methods, neuroscience research still inspired scholars to propose
alternative approaches. Moreover, with studies on the visual cortex regarding receptive
fields (Hubel et al. 1959), the development of Neural Networks (NNs) started. Notably,
the Neocognitron (Fukushima 1975) sparked the inception of Ns, introducing kernel
operations, hierarchical feature aggregation and non-linearities. These contributions
stand out as they are key components in most recent image recognition models. Still,
the hierarchical properties and aggregation of the Neocognitron did not really achieve
a great deal of momentum on early days; around this time, other image recognition
models were being used yielding better results, examples of this can be seen with
the amount of traditional machine learning based methods that dominated this task
around that time. Nevertheless, getting close to the dawn of the year 2000, Yann LeCun
proposed LeNet to perform digit recognition (LeCun et al. 1998) the first modern CNN.

1.2.2 Convolutional Neural Networks
Starting with LeNet, the convolution took prominence as the fundamental building
block of most current image recognition models. In the domain of computer vision,
the convolution is an interaction ( f ? g ) between a feature map ( f ), and a kernel (g ),
as shown in Figure 1.2. In particular, the convolutional kernel g is mediated by its area
determined by width and height, influencing directly its receptive field. The receptive
field answers to the area within the input space covered by the convolutional kernel.
Furthermore, during convolution, the kernel slides over the feature map, computing
the dot product between the kernel g , over the area it covers in the input map cen-
tered around each pixel. Consequently, in deep layers of a CNN this computation
encompasses larger regions of the input image, allowing the model to capture long
range dependencies and enhance its capabilities. Additionally, convolutions present
similarities to SIFT, such as their ability to construct representations invariant to image
alterations, and utilize receptive fields for feature extraction.
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Figure 1.2: Illustration of the convolution operation. A kernel g operates over fea-

ture map f generating an updated representation f ? g (M. Lin et al. 2013)

On top of convolutions, LeNet led to the introduction of more components of CNNs:
pooling operations and non-linearities. Pooling operations are used to reduce the
spatial resolution of feature maps, which in turn aids convolutions in capturing fea-
tures from long range dependencies within the image. Moreover, via pooling it is
possible to capture the most relevant features within a neighborhood. Conversely,
non-linearities such as Sigmoid and ReLU (Fukushima 1969), are designed to cap-
ture complex relationships within data, stopping the model collapsing into a linear
operation. Furthermore, these operations also contribute with stability: they main-
tain values within feature maps and the gradient in ranges in which the network can
operate with. Additionally, it is possible to control the flow of information within
the network with operations such as Dropout. This operation randomly deactivates
units on a convolutional layer, forcing the model to learn more robust representations
as it cannot rely on a set of previously learned features consistently. Still, the key
contribution leading to the success of LeNet was not only the usage of convolutions,
pooling and non-linearities; but its training process, that guided by gradient descent
to optimize, ultimately enabled CNNs to outperform traditional computer vision
methods for document recognition.

With the advent of the 2010s and the initiation of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) (Russakovsky et al. 2015) a proper environment for
further development of models was established. Unlike prior datasets, ImageNet was
composed of images that presented more complexity than earlier datasets. Instead of
catalog-like compositions; elements in this dataset closely resemble those found in
the wild, featuring multiple classes or instances of a class within a single image.

Upon its release, several traditional approaches were trained and evaluated on this
collection, achieving a low performance. However, CNNs regained prominence with
the introduction of AlexNet (Krizhevsky et al. 2012). Inspired by LeNet, Krizhevsky
designed a CNN that incorporated additional convolutions and, more importantly,
facilitated faster computation through effective communication with the Graphic
Processing Unit (GPU). AlexNet gained notoriety by emerging as the winner of the
2012 ILSVRC, achieving a top-1 classification accuracy difference of nearly 10% com-
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pared to previous year winners (Berg et al. 2010, Sánchez et al. 2011). This substantial
improvement in recognition capabilities led to a paradigm shift in various machine
learning tasks, laying the foundation for the deep learning revolution. Following
this success, several CNNs were introduced in the decade of 2010, and since then; a
considerable amount of models have been proposed. Nevertheless, we can establish
a timeline with the milestone models that influenced the most this development,
as seen in Figure 1.3 and iterate upon the performance of some of these models in
Table 1.1.

LeNet
1998

AlexNet
2012

VGG
2015

DenseNet
2017

EfficientNet
2019 

Inception
2015

ResNet
2016

NASNet
2018

Network In Network
2013

ResNet Strikes Back
2021

ConvNeXt
2022

Figure 1.3: Timeline of milestone Deep Learning models.

METHOD RELEASE YEAR ACC@1 ACC@5 PARAMS GFLOPS

AlexNet 2012 51.52 79.07 61.1M 0.71
VGG-16 2015 73.36 91.52 138.4M 15.47
ResNet50 2016 76.13 92.86 25.6M 4.09
EfficientNet-B0 2019 77.69 95.32 5.3M 0.38
ViT-Base 2020 81.07 95.32 86.6M 17.56
ResNet-50* 2021 80.86 95.43 25.6M 4.09
ConvNeXt-Base 2022 84.06 96.87 88.6M 15.36

Table 1.1: Milestone Image Recognition Methods Details of milestone Image recog-
nition models in the era of Deep Learning on ImageNet 1k. ResNet* refers
to the version using updated training protocols (Wightman et al. 2021)

In the year following the publication of AlexNet, an updated form of mapping feature
maps into classification embeddings was proposed in the shape of Global Average
Pooling (GAP) (M. Lin et al. 2013). This pooling protocol generates a representation
taking the average value of each feature map channel, as shown in Figure 1.4. Further-
more, GAP reduces dimensionality and regularizes the model using global aggregation;
in turn improving classification performance.
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 .
 .

 .

Figure 1.4: Visual representation of Global Average Pooling (M. Lin et al. 2013).

Similar to 2012 and 2013, 2015 saw the proposal of two milestone models: the Incep-
tion architecture (Szegedy et al. 2015) and VGG models (Simonyan and Zisserman
2015). On one hand, the Inception architecture was designed to learn features in
different scale. To achieve this, the Inception Block introduced the Inception Block,
which captures multiscale behavior by incorporation of convolutional kernels with
sizes of 5×5, 3×3 and 1×1. On the other hand, VGG models were built with a simplis-
tic design, relying solely on 3×3 convolutions. For a change, VGG is shown to be an
excellent feature extractor network. Led by the desire to increase depth of CNNs, VGG
and Inception attempted to make models deeper; nevertheless this was not possible.
As models get deeper, the gradient becomes zero when flowing from deep layers to
shallow layers, denying updates to their parameters. This is known as the vanishing
gradient issue (Pascanu et al. 2013). To address this issue, the ResNet architecture was
proposed (He, X. Zhang, et al. 2016).
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Figure 1.5: Generalities of the ResNet architecture.

The ResNet architecture is designed with the idea of residual connections as its build-
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ing block. On itself, a residual block generates outputs via the summation of its input
and a linear mapping of it. In detail, a residual block takes a feature map and projects
it to different dimensions, regularizes it through a bottleneck or with activations, and
then sums this representation with the original input. This in turn enhances the net-
work capabilities to scale in size, leading to improvements in performance while being
easier to optimize. This architecture maintains its relevancy because of its modularity
and the aforementioned scaling properties. For instance, some of the most important
CNN based object detectors are designed using ResNet as backbone (Ren et al. 2015,
T.-Y. Lin, Goyal, et al. 2017, He, Gkioxari, et al. 2017). A thorough representation of this
architecture, as well as the residual connection variants is presented in Figure 1.5.

Similarly to the residual connections introduced in ResNet, DenseNet (G. Huang et al.
2017) was proposed with the idea of connecting all layers operating within matching
feature-map sizes. We illustrate this on Figure 1.6. In particular, this architecture
enables the training of very deep models, as these connections facilitate feature reuse
and identity mappings, thus negating the effect of vanishing gradients. However, one
issue of DenseNet is its lack of modularity and ease of use. Due to a great number of
neurons being interconnected by design, introducing of modifications such as Non
Local Blocks (X. Wang et al. 2018) or Squeeze Excitation Blocks (Hu et al. 2018) is
challenging. In contrast, in architectures such as ResNet this procedure is simple.
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Linear
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onvolution

Input
Prediction

“horse”
Dense Block 2 Dense Block 3

Figure 1.6: Illustration of the DenseNet architecture (G. Huang et al. 2017)

Moreover, it is arguable that convolutional block design can be improved if a model
learns on itself the best configuration possible for a specific task. This is idea is em-
bodied by the Neural Architecture Search Network (NASNet) (Zoph et al. 2018) where
the model learns a fundamental building block on a small dataset, and it is then
transferred into a larger one. Some of the biggest drawbacks for this model, are its
computational load and the dependency on search space selection towards optimiza-
tion. One last milestone attempt at improved architecture design was proposed in
2019 with EfficientNet (Tan et al. 2019). In sharp contrast to its contemporaries ap-
proaches at scaling; EfficientNet proposes a compound coefficient instead.

Still, some of the aforementioned architectures were not proposed with such contribu-
tions, and as such it is possible to suggest that an unfair comparison is performed, as
well as an incomplete study on said model capabilities. One such answer to this issue
was proposed for ResNet in 2021 (Wightman et al. 2021). In this approach, ResNet was
retrained under updated training regimes, achieving a high classification performance,
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rivaling that of transformers.
Finally, with the advent of transformer based image recognition models in the early
years of the 2020 decade, CNNs started being outshone by these models; however,
an architecture incorporating the key principles of these models was presented, Con-
vNeXt (Zhuang Liu et al. 2022). This family of models addressed some shortcomings
of transformer models (mentioned in subsection 1.2.3) and proposed their mitigation
with the modernization of a ResNet architecture, enhancing its performance not only
in image recognition, but also in segmentation and detection. Still, having mentioned
transformers, we dedicate the following subsection to their description, their basic
unit and some milestone models.

1.2.3 Self-Attention Based Architectures
One key point to remember is that Computer Vision is not isolated within Artificial
Intelligence; advancements in this field have, conversely, contributed to complemen-
tary domains, such as NLP. Furthermore, proposals made for that domain have found
applications into image recognition; one such development is that of Transformers.
The Transformer architecture was initially proposed in 2017 with the article Attention
is All You Need (Vaswani et al. 2017). This model addressed limitations in existing
methodologies for NLP such as LSTMs and RNNs, particularly their struggles in cap-
turing long range dependencies and efficient training.

Similarly to the impact AlexNet had on image recognition, transformers revolutionized
the landscape of NLP with their key component: Self-Attention. This function assigns
weights to different input sequences, enabling focus on relevant information. This is
defined in the following manner:

Attention(Q,K ,V ) = softmax

(
QK T√

dk

)
V (1.1)

where Q,K ,V are embedding matrices that represent queries, keys and values, each
with a dimension dk . The softmax activation function is employed to emphasize
relevant information for each product between Q and V . Conversely, the scaling
coefficient

√
dk uses the square root to prevent softmax from entering regions with

small gradients, particularly important as large values of dk produce this outcome.
Conversely, for each token self-attention is then defined as an average of all values
(rows of V ), weighted by the attention (corresponding row of A).

SA(X`) := AV ∈ℜt`×d` . (1.2)

This function can be further parallelized by broadcasting these embeddings into dif-
ferent heads, where the dot products are ultimately easier to compute; this in turn
is called Multi Head Self-Attention (MHSA). Self attention has no parameters what-
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a. Scaled Dot Product Attention b. Multi Head Self Attention.

Multi-Head
Self-Attention

+ Norm
Feed

Forward
+ Normx x ′

c. Transformer encoder block.

Figure 1.7: Transformer self attention variants and encoder block.

soever: this function is utilized in blocks that ultimately form the encoder part of
the transformer. One encoder block comprises a residual operation where the input
embedding is updated with the product of MHSA, normalized, and then this repre-
sentation is further recombined with the residual operation atop of a feed forward
network. This is best explained in Figure 1.7.

Another pivotal characteristic setting transformers apart from previous approaches
on NLP and convolutions is its capability to process data in a global context. In sharp
contrast to convolutions discussed in subsection 1.2.2, the self-attention operation is
not constrained by parameters like width and height: its receptive field is the whole
input. Instead, this operation is guided the number of embeddings that will represent
the whole of data (i.e. the number of different chunks a sentence is split into) and the
aforementioned dk , which represents the dimensions to which the data is projected.

Continuing on with transformers within the NLP domain, several additions to this
architecture have resulted in further improvements. One notable example is the inclu-
sion of the classification token ([CLS]) as proposed in BERT (Devlin et al. 2018). The
rationale behind incorporating this token can be traced back to the previously dis-
cussed concept of globality in transformers. On its own, the [CLS] token serves as an
abstract representation of a class, collecting information of the embedding as a whole.
Guided by the self-attention function, this representation is expected to encapsulate
the most pertinent information to describe the input data. As a consequence of this,
the CLS token is used for classification purposes.
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L x

Figure 1.8: ViT overview (Dosovitskiy et al. 2020).

The success of transformers on NLP tasks did not go unnoticed by the Computer
Vision community, and in late 2020, the first fully attention based architecture Vision
Transformer (ViT) was proposed. This architecture emerges as an adaptation of the
transformer model for the realm of computer vision. The crucial contribution lies in
treating the image as a sequence of patches, processed analogously to a sequence of
tokens in a NLP application. Figure 1.8 provides an overview of this approach.

In similar manner to prior breakthroughs like the effective convolution computation
and the emergence of transformers in NLP, the introduction of ViT further revolution-
ized the landscape on Computer Vision tasks. However, these methodologies exhibit
specific characteristics concerning their predictive capabilities. In particular, when
trained using a conventional approach for ImageNet object classification, the perfor-
mance of this model is relatively low compared to a ResNet trained under the same
conditions. However, when scaling to more modern datasets such as ImageNet-21k
and JFT-300M (Sun et al. 2017), which contain close to 10 times the number of im-
ages than those of ImageNet-1k, transformers clearly outperform their convolutional
counterparts. Interestingly, this is hypothesized to be primarily due to transformer
scalability. In particular, transformers are capable of removing inductive bias which in
turn is highly dominant in CNNs. Still, this makes these models prone to overfitting in
data collections sufficiently small where this bias still remains useful.

In addition to ViT, several other transformer architectures have emerged, contributing
to the diversity and advancement of the field. One noteworthy example is PiT (Pool-
ing in Transformer) (Heo et al. 2021), which re-introduces the concept pooling into
transformers. To benefit from the hierarchical structure that is found in CNNs, this
operation is included with a modification for the pooling operation, where the image
tokens are pooled using depth-wise convolution. This inclusion of pooling is sustained
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by the measurement of attention entropy, where this metric shows the spread and
concentration of attention; where in ViT this interaction is rather spread, and in PiT it
is largely concentrated. Another significant development is Swin Transformer (Ze Liu
et al. 2021). Swin utilizes a shift-based windowing mechanism, allowing for efficient
information processing across different scales. This design promotes enhanced mod-
eling capabilities and facilitates the learning of intricate patterns in images.

Indeed, since its proposal, ViT has dominated image recognition tasks. Still contrary
the behavior CNNs present as excellent feature extractors, ViTs underperform in areas
such as image reconstruction and image reorganization. In particular, given the local-
ity behavior and the inductive bias that these models present; these aforementioned
tasks are consequently carried out in a better manner with CNNs. Nevertheless, simi-
lar to CNNs borrowing ideas from transformers as seen in ConvNeXt; early stages in
transformers dedicated to image patch encodings are replaced with convolutional
layers, inheriting these characteristics for further downstream tasks. These models in
turn are known as hybrid architectures.

1.2.4 Hybrid Architectures
Following the locality properties of CNNs and globality of ViTs; it is proved that incor-
porating ideas from these architectures is feasible, generating a model that attends
in to both local information and scales well with training data. In particular, some
preliminary studies towards these combinations performed on ViT, suggested modifi-
cations of the architecture starting with the encoder. Starting with what is arguably
the most basic CNN design, LeViT (Graham et al. 2021) replaces the original patch
encoding with feature extraction using LeNet; as well as including a distillation head to
lead the training process. These contributions ultimately helped LeViT to outperform
ViT all the while not requiring large scale image classification datasets to train as well
as having a faster inference time.

As a continuation of LeViT, PatchConvNet (Touvron, Cord, El-Nouby, et al. 2021)
was subsequently proposed. Building upon the LeViT design, PatchConvNet further
expands on the classifier by replacing the original MLP head with Attention-Based
Pooling. Interestingly, this pooling mechanism integrates a ([CLS]) matrix; that in
sharp comparison to the stand-alone token, is able to capture class-specific informa-
tion. PatchConvNet ultimately improves recognition properties found in LeViT, while
also showing promise in terms of segmentation and detection, suggesting that the
model has built-in interpretability by the capability of visualizing the aforementioned
class-specific attention. Nevertheless, the key contribution behind this architecture is
derived from the convolutional stem, taken from LeViT.

One key characteristic that CNNs display is a certain degree of robustness regarding
the optimizer choice during the training stage. This phenomenon was observed to be
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Figure 1.9: Conformer architecture overview. (Peng et al. 2021)

the opposite regarding ViT, the optimizer choice is crucial for these models. Similarly
to LeViT, by the addition of early convolutions it is argued that this issue can be over-
come, as proposed on Early convolutions help transformers see better (Xiao et al. 2021).
Moreover, in this work a direct comparison between ViT trained using a patchifier,
versus using convolutions; where Optimizability1 is used to establish differences.

In addition of including convolution atop ViTs, researchers have sought to propose
ideas to combine the differences in processing between transformers and CNNs. In
an approach similar to Siamese networks, it is possible to interchange information
and update features from one CNN to a transformer by implementing a coupling
unit to lead this communication. One approach that encompasses this design idea
is the Conformer (Peng et al. 2021), where the Feature Coupling Unit (FCU) is used
to introduce information from a convolutional branch into a transformer one, and
in the opposite direction as well. In particular, Conformer uses a ResNet architecture
for its convolutional branch, while maintaining the first convolutions to process
the image into image patches. For the transformer branch, this model introduces
a modified ViT, where the number of encoder blocks is one element less than the
totality of residual blocks. Moreover, the aforementioned FCU is introduced to update
features in between residual blocks. Ultimately, any prediction is given by the average
prediction between both branches. A detailed explanation of this model is found in
Figure 1.9.

1As defined by Xiao et al. 2021, it refers to the presence of difficulties characterizing the training
process of deep models while varying their optimizers, data augmentation and performance drop
when scaling in size
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1.2.5 Discussion
In computer vision, the development of image recognition models has been crucial
towards the advancement of different tasks such as image segmentation and object
localization. Supported by the theory of the interaction of Malik’s three Rs of com-
puter vision (Malik et al. 2016), Progress of one of these three fields, leads to strides in
complementary areas. As described in the previous section, many of the proposals
demonstrated therein act as excellent feature extractors. This capacity in turn, facil-
itates adjacent tasks such as segmentation (regrouping) and reconstruction. With
this in mind, we suggest that model development and design account for interactions
between the Rs (better seen in Figure 1.10); and consequently, model development
being rooted mostly in image recognition. We acknowledge image recognition as one
foundational task on computer vision.

Recognition

Reconstruction Reorganization

Figure 1.10: Malik’s three R of computer vision

Furthermore, this domain has seen constant evolution in recent years. Following the
resurgence of CNNs after the introduction of AlexNet, a plethora of image recognition
models were proposed. Still, while these models are variate in structural units, com-
plexity, and depth; the model formulation itself is not the solely determining factor of
performance.

