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Abstract

Representations lie at the heart of artificial intelligence, enabling machines to per-
ceive, interpret and interact with the world. Visual representations, extracted from
images or videos, enable tasks such as image classification, image retrieval, and ob-
ject detection. Visual-textual representations, bridging the gap between the visual
and linguistic domains, enable tasks like image captioning, visual question answer-
ing, and cross-modal retrieval. The ability to learn and manipulate these repre-
sentations is paramount for advancing the state-of-the-art in computer vision and
beyond. In this dissertation, we investigate novel methods for learning both vi-
sual (unimodal) and visual-textual (multimodal) representations, focusing mainly
on applications in deep metric learning, image classification, and composed image
retrieval. We address the challenges of learning representations from both data-
centric and model-centric perspectives, aiming to unlock new capabilities for visual
understanding and interaction.

In visual representation learning, we first focus on data and introduce Metrix, a
deep metric learning method utilizing mixup for data augmentation. Metrix ad-
dresses the challenge of interpolating both examples and target labels, overcoming
the non-additive nature of traditional metric learning loss functions. By generalizing
existing loss functions to incorporate mixup, Metrix enhances learning and explores
new embedding space regions. We introduce a novel metric, utilization, to measure
this exploration. Experiments on four benchmark datasets, including various mixup
settings, show that Metrix significantly outperforms state-of-the-art methods, im-
proving robustness and generalization. This work exemplifies our aim to advance
visual representation learning through innovative data augmentation.

Next, we shift our focus to the model architecture, introducing SimPool, a simple
attention-based pooling method at the end of network designed to replace the de-
fault one in both convolutional neural networks (CNNs) and vision transformers
(ViTs). We develop a generic pooling framework and formulate existing pooling
methods as its instantiations, allowing us to analyze, compare and discuss their
properties. Through this, we finally derive SimPool, which improves performance
in supervised and self-supervised settings on standard benchmarks and downstream
tasks. SimPool generates high-quality attention maps that accurately delineate ob-
ject boundaries, significantly enhancing object localization and robustness to back-
ground changes. It improves object discovery metrics and performs efficiently, even
when removing ViT blocks, thus optimizing the balance between performance and
model complexity. This work exemplifies our aim to advance visual representation
learning through innovative model architecture component.

Transitioning to visual-textual representations, we introduce FreeDom, a training-
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free method for zero-shot composed image retrieval in open-world domain conver-
sion. FreeDom leverages the descriptive power of a frozen vision-language model
(VLM) and employs textual inversion, enabling flexible image and text query com-
position. Unlike traditional methods that invert query images to the continuous
latent space of tokens, FreeDom’s inversion into the discrete input space of text is
pivotal for its success. Experiments on four benchmark domain conversion datasets,
including three newly introduced by us, demonstrate its superior performance. Ad-
ditionally, FreeDom performs on par with the best methods in generic composed
image retrieval. This work exemplifies our aim to advance multimodal representa-
tion learning through innovative discrete-space textual inversion.

Expanding on visual-textual representations, we now focus on their applications in
remote sensing to introduce a novel task: remote sensing composed image retrieval
(RSCIR). This task aims to provide a more expressive and flexible search capability
within the remote sensing domain. We explore and qualitatively evaluate the unique
challenges and capabilities this task introduces. Users can now pair a query image
with a query text specifying modifications related to color, shape, size, texture,
density, context, quantity, or the presence of certain classes. To quantitatively
assess this, we establish a benchmark, PatternCom, and an evaluation protocol
focusing on shape, color, density, and quantity modifications. Our method, WeiCom,
operates training-free by utilizing a frozen vision-language model and incorporates a
modality control parameter for generating more image- or text-oriented results based
on the specific search needs. This work exemplifies our aim to advance multimodal
representation learning by introducing a flexible method that showcases the potential
of this novel task in a new domain.
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Εκτεταμένη Περίληψη

Η αλληλεπίδρασή μας με τον κόσμο ξεκινά από τη στιγμή της γέννησής μας μέσω της

αισθητηριακής αντίληψης. Αρχικά, η όρασή μας είναι θολή, διακρίνοντας μόνο φως και

σκιές. Μέσα σε λίγες ημέρες, μπορούμε να διακρίνουμε χρώματα και να αναγνωρίζουμε

πρόσωπα. Η αντίληψη του βάθους αναπτύσσεται λίγες εβδομάδες αργότερα, ενώ η ικα-

νότητα εστίασης σε αντικείμενα έρχεται στους δύο μήνες. Στους έξι μήνες, μπορούμε

να βλέπουμε καθαρές εικόνες. Καθώς το οπτικό σύστημα ωριμάζει, κωδικοποιούμε,

αποθηκεύουμε και ανακτούμε λεπτομερείς νοητικές εικόνες αντικειμένων, τόπων και

ανθρώπων. Αυτή η διαδικασία επιτρέπει την αναγνώριση αντικειμένων, την κατανόηση

των χωρικών σχέσεων και την πλοήγηση στο περιβάλλον μας.

Παράλληλα με την ανάπτυξη της οπτικής αντίληψης, εξελίσσονται και οι ικανότητες ο-

μιλίας και γλώσσας. Λίγο μετά τη γέννηση μας αναγνωρίζουμε τους ήχους της ομιλίας

και στους έξι μήνες αρχίζουμε να φλυαρούμε. Γύρω στο πρώτο έτος, λέμε τις πρώτες

μας λέξεις, οδηγώντας σταδιακά στην αύξηση του λεξιλογίου και στη διαμόρφωση προ-

τάσεων. Μέχρι τα τρία χρόνια, συμμετέχουμε σε σύνθετες συνομιλίες, κατανοώντας τη

σύνταξη και τη γραμματική. Η ανάπτυξη της γλώσσας περιλαμβάνει την κωδικοποίηση,

αποθήκευση και ανάκτηση γλωσσικών και ακουστικών εμπειριών, που διευκολύνονται

από τις κοινωνικές αλληλεπιδράσεις και το γλωσσικό περιβάλλον. Αυτή η διαδικασία

επιτρέπει την κατανόηση της σημασίας των λέξεων, τη χρήση της γλώσσας για την

έκφραση σκέψεων και συναισθημάτων, καθώς και την ανάπτυξη της ικανότητας για

πολύπλοκη επικοινωνία και κοινωνική αλληλεπίδραση.