Similarly to the points described by A Metric Learning Reality Check (Musgrave et al.
2020), where a revision of metric learning methodologies revealed biases in the eval-
uation of novel methodologies and the enhanced power of previous methods when
optimized under better conditions; overall performance evaluation of architectures
and methodologies often lacks fair comparison due to advancement in optimization
techniques. This is clearly demonstrated in ResNet Strikes Back (Wightman et al. 2021).
Nevertheless, it is also possible to consider that CNNs may be approaching a plateau
in their capabilities, similar to traditional computer vision methods when applied to
ImageNet. As a response of this, we take special interest on Transfomers, given their
recent adoption and overall their promising capabilities.

Delving into transformers, we remark the promise that they display given recent ad-
vances in tasks such as text recognition, text generation and notably in vision, on
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image generation, captioning and recognition. Comparable to the surge of convolu-
tion based methods in the early 2010s, the paradigm shift previously mentioned is
already taking place as we can observe on figure Figure 1.11. However, the enhance-
ment of recognition capabilities is highly dependent on the amount and quality of
data that is used in their design and optimization. Since recognition capabilities on
ImageNet are nearing saturation point for the dataset, we question whether it is truly
a feat of model generalization or a severe case of overfitting.
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Figure 1.11: Proportion of articles published on ImageNet, using image recogni-
tion models as backbone across the years. Original from https://
paperswithcode.com/method/resnet

1.3 Interpretability
As deep learning based models for Computer Vision have continued to improve in their
recognition properties, their structure and functioning have become more opaque; in
turn making these technologies seen as black boxes. A black-box model is defined as a
model for which its interpretation is not straightforward for humans (Petch et al. 2022).
In recent years with the assimilation of deep learning into everyday tasks, and the
implicit effect these models are having on human lives; the novel research field of In-
terpretability has been brought forth to open up this black-box behavior. Researchers
have approached interpretability alongside different directions. Starting with the work
of O. Li et al. 2018, interpretability is suggested to present two categories, Transparency
and Post-hoc Interpretability. For the former, Lipton argues that it follows modifica-
tions of the model or the training process, in order to explain the inner-workings of
the model. Conversely, for the latter Lipton builds upon the black-box behavior of the
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model, providing explanations instead based on inputs and outputs; without adding
any further modifications for the model or altering its training process.

Considering these properties, as machine learning models grew in complexity; their
transparent properties vanished proportionally to their size. It can be argued that
traditional models offer themselves to transparency due to their straightforward for-
mulation and inherent properties. Conversely, regarding deep models, we find that
it is after their size and complexity that their interpretable properties get hindered.
Common CNNs rely on convolution as their corner stone, coupled with non-linear
operations such as ReLU (Fukushima 1975), Sigmoid, and Softmax (Hopfield et al.
1985) among others. This aggregation of convolutions on one hand enables these
models to process large quantities of data, and to a certain extent generalize; on the
other hand, it also results in an extensive parameter count, often reaching of millions,
and most recently, even billions (OpenAI 2018). The computational load required for
inference, typically measured in Giga Floating Point Operations Per Second (GFLOPS)
further compounds complexity. We expand on this in following sections.

Complementary to Lipton’s proposal, Guidotti et al. 2018 points that interpretability
is contained along different dimensions. For instance, a model can be understood
on its entirety following a Global interpretation; whereas in situations where only the
reasons leading to a specific prediction, a Local interpretation is found. Guidotti also
considers time, more specifically Time Limitation as its availability is strictly correlated
to the scenario where the model is used. Finally, the Nature of User Expertise covers
the last dimension of interpretability; where knowing the experience of a user in a
given task is considered to be a key aspect describing the interpretability of a model.

In recent years, Y. Zhang et al. 2021 suggested that three different dimensions encom-
pass this study. The first dimension answers to the nature of an approach; where
it can be either Passive or Active. The first direction in this dimension correlates to
Lipton’s Post-hoc interpretability, the latter follows the aforementioned Transparency
property. Zhang’s second dimension is addressed towards the type of explanations,
where the order of explanatory power follows a hierarchy starting on its base level with
examples, into attributions, leading into hidden semantics and finishing in rules. On
one hand, the last dimension that Zhang covers explanations in the input space, where
a Local explanation describes the network prediction following individual samples.
On the other hand, a Global explanation describes the network as a whole. This last
dimension is similar to the first point described by Guidotti et al. 2018. Most impor-
tantly, Zhang’s dimensions are not used separately to categorize an approach, instead
according to the methodology properties and the nature of the explanation provided.
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PROPERTY ATTRIBUTION TYPE METHOD REFERENCE

Transparency

Rule Based
Tree Regularization for Deep Models (Wu, Hughes, et al. 2018)

Regionally Faithful Explanations (Wu, Parbhoo, et al. 2020)

Hidden-Semantics

Network Dissection (Bau et al. 2017)
Interpretable CNN (Q. Zhang et al. 2018)

DAUnit (Böhle, Fritz, et al. 2022)
B-Cos Networks (Böhle, Singh, et al. 2024)

Prototype-Based
Case-Based Reasoning (O. Li et al. 2018)

This looks Like That (Chen et al. 2019)
Protopool (Rymarczyk et al. 2022)

Attribution-Based

Right for the Right Reasons (Ross et al. 2017)
Saliency Learning (Ghaeini et al. 2019)

Saliency Guided Training (Ismail et al. 2021)
LFI-CAM (K. H. Lee et al. 2021)

- (H. Zhou et al. 2022)

Post-hoc Interpretability

Gradient-Based

Exp. Vectors (Baehrens et al. 2010)
Standard Gradient (Simonyan, Vedaldi, et al. 2014)
Guided Gradient (Springenberg et al. 2014)

LRP (Bach et al. 2015)
Integrated Gradient (Sundararajan et al. 2017)

Smoothgrad (Smilkov et al. 2017)

Learning-Based

- (Dabkowski et al. 2017)
FIDO (C. Chang et al. 2019)
CASM (Zolna et al. 2020)

Masker (Phang et al. 2020)
- (Schulz et al. 2020)

Masking-Based

LIME (Ribeiro et al. 2016)
Meaningful Perturbation (R. C. Fong et al. 2017)

RISE (Vitali et al. 2018)
Extremal perturbations (R. Fong et al. 2019)

Attention-Based
Raw-Attention

(Abnar et al. 2020)
Rollout-Attention

TIBAV (Chefer et al. 2021)

CAM-Based

CAM (B. Zhou, Khosla, et al. 2016)
Grad-CAM (Selvaraju et al. 2016)

Grad-CAM++ (Chattopadhay et al. 2018)
Score-CAM (H. Wang, Du, et al. 2019)
Axiom-CAM (Fu et al. 2020)

Ablation-CAM (Desai et al. 2020)
Layer-CAM (Jiang et al. 2021)

Table 1.2: Interpretability approaches grouping using Lipton (Lipton 2018) and
Zhang’s definitions (Y. Zhang et al. 2021)

In this thesis we study interpretability according to Lipton’s properties; nevertheless,
as shown in the following subsections, we acknowledge their strengths and weak-
nesses, while denoting some of the most prominent works in each dimension. In
subsection 1.3.1 we discuss transparency, its properties according to Lipton and its
difficulties describing deep models, alongside a survey following Zhang’s active di-
mension. Conversely, in subsection 1.3.2, we study post-hoc interpretability similarly
to transparency. We present a brief summary of these methods in Table 1.2.

1.3.1 Transparency
Following Lipton’s work, we further define the transparency property of models as the
opposite of opacity or black-box behavior. Still, similar to the aforementioned works,
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transparency is considered at the model level (simulatability), individual components
(decomposability) and the training algorithm (algorithmic transparency). Delving into
detail, Simulatability on a strict definition answers to the capability of a model to be
fully contemplated by an individual on its entirety at once. Currently, with the increase
of model complexity this understanding level is then redefined as the capacity of a
model to be readily presented to a user with visual or textual artifacts. This in turn can
be demonstrated by post-hoc interpretations.

Regarding decomposability, Lipton suggests that an interpretable model has to present
an intuitive explanation, regardless of it being an input, parameter or calculation. In
this dimension it is then stated that a computation follows an association between fea-
tures, in accordance to intelligibility as proposed in (Lou et al. 2012). Still, Lipton also
points that this notion should not be accepted blindly as some parts of the computa-
tion steps can be fragile processing and calculation; for instance, image normalization
can lead to prediction mismatch during inference.

Finally, Lipton argues that algorithmic transparency applies on the level of the learn-
ing algorithm itself. In short, this applies to the error surface and assumption of the
existence of an optimal and/or unique solution to the problem. Nevertheless, this di-
mension is not met for deep learning models as the training process is not completely
understood.

While Lipton’s transparency properties appear to be applicable and theoretically
sound, transparency is not fully studied alongside them. Furthermore, designing an
approach or model covering these properties is a complicated task for deep models.
However, with a brief modification of their definition, transparent properties can be
further applied to deep image recognition. Simulatability, can be supported with post-
hoc interpretability explanations. Conversely, deep learning models can be further
decomposed into functional units; for instance, the ResNet architecture consists of
residual blocks, where the structure of each block and its design has been studied
thoroughly. Finally, concerning algorithmic transparency, although deep learning
models present high dimension error surfaces and a high amount of local minima;
still, ensuring a deterministic behavior leads to replicability, in turn demonstrating
part of the training process.

According to the interpretable dimensions described by (Y. Zhang et al. 2021), trans-
parency is suggested as an active change of the architecture of the network or the
training process in order to provide explanations. Furthermore, according to the type
of explanations provided by an interpretable approach, transparency methods can be
explained according to logic rules, hidden semantics, attributions and explanations
by example.

Rule-based methods. In this group, rules are used to provide an explanation. To do this,
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Wu et al. proposed training a decision tree on top of a deep learning model, acting as
a regularization term and an approximation of said deep model (Wu, Hughes, et al.
2018, Wu, Parbhoo, et al. 2020). This process involves two steps. First a binary tree
is trained, mapping inputs to the model prediction. Then the average path length
between root to leaf nodes on the decision tree is calculated, covering all data points.
Ultimately, Zhang argues that this regularization improves interpretability by forcing
a model to be described by a decision tree.

Hidden semantics-based methods. This family of methods focuses on the filters and
properties found alongside in different depths of the model. These approaches are
based in observations of filter response to inputs at different depths, and the semantic
information contained by them (B. Zhou, Bau, et al. 2019). One particular approach
studying this is that of (Q. Zhang et al. 2018), introducing a loss term that encourages
deep filters to represent a single concept. More recently, as an answer to semantics
only being extracted from deep layers, and the information flow not being taken into
consideration to provide an explanation; the work of Böhle et al. (Böhle, Fritz, et al.
2022, Böhle, Singh, et al. 2024) introduced the idea of B-Cos networks and alignment
overall with the Dynamic Alignment Unit. In these works, alignment between weight-
input alignment is emphasized by the inclusion of the B-cos transform and dynamic
alignment unit. Moreover, the interpretations these methods provide insight over
the entirety of the network, and they are possibly integrated into existing architectures.

Prototype-based methods. On this topic, Li et al. designs an architecture that incorpo-
rates an autoencoder and a standard classification network (O. Li et al. 2018). In detail,
this model reduces dimensionality of inputs, producing high quality features for classi-
fication. The encoded features are then used to produce a probability distribution over
the dataset classes. Interestingly, during the forward pass on the prototype network,
these encoded features are transformed into prototype vectors; ultimately used to
train the classifier. Therefore, the classification algorithm is distance-based on the low
dimensional learned feature space. Another approach showcasing prototype learning
is that contained within This Looks Like That (Chen et al. 2019). In this approach,
Chen proposes a prototype layer that learns prototypes on top of existing architec-
tures, aligning learn a set of prototypes to specific categories. One difficulty these
prototype parts face, is their heavy computation and difficulty to train. As a response
of this, ProtoPool (Rymarczyk et al. 2022) is recently proposed, allowing for prototype
reutillization and differentiable assignment of prototypes to classes; speeding up the
training process

Attribution-based methods. Similar to the regularization induced by the inclusion of
decision trees, local attributes are improved during training through regularization
(Ismail et al. 2021, H. Zhou et al. 2022, Ross et al. 2017, Ghaeini et al. 2019, K. H. Lee
et al. 2021). These methods are often used in conjunction with post-hoc interpretabil-
ity approaches, where an observation made on the explanation proposal is further
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taken into consideration to be modified during training. For instance, on LFI-CAM
(K. H. Lee et al. 2021), an attention branch is included to learn attention feature im-
portance during training; allowing for a straightforward saliency map computation
while improving recognition properties. Similarly, saliency-guided training (Ismail
et al. 2021) minimizes the Kullback Leibler divergence between the output of original
and masked images.

1.3.2 Post-Hoc Interpretability
According to Lipton, post-hoc interpretability provides information directly from
learned models. Complementary to this, Zhang points out that passive interpretability
methods extract logical rules or understandable patterns from models. As noted in
Table 1.2, a discrepancy in the ratio of active-passive methods exist, where the passive
dimension presents more studies. Furthermore, according to the nature of explana-
tion Lipton groups methods into textual explanations, visualizations, explanations
by example and local explanations. In particular, Lipton argues that humans justify
decisions verbally, suggesting it is possible to train a model to generate explanations
describing the predictions of another model. For instance, NLP-based approaches for
image captioning can be utilized to provide textual explanations (McAuley et al. 2013).
Nevertheless, in recent years image-captioning approaches have become increas-
ingly complex, introducing a degree of uncertainty into the explanations provided,
as these recent systems are now transformer-based and their interpretability is not
comprehensively studied yet. Lipton closes this discussion addressing that this kind
of interpretations are open to scrutiny (J. Chang et al. 2009).

To provide interpretations on a visual manner according to Lipton, we find explana-
tions from visualization, explanations by example and local explanations. The goal
of explanations from visualization is to determine qualitatively what the model has
learned. One instance of this is found on the work by Mahendran et al. 2015, where an
image is forwarded through a discriminative CNN generating a representation. The
authors then demonstrate that the original image can be recovered from deep-level
representations by performing gradient descent on randomly initialized pixels.

Complementary to explanations by visualization, Lipton proposes explanations by
example. These explanations are derived from explaining decisions for a model using
examples deemed the most similar. In detail, once a model is trained it is possible to
extract information from learned representations; these in turn can be used to explain
a new sample by its proximity in this representation space to similar observations. On
deep image recognition models, we point to the works of (Kim et al. 2014, Doshi-Velez
et al. 2015), where case-based approaches are proposed for interpreting generative
models. More recently, the work proposed by Rombach et al. 2020, where an Invert-
ible Neural Network is connected at different stages of a model, disentangling deep
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representations and providing an inverse transformation into accessible semantic
concepts which can be used to point at similar examples of a given input.

Regarding local explanations, Lipton acknowledges that describing the entirety of the
mapping by a CNN is a difficult endeavor; and as such, it can be explained on a local
manner. This local behavior is widely considered across interpretability studies, as
previously mentioned in section 1.3 (Guidotti et al. 2018, Y. Zhang et al. 2021). Gener-
ally speaking, local explanations are often extracted via the computation of a saliency
map highlighting the most important regions on an image describing a prediction.
Studies describing local explanations are varied and many of them are build on top of
transparency approaches; where salient properties can be enhanced via training or op-
timization. Conversely, local explanations are grouped into: gradient-based methods,
learning-based methods, masked-based methods and class activation based-methods.

Gradient-based methods. This family of approaches leverages the property of image
recognition models, wherein forwarding an example through a model allows for the
visualization of the response of its weights during backpropagation in correlation to a
specific prediction. This response is visualized in input space, where strong gradient
information is expected in regions of the image containing information relevant to
the corresponding prediction (Baehrens et al. 2010, Simonyan, Vedaldi, et al. 2014).
However, gradient information often contains noise, making it challenging to interpret
these modifications in a straightforward fashion (Adebayo et al. 2018). Consequently,
modifications to backpropagation calculation have been proposed, including con-
sidering only positive values (Springenberg et al. 2014), adding noise on the input
space for denoising (Smilkov et al. 2017), introducing rules and axioms to constrain
the computation (Sundararajan et al. 2017) and proposal of concepts like relevance
(Bach et al. 2015) to compute the importance pixel interaction leading to a prediction.

Learning-based methods. Approaches in this family of methods exhibit a behavior
intersecting transparency based approaches, where an additional network or branch is
learned atop an existing architecture to produce an explanation map for a given input.
However, the lack of modifications on the model for interpretation is the key factor dif-
ferentiating these approaches from active interpretability methods. Specific examples
of learning methods comprise modifications inclusion of generative models to fill in
information occluded from the classifier (C. Chang et al. 2019), masking salient points
on the map to manipulate scores on the classifier (Dabkowski et al. 2017), inclusion of
a masker side network to collect information on different levels of the network and
produce a high resolution explanation (Phang et al. 2020), addition of a decoder to
generate masks and a different classifier predicting the masked inputs (Zolna et al.
2020), and finally, a bottleneck on top of intermediary layers of the network to learn a
saliency map per sample at the specific depth of the network (Schulz et al. 2020).

Occlusion or masking-based methods. Continuing on with modifications on the in-
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put space, by purposefully masking certain regions on the image and measuring the
subsequent loss in predictive power, a saliency map can be produced. In particular,
the masking process can provide extremal perturbations by measuring the maximal
effect upon the activation of neurons leading to predictions (R. C. Fong et al. 2017,
R. Fong et al. 2019), learning a simple masking model around the prediction to provide
saliency maps that are locally faithful to the classifier (Ribeiro et al. 2016, Vitali et al.
2018) and iteratively by random masking the input image, probing the model and
obtaining a saliency map from the linear combination between prediction weights
and the random mask that was used to generate them.

Attention-based techniques. Given the innate properties of attention based architec-
tures, most interpretability methods are ill fitted towards explaining the inference
process of these models. Nevertheless, with the current design of these models it
is possible to address salient information, although in a class-agnostic manner. In
particular, in the computation of self attention, this information is highlighted by the
product of query and key vectors by focusing on the [CLS] token; this in turn is called
Raw Attention. Conversely, since attention is computed at every layer of a transformer,
the flow of information can be traced across different layers across the network in an
approach named Rollout Attention (Abnar et al. 2020). Inspired by rollout attention
and gradient methods such as LRP (Bach et al. 2015) and the inadequacy property
of CAM methods on transformers, a novel computation of relevance across layers
providing high quality attribution maps is introduced, allowing at the same time for a
quantitative study of the interpretable properties of these methodologies (Chefer et al.
2021).

CAM-based methods. By taking into consideration feature map information contained
across different layers of a network, it is possible to gain insight into which image
regions are highlighted at different depths within the model. However, understanding
feature maps, which are often high-dimensional, present a considerable challenge.
Conversely, information contained from the classifier layers of the model can be di-
rectly associated with classes. For example, the product of the weights of the classifier
and the last feature map before GAP can generate a saliency map, known as Class Acti-
vation Maps (CAM) (B. Zhou, Khosla, et al. 2016). These approaches typically utilize
feature information from deep layers in conjunction with a set of weights correlated
with class information to compute explanations (Selvaraju et al. 2016, Chattopadhay
et al. 2018, H. Wang, Du, et al. 2019, Fu et al. 2020, Desai et al. 2020 Jiang et al. 2021).

In this thesis we take particular interest in proposing and evaluating our inter-
pretability methodologies based on CAM. In particular, we find CAM to be an appeal-
ing approach because of its ease of use and adaptation to interpret existing models.
Moreover, it can be argued that while it is possible find and use a plethora of the most
popular models towards recognition; providing explanations ought to be similarly
easy to use, a property that CAM-based models share.
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faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 1.12: Filter response to learned classes alongside CNN depth (H. Lee et al.
2009).