Η κωδικοποίηση, η αποθήκευση και η ανάκτηση πληροφοριών είναι το κοινό στοιχείο,

λοιπόν, είτε πρόκειται για οπτικές είτε γλωσσικές είτε ακουστικές εμπειρίες. Οι αισθη-

τηριακές και γνωστικές μας εμπειρίες κωδικοποιούνται και αποθηκεύονται ως σύνθετες

αναπαραστάσεις, που είναι πιθανώς μοναδικές για κάθε άτομο. Για παράδειγμα, η λέξη

῾῾σπίτι᾿᾿ προκαλεί διαφορετικές νοητικές εικόνες σε κάθε άτομο, βάσει των μοναδικών

εμπειριών του. Αυτό υποδηλώνει ότι στον χώρο των αναπαραστάσεών μας, η γλωσ-

σική αναπαράσταση της λέξης ῾῾σπίτι᾿᾿ συνδέεται στενά με την οπτική αναπαράσταση

που έχει δημιουργηθεί από τις εμπειρίες μας με τα σπίτια. Αυτές οι προσωπικές και

μοναδικές αναπαραστάσεις επιτρέπουν την αναγνώριση αντικειμένων και την κατανόη-

ση των εννοιών με έναν τρόπο που ενσωματώνει τόσο τα αισθητηριακά όσο και τα

γλωσσικά στοιχεία της εμπειρίας μας. Μεταβαίνοντας από τον άνθρωπο στη μηχανή,

από τη φυσική στην τεχνητή νοημοσύνη, οι αναπαραστάσεις εξακολουθούν να έχουν

πρωτεύοντα ρόλο, καθώς επιτρέπουν στις μηχανές να αντιλαμβάνονται, να ερμηνεύουν

και να αλληλεπιδρούν με τον κόσμο. Οι (τεχνητές) οπτικές αναπαραστάσεις, που ε-

ξάγονται από εικόνες ή βίντεο, επιτρέπουν εργασίες όπως η ταξινόμηση εικόνων, η

ανάκτηση εικόνων και η ανίχνευση αντικειμένων. Οι (τεχνητές) οπτικο-γλωσσικές α-

ναπαραστάσεις, γεφυρώνοντας το χάσμα μεταξύ των οπτικών και γλωσσικών τομέων,
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επιτρέπουν εργασίες όπως η λεκτική περιγραφή εικόνων, η απάντηση οπτικών ερωτήσε-

ων και η σύνθετη ανάκτηση εικόνων. Η ικανότητα εκμάθησης και χειρισμού αυτών των

αναπαραστάσεων είναι κρίσιμη για την προώθηση της τεχνολογίας αιχμής στην υπολο-

γιστική όραση, αλλά και πέρα από αυτήν.

Στην παρούσα διδακτορική διατριβή, διερευνώνται καινοτόμες μέθοδοι για την εκμάθη-

ση τόσο οπτικών (μονοτροπικών), όσο και οπτικο-γλωσσικών (πολυτροπικών) αναπα-

ραστάσεων, εστιάζοντας κυρίως σε εφαρμογές στην βαθιά εκμάθηση μετρικής, την τα-

ξινόμηση εικόνων και τη σύνθετη ανάκτηση εικόνων. Αντιμετωπίζονται οι προκλήσεις

της εκμάθησης αναπαραστάσεων αναπτύσοντας μεθόδους εστιασμένες τόσο στα δε-

δομένα, όσο και στα μοντέλα, με τελικό στόχο την επίτευξη νέων δυνατοτήτων για

οπτική και οπτικο-γλωσσική κατανόηση και αλληλεπίδραση.

Πιο συγκεκριμένα, η πρώτη ενότητα εστιάζει στα δεδομένα για την εκμάθηση οπτι-

κών αναπαραστάσεων και εισάγει το Metrix , μια μέθοδο βαθιάς εκμάθησης μετρικής
που χρησιμοποιεί την ανάμειξη για επαύξηση των δεδομένων. Στη βαθιά εκμάθηση

μετρικής, σε αντίθεση με την ταξινόμηση εικόνων, οι κατηγορίες (και οι κατανομές)

στην εκπαίδευση και τον έλεγχο είναι διαφορετικές. Επομένως, είναι αναμενόμενο μια

μέθοδος επαύξησης δεδομένων που χρησιμοποιεί την παρεμβολή, όπως η ανάμειξη, να

είναι ακόμα πιο χρήσιμη και αποτελεσματική εδώ από ότι στην ταξινόμηση. Ωστόσο,

οι πρόσφατες προσπάθειες περιορίζονται κυρίως σε ειδικές περιπτώσεις παρεμβολής εν-

σωματώσεων και αντιμετωπίζουν προβλήματα με την παρεμβολή ετικετών. Αυτό ίσως

οφείλεται και στο γεγονός ότι οι συναρτήσεις απώλειας της βαθιάς εκμάθησης μετρι-

κής, σε αντίθεση με τη διασταυρούμενη εντροπία της ταξινόμηση εικόνων, είναι κατά

βάση μη προσθετικές. Αυτό θέτει το ερώτημα: ποιος είναι ο κατάλληλος τρόπος για

να οριστούν και να παρεμβληθούν ετικέτες στη βαθιά εκμάθησης μετρικής;

Η πρώτη ενότητα απαντά σε αυτό το ερώτημα, αντιμετωπίζοντας την πρόκληση της

παρεμβολής τόσο των εικόνων όσο και των ετικετών, υπερβαίνοντας τη μη προσθετική

φύση των παραδοσιακών συναρτήσεων απώλειας της βαθιάς εκμάθησης μετρικής. Συ-

γκρίνοντας την ταξινόμηση εικόνων με τη βαθιά εκμάθηση μετρικής, παρατηρείται ότι η

δεύτερη δε διαφέρει και τόσο από την πρώτη, αν οι εικόνες αντικατασταθούν από ζεύγη

εικόνων και οι ετικέτες κατηγορίας από ῾῾θετικές᾿᾿ ή ῾ἁρνητικές᾿᾿ ετικέτες, ανάλογα με

το αν οι ετικέτες κατηγορίας των μεμονομένων εικόνων είναι ίδιες ή όχι. Υπό αυτή την

έννοια, ένας απλός τρόπος να γίνει η ανάμειξη ετικετών είναι η χρήση μιας ετικέτας

δύο κατηγοριών ανά ζεύγος εικόνων και η γραμμική της παρεμβολή όπως στην τυπική

ανάμειξη. Γενικεύοντας τις υπάρχουσες συναρτήσεις απώλειας, η πρώτη ενότητα κατα-

φέρνει να ενσωματώσει αυτού του είδους την ανάμειξη σε αυτές και έτσι να ορίσει το

Metrix, το οποίο βελτιώνει αισθητά τη μάθηση και εξερευνά νέες περιοχές του ενσω-
ματωμένου χώρου. Για να μετρηθεί αυτή η εξερεύνηση, εισάγεται ένας νέος μετρικός

δείκτης, η ῾ἁξιοποίηση᾿᾿. Ακόμα, ορίζεται η ῾῾θετικότητα᾿᾿ μιας μικτής ετικέτας δύο κα-

τηγοριών και μελετάται πως ακριβώς αυξάνεται ως συνάρτηση του συντελεστή παρεμ-
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βολής, τόσο θεωρητικά όσο και εμπειρικά. Εκτεταμένα πειράματα σε τέσσερα πρότυπα

σύνολα δεδομένων, συμπεριλαμβανομένων πειραμάτων διαφόρων ρυθμίσεων ανάμειξης,

δείχνουν ότι το Metrix ξεπερνά σημαντικά τις υπάρχουσες μεθόδους, βελτιώνοντας
την ανθεκτικότητα και τη γενίκευση. Η πρώτη ενότητα ακολουθεί και συνδράμει ενερ-

γά στο στόχο προαγωγής της εκμάθησης οπτικών αναπαραστάσεων μέσω καινοτόμων

επαυξήσεων δεδομένων και συγκεκριμένα μέσω της εισαγωγής της ανάμειξης Metrix
στη βαθιά εκμάθηση μετρικής.

Παραμένοντας στην εκμάθηση οπτικών αναπαραστάσεων, η δεύτερη ενότητα μετατο-

πίζει την εστίαση στην αρχιτεκτονική του μοντέλου, εισάγοντας το SimPool , μια απλή
μέθοδο συγκέντρωσης στο τέλος του δικτύου, σχεδιασμένη να αντικαθιστά την προεπι-

λεγμένη τόσο σε συνελικτικά νευρωνικά δίκτυα όσο και σε οπτικούς μετασχηματιστές.

Τα συνελικτικά δίκτυα είναι ιεραρχικά, αποτελούμενα από εναλλασσόμενα επίπεδα συ-

νέλιξης και συγκέντρωσης. Δημιουργούν την τελική ολική αναπαράσταση εικόνας

συνήθως μέσω της ολικής συγκέντρωσης μέσης τιμής, η οποία συμπιέζει ολόκληρο

τον χάρτη χαρακτηριστικών σε ένα μοναδικό διάνυσμα στο τέλος του δικτύου. Από

την άλλη, οι οπτικοί μετασχηματιστές ξεκινούν διαχωρίζοντας την εικόνα σε τμήματα,

κωδικοποιώντας το καθένα ως μια μονάδα, συμπεριλαμβανομένης και μιας ειδικής μο-

νάδας, της μονάδας ταξινόμησης. Η συγκέντρωση βασίζεται σε αυτή την μαθαινόμενη

μονάδα ταξινόμησης, η οποία, ξεκινώντας από τον χώρο εισόδου, υποβάλλεται στον ίδιο

μηχανισμό αυτο-προσοχής με τις υπόλοιπες μονάδες σε όλα τα επίπεδα του δικτύου και

έτσι παρέχει μια ολική αναπαράσταση εικόνας. Δηλαδή, το δίκτυο καταλήγει σε μια

ολική συγκέντρωση σταθμισμένης μέσης τιμής, χρησιμοποιώντας ως βάρη την προσοχή

της μονάδας ταξινόμησης πάνω στις υπόλοιπες μονάδες των τμημάτων της εικόνας. Η

μονάδα ταξινόμησης παρέχει χάρτες προσοχής δωρεάν, ωστόσο, όπως έχει σημειωθεί,

αυτοί είναι χαμηλής ποιότητας, εκτός αν είναι στο πλαίσιο αυτο-επιβλεπόμενης μάθησης.

Στη δεύτερη ενότητα, υποστηρίζεται ότι ο οπτικός μετασχηματιστής μπορεί να επανα-

διατυπωθεί αρχιτεκτονικά σε δύο ρεύματα, όπου το ένα εξάγει μια οπτική αναπαράσταση

στις μονάδες των τμημάτων της εικόνας, ενώ το άλλο εκτελεί χωρική συγκέντρωση

στη μονάδα ταξινόμησης. Υπό αυτή την έννοια, η διαδικασία της συγκέντρωσης μπορεί

να απομονωθεί και από τους δύο τύπους δικτύων και να αντικατασταθεί με μία νέα.

Αυτό εγείρει τα ακόλουθα ερωτήματα:

Μπορεί να δημιουργηθεί μια απλή διαδικασία συγκέντρωσης στο τελευταίο στάδιο ε-

ίτε των συνελικτικών δικτύων είτε των οπτικών μετασχηματιστών, η οποία βελτιώνει

την προεπιλεγμένη αντιστοίχως; Μπορεί αυτή η διαδικασία να παρέχει υψηλής ποι-

ότητας χάρτες προσοχής που διαχωρίζουν τα όρια των αντικειμένων και για τους δυο

τύπους δικτύων; Ισχύουν αυτές οι ιδιότητες τόσο υπό επιβλεπόμενη όσο και υπό

αυτο-επιβλεπόμενη μάθηση; Για να απαντηθούν αυτά να ερωτήματα, αναπτύσσεται ένα

γενικό πλαίσιο συγκέντρωσης, παραμετροποιημένο από: (α) την αρχικοποίηση της συ-

γκέντρωσης, (β) τον αριθμό των διανυσμάτων συγκέντρωσης, (γ) την επαναληψιμότητα
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της συγκέντρωσης, (δ) πιθανούς μετασχηματισμούς σε κάθε στάδιο της διαδικασίας,

(ε) ζεύγη ομοιότητας, (στ) μηχανισμό προσοχής και κανονικοποίηση και (ζ) τη συνάρ-

τηση που ορίζει την πράξη της συγκέντρωσης. Στη συνέχεια, μια σειρά από υπάρχου-

σες μεθόδους συγκέντρωσης επαναδιατυπώνονται ως υλοποιήσεις αυτού του πλαισίου.

Συζητώντας τις ιδιότητες κάθε μεθόδου, μέσω του πλαισίου, προτείνεται ένας νέος,

απλός, μηχανισμός συγκέντρωσης βασισμένος στη διασταυρούμενη προσοχή, που ο-

νομάζεται SimPool. Το SimPool βελτιώνει την απόδοση τόσο σε επιβλεπόμενη, όσο
και αυτο-επιβλεπόμενη μάθηση σε πρότυπα σύνολα δεδομένων και κατάντη εργασίες.

Δημιουργεί υψηλής ποιότητας χάρτες προσοχής που οριοθετούν με ακρίβεια τα όρια

των αντικειμένων, βελτιώνοντας έτσι σημαντικά τον εντοπισμό αντικειμένων και την

ανθεκτικότητα στις αλλαγές στο υπόβαθρο της εικόνας. Βελτιώνει τις μετρικές ανα-

κάλυψης αντικειμένων και αποδίδει αποτελεσματικά, ακόμη και έπειτα από αφαίρεση

επιπέδων του οπτικού μετασχηματιστή, βελτιστοποιώντας έτσι την ισορροπία μεταξύ

απόδοσης και πολυπλοκότητας μοντέλου. Η δεύτερη ενότητα ακολουθεί και συνδράμει

ενεργά στο στόχο προαγωγής της εκμάθησης οπτικών αναπαραστάσεων μέσω καινο-

τόμων αρχιτεκτονικών συστατικών μοντέλου και συγκεκριμένα μέσω της εισαγωγής

της συγκέντρωσής SimPool.

Μεταβαίνοντας στις οπτικο-γλωσσικές αναπαραστάσεις, στην τρίτη ενότητα, εισάγεται

το FreeDom, μια μέθοδο χωρίς εκπαίδευση για σύνθετη ανάκτηση εικόνων μηδενικής
λήψης σε σενάρια μετατροπής τομέων ανοιχτού κόσμου. Η ανάκτηση εικόνας-προς-

εικόνα είναι μια εργασία στην υπολογιστική όραση με εφαρμογές σε ορόσημα, προϊόντα

μόδας, πρόσωπα και ιατρικές εικόνες, μεταξύ άλλων. Η ανάκτηση πραγματοποιείται

αποκλειστικά με βάση το οπτικό περιεχόμενο του ερωτήματος. Από την άλλη πλευ-

ρά, αν το αντικείμενο μπορεί να περιγραφεί με κείμενο, τότε εφαρμόζεται η ανάκτηση

κειμένου-προς-εικόνα. Ο πιο ευέλικτος τρόπος για να εκφραστεί η πρόθεση του χρήστη

είναι ένα ερώτημα που περιλαμβάνει τόσο μια εικόνα όσο και μια περιγραφή κειμένου.