CAM-based saliency maps One property that CNNs display is the presence of
semantic information found within the deepest layers prior to the classifier. In detail,
these models operate similarly manner to the visual cortex in the brain; basic textures
and their orientation is processed in shallow layers, whereas deep layers associate this
information into concepts (Hubel et al. 1959). Regarding CNNs, on one hand filter
responses and low level information is captured by shallow layers on the model; on
the other hand, semantic aggregation takes place within the deep layers of the model
(H. Lee et al. 2009). This characteristic in turn is the main motivation behind making
use of CAM methods: by addressing interpretations on the layers prior to the classifier,
we reconstruct the features deemed salient according to the flow of information within
a model. We present a representation of filter responses from texture to semantics in
Figure 1.12.

Notation Consider a classifier network : f X →ℜC that maps an input image u ∈X

to a logit vector y = f (u) ∈ ℜC , where X is the image space and C is the number
of classes. We denote by yc = f (u)c the predicted logit and by pc = softmax(y)c :=
e yc /

∑
j e y j the predicted probability for class c. For layer ` with K` channels, we de-

note by Ak
`
= f k

`
(u) ∈ℜh`×w` the feature map for channel k ∈ {1, . . . ,K`}, with spatial

resolution h`×w`. Because of ReLU non-linearities, we assume that feature maps are
non-negative. Similarly, we denote by S` ∈ℜh`×w` a 2D saliency map.

Given a layer ` and a class of interest c , we consider saliency maps given by the general
formula:

Sc
`(u) := h

(∑
k

w c
k Ak

`

)
, (1.3)

where w c
k are weights defining a linear combination over channels and h is an activa-

tion function, we present a visualization of this process in Figure 1.13. It is through
the calculation of these weights or weighting coefficients that a plethora of saliency
methods have been proposed using CAM. Informally, this can be referred to as The
Many Flavors of CAM. Moreover, given the flexibility in defining this coefficient, we
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Figure 1.13: CAM based methodologies overview.

outline milestone alternatives for this calculation.

CAM (B. Zhou, Khosla, et al. 2016) is the original proposal for this family of methods.
This approach is defined uniquely for the last layer L before the classifier and h the
identity mapping and w c

k is defined as the classifier weights that map the k-th channel
in the feature map with class c. This first definition of class activation methods is not
general, should a classifier be composed of a MLP; w c

k would have to account for the
multiple interactions across the stages on the aforementioned layer, which ultimately
is not straightforward.

Grad-CAM (Selvaraju et al. 2016) is proposed as a generalization of CAM. Following
the inconvenience of the calculation of the weighting coefficient on multi layered
classifiers, this approach considers instead the flow of information on the network
following the gradient generated by backpropagation following the logit of the class of
interest. By doing so, the feature map to be used for an explanation can be selected
from any layer ` at different depths of the network. Moreover, the identity mapping on
this approach is h = ReLU and the weighting coefficient is calculated in the following
manner:

w c
k := GAP

(
∂yc

∂Ak
`

)
, (1.4)

where GAP is global average pooling. The motivation for ReLU is that we are only
interested in features that have a positive effect on the class of interest, i.e. pixels
whose intensity should be increased in order to increase yc . Lastly, this approach
also considers the computation of back-propagation using gradient refinements such
as guided backpropagation (Springenberg et al. 2014), allowing for saliency maps to
highlight more salient regions within the image.

Grad-CAM++ (Chattopadhay et al. 2018) continues the trend of refining the generated
saliency map via gradient modifications. In particular, the computation of the gradient
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follows partial derivatives as a way to address shortcomings on the original Grad-CAM.
Specifically, Grad-CAM is not robust to multiple instances of the same class within one
image, and overall the localization of the attribution usually fails to be located over
the entirety of the object of the class of interest. The computation of w c

k for Grad-CAM
is defined in the following manner:

w c
k := GAP

 ∂2 yc

(∂Ak )2

2 ∂2 yc

(∂Ak )2 +GAP

(
Ak ∂3 yc

(∂Ak )3

)
 ·ReLU

(
∂yc

∂Ak

)
(1.5)

Similar to Grad-CAM, Grad-CAM++ uses h = ReLU, is not computational expensive,
provides high quality saliency maps with better localization properties and is yet
another generalization of prior approaches. Nevertheless, one crucial contribution
proposed alongside this attribution method consists of an evaluation methodology
for saliency maps, explained in detail in subsection 1.3.3.

Score-CAM (H. Wang, Du, et al. 2019) is also defined for any layer ` with h = ReLU
and weights w c

k := softmax(uc )k . Softmax normalization considers positive channel
contributions only and attends to few feature maps. Inspired by the idea of comparing
the increase in confidence obtained by forwarding an image masked with the saliency
map relating to class c, a vector uc ∈ℜK` compares a known baseline image ub with
the input image u, for all channels k:

uc
k := f (u¯n(up(Ak

`)))c − f (ub)c , (1.6)

where ¯ is the Hadamard product. For this to work, the feature map Ak
`

is adapted
to u first: up denotes up-sampling to the spatial resolution of u and:

n(A) := A−min A

max A−min A
(1.7)

is a normalization of matrix A into [0,1]. While Score-CAM does not need gradients, it
requires as many forward passes through the network as the number of channels in the
chosen layer, which is computationally expensive. Score-CAM is better understood in
a visual manner as in Figure 1.14
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Figure 1.14: Score-CAM computation process (H. Wang, Du, et al. 2019)

Axiom-CAM (Fu et al. 2020) Departing from the usage of the increase in confidence
and gradient information, this approach incorporates logical principles to guide the
calculation of the saliency map. In particular, two axioms are introduced sensitivity
and conservation. On one hand sensitivity considers that the importance of each
feature map has to be equivalent to the score change caused by its removal. On the
other hand, conservation points that changes in the saliency map come from a redis-
tribution of the class score. In other words, sensitivity considers the loss of predictive
power by the removal of high importance feature maps; conservation instead ensures
that class scores are mainly dominated by feature maps rather than external factors.
By maintaining the activation function h = ReLU, the formulation of the axiom-based
weighting coefficient follows:

w c
k := GAP

(
Ak

GAP(Ak )

∂yc

∂Ak

)
. (1.8)

Ablation-CAM (Desai et al. 2020) continuing the trend of computing w c
k without mak-

ing use of gradients, masking methods can be further incorporated in the production
of saliency maps. More specifically, this approach determines the weight of individual
feature maps via ablation perturbation. Going deeper, this approach evaluates the
predictive power yc

k of an individual channel k in feature map Ak when all other
activations are zeroed out. In one way, this could be seen as similar to increase in
confidence to produce the linear combination as in Score-CAM. Nevertheless, in the
current approach, modifications are done on feature space and the predictive power
is compared with that of predictions using Ak with all the feature maps unaltered.
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Retaining activation h = ReLU, the formulation of this weighting coefficient follows:

w c
k := yc − yc

k

yc
(1.9)

Layer-CAM (Jiang et al. 2021) although CAM can be extracted at any point of a model
following the generalities described previously, they do not take into consideration the
flow of information and relevant features along the depth of a model. Nevertheless,
with backpropagation gradient can be probed alongside the whole depth of a model;
as such, this approach computes a saliency map by averaging the up-sampled attribu-
tion maps obtained at different depths from the model, generating a representation
accounting for this information.

1.3.3 Evaluating Interpretability
Following the desiredata of model interpretabiltiy, proposing interpretations does not
compose the only step in understanding the prediction process of a model; in order to
claim to be interpretable, the effect of its explanations should be quantifiable for an
approach or model. Lipton addresses this in the discussion section of The Mythos of
Model Interpretability, where he points:

To be meaningful, any assertion regarding interpretability should fix a spe-
cific definition. If the model satiesfies a form of transparency, this can be
shown directly. For post-hoc interpretability, papers ought to fix a clear
objective and demonstrate evidence that the offered form of interpretation
achieves it.

On one hand, this definition is not completely up-to-date for deep image recognition
models. In particular, given the difficulties of the original definition of transparency
covering deep models, especially with the introduction of active interpretability ap-
proaches. A direct display of transparency is not straightforward, particularly given
that some of these proposals involve modifying the behaviour of models or lack inher-
ent interpretability. Conversely, post-hoc interpretations are frequently found in the
input space. As a result, the impact of these modifications is traditionally evaluated
through human centric assessments of trust or reliablity. In the other hand, a quanti-
tative approach, involves probing changes in the predictive power of the input masked
by the saliency map (interpretable object recognition), randomly perturbing the input
guided by saliency information described by the attribution map (causal analysis),
and considering these attributions in a weakly supervised object localization manner
(interpretable object localization). We present a brief summary of these metrics in
Table 1.3:
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EVALUATION TYPE NAME REFERENCE

Interpretble Object Recognition

Average Drop
(Chattopadhay et al. 2018)

Average Increase
Coherence

(Poppi et al. 2021)Complexity
Average Drop in Coherency and Complexity

Causal Analysis
Insertion

(Vitali et al. 2018)
Deletion

Interpretable Object Localization

Unit Interpretability (Bau et al. 2017)
Official Metric -

Localization Error -
Pixelwise F1 -

Box Accuracy (Choe et al. 2020)
Standard Pointing Game (J. Zhang et al. 2017)

Energy Pointing Game (H. Wang, Du, et al. 2019)
Saliency Metric (Dabkowski et al. 2017)

Table 1.3: Interpretability Metrics according to evaluation types

1.3.3.1 Trust and Reliability

Following the desiredata of model interpretability. In this, the interpretabiltiy proper-
ties of trust and informativeness are the main driving force of this approach. To begin
with, it is desired to be able to trust a model on its predictions, the examples for which
it is right and how often is it; this in turn can be seen via informativeness. Given the
black-box behaviour of image recognition models, informativeness can be gained
by taking interest in salient regions of an image leading to a prediction. Therefore,
assessing human trust of a saliency map describing a prediction is traditionally used
to assess interpretability (Ribeiro et al. 2016, B. Zhou, Khosla, et al. 2016, Selvaraju
et al. 2016, Chattopadhay et al. 2018, Bau et al. 2017). Nevertheless, this evaluation
methodology is not favoured in recent times, as human interpretations are not always
aligned with what the model or classifier deems important; conversely, this kind of
evaluation can be often biased or not replicable at all.

1.3.3.2 Interpretable Object Recognition

Proposed based on the capability of current image recognition models to provide
outputs over the distribution of classes that it was trained in, for any given input.
Conversely, since saliency maps are class-specific, a logical manner of assessing their
interpretability properties involves masking on the input space and measuring the
changes of the predictive power of the model with regards of the highlighted regions
provided by the saliency map. This methodology is first proposed by Chattopadhay
et al. 2018, where in addition of traditional human evaluation of saliency maps, their
predictive capabilities are measured using Average Drop (AD), Average Increase (AI).
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Notation Let pc
i and oc

i be the predicted probability for class c given as input the
i -th test image u and its masked version respectively. Masking refers to element-wise
multiplication with the saliency map, which is at the same resolution as the original
image with values in [0,1]. Let N be the number of test images. Class c is taken as the
ground truth.

AD quantifies how much predictive power, measured as class probability, is lost when
we only mask the image; lower is better:

AD := 1

N

N∑
i=1

[pc
i −oc

i ]+
pc

i

·100. (1.10)

AI, also known as increase in confidence, measures the percentage of images where the
masked image yields a higher class probability than the original; higher is better:

AI := 1

N

N∑
i
1pc

i <oc
i
·100. (1.11)

AD and AI are not defined symmetrically. AD measures changes in class probability
whereas AI measures a percentage of images. It is possible that the percentage is high
while the actual increase is small. Hence, it is possible that an attribution method
improves both. Indeed, (Poppi et al. 2021) observes that a trivial method called Fake-
CAM outperforms state-of-the-art methods, including Score-CAM, by a large margin.
Fake-CAM simply defines a saliency map where the top-left pixel is set to zero and is
uniform elsewhere. This questions the purpose of AD and AI. Addressing this, Poppi
proposes Average Drop in Coherency and Complexity (ADCC), a metric that combines
AD and two complementary measurements: Coherency and Complexity. In detail:

Coherency answers the requirement that the CAM-attribution of one image has to
equate to the corresponding attribution of the explanation map obtained by the
combination of said attribution map and the original input image. This is defined
using the Pearson Correlation Coefficient between both attributions following:

Coherency(u) = Cov(CAMc (u¯CAMc (u)),CAMc (u))

σCAMc (u¯CAMc (u))σCAMc (u)
(1.12)

Complexity is addressed to the requirement of CAM attributions being as simple or
less complex as possible. It is defined using the L1 norm as a proxy of complexity:

Complexity(u) = ||CAMc (u)||1 (1.13)

ADCC takes into consideration the previously introduced metrics and Average Drop
(AD), encompassing these metrics taking their harmonic mean in the following man-
ner:
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ADCC(u) = 3

(
1

Coherency(u)
+ 1

1−Complexity(u)+ 1
1−AD(u)

)−1

(1.14)

1.3.3.3 Causal Analysis

Inspired by the work described in (R. C. Fong et al. 2017, R. Fong et al. 2019), instead
adding perturbations on an image level in order to generate and attribution map,
Vitali proposes an evaluation scheme where images are modified according to their
saliency maps, and the subsequent change of predictive power is measured. This
methodology contemplates two styles of modifications: on one hand, the input image
is blurred entirely, and the information is reconstructed by the Insertion (I) of pixels
following the saliency map; conversely, information can be steadily removed from the
image by iterative Deletion (D) of salient pixels (Vitali et al. 2018).

Notation let x be an input image with the corresponding saliency map sc and N the
number of pixels removed per step, we calculate the predicted probability pc

n at step
n for groundtruth class c using the model f . Similar to AD and Average Increase (AI)
Vitali considers sc to maintain the same image resolution as x and be normalized in
values [0,1].

Insertion measures the increase of probability when introducing pixels from an input
image into a blurry version of itself, following the salient order described by the
saliency map. Best described in algorithm 1:

Algorithm 1: Insertion Algorithm
Input: black-box f , image x, saliency map sc , number of pixels N removed per step.
Output: insertion score ins. n ← 0
x ′ ← Blur(x)
pc

n ← f (x)
while x 6= x ′ do

According to s, set the next n pixels in x ′ to corresponding pixels in x
n ← n +1
pc

n ← f (x ′)
ins ← AreaUnderCurve(pc

nvs.i /n,∀i = 0, ...n)
return ins

Deletion measures the decrease of probability as pixels are zeroed out in an input
image, following the salient order described by the saliency map. Best described in
algorithm 2:
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Algorithm 2: Deletion Algorithm
Input: black-box f , image x, saliency map sc , number of pixels N removed per step.
Output: deletion score del .
n ← 0
pc

n ← f (x)
while x has non-zero pixels do

According to s, set the next n pixels in x to 0
n ← n +1
pc

n ← f (x)
del ← AreaUnderCurve(pc

nvs.i /n,∀i = 0, ...n)
return del

1.3.3.4 Interpretable object localization

Following in line with the desire of saliency maps aligning with the object belonging to
the class they are computed for, interpretability properties are evaluated using object
localization. One approach considering this, is found within the Broden dataset (Bau
et al. 2017). In this work, interpretability is measured at the unit level, where individual
channels from a convolutional layer are compared with semantic concepts previously
annotated within the dataset.
In addition to the evaluation procedure proposed in Broden, weakly supervised evalu-
ation approaches are taken into consideration for this task.

Notation Given the saliency map Sc obtained from test image x for ground truth
class c. We denote by Sc

p its value at pixel p. We binarize the saliency map by thresh-
olding at its average value, and we take the bounding box of the largest connected
component of the resulting mask as the predicted bounding box Bp , represented as a
set of pixels. This box is compared against the set of ground truth bounding boxes B,
which typically contains 1 or 2 boxes of the same class c, or with their union U =∪B,
again represented as a set of pixels. We also compare the predicted class label cp

with the ground truth label c. All metrics take values in [0,1] and are expressed as
percentages, except SM (1.22), which is unbounded.

Unit Interpretability Defined in Broden, this metric is different from those defined in
the coming weakly-supervised approaches; compares each individual feature map
Ak with the localization mask Lc of class c for a given image x. To compute this
comparison, the activation map Ak is upsampled into the original image resolution
and then binarized generating the binary mask M k . This mask is used following:

IoUk,c :=
∑∣∣M k (u)∩Lc (x)

∣∣∑∣∣M k (u)∪Lc (x)
∣∣ (1.15)

Official Metric (OM) measures the maximum overlap of the predicted bounding box

55



1 Background – 1.3 Interpretability

with any ground truth bounding box, requiring that the predicted class label is correct:

OM := 1−
(
max
B∈B

IoU(B ,Bp )

)
1cp=c , (1.16)

where IoU is intersection over union.

Localization Error (LE) is similar but ignores the predicted class label:

LE := 1−max
B∈B

IoU(B ,Bp ). (1.17)

Pixel-wise F1 score (F1) is defined as F1 = 2 PR
P+R , where precision P is the fraction of

mass of the saliency map that is within the ground truth union:

P :=
∑

p∈U Sc
p∑

p Sc
p

(1.18)

and recall R is the fraction of the ground truth union that is covered by the saliency
map:

R :=
∑

p∈U Sc
p

|U | . (1.19)

Box Accuracy (BA) (Choe et al. 2020) Given threshold values η and δ, we find the
bounding box Bη

p of the largest connected component of the binary mask
{

p : Sp > η}
and require that it overlaps by δ with at least one ground truth box:

BoxAcc(η,δ) := max
B∈B

1IoU(B
η
p ,B)≥δ. (1.20)

After averaging over the test images, we take the maximum of this measure over a set
of values η and then the average over a set of values δ.

Standard Pointing game (SP)(J. Zhang et al. 2017) We find the pixel p∗ := argmaxp Sc
p

having the maximum saliency value and require that it lands in any of the ground
truth bounding boxes:

SP :=1p∗∈U . (1.21)

Energy Pointing game (EP) (H. Wang, Du, et al. 2019) is equivalent to precision (1.18).

Saliency Metric (SM) (Dabkowski et al. 2017) penalizes the size of the predicted bound-
ing box Bp relative to the image and the cross-entropy loss:

SM := logmax

(
0.05,

∣∣Bp
∣∣

hw

)
− log pc , (1.22)
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where h × w is the input image resolution and pc is the predicted probability for
ground truth class label c.

1.3.4 Discussion
Following the rapid development of image recognition models and the subsequent
need to understand their behavior, interpretability has become a sought after task
within the community. As a result, several studies have been introduced over time,
as demonstrated in the previous section. Yet, the work proposed by Lipton is unique
in questioning what interpretability truly entails. Instead, most interpretability ap-
proaches are designed to address specific needs of current image recognition models,
ranging from simplifying a model, to describing its components, disentangling em-
beddings on feature space and ultimately explaining predictions by responses on the
input space. We suggest that some recurring issues that interpretability presents is an
outdated vision on some properties and a lack of consensus, either in definitions, and
evaluation.

Starting with propositions, according to different researchers interpretability is de-
scribed across various dimensions depending on the nature of the approach. In this
thesis we chose to follow the original propositions of Lipton, describing interpretability
according to the properties of transparency and the ability to provide post-hoc inter-
pretations. We acknowledge these properties as base descriptors for interpretability.
However, these properties are ill-fitted for describing current image recognition mod-
els according to their original definitions. In particular, transparency on its preliminary
definition applies mostly to traditional machine learning proposals. Nevertheless, by
aligning transparency with the active dimension proposed by Y. Zhang et al. 2021, the
definition holds, and subsequent studies adhere it.