Αυτό διερευνάται στην σύνθετη ανάκτηση εικόνων, η οποία στοχεύει στην ανάκτηση

εικόνων που δεν είναι μόνο οπτικά παρόμοιες με την ερώτηση εικόνας, αλλά και τροπο-

ποιημένες σύμφωνα με τις συγκεκριμένες λεπτομέρειες του ερωτήματος κειμένου. Στην

τρίτη ενότητα, η εστίαση βρίσκεται κυρίως σε μια παραλλαγή της σύνθετης ανάκτησης

εικόνων, στην μετατροπή τομέα, όπου το ερώτημα κειμένου λειτουργεί ως περιγραφή

του τομέα στόχου. Σε αντίθεση με την παραδοσιακή διατομεακή ανάκτηση εικόνων,

στην οποία τα μοντέλα εκπαιδεύονται να χρησιμοποιούν ερωτήματα από έναν πηγαίο

τομέα και να ανακτούν εικόνες από έναν άλλο τομέα στόχο, σε αυτή την ενότητα α-

ντιμετωπίζεται μια πιο πρακτική, ανοιχτή ρύθμιση τομέα, όπου το ερώτημα και η βάση

δεδομένων μπορεί να προέρχονται από οποιονδήποτε άγνωστο τομέα. Εξετάζονται δια-

φορετικές παραλλαγές σεναρίων μετατροπής τομέων, στις οποίες το ερώτημα εικόνας

ορίζεται σε επίπεδο κατηγορίας ή σε επίπεδο παραδείγματος, ενώ ο τομέας δύναται να

αντιστοιχεί σε περιγραφές σχετικές με το στυλ ή την γενικότερη οπτική περίσταση.
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Το FreeDom αξιοποιώντας την περιγραφική δύναμη ενός προ-εκπαιδευμένου και παγω-
μένου οπτικο-γλωσσικού μοντέλου παράλληλα με την αντιστροφή κειμένου, επιτρέπει

την ευέλικτη σύνθεση ερωτημάτων εικόνας και ερωτημάτων κειμένου. Σε αντίθεση με

τις παραδοσιακές μεθόδους που αντιστρέφουν τα ερωτήματα εικόνων στο συνεχή χώρο

χαρακτηριστικών, η αντιστροφή του FreeDom στον διακριτό εισαγωγικό χώρο του κει-
μένου είναι καθοριστική για την επιτυχία του. Αυτό μπορεί πιθανώς να αποδίδεται στο

γεγονός ότι η αντιστροφή με βάση τη βελτιστοποίηση, δηλαδή η αντιστροφή στο συνε-

χή χώρο χαρακτηριστικών, μπορεί να παρέχει λύσεις σε περιοχές αυτού που δεν είχαν

χρησιμοποιηθεί ποτέ ως είσοδοι στο οπτικο-γλωσσικό μοντέλο· κάτι που δεν ισχύει για

την προτεινόμενη αντιστροφή. Πειράματα σε τέσσερα πρότυπα σύνολα δεδομένων με-

τατροπής τομέων, συμπεριλαμβανομένων τριών νεοεισαχθέντων, δείχνουν την ανώτερη

απόδοσή του FreeDom σε σύγκριση με τις υπάρχουσες μεθόδους. Επιπλέον, αποδίδει
εξίσου καλά με τις αποδοτικότερες μεθόδους σύνθετης ανάκτησης εικόνων ακόμα και

σε γενικότερα σενάρια. Η τρίτη ενότητα ακολουθεί και συνδράμει ενεργά στο στόχο

προαγωγής της εκμάθησης οπτικο-γλωσσικών (πολυτροπικών) αναπαραστάσεων μέσω

καινοτόμων αντιστροφών και συγκεκριμένα μέσω της εισαγωγής της αντιστροφής σε

διακριτό χώρο της μεθόδου FreeDom.

Επεκτείνοντας τις οπτικο-γλωσσικές αναπαραστάσεις, η τέταρτη ενότητα επικεντρώνε-

ται στις εφαρμογές τους στην τηλεπισκόπηση και εισάγει μια νέα εργασία: την σύνθετη

ανάκτηση εικόνων τηλεπισκόπησης. Τα τελευταία χρόνια, η παρατήρηση της Γης μέσω

της τηλεπισκόπησης έχει σημειώσει τεράστια αύξηση στον όγκο των δεδομένων, δη-

μιουργώντας μια πρόκληση στη διαχείριση και εξαγωγή σχετικών πληροφοριών. Η

ικανότητα οργάνωσης εκτεταμένων αρχείων και γρήγορης ανάκτησης συγκεκριμένων

εικόνων είναι κρίσιμη. Η ανάκτηση εικόνων τηλεπισκόπησης, που στοχεύει στην ανα-

ζήτηση και ανάκτηση εικόνων από βάσεις δεδομένων τηλεπισκόπησης, έχει αναδειχθεί

ως βασική λύση. Ωστόσο, αυτές οι μέθοδοι αντιμετωπίζουν ένα σημαντικό περιορισμό:

την εξάρτηση από ένα ερώτημα μιας μόνο τροπικότητας. Αυτός ο περιορισμός συχνά πε-

ριορίζει τους χρήστες από το να εκφράσουν πλήρως τις συγκεκριμένες απαιτήσεις τους,

ειδικά δεδομένης της σύνθετης και δυναμικής φύσης της επιφάνειας της Γης όπως απει-

κονίζεται στις τηλεπισκοπικές εικόνες. Η τέταρτη ενότητα στοχεύει να προσφέρει μια

πιο εκφραστική και ευέλικτη δυνατότητα αναζήτησης στον τομέα της τηλεπισκόπησης.

Στην σύνθετη ανάκτηση εικόνων τηλεπισκόπησης, οι χρήστες μπορούν να συνδυάζουν

ένα ερώτημα εικόνας με ένα ερώτημα κειμένου που καθορίζει τροποποιήσεις που σχε-

τίζονται με το χρώμα, το σχήμα, το μέγεθος, την υφή, την πυκνότητα, τη γενικότερη

οπτική περίσταση, την ποσότητα ή την παρουσία συγκεκριμένων κατηγοριών. Για την

ποσοτική αξιολόγηση αυτών, δημιουργείται ένα σετ δεδομένων, το PatternCom, και
ένα πρωτόκολλο αξιολόγησης που εστιάζει σε τροποποιήσεις σχετικές με το χρώμα, το

σχήμα, την πυκνότητα, τη γενικότερη οπτική περίσταση, την ποσότητα ή την παρουσία.

Προτείνεται η μέθοδος σύνθετης ανάκτηση εικόνων τηλεπισκόπησης WeiCom, η οπο-
ία λειτουργεί χωρίς εκπαίδευση χρησιμοποιώντας ένα προ-εκπαιδευμένο και παγωμένο
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οπτικο-γλωσσικό μοντέλο. Η μέθοδος ενσωματώνει μια παράμετρο ελέγχου τροπι-

κότητας για την παραγωγή αποτελεσμάτων που προσανατολίζονται περισσότερο στην

εικόνα ή στο κείμενο, ανάλογα με τις συγκεκριμένες ανάγκες αναζήτησης. Η τέταρ-

τη ενότητα ακολουθεί και συνδράμει ενεργά στο στόχο προαγωγής της εκμάθησης

οπτικο-γλωσσικών (πολυτροπικών) αναπαραστάσεων, εισάγοντας μια ευέλικτη μέθοδο

που παρουσιάζει τις δυνατότητες της νέας, προτεινόμενης εργασίας, συνοδευόμενη απο

ένα νέο σετ δεδομένων.

Το αντικείμενο της παρούσας διδακτορικής διατριβής αναπτύσσεται μέσω παράθεσης,

ανάλυσης, συζήτησης και σύγκρισης των πρόσφατων εξελίξεων της σχετικής βιβλιο-

γραφίας, σε συνδυασμό με τις παρατηρήσεις και τα συμπεράσματα που προκύπτουν

από τα πειραματικά αποτελέσματα της εφαρμογής των νέων μεθόδων. Οι νέες μέθο-

δοι κάθε ενότητας χαρακτηρίζονται από την ανώτερη απόδοσή τους ή/και τη μειω-

μένη πολυπλοκότητά τους σε σχέση με τις υπάρχουσες μεθόδους. Τα περιεχόμενα

της διατριβής μπορούν να χωριστούν σε τρία μέρη. Το πρώτο μέρος επικεντρώνεται

στις οπτικές αναπαραστάσεις, αναλύοντας την ανάπτυξη και αξιολόγηση καινοτόμων με-

θόδων που βασίζονται στα δεδομένα και στην αρχιτεκτονική του μοντέλου. Το δεύτερο

μέρος εμβαθύνει στις οπτικο-γλωσσικές (πολυτροπικές) αναπαραστάσεις, παρουσιάζο-

ντας καινοτόμες προσεγγίσεις για σύνθετη ανάκτηση εικόνων και τις εφαρμογές τους

σε διάφορους τομείς. Τέλος, το τρίτο μέρος, παρέχει μια περίληψη των ευρημάτων,

συμπεράσματα και προτάσεις για μελλοντική εργασία. Τα τρία μέρη αναπτύσσονται σε

6 κεφάλαια:

Στο Κεφάλαιο 1, εισάγεται η σημασία των αναπαραστάσεων στην ανθρώπινη και τε-

χνητή νοημοσύνη, θέτοντας το πλαίσιο για την έρευνα στην εκμάθηση οπτικών και

οπτικο-γλωσσικών αναπαραστάσεων. Παρουσιάζονται οι κύριους στόχοι και οι συνει-

σφορές αυτής της διδακτορικής διατριβής.

Στο Κεφάλαιο 2, παρουσιάζεται η νέα μέθοδος επαύξησης δεδομένων, Metrix, η οποία
σχεδιάστηκε να αντιμετωπίζει την πρόκληση της παρεμβολής τόσο των παραδειγμάτων

όσο και των ετικετών στόχου στη βαθιά εκμάθηση μετρικής. Συζητούνται τα θεωρη-

τικά θεμέλια, η ανάπτυξη της μεθόδου και η αξιολόγηση σε διάφορα πρότυπα σύνολα

δεδομένων, επιδεικνύοντας σημαντικές βελτιώσεις στην ανθεκτικότητα και τη γενίκευ-

ση.

Στο Κεφάλαιο 3, εισάγεται το SimPool, μια μέθοδος συγκέντρωσης βασισμένη στο μη-
χανισμό προσοχής, η οποία σχεδιάστηκε για να αντικαθιστά την προεπιλεγμένη τόσο

σε συνελικτικά νευρωνικά δίκτυα όσο και σε οπτικούς μετασχηματιστές. Αναλύεται

η ανάπτυξη ενός γενικού πλαισίου συγκέντρωσης, η διατύπωση των υπαρχουσών με-

θόδων εντός αυτού του πλαισίου και η εξαγωγή του SimPool. Οι βελτιώσεις στην
απόδοση, τόσο ποιοτικές όσο και ποσοτικές, επιβεβαιώνονται σε πρότυπα σύνολα δε-

δομένων και κατάντη εργασίες.
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Στο Κεφάλαιο 4, εισάγεται το FreeDom, μια μέθοδος χωρίς εκπαίδευση για σύν-
θετη ανάκτηση εικόνων μηδενικής λήψης σε σενάρια μετατροπής τομέων ανοιχτο-

ύ κόσμου. Η καινοτόμος προσέγγιση αξιοποιεί ένα προ-εκπαιδευμένο και παγωμένο

οπτικο-γλωσσικό μοντέλο και χρησιμοποιεί αντιστροφή σε διακριτό χώρο. Τα πειρα-

ματικά αποτελέσματα σε πολλαπλά πρότυπα σύνολα δεδομένων δείχνουν την ανώτερη

απόδοσή του και τις δυνατότητες για περαιτέρω εφαρμογές σε γενική σύνθετη ανάκτη-

ση εικόνων.

Στο Κεφάλαιο 5, εισάγεται μια νέα εργασία: η σύνθετη ανάκτηση εικόνων τηλεπι-

σκόπησης. Συζητούνται οι μοναδικές προκλήσεις και δυνατότητες αυτής της εργασίας,

παρουσιάζοντας ένα νέο πρότυπο σύνολο δεδομένων, το PatternCom, και μια μέθοδο
χωρίς εκπαίδευση, τη WeiCom, που χρησιμοποιεί παράμετρο ελέγχου τροπικότητας.
Η αποτελεσματικότητα της μεθόδου αξιολογείται μέσω διαφόρων τροποποιήσεων χα-

ρακτηριστικών, αναδεικνύοντας τις δυνατότητες για βελτίωση των δυνατοτήτων ανα-

ζήτησης στον τομέα της τηλεπισκόπησης.

Στο Κεφάλαιο 6, συνοψίζονται τα κύρια ευρήματα και οι συνεισφορές της έρευνας.

Τονίζονται οι πρόοδοι που έγιναν τόσο στην εκμάθηση οπτικών όσο και οπτικο-

γλωσσικών αναπαραστάσεων και συζητούνται οι πιθανές μελλοντικές κατευθύνσεις

για την επέκταση της εργασίας.

Οι βασικές ιδέες, μέθοδοι και αποτελέσματα της διδακτορικής διατριβής έχουν δη-

μοσιευτεί ή βρίσκονται σε διαδικασία δημοσίευσης σε διεθνή επιστημονικά συνέδρια

υψηλού κύρους με πολύ σημαντικό αριθμό αναφορών. Εκτός από τις δημοσιεύσεις που

συμπεριλήφθηκαν στη διατριβή, κατά τη διάρκεια της έρευνας εκπονήθηκαν και δη-

μοσιεύτηκαν περαιτέρω δημοσιεύσεις σε αντίστοιχα συνέδρια και περιοδικά, οι οποίες

όμως δεν περιλαμβάνονται σε αυτή τη διατριβή. Επιπλέον, στο πλαίσιο της διάδοσης

της έρευνας, πραγματοποιήθηκαν συμμετοχές και παρουσιάσεις σε συμπόσια, καθώς

και προφορικές παρουσιάσεις σε προσκεκλημένες ομιλίες.