Regarding saliency, we also note that this study is-ill formulated. When we obtain
a saliency map, how do we define what is important in an image?. On one hand,
although computer vision draws heavy inspiration from by human vision, the rea-
soning process is different between human and machine. In particular, a human
might identify salient parts to describe an object in particular, differently that a ma-
chine would. Conversely, when discussing an attribution, who are we considering
the explanation for?. As we mentioned previously, saliency is not well aligned for
humans and machines, especially when machines derive their knowledge from con-
text. Consequently, when evaluating the interpretable properties of an attribution, we
find that usually those that provide the best results in terms of metrics are not usually
the ones that a human would consider best. This question remains open up to this day.

Regarding evaluation of interpretability methods, in subsection 1.3.3 we made men-
tion of current evaluation methodologies, but, several questions arise from them. To
begin with, and relating to the previous paragraph, it is safe to assume that the quanti-
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tative metrics presented are taking into consideration relevance towards the classifier.
In particular these methods are telling us which representation explains the best a given
class for the model. And yet, in this case we can also wonder about which class should
we inquire about; groundtruth or predictions?. In most applications researchers extract
attributions and provide explanations for groundtruth objects. However, in real-world
applications we expect models to predict incorrectly some instances in the task that
they are given; these instances then require explanations for the class being predicted.
This is crucial given Lipton’s desidedata of model interpretability. We usually care the
most for the instances in which the model fails, and we have to provide accountability
for the effects these inferences provide.

In addition to this selection of instances to provide explanations for, quantitative
evaluation suffers from another drawback: a lack of homogeneity in evaluation pro-
cedures. Complementary to the qualitative evaluation of attribution maps via visual
inspection and human criteria, quantitative evaluation ought to be more robust,
replicable and homogeneous. Yet, we observe variations in evaluation procedures
across proposals, and while an effort to provide fair comparisons, complete insight on
the behavior of the proposed methodologies is not attained. To exemplify, with the
introduction of objective evaluation for object recognition in Grad- CAM++ (Chattopad-
hay et al. 2018), the evaluation procedure only required generation of visualizations
for the entirety of the validation set of ImageNet and Pascal VOC 2012, whereas to
assess the performance of Score-CAM (H. Wang, Du, et al. 2019), a small subset of
two thousand random images is chosen, thus negating replicability. This is done to
circumvent the discussion of the high computational cost required to compote Score-
CAM attributions, which is not clearly discussed in its article. Complementary to this,
Chattopadhay et al. 2018 provides analysis for VGG-16, ResNet-50 and AlexNet, while
Score-CAM presents results only for VGG. This is not the only occurrence of these
phenomena, upon the introduction of methodologies such as Integrated Score-CAM
(Naidu et al. 2020), Ablation-CAM (Desai et al. 2020) and Layer-CAM (Jiang et al. 2021),
the evaluation procedures are found not to be standardized between approaches.

A last point we want to highlight is addressed towards claims of interpretability upon
the proposal of models. To begin, while introducing image recognition models in
section 1.2, we found several approaches such as Conformer (Peng et al. 2021), Scouter
(L. Li et al. 2021) and LFI-CAM (K. H. Lee et al. 2021) claiming to produce high per-
formance image recognition architectures with built-in interpretability properties.
However, these claims are sustained only with qualitative results in the shape of attri-
bution maps such as Class Activation Maps (CAM) or attention visualization. Taking
into consideration all the points we have discussed so far in this section, this exempli-
fies the challenges when discussing interpretability. On one hand, visually assessing
the quality of explanation maps implies the alignment with human reasoning towards
describing what is important within an image. Conversely, attribution maps are often
shown mostly for groundtruth classes, not predictions, leaving in turn open the ques-
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tion of what is relevant for these instances. Lastly, qualitative measurements are not
meaningful to claim the performance of an attribution compared with another, in par-
ticular given the misalignment between human and machine recognition processes.

In this dissertation we investigate machine-centered interpretability. In particular, we
want to understand the inference process of a model and the key factors producing a
prediction. Additionally, we align ourselves with the standard practice of evaluating
explanations for instances of correct prediction. Consequently, we acknowledge that
failure cases require further investigation from our part. Regarding the evaluation
of our methodologies, we conduct standardized experimentation in our approaches,
unless stated otherwise. Finally, we validate our claims of improvements of inter-
pretability properties with our evaluation protocols. We conduct extensive evaluation
for each of our proposals.
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2.1 Introduction
Within existing attribution approaches for interpretable saliency map generation, the
CAM (B. Zhou, Khosla, et al. 2016) based family of methods takes special research
interest given its dependence of existing information and properties of a given model
to generate explanations. In particular, following Equation 1.3, modifying computa-
tion of the weighting coefficient w c

k results in a different attribution being generated.
Moreover, this computation can be altered, for instance by relying on information
found while performing the backward pass (Selvaraju et al. 2016, Chattopadhay et al.
2018, Fu et al. 2020, Smilkov et al. 2017) and the forward pass (H. Wang, Du, et al.
2019) of the model during inference. Nevertheless, we observe that among existing
weighting coefficient computation proposals, none has been directed at maximizing
the predicted probability of the generated saliency maps.
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Complementary to CAM methods, we observe that within attribution methods based
on extremal perturbations (R. Fong et al. 2019) or IBA (Schulz et al. 2020), their class
scores are optimized via gradient descent. In this regard, it can be stated that these
masks then become variables within input-feature space, and the aforementioned
scores then become a function of said masking. However, it is important to point
that optimizing these masks ultimately becomes an expensive process, as several
constraints are needed to control the masking area.

Drawing inspiration from the aforementioned observations, we propose Opti-CAM,
an attribution method that generates saliency maps with enhanced interpretability.
In particular, we hypothesize that the weighting coefficient w c

k can be optimized to
attain this task. Moreover, we suggest that should the predicted probability of the
attribution map be optimized, we can gain insight within the regions of the image
that appear to be the most important for the classifier. We define our approach in
section 2.3

In addition to the proposal of an attribution method in this chapter, we design a
complementary interpretability evaluation metric of saliency maps. In particular,
based on the remarks found in Fake-CAM (Poppi et al. 2021), we observe that existing
metrics such as AD (1.10) and AI (1.11) can be manipulated. As a result of this, we
argue that a complementary criterion is missing regarding Objective Evaluation for
Object Recognition. In section 2.4 we define this novel measurement under the name
Average Gain (AG). To support our approach, we demonstrate our generated saliency
maps in section 2.6, and we evaluate them in section 2.7.

To sum up, with the observations previously mentioned, in this chapter we propose
a CAM variant that generates saliency maps by optimizing the weighting coefficient
w c

k , while also introducing a novel metric to complement the existing evaluation of
attribution methods.

2.2 Motivation
From the CAM methods defined in subsection 1.3.2, we take particular interest on
Score-CAM. In particular, Score-CAM considers each feature map as a mask in isola-
tion. But, what about linear combinations? Given a vector w ∈ℜK` with wk its k-th
element, let

F (w) := f

(
u¯n

(
up

(∑
k

wk Ak
`

)))
c

. (2.1)
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If we assume that ub = 0 in (1.6) and define n(0) := 0 in (1.7), then we can rewrite the
right-hand side of (1.6) as

F (w0 +δek )−F (w0)

δ
, (2.2)

where w0 = 0, δ = 1 and ek is the k-th standard basis vector of ℜK` . This resembles
the numerical approximation of the derivative ∂F

∂wk
(w0), except that δ is not small

as usual. One could compute derivatives efficiently by standard backpropagation
instead. It is then possible to iteratively optimize F with respect to w, starting at any w0.

As an alternative, consider masking-based methods relying on optimization in the
input space, like meaningful perturbations (MP) (R. C. Fong et al. 2017) or extremal
perturbations (R. Fong et al. 2019). In general, optimization takes the form

Sc (u) := arg max
m∈M

f (u¯n(up(m)))c +λR(m). (2.3)

Here, a mask m is directly optimized and does not rely on feature maps, hence the
saliency map Sx(u) is not connected to any layer `. The mask is at the same or lower
resolution than the input image. In the latter case, upsampling is still necessary.

In this approach, one indeed computes derivatives by backpropagation and itera-
tively optimizes m. However, because m is high-dimensional, there are constraints
expressed by m ∈ M , e.g. m has a certain norm, and regularizers like R(m), e.g. m
is smooth in a certain way. This makes optimization harder or more expensive and
introduces more hyperparameters like λ. One could simply constrain m to lie in the
linear span of {Ak

`
}K`

k=1 instead, like all CAM-based methods.

2.3 Opti-CAM
As noted in section 2.2, we obtain a saliency map as a convex combination of feature
maps by optimizing a given objective function with respect to the weights. In particu-
lar, following (H. Wang, Du, et al. 2019), we use channel weights wk := softmax(u)k ,
where u ∈ℜK` is a variable. We then consider saliency map S` in layer ` as a function
of both the input image x and variable u:

S`(x;u) :=∑
k

softmax(u)k Ak
` . (2.4)

In comparison with (1.3), h is the identity mapping, because feature maps are non-
negative and weights are positive.

Optimization Now, given a layer ` and a class of interest c, we find the vector u∗

that maximizes the classifier confidence for class c , when the input image x is masked

62



2 Opti-CAM: Optimizing saliency maps for interpretability – 2.3 Opti-CAM

objective
F c
`

(x;u)

input image x

network
f

feature
maps Ak

`

×

weights u

saliency map
S`(x;u)

¯

masked image

network
f

class
logits

Figure 2.1: Overview of Opti-CAM. We are given an input image x, a fixed network f ,
a target layer ` and a class of interest c. We extract the feature maps from
layer ` and obtain a saliency map S`(x;u) by forming a convex combina-
tion of the feature maps (×) with weights determined by a variable vector
u (2.4). After upsampling and normalizing, we element-wise multiply (¯)
the saliency map with the input image to form a “masked” version of the
input, which is fed to f . The objective function F c

`
(x;u) measures the logit

of class c for the masked image (2.6). We find the value of u∗ that maxi-
mizes this logit by optimizing along the path highlighted in blue (2.5), as
well as the corresponding optimal saliency map S`(x;u∗) (2.7).

according to saliency map S`(x;u∗):

u∗ := argmax
u

F c
`(x;u), (2.5)

where we define the objective function:

F c
`(x;u) := gc ( f (x¯n((S`(x;u))))). (2.6)

Here, the saliency map S`(x;u) is adapted to x exactly as in (1.6) in terms of resolution
and normalization. For normalization function n, the default is (1.7). The selector
function gc operates on the logit vector y; the default is to select the logit of class c , i.e.
gc (y) := yc .

Putting everything together, we define:

Sc
`(x) := S`(x;u∗) = S`(x;argmax

u
F c
`(x;u)), (2.7)

where S` and F c
`

are defined by (2.4) and (2.6) respectively. The objective function F c
`

(2.6) depends on variable u through S` (2.4), where the feature maps Ak
`
= f k

`
(x) are

fixed. Then, (2.6) involves masking and a forward pass through the network f , which
is also fixed.

Figure 2.1 is an abstract illustration of our method, called Opti-CAM, without de-
tails like upsampling and normalization (2.6). Optimization takes place along the
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highlighted path from variable u to objective function F c
`

. The saliency map is real-
valued and the entire objective function is differentiable in u. We use Adam optimizer
(Kingma et al. 2015) to solve the optimization problem (2.5).

2.4 Average Gain
Continuing on with observations of CAM-based Saliency maps, we recall the obser-
vation made for Fake-CAM Poppi et al. 2021. In particular, we note that traditional
interpretability measurements such as AD and AI can be deceiving; as perfect scores
can be nearly achieved for AD by masking all but one pixel in the Saliency Map. This is
used to motivate the definition of a number of metrics that are orthogonal to the task
at hand, i.e. measuring the effect of masking to the classifier. By contrast, we address
the problem by introducing a new metric to be paired with AD as a replacement of AI:
Average Gain.

Average Gain (AG) quantifies how much predictive power, measured as class probabil-
ity; is gained when we mask the image. We define this metric in the following manner,
where higher is better:

AG(%) := 1

N

N∑
i=1

[oc
i −pc

i ]+
1−pc

i

·100. (2.8)

This definition is symmetric to the definition of average drop, in the sense that in
absolute value, the numerator in the sum of AD,AG is the positive and negative part
of pc

i −oc
i respectively and the denominator is the maximum value that the numerator

can get as a function of oc
i , given that 0 < oc

i < pc
i and pc

i < oc
i < 1 respectively. The two

metrics thus compete each other, in the sense that changing oc
i to improve one leaves

the other unchanged or harms it. As we shall see, an extreme example is Fake-CAM,
which yields near-perfect AD but fails completely on AG.

2.5 Experiments
We evaluate Opti-CAM and compare it quantitatively and qualitatively against other
state-of-the-art methods on a number of datasets and networks. We report classifica-
tion metrics with execution times, and we provide visualizations, an ablation study
and a study on the suitability of localization ground truth.

2.5.1 Implementation details
All input images are resized to 224×224×3. To optimize the saliency map with Opti-
CAM (2.5), we use the Adam (Kingma et al. 2015) optimizer with learning rate 0.1 by
default, setting the maximum number of iterations to 100 and stopping early when
the change in loss is less than 10−10. For VGG16, we generate the saliency map (2.4)
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from the feature maps of the last convolutional layer before max pooling by default, i.e.
convolutional layer 3 of block 5. For ResNet50, we choose the last convolutional layer
by default, i.e. convolutional layer 3 of bottleneck 2 of block 4. For ViT and DeiT, we
choose the last self-attention block by default, i.e. layer normalization of self-attention
block 12.

2.5.2 Datasets
ImageNet We use the validation set of ImageNet ILSVRC 2012 (Krizhevsky et al.
2012, Russakovsky et al. 2015), containing 50,000 images evenly distributed over the
1,000 categories. For the ablation study and for timing, we sample 1,000 images
from this set. Concerning the localization experiments, bounding boxes from the
localization task of ILSVRC 1 are used on the same validation set.

Medical data We use two medical image datasets, namely Chest X-ray (Kermany
et al. 2018) and Kvasir (Pogorelov et al. 2017).

Networks For all datasets, we use the pretrained ResNet50 (He, X. Zhang, et al. 2016)
and VGG16 (Simonyan and Zisserman 2015) networks with batch normalization (Ioffe
et al. 2015) from the Pytorch model zoo2. For ImageNet, we further use the pretrained
ViT-B (16-224) (Dosovitskiy et al. 2020) and DeiT-B (16-224) (Touvron, Cord, Douze,
et al. 2021) from Pytorch image models (timm)3.

2.5.3 Evaluation
Metrics We use AD and AI (Chattopadhay et al. 2018) metrics, as well as the pro-
posed AG, to measure the effect on classification performance of masking the input
image by a saliency map. In addition, we report Insertion (I) and Deletion (D) (Vitali
et al. 2018) and highlight their limitations. Using classification metrics, we show the
limitations of using the localization ground truth for the evaluation of attribution
methods. In subsection 2.7.2, we provide a number of localization metrics from the
weakly-supervised object localization (WSOL) task of ILSVRC2014 4.

Methods We compare against the following state-of-the-art methods: Grad-CAM
(Selvaraju et al. 2016), Grad-CAM++Chattopadhay et al. 2018, Score-CAM (H. Wang,
Du, et al. 2019), Ablation-CAM ( et al. 2020), XGrad-CAM (Fu et al. 2020), Layer-CAM
(Jiang et al. 2021), ExtremalPerturbation (R. Fong et al. 2019) and HiRes-CAM (Drae-
los et al. 2020). Implementations are obtained from the PyTorch CAM library5 or

1https://www.image-net.org/challenges/LSVRC/2012/index.php
2https://pytorch.org/vision/0.8/models.html
3https://github.com/rwightman/pytorch-image-models
4https://www.image-net.org/challenges/LSVRC/2014/index#
5https://github.com/jacobgil/pytorch-grad-cam
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TorchRay6. For transformer models, we also compare against raw attention (Dosovit-
skiy et al. 2020), rollout (Abnar et al. 2020) and TIBAV Chefer et al. 20217.

Image normalization It is standard that images are normalized before feeding
them to a network. By doing so however, we cannot reproduce the results published
for the baseline methods; rather, all results are improved dramatically. We can obtain
results similar to published ones by not normalizing. We believe normalization is
important, and we include it in all our experiments.

2.6 Qualitative Evaluation

Input image Grad-CAM Grad-CAM++ Score-CAM Ablation-CAM XGrad-CAM Opti-CAM
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Figure 2.2: Saliency maps obtained by different methods for ImageNet (top two rows),
Chest X-ray (row 3) and Kvasir (row 4) with VGG. Ground truth class shown
on the left of the input image.

Figure 2.2 illustrates saliency map examples from ImageNet, Chest X-ray and Kvasir
datasets. Opti-CAM saliency map is in general more spread out. This better highlights

6https://github.com/facebookresearch/TorchRay
7https://github.com/hila-chefer/Transformer-Explainability
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full objects, multiple instances or background context, which may be taken into ac-
count by the model. On Chest X-ray, Opti-CAM and Score-CAM are the only methods
that capture the chest, while all others focus on image corners.

2.7 Quantitaive Evaluation

2.7.1 Image classification
CNN Table 2.1 shows ImageNet classification metrics using VGG16 and RESNET50.
Our Opti-CAM brings impressive performance in terms of Average Drop (AD) and
Average Increase AI metrics. That is, not only impressive improvement over baselines,
but near-perfect: near-zero AD and above 90% AI. Our new metric AG is lower, around
70% for Opti-CAM, but this is still several times higher than for all the other methods.

METHOD
RESNET50 VGG16

AD↓ AG↑ AI↑ T AD↓ AG↑ AI↑ T

Fake-CAM 0.8 1.6 46.0 0.00 0.5 0.6 42.6 0.00

Grad-CAM 12.2 17.6 44.4 0.03 14.2 14.7 40.6 0.02
Grad-CAM++ 12.9 16.0 42.1 0.03 17.1 10.2 33.4 0.02
Score-CAM 8.6 26.6 56.7 15.22 13.5 15.6 41.7 3.11
Ablation-CAM 12.5 16.4 42.8 18.26 15.5 12.6 36.9 2.98
XGrad-CAM 12.2 17.6 44.4 0.03 13.8 14.8 41.2 0.02
Layer-CAM 15.6 15.0 38.8 0.08 48.9 3.1 13.5 0.07
ExPerturbation 38.1 9.5 22.5 152.96 43.0 7.1 20.5 83.20

Opti-CAM 1.5 68.8 92.8 4.15 1.3 71.2 92.7 3.94

Table 2.1: Classification metrics on ImageNet validation set, using CNNs. AD/AI:
average drop/increase (Chattopadhay et al. 2018); AG: average gain (ours);
↓ / ↑: lower / higher is better; T: Average time (sec) per batch of 8 images.
Bold: best, excluding Fake-CAM.

Interestingly, Fake-CAM (Poppi et al. 2021) is the winner in terms of AD and second or
third best in AI after Opti-CAM and Score-CAM, but fails completely AG. This is ex-
pected and makes Fake-CAM uninteresting as it should be: By only masking one pixel,
the classification score can hardly drop (0.8% on ResNet50) and while it increases
very often (on 46% of images), the gain is as little as the drop (0.7%). This makes the
pair (AD, AG) sufficient as primary metrics and AI can be thought of as secondary, if
important at all.

Table 2.1 also includes average execution time per image over the 1000-image Ima-
geNet subset for all methods. Opti-CAM is slower than gradient-based methods that
require only one pass through the network, but on par or faster than gradient-free
methods. Indeed, we use a maximum of 100 iterations with one forward/backward
pass per iteration, while Score-CAM and Ablation-CAM perform as many forward
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passes as channels. Hence, they are much slower on ResNet50 than VGG16. Ex-
tremal Perturbation does not depend on the number of channels but is very slow by
performing a complex optimization in the image space.

Transformers Table 2.2 shows ImageNet classification metrics using ViT and DeiT.
Unlike CAM-based methods that rely on a class-specific linear combination of feature
maps, raw attention (Dosovitskiy et al. 2020) and rollout (Abnar et al. 2020) use the
attention map of the [CLS] token from the last attention block and from all blocks
respectively. This attention map depends only on the particular image and not on the
target class, hence it is not really comparable. TIBAV (Chefer et al. 2021) uses both
instance-specific and class-specific information.

METHOD
VIT-B DEIT-B

AD↓ AG↑ AI↑ T AD↓ AG↑ AI↑ T

Fake-CAM 0.3 0.4 48.3 0.00 0.6 0.3 44.6 0.00

Grad-CAM 69.4 2.5 12.4 0.14 33.5 1.7 12.5 0.11
Grad-CAM 86.3 1.5 1.0 0.15 50.7 0.9 7.2 0.13
Score-CAM 32.0 6.2 33.0 23.69 53.6 2.2 12.2 22.47
XGrad-CAM 88.1 0.4 4.3 0.13 80.5 0.3 4.1 0.12
Layer-CAM 82.0 0.2 2.9 0.24 88.9 0.4 2.6 0.24
ExPerturbation 28.8 6.2 24.4 133.52 60.9 2.0 8.5 129.12
RawAtt 92.6 0.2 2.8 0.02 95.3 0.0 1.8 0.02
Rollout 42.1 5.6 20.9 0.02 55.2 0.8 7.9 0.02
TIBAV 81.7 0.8 5.8 0.16 62.3 0.7 7.1 0.16

Opti-CAM 0.6 18.0 90.1 16.05 0.9 26.0 83.5 15.17

Table 2.2: Classification metrics on ImageNet validation set, using transformers.
AD/AI: average drop/increase AG: average gain (ours); ↓ / ↑: lower / higher
is better. T: Average time (sec) per batch of 8 images. Bold: best, excluding
Fake-CAM.

Opti-CAM outperforms all other methods dramatically, reaching near-zero AD and
AI above 80 or 90%. According to our new AG metric, Opti-CAM still works while all
other methods fail, but AG is much more conservative than AI. On ViT-B for example,
the classification score increases for 90.1% of the images by masking with Opti-CAM,
but the gain is only 18.0% on average.

More metrics In this section, we show additional metrics including AOPC (Samek
et al. 2016), Max-Sensitivity(Yeh et al. 2019) and ADCC (Poppi et al. 2021).

We use the code and suggested parameters of package Quantus8 to measure AOPC
and MS. In particular, patch size 14 and number of evaluation regions 10 for AOPC;
lower bound 0.2 and number of samples 10 for MS. For ADCC, we use the official code9.

We evaluate these metrics on ImageNet validation set using ResNet50 and VGG16. The
results are reported in Table 2.3. Since AOPC shares the same philosophy as I/D, it is

8https://github.com/understandable-machine-intelligence-lab/Quantus
9https://github.com/aimagelab/ADCC
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METHOD
RESNET50 VGG16

AOPC ↑ MS ↓ ADCC ↓ AOPC ↑ MS ↓ ADCC ↓
Grad-CAM 11.7 1.05 74.3 13.1 1.10 73.7
Grad-CAM++ 11.6 1.04 73.6 11.6 1.09 74.6
Score-CAM 10.2 1.04 61.0 11.0 1.09 73.9
XGrad-CAM 11.9 1.05 74.3 13.1 1.10 73.9
Ablation-CAM 11.1 1.04 71.5 12.5 1.10 75.5
Layer-CAM 13.0 1.22 61.1 13.3 1.25 51.7
ExPerturbation 12.0 1.07 26.0 11.2 1.09 42.8
Opti-CAM (ours) 6.3 1.03 65.5 8.9 1.06 70.0

Table 2.3: AOPC/MS/ADCC scores on ImageNet validation set.

not a surprise that Opti-CAM has poor performance on AOPC. Opti-CAM achieves the
best performance on MS. The experimental results are shown in Table 2.4 for CNNs
and transformers. ExPerturbation (R. Fong et al. 2019) is expected to perform best in
insertion because its optimization objective is very similar to this evaluation metric,
using blurring for masked regions. However, ExPerturbation (ibid.) only performs
best on ResNet50. TIBAV (Chefer et al. 2021), which is designed for transformers,
outperforms the other methods on DeiT and ViT. According to the results of Inser-
tion/Deletion, Opti-CAM has low performance, but there is no clear winner on either
CNNs or transformers.

METHOD
RESNET50 VGG16 VIT-B DEIT-B

I↑ D↓ I↑ D↓ I↑ D↓ I↑ D↓
Fake-CAM 50.7 28.1 46.1 26.9 57.4 33.3 57.5 34.2

Grad-CAM 66.3 14.7 64.1 11.6 62.9 19.8 61.8 17.5
Grad-CAM++ 66.0 14.7 62.9 12.2 56.7 29.3 60.5 21.9
Score-CAM 65.7 16.3 62.5 12.1 66.5 15.1 60.6 24.4
XGrad-CAM 66.3 14.7 64.1 11.7 55.6 26.5 55.2 31.1
Layer-CAM 67.0 14.2 58.3 6.4 62.9 14.6 61.6 21.2
ExPerturbation 70.7 15.0 61.1 15.0 64.4 18.4 62.1 27.0
Ablation-CAM 65.9 14.6 63.8 11.4 - - - -
RawAtt - - - - 62.2 17.9 56.3 29.3
Rollout - - - - 64.8 15.2 56.7 32.8
TIBAV - - - - 66.1 14.1 63.7 16.3
Opti-CAM (ours) 62.0 19.7 59.2 11.0 60.5 22.0 59.2 22.8

Table 2.4: I/D: insertion/deletion (Vitali et al. 2018) scores on ImageNet validation
set; ↓ / ↑: lower / higher is better.

Insertion/Deletion include 224 steps of binarization, with a set of 224 pixels being
inserted/deleted at each step. If these pixels are all inserted over a single small area,
the effect on the classifier is more immediate than when sparsely inserting pixels
over multiple areas. The same observation holds for deletion. By contrast, Opti-CAM
attempts to find regions that contribute to the classification as a whole. There is no
guarantee that those regions are effective when used in isolation.

To further understand the behavior of Opti-CAM, we investigate in Figure 2.3 examples
where Score-CAM succeeds (insertion score greater than 90 and deletion score less
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than 10) and Opti-CAM fails (insertion score less than 70 and deletion score greater
than 15). Compared with Score-CAM, the saliency maps obtained by Opti-CAM are
more spread out and highlight several parts of the object and background context.
In most of the cases, Opti-CAM fails I/D because it not only finds the object but also
attaches importance to the background.

Original Opti-CAM Score-CAM Original Opti-CAM Score-CAM

gas pump I↑:66.3, D↓:19.4 I↑:94.2, D↓:9.4 worm fence I↑:69.7, D↓:16.8 I↑:91.9, D↓:4.4
AG↑:100.0, AD↓:0.0 AG↑:0.0, AD↓:0.0 AG↑:73.2, AD↓:0.0 AG↑:0.0, AD↓:28.8

staffordshire terrier I↑:62.1, D↓:32.2 I↑:93.4, D↓:8.2 jacamar I↑:66.3, D↓:17.3 I↑:94.6, D↓:9.9
AG↑:41.3, AD↓:0.0 AG↑:0.0, AD↓:0.3 AG↑:91.4, AD↓:0.0 AG↑:56.5, AD↓:0.0

Irish water spaniel I↑:52.6, D↓:18.8 I↑:90.5, D↓:8.6 manhole cover I↑:65.8, D↓:29.6 I↑92.7, D↓:9.1
AG↑:86.4, AD↓:0.0 AG↑:65.1, AD↓:0.0 AG↑:24.0, AD↓:0.0 AG↑:0.0, AD↓:59.9

Figure 2.3: Failure examples of Opti-CAM regarding insertion/deletion.

We argue that this is not a failure. As we will see in our localization experiment in
Table 2.5 indicates, the background is useful in discriminating a class. Often, the
network recognizes the background better than the object itself. For example, a gas
pump is likely to be seen with a truck, and a hare is often seen on grass. Several parts
of the object are highlighted by Opti-CAM for the worm fence, terrier dog, hare, and
manhole cover. Finally, several instances of spaniel dog are found by Opti-CAM.

Object localization Localization metrics are used to measure the precision of
saliency maps relative to groundtruth bounding boxes of the foreground object of
interest. These metrics originate from weakly supervised localization (WSOL). How-
ever, the objectives of WSOL and explaining the decision of a DNN are not necessarily
aligned, since context may play an important role in the decision (Shetty et al. 2019,
Rao et al. 2022).

To investigate the relative importance of the object and its context, we measure classi-
fication metrics when using the bounding box B itself as a saliency map as well as its
complement I \ B , where I is the image. We also evaluate the intersection B ∩S of the
saliency map S with the bounding box and with its complement (S \ B).
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As shown in Table 2.5, the ground truth region of the object is not the only one re-
sponsible for the network decision. For example, the bounding box fails both when
used as a saliency map itself and when combined with any saliency map, by harming
all classification metrics. Even the complement is more effective than the bounding
box itself, either alone or when combined. These findings support the hypothesis
that localization metrics based on the ground truth bounding box are not necessarily
appropriate for evaluating explanations of network decisions. Classification metrics
are clearly more appropriate in this sense.

METHOD
AD↓ AG↑ AI↑

S B∩S S\B S B∩S S\B S B∩S S\B

S := B 67.2 – – 2.3 – – 9.2 – –
S := I \ B 44.0 – – 2.8 – – 16.3 – –

Fake-CAM 0.5 67.2 44.1 0.7 2.3 2.8 42.0 9.2 18.9

Grad-CAM 15.0 72.6 52.1 15.3 1.8 6.0 40.4 8.4 19.4
Grad-CAM++ 16.5 72.9 53.1 10.6 1.6 4.1 35.2 7.3 17.1
Score-CAM 12.5 71.5 50.5 16.1 2.2 6.3 42.5 8.6 20.8
Ablation-CAM 15.1 72.8 52.1 13.5 1.7 5.6 39.9 7.8 19.0
XGrad-CAM 14.3 72.6 51.4 15.1 1.8 6.0 42.1 8.0 20.1
Layer-CAM 49.2 84.2 74.4 2.7 0.4 1.2 12.7 4.4 7.3
ExPerturbation 43.8 81.6 71.0 7.1 1.4 3.2 18.9 5.6 11.1
Opti-CAM (ours) 1.4 62.5 34.8 66.3 8.7 25.8 92.5 18.6 47.1

Table 2.5: Bounding box study. Classification metrics on ImageNet validation set
using VGG16. B : ground-truth box used by localization metrics; I : entire
image; S: saliency map. AD/AI: average drop/increase (Chattopadhay et al.
2018); AG: average gain (ours); ↓ / ↑: lower / higher is better; bold: best,
excluding Fake-CAM.

2.7.2 Weakly Supervised Approach
Several works measure the localization ability of saliency maps, using metrics from the
weakly -supervised object localization (WSOL) task. While we show that localization of
the object and classifier interpretability are not well aligned as tasks, we still provide lo-
calization results. We use the official metric (OM), localization error (LE), pixel-wise F1

score, box accuracy (BoxAcc) (Choe et al. 2020), standard pointing game (SP) (J. Zhang
et al. 2017), energy pointing game (EP) (H. Wang, Du, et al. 2019) and saliency metric
(SM) (Dabkowski et al. 2017) on the ILSVRC201410 dataset. The goal of these met-
rics is to compare the saliency maps with bounding boxes around the object of interest.

We evaluate the localization ability of saliency maps obtained by our Opti-CAM and
we compare with other attribution methods quantitatively. Table 2.6 and Table 2.7
report localization metrics on ImageNet. We observe different behavior in different

10https://www.image-net.org/challenges/LSVRC/2014/index#
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metrics. In particular, Opti-CAM on ResNet and VGG performs best on OM and LE
but poorly on the remaining metrics. On transformers, Opti-CAM performs best on
OM, LE, F1, and SM.

METHOD
RESNET50 VGG16

OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓ OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓
Fake-CAM 63.6 54.0 57.7 47.9 99.8 28.5 0.98 64.7 54.0 57.7 47.9 99.8 28.5 1.07

Grad-CAM 72.9 65.8 49.8 56.2 69.8 33.3 1.30 71.1 62.3 42.0 54.2 64.8 32.0 1.39
Grad-CAM++ 73.1 66.1 50.4 56.2 69.9 33.1 1.29 70.8 61.9 44.3 55.2 66.2 32.3 1.38
Score-CAM 72.2 64.9 49.6 54.5 68.7 32.4 1.25 71.2 62.5 45.3 58.5 68.2 33.4 1.40
Ablation-CAM 72.8 65.7 50.2 56.1 69.9 33.1 1.26 71.3 62.6 43.2 56.2 65.7 32.7 1.39
XGrad-CAM 72.9 65.8 49.8 56.2 69.8 33.3 1.30 70.8 62.0 41.9 53.5 64.4 31.6 1.41
Layer-CAM 73.1 66.0 50.1 55.5 70.0 33.0 1.29 70.5 61.5 28.0 54.7 65.0 32.4 1.45
ExPerturbation 73.6 66.6 37.5 44.2 64.8 38.2 1.59 74.1 66.4 37.8 43.3 62.7 36.1 1.74

Opti-CAM 72.2 64.8 47.3 49.2 59.4 30.5 1.34 69.1 59.9 44.1 51.2 61.4 30.7 1.34

Table 2.6: Localization metrics on ImageNet validation set. OM: official metric; LE:
localization error; F1: pixel-wise F1 score; BA: box accuracy; SP: standard
pointing game; EP: energy pointing game; SM: saliency metric. ↓ / ↑: lower /
higher is better. Bold: best, excluding Fake-CAM.

METHOD
ViT-B DeiT-B

OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓ OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓
Fake-CAM 62.8 54.0 57.7 47.9 99.8 28.6 0.87 61.4 54.0 57.7 47.9 99.8 28.7 0.83

Grad-CAM 79.6 74.3 29.4 45.0 58.1 31.0 3.27 65.5 60.3 44.3 47.2 62.8 30.2 1.20
Grad-CAM++ 84.2 80.6 14.8 23.8 51.4 27.3 4.15 70.6 67.2 34.3 43.6 57.7 30.3 2.14
Score-CAM 77.6 71.6 46.0 54.3 66.1 33.1 3.14 79.9 76.2 31.9 43.8 63.4 32.2 3.14
XGrad-CAM 82.0 76.9 19.6 41.3 52.8 28.5 3.31 82.0 78.4 19.5 44.1 53.4 28.8 3.03
Layer-CAM 70.7 63.9 20.6 50.5 60.7 32.6 1.44 80.2 77.3 17.6 50.8 62.7 35.1 3.15
ExPerturbation 71.5 64.9 35.9 44.6 62.3 35.3 1.34 69.9 64.3 36.2 44.2 63.1 35.5 1.16
RawAtt 72.4 64.8 18.5 50.4 55.4 31.6 1.68 73.5 68.2 5.9 48.1 46.5 27.3 1.91
Rollout 67.6 58.8 36.9 50.7 57.8 30.0 1.16 63.9 57.0 27.8 47.9 36.5 27.2 0.94
TIBAV 70.1 63.1 26.6 58.8 66.1 35.0 1.23 68.2 62.2 28.1 59.6 64.1 33.5 1.08

Opti-CAM (ours) 64.4 54.6 54.5 48.0 58.2 28.7 0.98 62.3 55.1 53.9 48.0 55.1 28.8 0.84

Table 2.7: Localization metrics with ViT and DeiT on ImageNet validation set. OM:
official metric; LE: localization error; F1: pixel-wise F1 score; BA: box accu-
racy; SP: standard pointing game; EP: energy pointing game; SM: saliency
metric. ↓ / ↑: lower / higher is better. Bold: best, excluding Fake-CAM.

Metrics, where Opti-CAM does not perform well, are mostly the ones that penalize
saliency maps that are more spread out. For example, SP and EP penalize saliency
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outside the ground truth bounding box of an object. This is not necessarily a weakness
of Opti-CAM, because rather than weakly supervised object localization, the objective
here is to explain how the classifier works.

2.8 Ablation study
We perform an ablation study of different choices of the objective function (2.6) and
normalization (1.7) of the saliency map.

Normalization function For normalization function n (2.6), we investigate three
choices:

range : n(A) := A−min A
max A−min A (2.9)

maximum : n(A) := A
max A (2.10)

sigmoid : n(ai j ) := 1

1+e−ai j
, (2.11)

where ai j is element (i , j ) of matrix A. The default is (2.9), normalizing by the range
of values in the saliency map, as in Score-CAM (1.7); while (2.10) normalizes by the
maximum value and (2.11) by the sigmoid function element-wise.

Objective function We refer to the default definition of F c
`

(2.6) as Mask because it
maximizes the logit for the masked image. We also consider an alternative definition of
objective function F c

`
, which encourages the masked version to preserve the prediction

of original image:

F c
`(x; )̂ :=−∣∣gc ( f (x))− gc ( f (x¯n((S`(x; )̂))))

∣∣. (2.12)

This function is named Diff as it minimizes the difference of logits between the masked
and the original image.

Results Table 2.8 shows classification metrics for the different choices of Opti-CAM,
as well as comparison to other methods for reference, for the small subset of ImageNet
validation set.

We observe that the choice of normalization function has little effect overall and
Sigmoid offers lower performance. Note that the minimum value of saliency maps is
often zero or close to zero: Saliency maps are non-negative as convex combinations
of non-negative feature maps (2.4). In contrast, the choice of loss function has more
impact on performance, and we observe that Mask (2.6) is superior on all cases.
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METHOD F c
`

n AD↓ AG↑ AI↑
Fake-CAM 0.5 0.7 42.1

Grad-CAM 15.0 15.3 40.4
Grad-CAM++ 16.5 10.6 35.2
Score-CAM 12.5 16.1 42.6
Ablation-CAM 15.1 13.5 39.9
XGrad-CAM 14.3 15.1 42.1
Layer-CAM 49.2 2.7 12.7
ExPerturbation 43.8 7.1 18.9

Opti-CAM
Mask (2.6) Range (2.9) 1.4 66.3 92.5
Diff (2.12) Range (2.9) 7.1 18.5 54.9

Opti-CAM
Mask (2.6) Max (2.10) 1.6 66.2 90.3
Diff (2.12) Max (2.10) 6.8 17.8 54.5

Opti-CAM
Mask (2.6) Sigmoid (2.11) 5.0 18.3 57.5
Diff (2.12) Sigmoid (2.11) 6.5 10.0 45.3

Table 2.8: Ablation study using VGG16 on 1000 images of ImageNet validation set.
AD/AI: average drop/increase (Chattopadhay et al. 2018); AG: average gain
(ours); ↓ / ↑: lower / higher is better; bold: best, excluding Fake-CAM.

2.9 Discussion
Opti-CAM is constructed following the definition of CAM-based saliency maps. In
particular, according to Equation 1.3, we optimize the variable w c

k to construct a
saliency map Sc

`
(u), maximizing the predicted probability of the explanation obtained

by performing element-wise multiplication with an input image.