Κάθε δημοσίευση υποστηρίζεται από ένα υψηλής ποιότητας και καλά τεκμηριωμένο

αποθετήριο. Αυτά τα αποθετήρια τηρούν τα πρότυπα της κοινότητας και στοχεύουν

να κάνουν την έρευνα προσιτή, προωθήσιμη και αναπαραγώγιμη. Κάθε αποθετήριο

περιλαμβάνει κώδικα, προ-εκπαιδευμένα μοντέλα, καθώς και οποιαδήποτε νέα σύνολα

δεδομένων εισάγονται. Επιπλέον, για ορισμένες δημοσιεύσεις, έχουν δημιουργηθεί

διαδραστικά επιδείγματα για την ενίσχυση της εμπλοκής των χρηστών.
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1.1 Current Challenges and Motivation

From the moment we are born, our interaction with the world begins through sensory
perception. Initially, our vision is blurry, and we can only distinguish between light
and dark shades. Within the first few days, we can discriminate colors from white
and start to recognize faces, particularly our mother’s. Depth perception begins to
develop a few weeks later, a crucial skill that precedes crawling. By the age of two
months, we can focus on particular objects, but it is not until around six months
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that we can perceive sharp images. This progressive refinement of visual acuity is
driven by both biological maturation and the accumulation of sensory experiences.As
our visual system matures, we begin to encode, store, and retrieve detailed mental
images of objects, places, and people. This encoding process occurs over varying
time scales, from rapid eye movements to long-term memory storage. During our
early childhood, the brain is highly plastic, enabling the formation of complex visual
memories. However, as we grow older, the ability to recall memories from our early
years diminishes, a phenomenon known as childhood amnesia. Despite this, the
capacity to form and retain new visual memories persists throughout life, allowing
us to maintain an updated mental image of familiar environments and individuals.

Parallel to the development of visual perception is the evolution of speech and lan-
guage capabilities. We begin to recognize and respond to speech sounds soon after
birth. By six months, we can differentiate between phonemes of our native lan-
guage and start babbling, producing sounds that mimic the rhythm and intonation
of speech. Around our first birthday, we begin to utter our first words. This marks
the beginning of a rapid expansion in vocabulary and the ability to form simple sen-
tences. By the age of three, we can engage in complex conversations, demonstrating
an understanding of syntax and grammar. The development of language involves
both auditory and cognitive processes. We encode speech sounds and patterns, store
these auditory experiences, and retrieve them to produce language. This develop-
ment is facilitated by social interactions and the linguistic environment, highlighting
the importance of experience in shaping language abilities. In the process of learn-
ing a language, we gradually grasp the semantics and syntax of our native tongue,
enabling us to convey complex ideas and emotions. By integrating auditory inputs
with contextual cues and visual stimuli, we develop a sophisticated understanding
of our environment and how to communicate within it.

The encoding, storage, and retrieval of information are thus common processes,
whether they involve visual, linguistic, or auditory experiences. Our sensory and
cognitive experiences are encoded and stored as complex representations, which are
likely unique to each individual. For instance, the word “home” evokes different
mental images for each person, based on their unique experiences. This suggests
that in our representational space, the linguistic representation of the word “home” is
closely linked to the visual representation formed from our experiences with homes.
These personal and unique representations enable visual recognition and concept
understanding in a way that integrates both sensory and linguistic elements of our
experience.

Transitioning from humans to machines, from human to artificial intelligence, rep-
resentations continue to play a crucial role as they enable machines to perceive, in-
terpret, and interact with the world. Visual representations, extracted from images
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or videos, facilitate tasks such as image classification, image retrieval, and object
detection. Visual-textual representations, bridging the gap between the visual and
linguistic domains, enable tasks like image captioning, visual question answering,
and composed image retrieval. The ability to learn and manipulate these represen-
tations is essential for advancing cutting-edge technology in computer vision and
beyond.

This doctoral dissertation focuses on the development and application of novel meth-
ods for learning visual and visual-textual (multimodal) representations, with a spe-
cific emphasis on deep metric learning, image classification, and composed image
retrieval. The research explores both data-centric and model-centric approaches to
enhance the capabilities of machine learning models in visual understanding and
interaction. It addresses significant challenges in representation learning and intro-
duces new methods and benchmarks to advance the state-of-the-art in this field.
This chapter provides a brief introduction to the research conducted, highlighting
the motivation, current challenges, objectives, and scientific contributions of this
work.

1.1.1 Visual Representations
Visual representation learning lies at the core of computer vision, enabling machines
to perform tasks that require understanding and interpreting visual information [1].
Among these tasks, image classification, where the goal is to categorize an image
into one of several predefined classes, is one of the most studied in machine and
deep learning. It is a common source of pre-trained models for transfer learning to
other tasks [2], [3]. It has been studied under different supervision settings [4], [5],
knowledge transfer [6] and data augmentation [7], including the recent research on
mixup [8], [9], where embeddings and labels are interpolated.

Deep metric learning aims to learn an explicit non-linear mapping from input space
to low-dimensional embedding space, such that positive pairs of examples are close
in the embedding space, while negative pairs are far apart [10]. That is, deep met-
ric learning is about learning from pairwise interactions such that inference relies
on instance embeddings, e.g . for nearest neighbor classification [10], instance-level
retrieval [11], few-shot learning [12], face recognition [13] and semantic textual simi-
larity [14]. Following [15], it is most often fully supervised by one class label per ex-
ample, like classification. However, unlike classification, classes (and distributions)
at training and inference are different in deep metric learning. Data augmenta-
tion techniques, particularly mixup, have proven to be highly effective in improving
model generalization. Mixup involves interpolating between pairs of examples and
their corresponding labels, thus generating new training examples [8], [9]. Thus, one
might expect interpolation-based data augmentation like mixup to be even more
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important in deep metric learning than in classification. Yet, recent attempts are
mostly limited to special cases of embedding interpolation and have trouble with
label interpolation [16]. This might be attributed to the fact that deep metric learn-
ing loss functions, unlike cross-entropy of image classification, are non-additive, thus
adapting mixup presents unique challenges [17]. This raises the questions:

• What is a proper way to define and interpolate images and labels for deep
metric learning?

• Can this interpolation be effective when applied to input, feature and embedding
spaces?

• Does this interpolation lead to better exploration and improved visual represen-
tations?

Visual representation learning and spatial pooling are two interconnected processes
since the study of Gabor filters [18] and early convolutional networks [19]. On the
one hand, convolutional networks [20]–[22] are hierarchical, consisting of alternating
convolutional and local pooling layers. They build a final global image representation
typically via global average pooling [21], which compresses the entire feature map
into a single vector at the network’s end. On the other hand, vision transformers [23]
start by splitting the image into patches, encoding each as a token, including a
special classification token called cls, inherited from language models [24]. Pooling
is based on this learnable cls token, which, beginning at the input space, undergoes
the same self-attention operation with patch tokens across all layers and provides a
global image representation. That is, the network ends in global weighted (average)
pooling, using as weights the attention of cls over the patch tokens.