Classifier-Centric Explanations As a consequence of optimizing prediction prob-
ability of explanation maps, our approach highlights the salient regions in the image.
We observe in CNNs, salient information is spread across the input image and not
often centered within the object of interest. These models learn biases within data,
and use context to construct a prediction. Studies have demonstrated instances in
fine-grained image classification, where the model learns the background of images
instead of the object of interest (Petryk et al. 2022). Classifier-centric explanations can
demonstrate situations where this is the case. Moreover, classifier-centric explana-
tions do not leave space for human interpretations about the inference process of a
model. Thus removing one factor of bias towards interpretation.

Localization Properties A direct consequence of generating classifier-centric ex-
planations, is a trade-off in localization properties. Compared to current attribution
methods, Opti-CAM fails in this regard. Preliminary studies suggesting the evaluation
of saliency maps based on localization, can be traced back to the work by (Shetty
et al. 2019, B. Zhou, Bau, et al. 2019, Rao et al. 2022). This failure however is desired.
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Furthermore, it highlights that context is important towards prediction of a model;
and as such, localization is an ill-fitted requirement to assess interpretability.

Computational Complexity Opti-CAM generates an optimized saliency map for
every image. However, in comparison to current high-performing CAM methods,
the trade-off between complexity and performance favors our approach. In detail,
methodologies such as Ablation-CAM and Score-CAM require as many forward passes
as the number of channels in the target layer of interest. In contrast, our approach
requires as much as a hundred optimization steps. Additionally, these optimization
steps are not as complex as a complete forward pass through the network: our op-
timization objective requires forwarding the product of the optimization variable,
with the feature maps from our target layer until the classifier. Therefore, Opti-CAM
requires less memory resources; as well as being faster in running time.

Average Gain Current classification/recognition metrics are not robust and com-
plete, to differentiate interpretability properties of different approaches. This is
demonstrated in the work of (Poppi et al. 2021) where Fake-CAM achieves almost
perfect AD but fails completely on AI. Average Gain is designed to address this remark.
In particular, Average Gain acts as the complement of AD: we measure the positive
impact that an explanation poses using Average Gain. Conversely, we observe that
AI is a metric that on itself does not answer to anything in particular: on a real world
application we do not care in how many instances the explanation map is better than
an input image; we focus on the effect an explanation has over the classifier. This
efficiently covered with AD and AG

2.10 Conclusion
In this chapter we propose Opti-CAM, a CAM-based methodology to generate saliency
maps highlighting the most relevant image patches describing a classification accord-
ing to a classifier. Our approach builds upon the definition of CAM attributions to
optimize attribution map predicted probabilities.

Opti-CAM combines ideas of different saliency map generation methods, which are
masking-based and CAM-based. Our method optimizes the saliency map at inference
given a single input image. It does not require any additional data or training any
other network, which would need interpretation too.

While Opti-CAM crafts a saliency map in the image space, it does not need any reg-
ularization. This is because the saliency map is expressed as a convex combination
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of feature maps, and we only optimize one vector over the feature dimensions. The
underlying assumption is that of all CAM-based methods: feature maps contain acti-
vations at all regions that are of interest for the classes that are present. Opti-CAM is
more expensive than non-iterative gradient-based methods but as fast or faster than
gradient-free methods that require as many forward passes as channels.

Opti-CAM brings impressive performance improvement over the state of the art ac-
cording to the most important classification metrics on several datasets. The saliency
maps are more spread out compared with those of the competition, attending to larger
parts of the object, multiple instances and background context, which may be helpful
in classification.

Our new classification metric AG aims to be paired AD as a replacement of AI and
resolves a long-standing problem in evaluating attribution methods, without further
increasing the number of metrics. We provide strong evidence supporting that the use
of ground-truth object bounding boxes for localization is not necessarily optimal in
evaluating the quality of a saliency map, because the primary objective is to explain
how a classifier works.
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3.1 Introduction
Another way to approach interpretability can be pointed towards the current advances
in recognition in general. In particular, with the introduction of the transformer ar-
chitecture (Vaswani et al. 2017) a switch in the paradigm occurred where the best
performing architectures contain the self-attention module as a building block. More-
over, with the proposal of the Vision Transformer (Dosovitskiy et al. 2020) transformers
were adopted into computer vision. This module gained prominence as it allowed
models to push the boundaries in existing benchmarks. This led to an expansion with
models such as Swin-T (Ze Liu et al. 2021), LeViT Graham et al. 2021. Conversely,
hybrid architectures combining ideas from both CNN and transformers can be ob-
served like Conformer (Peng et al. 2021), Patchconvnet (Touvron, Cord, El-Nouby, et al.
2021), while on another hand a modernization of CNNs in the shape of ConvNeXt
(Zhuang Liu et al. 2022) drew inspiration from these models, whilst addressing their
shortcomings in downstream tasks.

Although these models have pushed visual recognition to new frontiers, their inter-
pretable properties still require further exploration. Conventional interpretability
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methodologies for CNNs do not translate properly into their domain, all the while the
explanations obtained from these methods (Abnar et al. 2020) do not appear to have a
proper evaluation protocol, resulting in research aimed at improved visualizations
and their assesment (Chefer et al. 2021).

In this chapter we study the correlation between CAM and one such attention visu-
alization proposal that is the raw attention found in the classification (CLS) token
(Devlin et al. 2018). In particular, we note that self attention is defined for all patch
tokens including CLS, however we can generate cross attention between this token
and the feature maps found at any given depth of a CNN; this being expressed in via
linear combination of feature maps with this token, ultimately resembling a class
agnostic CAM. As an extension of this, we propose the inclusion of a cross-attention
module used to train this token as a replacement of GAP (M. Lin et al. 2013), onto al-
ready trained models boosting both their interpretable properties, while maintaining
recognition performance.

3.2 Cross Attention
Let matrix F` ∈ ℜp`×d` be a reshaping of feature tensor F` at layer `, where p` :=
w`h` is the number of patch tokens without CLS, and let q` ∈ ℜd` be the CLS token
embedding at layer `. By focusing on the cross attention only between the CLS (query)
token q` and the patch (key) tokens F` and by ignoring projections WQ ,WK ,WV for
simplicity, attention A (1.1) is now a 1× p` matrix that can be written as a vector
a ∈ℜp`

a = A> = softmax

(
F`q`√

d`

)
. (3.1)

Here, F`q` expresses the pairwise similarities between the global CLS feature q` and
the local patch features F`. Now, by replacing q` by an arbitrary vector al pha ∈
ℜd` and by writing the feature matrix as F` = (f1

`
. . . fd`

`
) where fk

`
= vec(F k

`
) ∈ ℜp` for

channel k, attention (3.1) becomes

a = h`(F`α) = h`

(∑
k
αk fk

`

)
. (3.2)

This takes the same form as (1.3), with feature maps F k
`

being vectorized into fk
`

and

the activation function is defined as h`(x) = softmax(x/
√

d`). Eq. (3.2) is visualized in
Figure 3.1. We thus observe the following.

Pairwise similarities between one query and all patch token embeddings
in cross attention are the same as a linear combination of feature maps in
CAM-based saliency maps, where the weights are determined by the elements
of the query.
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F

α

* =

CA / CAM

= α1 * αd *+ +…

F1 Fd

Figure 3.1: Visualization of eq. (3.2). On the left, a feature tensor F ∈ℜw×h×d is mul-
tiplied by the vector α ∈ ℜd in the channel dimension, like in 1×1 con-
volution, where w ×h is the spatial resolution and d is the number of
channels. This is cross attention (CA) (Dosovitskiy et al. 2020) between the
query α and the key F. On the right, a linear combination of feature maps
F 1, . . . ,F d ∈ℜw×h is taken with weights α1, . . . ,αd . This is a class activation
mapping (CAM) (B. Zhou, Khosla, et al. 2016) with class agnostic weights.
Eq. (3.2) expresses the fact that these two quantities are the same, pro-
vided that α= (α1, . . . ,αd ) and F is reshaped as F = (f1 . . . fd ) ∈ℜp×d , where
p = wh and fk = vec(F k ) ∈ℜp is the vectorized feature map of channel k.

As it stands, one difference between (1.3) and (3.2) is that (3.2) is class agnostic,
although it could be extended by using one query (weight) vector per class. For
simplicity, we choose the class agnostic form in the following.

Pooling, or masking We are thus motivated to integrate an attention mechanism
into any network such that making a prediction and explaining (localizing) it are
inherently connected. In particular, considering cross attention only between CLS and
patch tokens (3.1), equation (1.2) becomes

CA`(q`,F`) := F>
` a = F>

` h`(F`q`) ∈ℜd` . (3.3)

By writing the transpose of feature matrix as F>
`
= (φ1

`
. . .φp`

`
) where φi

`
∈ ℜd` is the

feature of patch i , this is a weighted average of the local patch features F>
`

with
attention vector a = (a1, . . . , ap`) expressing the weights:

CA`(q`,F`) := F>
` a =∑

i
aiφ

i
`. (3.4)

We can think of it as a feature reweighting or soft masking in the feature space, followed
by GAP.

Now, considering that a is obtained exactly as CAM-based saliency maps (3.2), this
operation is similar to occlusion (masking)-based methods (Vitali et al. 2018; R. C.
Fong et al. 2017; R. Fong et al. 2019; Schulz et al. 2020; Ribeiro et al. 2016; H. Wang,
Du, et al. 2019; H. Zhang et al. 2023) and evaluation metrics (Chattopadhay et al. 2018;
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Figure 3.2: Cross Attention Stream (CA-Stream) applied to ResNet-based architec-
tures. Given a network f , we replace global average pooling (GAP) by a
learned, attention-based pooling mechanism implemented as a stream in
parallel to f . The feature tensor F` ∈ℜp`×d` (key) obtained by stage Res-`
of f interacts with a CLS token (query) embedding q` ∈ℜd` in block CA-`,
which contains cross attention (3.3) followed by a linear projection (3.7) to
adapt to the dimension of F`+1. Here, p` is the number of patches (spatial
resolution) and d` the embedding dimension. The query is initialized by a
learnable parameter q0 ∈ℜd0 , while the output q5 of the last cross attention
block is used as a global image representation into the classifier.

Vitali et al. 2018), where a CAM-based saliency map is commonly used to mask the
input image.

We thus observe the following:

Attention-based pooling is a form of feature reweighting or soft masking in
the feature space followed by GAP, where the weights are given by a class
agnostic CAM-based saliency map.

3.3 Cross Attention Stream
Motivated by the observations above, we design a Cross Attention Stream (CA-Stream)
in parallel to any network. It takes input features at key locations of the network and
uses cross attention to build a global image representation and replace GAP before the
classifier. An example is shown in Figure 3.2, applied to a ResNet-based architecture.

Architecture More formally, given a network f , we consider points between blocks
of f where critical operations take place, such as change of spatial resolution or
embedding dimension, e.g. between stages for ResNet. We decompose f at these
points as

f = g ◦GAP ◦ fL ◦ · · · ◦ f0 (3.5)

such that features F` ∈ℜp`×d` of layer (stage) ` are initialized as F−1 = x and updated
according to
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F` = f`(F`−1) (3.6)

for 0 ≤ ` ≤ L. The last layer features FL are followed by GAP and g : ℜdL →ℜC is the
classifier, mapping to the logit vector y. As in (1.3), p` is the number of patch tokens
and d` the embedding dimension of stage `.

In parallel, we initialize a classification token embedding as a learnable parameter
q0 ∈ℜd0 and we build a sequence of updated embeddings q` ∈ℜd` along a stream that
interacts with F` at each stage `. Referring to the global representation q` as query
or CLS and to the local image features F` as key or patch embeddings, the interaction
consists of cross attention followed by a linear projection W` ∈ℜd`+1×d` to account for
changes of embedding dimension between the corresponding stages of f :

q`+1 =W` ·CA`(q`,F`), (3.7)

for 0 ≤ `≤ L, where CA` is defined as in (3.3).
Image features F0, . . . ,FL do not change by injecting our CA-Stream into network f .
However, the final global image representation and hence the prediction do change.
In particular, at the last stage L, qL+1 is used as a global image representation for
classification, replacing GAP over FL . The final prediction is g (qL+1) ∈ℜC . Unlike GAP,
the weights of different image patches in the linear combination are non-uniform,
enhancing the contribution of relevant patches in the prediction.

Training In this sense, the network f is pretrained and remains frozen while we
learn the parameters of our CA-Stream on the same training set as one used to train f .
The classifier is kept frozen too. Referring to (3.5), f0, . . . , fL and g are fixed, while GAP is
replaced by learned weighted averaging, with the weights obtained by the CA-Stream.

Inference As it stands, CA-Stream is a modification of the baseline architecture, i.e.,
an attention-based pooling mechanism that replaces GAP during inference, to enhance
the contribution of relevant image regions in the prediction. We are interested in
investigating the interpretability properties of this modification. We therefore employ
existing post-hoc, CAM-based interpretability methods to generate saliency maps
with both baseline GAP and CA-Stream. Interpretability metrics are compared as well
as classification accuracy.

3.4 Experimental Set-Up
We evaluate the interpretability and recognition capabilities of our approach. In
particular, we generate explanations following current state-of-the art post-hoc inter-
pretability methods derived from CAM (B. Zhou, Khosla, et al. 2016). We compare the
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properties of the backbone network f with and without our CA-Stream, where f is
pretrained and fixed.

Training We train and evaluate our models on the ImageNet ILSVRC-2012 dataset
(Russakovsky et al. 2015), on the training and validation splits respectively. Thus, we
experiment with ResNet-based architectures (He, X. Zhang, et al. 2016) such as ResNet-
18 and ResNet-50, and ConvNeXt based architectures (Zhuang Liu et al. 2022) such as
ConvNeXt-Small and ConvNeXt-Base. We aim at learning our CA-Stream, generating
a CLS token that interacts with feature maps at different stages of network f , to serve
as an attention-based pooling mechanism in order to interpret the predictions of f .
Therefore, we experiment with pretrained models1, that we keep frozen while the
parameters of the CA-Stream are optimized. Moreover, we present experiments on
the bird dataset: CUB-200-2011 Wah et al. 2011 and on PASCAL VOC 2012 dataset
Everingham, Eslami, et al. 2015. Here the ResNet-50 network is fine-tuned to these
dataset as baseline. Then, our CA-Stream is learned as for ImageNet.

Implementation Details Following the training recipes from the pytorch models
2, we choose the ResNet protocol given its simplicity. Thus, we train over 90 epochs
with SGD optimizer with momentum 0.9 and weight decay 10−4. We start our training
with a learning rate of 0.1 and decrease it every 30 epochs by a factor of 10. Our mod-
els are trained on 8 V100 GPUs with a batch size 32 per GPU, thus global batch size 256.

We follow the same protocol for both ResNet and ConvNeXt, though a different
protocol might lead to improvements on ConvNeXt.

Evaluation We employ existing post-hoc interpretability methods to generate saliency
maps with and without CA-Stream and compare interpretability metrics as well as
classification accuracy. Regarding interpretability methods, we use Grad-CAM (Sel-
varaju et al. 2016), Grad-CAM++ (Chattopadhay et al. 2018) and ScoreCAM (H. Wang,
Du, et al. 2019). We note that the evaluation is performed on the entire validation set,
unlike the previous approaches.

Following Opti-CAM (Chapter 2), we use a number of classification metrics for inter-
pretability. In particular, we consider the changes in predictive power measured by
average drop (AD) (Chattopadhay et al. 2018) and average gain (AG) section 2.4, the
proportion of better explanations measured by average increase (AI) (ibid.) and the
impact of different extent of masking measured by insertion (I) and deletion (D) (Vitali
et al. 2018).

1https://pytorch.org/vision/0.8/models.html
2https://github.com/pytorch/vision/tree/main/references/classification
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3.5 Qualitative Evaluation
We show saliency maps obtained by different interpretability methods using either GAP

or CA-Stream, as well as the class-agnostic raw attention coming from our CA-Stream,
see Figure 3.3.
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Figure 3.3: Comparison of saliency maps generated by different CAM-based meth-
ods, using GAP and our CA-Stream, on ImageNet images. The raw attention
is the one used for pooling by CA-Stream.

We observe that the raw attention focuses on objects of interest in the images. In
general, saliency maps obtained with CA-Stream are similar but tend to cover larger
regions of the object or more instances compared with GAP.

Indeed, the differences in saliency maps should not be large, as both methods share
the same features maps F k

`
and only the weight coefficientsαc

k differ. Despite the small
differences, the following quantitative results show that CA-Stream has a significant
impact on the interpretability metrics.

In addition, Figure 3.4 shows examples of images from the MIT 67 Scenes dataset
(Quattoni et al. 2009) along with raw attention maps obtained by CA-Stream. These
images come from four classes that do not exist in ImageNet and the network sees
them at inference for the first time. Nevertheless, the attention maps focus on objects
of interest in general.
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Corridor Greenhouse Pool Inside Wine Cellar
Input image Raw Attention Input image Raw Attention Input image Raw Attention Input image Raw Attention

Figure 3.4: Raw attention maps obtained from our CA-Stream on images of the MIT
67 Scenes dataset (Quattoni et al. 2009) on classes that do not exist in
ImageNet. The network sees them at inference for the first time.

3.6 Quantitative Evaluation
Here we measure the effect of employing our CA-Stream approach to pool features vs.
the baseline GAP on the faithfulness of explanations, using classification metrics for
interpretability. Results are reported in Table 3.1 for ImageNet and Table 3.2 for CUB
and Pascal VOC.
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NETWORK METHOD POOL AD↓ AG↑ AI↑ I↑ D↓

RESNET-18

Grad-CAM
GAP 17.64 12.73 41.21 63.13 10.66
CA 16.99 17.22 44.95 65.94 10.68

Grad-CAM++
GAP 19.05 11.16 37.99 62.80 10.75
CA 19.02 14.76 40.82 65.53 10.82

Score-CAM
GAP 13.64 12.98 44.53 62.56 11.37
CA 11.53 18.12 50.32 65.33 11.51

RESNET-50

Grad-CAM
GAP 13.04 17.56 44.47 72.57 13.24
CA 12.54 22.67 48.56 75.53 13.50

Grad-CAM++
GAP 13.79 15.87 42.08 72.32 13.33
CA 13.99 19.29 44.60 75.21 13.78

Score-CAM
GAP 8.83 17.97 48.46 71.99 14.31
CA 7.09 23.65 54.20 74.91 14.68

CONVNEXT-S

Grad-CAM
GAP 42.99 1.69 12.60 48.42 30.12
CA 22.09 14.91 32.65 84.82 43.02

Grad-CAM++
GAP 56.42 1.32 10.35 48.28 33.41
CA 51.87 9.40 20.55 84.28 52.58

Score-CAM
GAP 74.79 1.29 10.10 47.40 38.21
CA 64.21 8.81 18.96 82.92 57.46

CONVNEXT-B

Grad-CAM
GAP 33.72 2.43 15.25 52.85 29.57
CA 19.45 13.96 32.89 86.38 45.29

Grad-CAM++
GAP 34.01 2.37 15.60 52.83 29.17
CA 36.69 8.00 21.95 85.39 53.42

Score-CAM
GAP 43.55 2.23 15.67 50.96 39.49
CA 23.51 11.04 27.35 83.41 60.53

Table 3.1: Interpretability metrics of CA-Stream vs. baseline GAP for different net-
works and interpretability methods on ImageNet.

Table 3.1 shows that for different networks, CAM-based interpretability methods and
dataset, CA-Stream provides consistent improvements over GAP in terms of AD, AG, AI
and I metrics, while performing lower on D.

Deletion has raised concerns in previous works (section 2, Chefer et al. 2021). Indeed,
it gradually replaces pixels by black, unlike insertion which starts from a blurred image.
This poses the problem of out-of-distribution (OOD) data (Gomez et al. 2022, Hase
et al. 2021, Qiu et al. 2021), possibly introducing bias related to the shape of black
regions (Rong et al. 2022). Moreover, non-spread saliency maps tend to perform better
(as seen on section 2), which is likely the reason for lower performance.
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PASCAL VOC 2012 CUB-200-2011

POOLING MAP↑ POOLING ACC↑
GAP 78.32 GAP 76.96
CA 78.35 CA 75.90

INTERPRETABILITY METRICS

METHOD POOLING AD↓ AG↑ AI↑ I↑ D↓ AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM
GAP 12.61 9.68 27.88 89.10 59.39 10.87 10.29 45.81 65.71 6.17
CA 12.77 15.46 34.53 88.53 59.16 10.44 17.61 53.54 74.60 6.56

Grad-CAM++
GAP 12.25 9.68 27.62 89.34 54.23 11.35 9.68 44.32 65.64 5.92
CA 12.28 16.76 34.87 89.02 53.34 11.01 16.50 51.63 74.64 6.21

Score-CAM
GAP 14.8 6.76 36.41 71.10 39.95 9.05 10.62 48.90 65.58 5.94
CA 10.96 21.35 43.82 89.21 51.44 6.37 19.50 60.41 74.22 2.14

Table 3.2: Recognition and Interpretability metrics: Evaluation between CA-Stream
vs. baseline GAP for ResNet-50 on CUB and Pascal dataset.

Results on CUB in Table 3.2 show that our CA-Stream consistently provides improve-
ments when the model is finetuned on a smaller fine-grained dataset.

Regarding Pascal VOC, the results for Score-CAM are similar to the ones on ImageNet
and CUB, with consistent improvements on all metrics but Deletion. However, Grad-
CAM and Grad-CAM++ only provide improvements on Average Gain and Average
Increase. Average Drop, Insertion and Deletion are very similar. In fact, Pascal VOC is
a multi-class dataset and our CA-Stream is class agnostic. Thus, the attention-based
pooling is the same for different class for a given image, which reduces the benefit of
our CA-Stream.

It is also interesting to observe the performance of Score-CAM, as it computes channel
weights αc

k in (1.3) without using gradients. In gradient-based methods, channel
weights are modified by CA-Stream due to modified backward gradient flow to features
through cross attention blocks rather than GAP. In Score-CAM however, channel
weights are only modified in the forward class probabilities computation, due to
attention.

3.6.1 Classification accuracy
Classification accuracy, number of parameters and GFLOPs for both our CA-Stream
and the baselines are reported in Table 3.3.
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ACCURACY AND PARAMETERS

NETWORK POOL GFLOPS #PARAM PARAM% ACC↑

RESNET-18
GAP 3.648 11.69M

3.71
67.28

CA 3.652 12.13M 67.54

RESNET-50
GAP 8.268 25.56M

27.27
74.55

CA 8.288 32.53M 74.70

CONVNEXT-S
GAP 17.395 50.22M

1.95
83.26

CA 17.400 51.20M 83.14

CONVNEXT-B
GAP 30.747 88.59M

1.96
83.72

CA 30.753 90.33M 83.51

Table 3.3: Accuracy and parameters of CA-Stream vs. baseline GAP for different net-
works and interpretability methods on ImageNet. #PARAM: total parameters;
PARAM%: percentage of CA-Stream parameters relative to backbone.

By adding our CA-Stream to the network, classification remains on par with the base-
line. Importantly, the network including the classifier remains frozen and the features
used for the global image representation remain fixed, meaning that any change in
accuracy is due to the attention-based pooling mechanism.

We further report the number of GFLOPs for one forward pass and the parameters
count of both methods. Our CA-Stream has little computation cost and the parameter
overhead depends on the embedding dimension because of projection W` in (3.7) and
is small in general, except for ResNet-50. Thus, with small overhead in resources, CA-
Stream achieves superior explanations of the classifier predictions, while maintaining
accuracy.

3.6.2 Ablation
We conduct ablation experiments on ResNet50 because of its modularity and ease
of modification. We investigate the effect of the cross attention block design, the
placement of the CA-Stream relative to the backbone network.

Cross attention block design Following transformers (Vaswani et al. 2017, Doso-
vitskiy et al. 2020), it is possible to add more layers in the cross attention block. We con-
sider a variant referred to as PROJ→CA, which uses linear projections W K

`
,W V

`
∈ℜd`×d`

on the key and value

CA`(q`,F`) := (F`W V
` )>h`(F`W K

` q`) ∈ℜd` , (3.8)

while equation (3.7) remains.

Results are reported in Table 3.4. We observe that the stream made of vanilla CA
blocks (3.3) offers slightly better accuracy than projections (3.8), while having less
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parameters. We also note that most of the computation takes place in the last residual
stages, where the channel dimension is the largest. To keep our design simple, we
choose the vanilla solution without projections (3.3) by default.

BLOCK TYPE #PARAMS ACCURACY

CA 6.96M 74.70
PROJ→CA 18.13M 74.41

Table 3.4: Different cross attention block design for CA-Stream. Classification accu-
racy and parameters using ResNet-50 on ImageNet. #PARAM: parameters of
CA-Stream only.

CA-Stream placement To validate the design of CA-Stream, we measure the effect
of its depth on its performance vs. the baseline GAP in terms of both classification
accuracy / number of parameters and classification metrics for interpretability. In
particular, we place the stream in parallel to the network f , starting at stage ` and
running through stage L, the last stage of f , where 0 ≤ `≤ L. Results are reported in
Table 3.5.

From the interpretability metrics as well as accuracy, we observe that stream con-
figurations that allow for iterative interaction with the network features obtain the
best performance, although the effect of stream placement is small in general. In
many cases, the lightest stream of only one cross attention block (S4 −S4) is inferior
to options allowing for more interaction. Since starting the stream at early stages has
little effect on the number of parameters and performance is stable, we choose to start
the stream in the first stage (S0 −S4) by default.

Class-specific CLS As discussed in section 3.2, the formulation of single-query
cross attention as a CAM-based saliency map (1.1) is class agnostic (single channel
weights αk ), whereas the original CAM formulation (1.3) is class specific (channel
weights αc

k for given class of interest c). Here we consider a class specific extension of
CA-Stream using one query vector per class. In particular, the stream is initialized by
one learnable parameter qc

0 per class c, but only one query (CLS token) embedding is
forwarded along the stream. At training, c is chosen according to the target class label,
while at inference, the class predicted by the baseline classifier is used instead.

Results are reported in Table 3.6. We observe that the class specific representation
for CA-Stream provides no improvement over the class agnostic representation, de-
spite the additional complexity and parameters. We thus choose the class agnostic
representation by default. The class specific approach is similar to (Touvron, Cord,
El-Nouby, et al. 2021) in being able to generate class specific attention maps, although
no fine-tuning is required in our case.
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ACCURACY AND PARAMETERS

PLACEMENT CLS DIM #PARAM ACC↑
S0 −S4 64 6.96M 74.70
S1 −S4 256 6.95M 74.67
S2 −S4 512 6.82M 74.67
S3 −S4 1024 6.29M 74.67
S4 −S4 2048 4.20M 74.63

INTERPRETABILITY METRICS

METHOD PLACEMENT AD↓ AG↑ AI↑ I↑ D↓

GRAD-CAM

S0 −S4 12.54 22.67 48.56 75.53 13.50
S1 −S4 12.69 22.65 48.31 75.53 13.41
S2 −S4 12.54 21.67 48.58 75.54 13.50
S3 −S4 12.69 22.28 47.89 75.55 13.40
S4 −S4 12.77 20.65 47.14 74.32 13.37

GRAD-CAM++

S0 −S4 13.99 19.29 44.60 75.21 13.78
S1 −S4 13.99 19.29 44.62 75.21 13.78
S2 −S4 13.71 19.90 45.43 75.34 13.50
S3 −S4 13.69 19.61 45.04 75.36 13.50
S4 −S4 13.67 18.36 44.40 74.19 13.30

SCORE-CAM

S0 −S4 7.09 23.65 54.20 74.91 14.68
S1 −S4 7.09 23.65 54.20 74.92 14.68
S2 −S4 7.09 23.66 54.21 74.91 14.68
S3 −S4 7.74 23.03 52.92 74.97 14.65
S4 −S4 7.52 19.45 50.45 74.19 14.46

Table 3.5: Effect of stream placement on accuracy, parameters and interpretability
metrics for ResNet-50 on ImageNet. S`−SL : CA-Stream runs from stage `
to L (last); #PARAM: parameters of CA-Stream only.

ACCURACY AND PARAMETERS

REPRESENTATION #PARAM ACC↑
Class agnostic 32.53M 74.70
Class specific 32.59M 74.68

INTERPRETABILITY METRICS

METHOD REPRESENTATION AD↓ AG↑ AI↑ I↑ D↓

Grad-CAM
Class agnostic 12.54 22.67 48.56 75.53 13.50
Class specific 12.53 22.66 48.58 75.54 13.50

Grad-CAM++
Class agnostic 13.99 19.29 44.60 75.21 13.78
Class specific 13.99 19.28 44.62 75.20 13.78

Score-CAM
Class agnostic 7.09 23.65 54.20 74.91 14.68
Class specific 7.08 23.64 54.15 74.99 14.53

Table 3.6: Effect of class agnostic vs. class specific representation on accuracy, pa-
rameters and interpretability metrics of CA-Stream for ResNet-50 and dif-
ferent interpretability methods on ImageNet. #PARAM: parameters of CA-
Stream only.
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3.7 Discussion
Class Agnostic Pooling On section 3.2 the groundwork relating to Cross Atten-
tion was established. In particular, the [CLS] token is able to capture class specific
information, or the information relating to the learned class. In our approach, we
opt to utilize the class agnostic representation, we specifically want the information
leading to top-1 predictions. Nevertheless, the implementation and usage of the
class-specific [CLS] token is still interesting, it allows for the visualization of multi-
ple instances of different classes in one image, without any extensive computational
requirements such as forward-backward passes, and learning.

Computational Complexity Additionally, our approach is designed to be efficient
in terms of computational cost. Its inclusion does not result in a significant increase in
parameter count for most models, excluding ResNet-50. This results from an increase
in Block Expansion values. This parameter acts as a multiplier controlling the size of
filter depth across different stages of this architecture. In detail, when we switch from
ResNet-18 to ResNet 50; this value increases from 1 in the former, to 4 in the latter.
Our approach introduces cross attention layers on stages where a change in feature
map depth occurs; therefore a sharp increase of Block Expansion value leads directly
to an increase of Cross-Attention Stream size. We acknowledge that in deeper ResNet
variants this overhead is similar to that encountered in ConvNeXt architectures.

Saliency Maps Visualization Our approach is not designed as a novel attribution
method, instead our [CLS ] representation improves predictive power. In particular,
when we generate attributions, the computation procedure is mostly the same be-
tween GAP and [CLS ], with the biggest difference coming from the pooling method
used. Since we obtain fairly similar recognition values, we argue that these two repre-
sentations are quite similar, thus attributions ought to be similar too.

Differences on Interpretability Metrics In contrast to the lack of significant
differences on visualization, we observe that our approach performs better than GAP

on interpretability evaluation. On one hand, since we use a training recipe special for
ResNet, we obtain a better accuracy reading with our approach. Since interpretability
metrics are related to the recognition capabilities of the classifier, this improvement on
explainability is expected. On the other hand, our approach achieves worse accuracy
results in ConvNeXt than baseline. However, its interpretability metrics are better.
Relating to the prior observation, we argue that if accuracy is low, then prediction
probability must be higher: the classifier must be more confident. This is sufficiently
demonstrated with the differences of average drop and average gain for all models.
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3.8 Conclusion
In this chapter we observe that attention-based pooling in transformers is the same
as forming a class agnostic CAM-based saliency map. This map is used to mask the
features before global average pooling, much like we mask inputs to confirm that
the prediction is due to a certain object. This observation establishes that transform-
ers have a built-in CAM-based interpretability mechanism and allows us to design
a similar mechanism for convolutional networks. Masking in feature space is much
more efficient than in the input space as it requires only one forward pass, although of
course it is not equivalent because of interactions within the network.

Although the saliency maps obtained with our CA-Stream are not very different from
those obtained with GAP, our approach improves a number of CAM-based inter-
pretability methods on a number of convolutional networks according to most in-
terpretability metrics, while preserving classification accuracy. By doing so, it also
enhances the differences in performance between interpretability methods, facili-
tating their evaluation. Further study may be needed to improve the differentiation
of saliency maps themselves, to possibly make a class specific representation more
competitive and to apply the approach to more architectures, including transformers.
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4.1 Introduction
A recurring issue faced by both neural networks and transformers is their inherent
lack of interpretability. These models are primarily optimized for high performance
in their designated tasks. Yet, reflecting upon the information that can be drawn out
of a model without too much effort; we observe that the gradient of deep models
displays the response of its parameters, to a given input. Many current interpretability
methods are constructed based on this observation.

However, the effective utilization of gradients in interpretability methods remains
a pressing question. How can we leverage gradient better?, previous interpretability
approaches have relied on the stand alone gradient information such as Guided Back-
propagation (Springenberg et al. 2014) and Smoothgrad (Smilkov et al. 2017). On
another hand as seen in previous chapters some CAM variants are based on gradient,
like Grad-CAM (Selvaraju et al. 2016), Grad-CAM++ (Chattopadhay et al. 2018) and
Axiom-CAM (Fu et al. 2020). Nevertheless, it is worth reflecting that gradient plays a
more prominent role during the training phase of a model, particularly as a corner-
stone in this process, we can not help but reflect upon how can we leverage upon the
gradient to improve interpretability during training?.
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guided
backprop
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classification
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L = LC+
λLR
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// stop gradient

Figure 4.1: Interpretable gradient learning. For an input image x, we obtain the
logit vector y = f (x;θ) by a forward pass through the network f with pa-
rameters θ. We compute the classification loss LC by softmax and cross-
entropy (4.1), (4.2). We obtain the standard gradient ∂LC /∂x and guided
gradient ∂G LC /∂x by two backward passes (dashed) and compute the reg-
ularization loss LR as the error between the two (4.3),(4.5)-(4.7). The total
loss is L = LC +λLR (4.4). Learning is based on ∂L/∂θ, which involves
differentiation of the entire computational graph except the guided back-
propagation branch (blue).

In this chapter, we propose a modification to the training process of deep models by
introducing of a regularization term to the error function. This term constrains the
gradient, aligning it with guided backpropagation in the input space.

4.2 Interpretable Gradients
Preliminaries We consider an image classification network f with parameters θ,
which maps an input image x to a vector of class logits y = f (x;θ). At inference, we
predict the class label of maximum confidence argmax j y j , where y j is the logit of
class i . At training, given training images X = {xi }n

i=1 and target labels T = {ti }n
i=1, we

compute the classification loss

LC (X ,θ,T ) = 1

n

n∑
i=1

( f (xi ;θ), ti ), (4.1)

where CE is softmax followed by cross-entropy:

(y, t ) =− log
e yt∑
i e yi

=−yt +
∑

i
e yi . (4.2)

Updates of parameters θ are then performed by an optimizer, based on the standard
partial derivative (gradient) ∂LC /∂θ of the classification loss LC with respect to θ,
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obtained by standard back-propagation.
However, due to non-linearities like ReLU activations and downsampling like max-

pooling or convolution stride > 1, the standard gradient is noisy (Smilkov et al. 2017).
This is shown by visualizing the gradient ∂LC /∂x with respect to an input image x.
By contrast, the guided gradient ∂G LC /∂x (Springenberg et al. 2014) does not suffer
much from noise and preserves sharp details. The difference of the two gradients is
illustrated in Figure 4.1.

Regularization The main idea of this work is to introduce a regularization term
during training, which will make the standard gradient ∂LC /∂x behave similarly to
the corresponding guided gradient ∂G LC /∂x , while maintaining the predictive power
of the classifier f . We hypothesize that, if possible, this will improve the quality of all
gradients with respect to intermediate activations and therefore the quality of saliency
maps obtained by CAM-based methods (B. Zhou, Khosla, et al. 2016, Selvaraju et al.
2016, Chattopadhay et al. 2018, H. Wang, Du, et al. 2019) and the interpretability of
network f . The effect may be similar to that of SmoothGrad (Smilkov et al. 2017), but
without the need for several forward passes at inference.
In particular, given an input image x, we perform a forward pass through f and com-
pute the logit vectors yi = f (xi ,θ) and the classification loss LC (X ,θ,T ) (4.1). We
then obtain the standard gradients δxi = ∂LC /∂xi and the guided gradients δG xi =
∂G LC /∂xi with respect to the input images xi by two separate backward passes. Since
the whole process is differentiable (w.r.t. θ) at training, we stop the gradient compu-
tation of the latter, so that it only serves as a “teacher”. We define the regularization
loss

LR (X ,θ,T ) = 1

n

n∑
i=1

E(δxi ,δG xi ), (4.3)

where E is an error function between the two gradient images, considered below.

Finally, the total loss is defined as

L(x,θ, t ) = LC (x,θ, t )+λLR (x,θ, t ), (4.4)

where λ is a hyperparameter determining the regularization coefficient. λ should be
large enough to smooth the gradient without decreasing the classification accuracy or
hurting the training process. Updates of the network parameters θ are now based on
the gradient ∂L/∂θ w.r.t. the total loss, using any optimizer. At inference, one may use
any interpretability method to obtain a saliency map at any layer.

Algorithm Our method is summarized in Algorithm 3 and illustrated in 4.1.It is
interesting to note that the entire computational graph depicted in 4.1 involves one
forward and two backward passes. This graph is then differentiated again to compute
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∂L/∂θ, which involves one more forward and backward pass, since the guided back-
propagation branch is excluded. Thus, each training iteration requires five passes
through f instead of two in a standard training.

Algorithm 3: Interpretable gradient loss

Input: network f , parameters θ
Input: input images X = {xi }n

i=1
Input: target labels T = {ti }n

i=1
Output: loss L
LC ← 1

n

∑
i ( f (xi ;θ), ti ) . class. loss (4.1)

foreach i ∈ {1, . . . ,n} do
δxi ← ∂LC /∂xi . standard grad
δG xi ← ∂G LC /∂xi . guided grad
DETACH(δG xi ) . detach from graph

LR ← 1
n

∑n
i=1 E(δxi ,δG xi ) . reg. loss (4.3)

L ← LC +λLR . total loss (4.4)

Error function Given two gradient images δ,δ′ consisting of p pixels each, we
consider the following error functions E to compute the regularization loss (4.3).

1. Mean absolute error:

EMAE(δ,δ′) = 1

p

∥∥δ−δ′∥∥1. (4.5)

2. Mean squared error:

EMSE(δ,δ′) = 1

p

∥∥δ−δ′∥∥2
2. (4.6)

We also consider the following two similarity functions, with a negative sign.

3. Cosine similarity:

Ecos(δ,δ′) =−
〈
δ,δ′

〉
‖δ‖2‖δ′‖2

, (4.7)

4. Histogram intersection:

EHI(δ,δ′) =−
p∑

i=0

min(|δi |,
∣∣δ′i ∣∣)

‖δ‖1‖δ′‖1
. (4.8)

where 〈,〉 denotes inner product.

4.3 Experiments
This section presents the experimental settings, our evaluation metrics and results.
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4.3.1 Experimental Set-up
In the following sections, we evaluate recognition properties and interpretability
capabilities of our approach. Specifically, we generate explanations following popular
attribution methods derived from CAM (B. Zhou, Khosla, et al. 2016) from the pytorch-
grad-cam library from Jacob Gildenblat1.