Few works that have studied anything other than cls for pooling in transformers
are mostly limited to global average pooling [25]–[28]. cls offers attention maps for
free, but those are typically of low quality unless in a self-supervised setting [29],
which is not well studied. Few works that attempt to rectify this in the supervised
setting include a spatial entropy loss [30], shape distillation from convolutional net-
works [31] and skipping computation of self-attention, observing that the quality
of self-attention is still good at intermediate layers [32]. It has also been found
beneficial to inject the cls token only at the last few layers [33].

Vision transformers can be reformulated in two streams, where one is extracting a
visual representation on patch tokens and the other is performing spatial pooling
on the cls token; whereas, convolutional networks undergo global spatial pooling
at the very last step, before the classifier. In this sense, one can isolate the pooling
process from both kinds of networks and replace it by a new one. This raises the
question:s:
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• Can a pooling process be derived at the very last step of either convolutional
or transformer encoders that improves over their default?

• Can this process provide high-quality attention maps that delineate object bound-
aries, for both networks?

• Can these properties hold under both supervised and self-supervised settings?

To this end, the motivation for the visual representation learning part of this dis-
sertation is driven by the need to enhance the quality and robustness of visual
representations through both data-centric and model-centric methods.

From a data-centric perspective, the challenge of effectively integrating interpolation-
based data augmentation in deep metric learning sparked our interest in exploring
new ways to define and apply such techniques to improve model generalization and
exploration. From a model-centric perspective, the limitations of existing pool-
ing methods in convolutional and transformer encoders highlighted the need for a
more effective approach. This inspired us to investigate pooling methods that could
enhance attention map quality and maintain performance across different training
settings. These motivations underpin our quest to address the fundamental chal-
lenges in visual representation learning, as reflected in the critical questions posed
above.

1.1.2 Multimodal Representations

Visual-textual (multimodal) representation learning, bridging the gap between the
visual and linguistic domains, enable machines to perform tasks that require un-
derstanding and integrating information across both (various) modalities, such as
image captioning, visual question answering and composed image retrieval. Among
these tasks, composed image retrieval [34]–[39] offers a flexible way to express the
user intent in a query comprising both an image and a text description. In contrast
to image-to-image retrieval [40], [41], where the retrieval is based solely on the visual
content of the query, and text-to-image-retrieval [42]–[44], which is only successful if
the object can be accurately described in words, composed image retrieval combines
both modalities, aiming to retrieve images that are not only visually similar to the
query image but also modified in accordance with the specifics of the query text.

Traditionally, composed image retrieval methods are supervised by triplets [34], [45],
[46], which limited their application to specific domains like fashion [47]–[49] and
physical states [50] due to the labor-intensive process of labeling. The emergence of
zero-shot composed image retrieval [39], [51], which refers to the ability of a model to
perform retrieval in a domain it was not explicitly trained on, expanded the range of
possible applications by leveraging vision-language models [52]–[54]. However, exist-
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ing zero-shot composed image retrieval methods are either trained using unlabeled
images [39], [51] or not trained [55], but rely heavily on large language models [56].
Most zero-shot composed image retrieval methods perform textual inversion by map-
ping the query image to the continuous latent space of word tokens [39], [51], which
involves an optimization process.

Meanwhile, cross-domain image retrieval [57] addresses the challenge of retrieving
images across different visual domains, such as style [58], texture [58] or lighting
conditions [59]. Early cross-domain image retrieval methods are supervised and often
struggle with generalization due to the domain gap between the query image and
the target database, making it difficult to retrieve relevant images when the visual
characteristics of the domains differ significantly. More recent methods dispense
with the need for labeled cross-modal pairs and are unsupervised [60]–[63]. However,
generalization to an unseen domain is rarely demonstrated [64], while no method
includes the domain of the query image in the database, which would make the task
more challenging. Unlike cross-domain retrieval, domain conversion [39] addresses a
more practical, open-domain setting. In this setting, the query and database may be
from any unseen domain, while the text query serves as a description of the target
domain. This task is suitable for mitigating some of the limitations of convnetional
cross-domain image retrieval by allowing for more flexible and dynamic retrieval
across a broader range of domains. This raises the questions:

• Can a pre-trained, frozen vision-language model be leveraged for the task of
composed image retrieval without the need for additional models or fine-tuning?

• Given its zero-shot capabilities, can the specific task of domain conversion be
focused on and expanded, thereby addressing some limitations of the closely
related task of cross-domain image retrieval?

• Can discrete space inversion, as opposed to continuous space, be utilized along
with the pre-trained, frozen vision-language model?

• Can an approach performing well on domain conversion, perform on par with
or better than other methods in more generic composed image retrieval tasks?

In recent years, earth observation through remote sensing has witnessed an enormous
growth in data volume, creating a challenge in managing and extracting relevant in-
formation. This surge is largely attributed to the proliferation of open satellite data
programs, which have democratized access to earth observation data and broadened
the scope of research and applications in various fields. The capacity to efficiently
organize extensive archives and quickly retrieve specific images is crucial. Remote
sensing image retrieval [65], which aims to search and retrieve images from RS image
archives, has emerged as a key solution. However, remote sensing image retrieval
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methods face a limitation: reliance on a query of a single modality. This constraint
often restricts users from fully expressing their specific requirements, especially given
the complex and dynamic nature of Earth’s surface as depicted in remote sensing
imagery. Ideally, users would benefit from a system that allows them to articulate
nuanced modifications or specifications in conjunction with an image-based query.
This is where composed image retrieval comes into play. Composed image retrieval,
integrating both image and text in the search query, is designed to retrieve images
that are not only visually similar to the query image but also relevant to the details
of the query text. This raises the following questions:

• Can composed image retrieval be effectively introduced into the domain of re-
mote sensing to enhance the expressiveness and flexibility of search capabili-
ties?

• Can a training-free approach utilizing a vision-language model provide suffi-
cient descriptive power for various attribute modifications in remote sensing
imagery?

• Can a modality control parameter be used to balance the influence of image-
and text-based components in the retrieval process to meet specific user needs?

To this end, the motivation for the visual-textual (multimodal) representation learn-
ing part of this dissertation is driven by the need to enhance the quality and gener-
alization of multimodal representations in the task of composed image retrieval.

From a zero-shot learning perspective, the challenge of leveraging pre-trained, frozen
vision-language models sparked our interest in exploring new methods to expand
their capabilities. This includes addressing the limitations of current approaches
that depend on large language models, extensive training data or continuous space
inversion. In remote sensing, the complexity and diversity of Earth observation data
underscored the limitations of single-modality retrieval methods. This inspired us
to explore more expressive retrieval approaches that integrate both image and text
modalities, aiming to enhance search expressiveness and flexibility. These motiva-
tions underpin our quest to address challenges in multimodal representation learning,
as reflected in the critical questions posed above.