Dataset We train and evaluate our models on CIFAR-100 (Krizhevsky 2009). This
dataset contains 60,000 images of 100 categories, split in 50,000 for training and 10,000
for testing. Each image has a resolution of 32× 32 pixels. This dataset is chosen
because of its ease of usage and prototyping properties.

Settings To obtain competitive performance and ensure the replicability of our
method, we follow the methodology found in the repository by weiaicunzai 2. Thus,
we train each model following the same training procedure. We perform 200 epochs,
with a starting learning rate of 10−1, a batch-size of 128 images, SGD optimizer and a
learning rate policy updating said parameter by division over 5 on epochs 60, 120 and
160.

4.3.2 Qualitative Evaluation
We visualize the effect of our approach on saliency maps and gradients, obtained for
the baseline model vs. the one trained with our approach.
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Figure 4.2: Gradient comparison of standard vs. our training on CIFAR-100 examples.

1https://github.com/jacobgil/pytorch-grad-cam
2https://github.com/weiaicunzai/pytorch-cifar100
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Figure 4.2 shows gradients. We observe slightly less noise with our method, while the
object of interest is better covered by gradient activations.
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Figure 4.3: Saliency map comparison of standard vs. our training using different
CAM-based methods on CIFAR-100 examples.

Figure 4.3 shows saliency maps. We observe the differences brought by our training
method. The differences are particularly important for Grad-CAM, which directly
averages the gradient to weigh feature maps. Interestingly, the differences are smaller
for Score-CAM, which is not gradient-based but only obtains changes of predicted
probabilities.

4.3.3 Quantitative Evaluation
We evaluate the effect of training a given model using our proposed approach with
Faithfulness and Causality. Results are reported in Table 4.1. We observe that our
method offers a consistent improvement in terms of interpretability metrics. Specifi-
cally, we obtain improvements on both networks and systematically on five out of six
metrics. The improvements are higher for AD, AG, and AI. Insertion gets a smaller but
consistent improvement and Deletion is almost always worse with our method, but
with a very small difference. This decrease in performance of Deletion may be due to
some limitations of the metrics as reported in Chapter 2. It is interesting to note that
improvements on Score-CAM means that our training not only improves gradient for
interpretability, but also builds better activation maps.
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RECOGNITION METRICS

MODEL ERROR λ ACC↑

RESNET-18
- - 73.42

COSINE 7.5×10−3 72.86

MOBILENET-V2
- - 59.43

COSINE 1×10−3 62.36

INTERPRETABLE RECOGNITION METRICS

RESNET-18

METHOD ERROR AD↓ AG↑ AI↑ INS↑ DEL↓
GRAD-CAM

- 30.16 15.23 29.99 58.47 17.47
COSINE 28.09 16.19 31.53 58.76 17.57

GRAD-CAM++
- 31.40 14.17 28.47 58.61 17.05

COSINE 29.78 15.07 29.60 58.90 17.22

SCORE-CAM
- 26.49 18.62 33.84 58.42 18.31

COSINE 24.82 19.49 35.51 59.11 18.34

ABLATION-CAM
- 31.96 14.02 28.33 58.36 17.14

COSINE 29.90 15.03 29.61 58.70 17.37

AXIOM-CAM
- 30.16 15.23 29.98 58.47 17.47

COSINE 28.09 16.20 31.53 58.76 17.57

MOBILENET-V2

METHOD ERROR AD↓ AG↑ AI↑ INS↑ DEL↓
GRAD-CAM

- 44.64 6.57 25.62 44.64 14.34
COSINE 40.89 7.31 27.08 45.57 15.20

GRAD-CAM++
- 45.98 6.12 24.10 44.72 14.76

COSINE 40.76 6.85 26.46 45.51 14.92

SCORE-CAM
- 40.55 7.85 28.57 45.62 14.52

COSINE 36.34 9.09 30.50 46.35 14.72

ABLATION-CAM
- 45.15 6.38 25.32 44.62 15.03

COSINE 41.13 7.03 26.10 45.38 15.12

AXIOM-CAM
- 44.65 6.57 25.62 44.64 15.27

COSINE 40.89 7.31 27.08 45.57 15.20

Table 4.1: Cosine Regularization Experiments: on CIFAR-100 with ResNet-18 and
MobileNet-V2. Accuracy and interpretability metrics are reported.

4.3.4 Ablation Experiments
We conduct ablation experiments using ResNet18. In these experiments we analyze
the different regularization proposals mentioned in Section 4.2 and the impact of the
regularization coefficient.

Regularization proposals To validate our selection of regularization function,
we train several models following the same training regime while varying the error
function. To evaluate these approaches, we focus solely on Grad-CAM attributions.
Results are reported in Table 4.2
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Regularization Selection

REGULARIZER ACC AD↓ AG↑ AI↑ INS↑ DEL↓
- 73.42 30.16 15.23 29.99 58.47 17.47
Cosine 72.86 28.09 16.19 31.53 58.76 17.57
Histogram 73.88 30.39 14.78 29.38 58.52 17.35
MAE 73.41 30.33 15.06 29.61 58.13 17.95
MSE 73.86 29.64 15.19 30.11 59.05 18.02

Table 4.2: Regularization selection: Evaluation of the four proposed regularization
with ResNet-18 on CIFAR-100.

Following these results, we observe a consistent improvement on most metrics for all
regularizer options. We note that the accuracy remains stable within half a percent of
the original model. However, we note that most options struggle regarding deletion.
Cosine Similarity however manages to provide improvements in most metrics, while
maintaining deletion performance.

Regularization coefficient Finally, we study the behavior of the regularization
coefficient λ in 4.4. We train multiple models with Cosine Similarity and a range of
values for λ, see Table 4.3.

Regularization Selection

λ ACC AD↓ AG↑ AI↑ INS↑ DEL↓
- 73.42 30.16 15.23 29.99 58.47 17.47
1×10−3 73.71 29.52 15.17 30.03 59.23 17.45
2.5×10−3 72.99 30.53 15.82 30.56 59.04 17.96
5×10−3 72.46 30.10 16.06 30.67 57.47 17.80
7.5×10−3 72.86 28.09 16.20 31.53 58.76 17.57
1×10−2 73.28 28.97 15.75 31.16 58.99 17.50
1×10−1 73.00 28.93 16.13 31.55 59.66 17.95
1 73.30 28.44 16.02 31.31 58.64 17.48
10 73.04 29.28 15.23 30.47 58.74 17.47

Table 4.3: Regularization coefficient: Evaluation of the regularization coefficient λ,
using ResNet-18 with Cosine Similarity on CIFAR-100.

We observe that our method is not very sensible to the regularization coefficient and
that the value of 7.5e−3 offers better performances and is thus selected as the default
value for λ.

4.4 Discussion
Guided Backpropagation and Smoothgrad Guided backpropagation is not
the sole gradient explanation we can generate for a specific model. However, it is

99



4 A learning paradigm for interpretable gradients – 4.5 Conclusion

important to highlight efficiency requirements. On one hand, guided backpropagation
only requires two passes through the network: one forward pass and one backward
pass. On the other hand, smoothgrad requires several passes throgh the network.
By default, this approach involves five forward-backward passes; this would mean a
noticeable increase of training time.

Training efficiency Computational complexity and optimized training are the
main challenges regarding the scaling of our approach. In particular, in section 4.3,
we mention that each training iteration requires five passes through f instead of two
in a standard training. We compute the first forward-backward pass to generate the
guided gradient in the input space. The second forward-backward pass generates the
standard gradient. Finally, we do a final backward pass taking into consideration cross
entropy and the regularization.

Still, why can’t it be done with fewer passes? In theory, guided backpropagation is
calculated modifying the behavior of activation functions, such as ReLU. In practice,
activation functions work as class objects within pytorch. Introducing changes into
these objects inherently increases their complexity. For example, a modification to
ReLU to account for Guided ReLU could be achieved with the introduction of an if-else
case: one condition for standard ReLU and one for Guided ReLU. In this scenario,
the amount of activations in the model would lead to bottlenecks in running time
evaluating because of the condition controlling the gradient behavior.

Saliency Map Visualization Upon saliency map visualization we observe a high
degree of sparsity covering the input images. After the hierarchical nature of CNNs
and the ensuing reduction of feature map sizes, deep representations present small
spatial dimensions. Furthermore, since CIFAR-100 contains images with 32×32 spatial
resolution, intermediary activations are chosen to avoid generating attributions using
a 1×1 patch.

Pure gradient evaluation Pure gradient-based interpretability approaches do not
display quantitative measurements to validate interpretability claims. Conversely, we
hypothesize that since other attribution proposals rely on this information, denoising
gradients leads to explainability improvements. This is ultimately confirmed with our
evaluation procedure.

4.5 Conclusion
In this chapter, we propose a transparency methodology that denoises gradients in
the input level, improving interpretability properties of CNNs. Our approach aligns
the standard gradient with the guided gradient, regularizing the training of neural

100



4 A learning paradigm for interpretable gradients – 4.5 Conclusion

networks.

We validate our claims on improvement of interpretability properties using post-hoc
interpretability evaluation. Our approach displays improvements in these properties
and on image recognition. However, an optimized version of this study better suited
for datasets and more complex models. Additional experimentation is required to
address these limitations. An optimization of our training paradigm reducing its
computational would make the method scalable.
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Conclusion

Across this thesis we studied explainable deep learning proposals, to understand
image recognition models. Explainable Artificial Intelligence and Interpretability are
blooming fields within the research community. In particular, current high perform-
ing models are being steadily assimilated within society and their prominence in
human life is increasing. Thus, it is important to understand the processes prompting
a prediction in such models. Furthermore, these fields are being studied following
a plethora of axis of research. Still, the work presented by Lipton (Lipton 2018) and
Zhang (Y. Zhang et al. 2021) lay the foundation for our work.

We structure these conclusions of our work in the following manner. First on sec-
tion 4.1 we comment on the thesis objectives and the manner they were addressed
across each chapter. On section 4.2 we address future work regarding this topic.

4.1 General remarks
Thesis Objectives This thesis was conducted to study image recognition models,
building novel explainability approaches to further understand them. In detail, our
major objective was to improve both recognition and interpretability properties. To
that end, we identified three areas of work: high computational cost, lack of consensus
between evaluation procedures, and a mismatch between human and model inter-
pretability.

To begin with, regarding the improvement of image recognition, this work introduced
two different approaches that address this requirement. In particular, Chapter 3 show-
cased how the addition of cross attention can enhance recognition characteristics.
Furthermore, Chapter 4 presented a novel training paradigm that can potentially yield
better recognition predictions. Complementary to this, interpretability measurements
are improved consistently across this thesis. In particular, Chapter 2 presented Opti-
CAM, a methodology that consistently improves upon these capabilities, evidenced
across different datasets and evaluation modes: recognition and localization.

In line with the specific objectives, our thesis follows a standardized evaluation proce-
dure. Across each chapter, we compare baselines with our approaches under the exact
same settings. Conversely, we observed limitations in the details of the evaluation of
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xAI methodologies. We hope that our contributions will encourage the community
towards a set of good practices in this domain.

Lastly, the differences between human and model interpretations were discussed in
detail in Chapter 2. Specifically, we observed that context matters in the formulation
of saliency maps: the most important regions describing a category are spread across
the image. This is highlighted with the failure on interpretable object localization,
and the success on interpretable object recognition achieved by Opti-CAM: human
centric explanations expect the most salient areas to be found mostly over the object
of interest.

Background In Chapter 1, we introduced and described the evolution of image
recognition models. We started with models based on traditional machine learning al-
gorithms, to current high performance architectures based on attention computation.
In relation to this modelling evolution, we demonstrated how the improvement of im-
age recognition models consequently benefits the development of related Computer
Vision fundamental tasks. Thus, further development of image recognition models is
acknowledged as a major task in Computer Vision, enhancing adjacent tasks within
the discipline.

Complementary to the introduction of these models, we highlighted the necessity
of providing explanations to current image recognition models. We mentioned the
proposition of the European AI act to regulate Artificial Intelligence technologies, as
well as in the Mythos of Model Interpretability by Lipton. In particular, following
Lipton’s work we revised the properties proposed therein, as well as illustrated how
they can be adapted to explain current state-of-the-art models. Furthermore, we
demonstrated our interest on CAM methods to produce explanations. A thorough
description of their computation and different proposals is established to lay the
foundation for the following studies.

Finally, we also introduced evaluation methods to assess the effect of the attribution
methods mentioned. Regarding these evaluation procedures, we grouped them ac-
cording to the reasoning of the measurement provided, as well as highlighted the
positive and negative points of each procedure. Notably, Interpretable Object Recog-
nition and Causal Analysis are observed to best assess interpertability properties of a
model. On one hand, it is observed that Interpretable Object Localization implies that
model interpretations should be aligned with human interpretations. On the other
hand, pure human measurements are completely aligned with what individuals deem
salient on images, which is often biased and not replicable on experimental settings.
Pure classifier centric evaluation ultimately addresses these shortcomings, removing
implicit bias produced by human reasoning, although not from supervision.
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Opti-CAM Chapter 2 presented our first contribution: Opti-CAM, a post-hoc in-
terpretability method, constructed following the principles of CAM and evaluation
procedures. Specifically, Opti-CAM produces a saliency map that maximizes pre-
dictive probability of images masked by it. Additionally, issues regarding quantita-
tive evaluation are displayed, most importantly the incompleteness of Interpretable
Object Recognition. To address these shortcomings, we proposed Average Gain, a
complementary metric to Average Drop, measuring the predictive gains obtained
while considering explanation maps as input images.

On one hand, we observed that true to its design, Opti-CAM outperforms contem-
porary CAM attribution methods in most quantitative measurements. In particular,
this methodology performs the best in Interpretable Image Recognition and Causal
Analysis, but fails in Object Localization. We made sense of these observations aided
with visualizations. In contrast to current CAM methods, Opti-CAM generates a
saliency map that is spread across the input image. From this we infer that context
matters describing an explanation. Consequently, since context is necessary to ex-
plain a prediction, the requirement of saliency maps covering the object of interest, is
counter-intuitive and does not hold.

Lastly, regarding Average Gain our experimental results demonstrated its complemen-
tary behavior to Interpretable Image Recognition Evaluation. In particular, this metric
efficiently demonstrates how Fake-CAM fails as an attribution method: although
it attains almost perfect Average Drop; its Average Gain measurement fails entirely,
effectively complementing the shortcomings instated by this CAM method. Still, a
complete benchmark comparing most attribution methods, as well as explanations
for predicted labels, would provide a reality check on the evaluation of interpretability

Cross-Attention Stream Chapter 3 presented our second contribution, the Cross-
Attention Stream. This addition inspired by pure attention architectures, computes an
abstract representation of classes, via interaction of a class token and feature maps
across different depths of a model. Additionally, this approach was validated in com-
mon image recognition models studied on interpretability such as ResNet, as well as
in a family of models not often studied in this fashion: ConvNeXt.

In this chapter, we set the stage for quantitative interpretability measurements for
transparency based approaches. We trained the stream similarly to prior transparency
approaches, and we evaluated its properties using CAM, a post-hoc method. More-
over, we observed that our saliency maps do not differ much from the baseline ones.
However, this result was expected as this approach does not modify existing parame-
ters within the network, nor changes the computation of attributions. Instead, our
representation conveys information differently to the classifier, enhancing predicted
probability of groundtruth classes.
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Gradient Denoising Lastly, Chapter 4 introduced a learning paradigm for inter-
pretable gradients. In this approach, the guided backpropagated gradient of the
network, observed in the input space is used to regularize the network gradient during
training, enhancing interpretability properties. Continuing with the evaluation of
transparency methods seen on Chapter 3, we evaluate these properties using CAM
methods.

From the family of pure gradient based attribution methods, guided backpropagation
required less computation to function. In stark contrast with approaches such as
smooth gradients and integrated gradients, guided backpropagation maintains the
requirement of one forward pass and one backward through the model to generate an
output.

Lastly, we observed that pure guided backpropagation training is not plausible. During
the prototyping phase of this chapter, we experimented using this setting, and we
found that the training was unstable leading to gradients pushing towards infinity. We
hypothesize that gradient information produced by responses to negative gradients,
regularizes neural network training.

4.2 Future Work
We set the foundation for our future work in three axes. First, a discussion on the
future for interpretable image recognition. Then, we iterate over how our proposals
can be improved upon in the future. Finally, exploratory directions beyond the scope
of this thesis.

Interpretable Image Recognition The development of image recognition mod-
els within computer vision and deep learning benefits from ongoing advancements.
With the recent emergence of CNNs and transformers, new architectures are expected
to continue appearing. Evaluating the impact of these models through testing and
proposing methodologies is essential for future progress. While CNNs have been
extensively studied over the past decade, the properties and functioning of trans-
formers remain an open field. Despite transformers being newer, their impact and
performance are significant, necessitating further study. However, research on CNNs
should also continue.

Additionally, standardization of interpretability study and evaluation is another area
with potential for future work. A thorough differentiation between model interpretabil-
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ity and human interpretability studies should be established. A preliminary study
regarding this topic is conducted in this thesis, still a widespread adoption within the
community is mostly desired. To achieve this, a more thorough survey describing
these comparisons, as well as the failure of current interpretability evaluation methods
is one manner to address these requirements.

On the chapters of this thesis Regarding Opti-CAM, we observe one possibil-
ity for future work. CAM-based attributions struggle to explain transformer-based
architectures. These saliency maps are often sparse and do not provide sufficient
clarity when compared to raw attention. A different attribution method could provide
improved representations, possibly calculated using the class token. Accounting for
the fixation of saliency maps on transformers as demonstrated on Simpool (Psomas
et al. 2023) and Registers (Darcet et al. 2024) would allow for updates of this approach
or a novel attribution method.

On the topic of Cross-Attention, future work aims at optimizing the architecture and
broadening its scope to different models. In particular, the parameter count can be
reduced by shortening the stream length, focusing only on layers where semantic
information is prominent. Additionally, expanding beyond the usage of ResNet and
ConvNeXt, and presenting an optimized training paradigm for this approach, would
enable its application to more architectures, enhancing its coverage of image recogni-
tion tasks.

Lastly, the gradient denoising paradigm was showcased in a constrained setting: small
datasets and low-parameter networks. This limitation is due to the high computational
cost of the approach. However, the promising results suggest that addressing this com-
plexity could allow for scaling to large-scale image datasets and more complex models.

Beyond the scope of this thesis Currently, computer vision is one open field,
thriving with possibilities for further research and industry developments. In par-
ticular, during the development of this thesis several technologies were unveiled,
addressing different areas of study for artificial intelligence. For instance, NLP is cur-
rently a prominent field where technologies like Large Language Models have taken
the spotlight. However, such kind of developments require heavy computational
infrastructure, limiting their development to bigger research groups. Optimizing such
methodologies, as well as producing competitive, yet more simplified alternatives is
one path where research could be focused as well.

In contrast to developing large models and mainstream tasks, future work could focus
on updating particular applications. Concepts from general image recognition and
interpretability are applied to fields such as medical diagnosis and industry, requiring

106



Conclusion – 4.2 Future Work

highly specific models. Adapting and modifying state-of-the-art models for these
fine-grained applications is a key direction for future developments.

Lastly, on a personal level, future work comprises on setting the stage for continuing a
scientific career. To achieve this, I aim to continue with a post-doctoral position on
topics aligned with my interests: image recognition, explainable AI and foundational
models. Moreover, given my focus on academia, pursuing a research engineer position
is a direction that would also allow to advance for my career.
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