1.2 Goal

The general aim of this dissertation is summarized in the following:

“Address the challenges of learning visual and visual-textual (multimodal) representa-
tions from either data-centric or model-centric perspectives by developing innovative
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methods, aiming to enhance the quality, robustness and generalization of models.”

1.2.1 Objectives
The main objectives of this dissertation are summarized in the following:

Objective 1 To investigate and develop a data-augmentation method addressing the
challenge of interpolating both examples and target labels in deep metric
learning.

Objective 2 To systematically evaluate this data-augmentation method, ensuring it
enhances exploration, thus improving robustness and generalization.

Objective 3 To investigate and develop a pooling method at the very last step of both
convolutional and transformer encoders that improves over their corre-
sponding default, under both supervised and self-supervised settings.

Objective 4 To design this pooling method as attention-based, ensuring that it pro-
vides high-quality attention maps, solving the attention deficit of trans-
formers, and improving robustness, localization and interpretability.

Objective 5 To leverage a pre-trained, frozen vision-language model for composed
image retrieval without the need for additional models, additional data
or fine-tuning.

Objective 6 To expand the specific task of domain conversion in composed image re-
trieval, addressing limitations of the closely related task of cross-domain
image retrieval.

Objective 7 To investigate and develop a method utilizing discrete-space inversion,
in contrast to the continuous one, enhancing the retrieval performance.

Objective 8 To introduce composed image retrieval into remote sensing, enhancing
the expressiveness and flexibility of search capabilities, accompanied by
a benchmark dataset.

Objective 9 To investigate and develop a training-free method leveraging a pre-
trained, frozen a vision-language model, suitable for attribute modifi-
cation in remote sensing imagery.

1.2.2 Contributions
The main contributions of this dissertation are summarized in the following:

Contribution 1 The development of a generic way of representing and interpolating
labels, allowing the straightforward extension of any kind of mixup

10



1.2. Goal

to deep metric learning for a large class of loss functions. A novel
mixup method is proposed within this generic formulation . This is
related to Objective 1.

Contribution 2 The systematic evaluation of the novel mixup method under different
settings, including mixup at different representation levels, mixup of
different pairs of examples, loss functions and hard example mining.
The introduction of a new evaluation metric, utilization, validating
that a representation more appropriate for test classes is implicitly
learned during the exploration of the embedding space in the presence
of the novel mixup method. The definition of “positivity”, i.e. the
event that a mixed example behaves as “positive” for an anchor, and
the study of how it increases as a function of the interpolation factor,
both theoretically and empirically. This is related to Objective 2.

Contribution 3 The formulation of a generic pooling framework that allows for easy
inspection and qualitative comparison of a wide range of methods.
Utilizing this framework, a simple, attention-based, non-iterative,
universal pooling mechanism is derived, providing a single vector
global representation. This is related to Objectives 3 and 4.

Contribution 4 The provision of high-quality attention maps for free by the novel
method. The "high quality" property of these maps is evaluated not
only qualitatively, but also through experiments on object localiza-
tion, object discovery, and robustness to background changes that
explicitly use the attention maps. This is related to Objective 4.

Contribution 5 The development of a training-free, discrete-space inversion method,
leveraging a pre-trained and frozen vision-language model for com-
posed image retrieval, without the need for additional models, addi-
tional data or fine-tuning. The novel method outperforms state-of-
the-art methods in the domain conversion task, which was expanded
by introducing four new benchmark datasets, and demonstrates com-
petitive performance in generic composed image retrieval. This is
related to Objectives 5, 6, and 7.

Contribution 6 The introduction of composed image retrieval into remote sensing,
enhancing the expressiveness and flexibility of search. This includes
the creation of a benchmark dataset to facilitate evaluation. Further-
more, the development of a simple, training-free method leveraging
a pre-trained and frozen vision-language model suitable for attribute
modification, utilizing a control parameter for more image- or text-
oriented search results. This is related to Objectives 8 and 9.
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1.2.3 Dissemination of Research

The research conducted during this PhD has been disseminated through various
scientific publications, invited talks, and online materials, as detailed below. The
publications forming this dissertation, in the order of appearance within it, are:

Conference Papers

S. Venkataramanan*, B. Psomas*, E. Kijak, L. Amsaleg, K. Karantzalos, Y.
Avrithis, «It takes two to tango: Mixup for deep metric learning», in International
Conference on Learning Representations (ICLR), 2022

B. Psomas, I. Kakogeorgiou, K. Karantzalos, Y. Avrithis, «Keep it simpool: Who
said supervised transformers suffer from attention deficit?», in International Con-
ference on Computer Vision (ICCV), 2023

N. Efthymiadis, B. Psomas, Z. Laskar, K. Karantzalos, Y. Avrithis, O. Chum,
G. Tolias, «Composed image retrieval for training-free domain conversion», under
review in Winter Conference on Applications of Computer Vision (WACV), 2024.

B. Psomas, I. Kakogeorgiou, N. Efthymiadis, G. Tolias, O. Chum, Y.Avrithis, K.
Karantzalos, «Composed image retrieval for remote sensing», in IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 2024

The following publications were conducted during the PhD but are not included in
this dissertation:

Journal Articles

M. Sdraka, I. Papoutsis, B. Psomas, K. Vlachos, K. Ioannidis, K. Karantzalos, I.
Gialampoukidis, S. Vrochidis, «Deep learning for downscaling remote sensing im-
ages: Fusion and super-resolution», IEEE Geoscience and Remote Sensing Magazine
(GRSM), vol. 10, no. 3, pp. 202–255, 2022

Conference Papers

I. Kakogeorgiou, S. Gidaris, B. Psomas, Y. Avrithis, A. Bursuc, K. Karantzalos,
N. Komodakis, «What to hide from your students: Attention-guided masked image
modeling», in European Conference on Computer Vision (ECCV), 2022

P. Riccio, B. Psomas, F. Galati, F. Escolano, T. Hofmann, N. Oliver, «Openfilter:
A framework to democratize research access to social media AR filters», Advances
in Neural Information Processing Systems (NeurIPS), 2022
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S. Vellas, B. Psomas, K. Karadima, D. Danopoulos, A. Paterakis, G. Lentaris, D.
Soudris, K. Karantzalos, «Evaluation of resource-efficient crater detectors on embed-
ded systems», in IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), 2024

As part of the research dissemination, attendance and poster presentations were
made at symposiums:

Symposiums

«It takes two to tango: Mixup for deep metric learning», in 1st ELLIS Doctoral
Symposium 2023, Tübingen, Germany, 27 September - 1 October, 2021

«Openfilter: A framework to democratize research access to social media ar filters»,
in 2nd ELLIS Doctoral Symposium 2023, Alicante, Spain, 19 - 23 September, 2022

In addition, oral presentations were made for invited talks:

Invited Talks

«Leveraging Attention in Masked Image Modeling and Pooling», in 49th Pat-
tern Recognition and Computer Vision Colloquium, Czech Technical University in
Prague, Prague, 4 April 2024

Finally, each publication included in this dissertation is supported by a high-quality,
well-documented repository. These repositories adhere to community standards and
aim to make the research accessible, promotable, and reproducible. Each repository
contains the code, pre-trained models, and any new datasets introduced. Addition-
ally, for some publications, interactive demos have been created to enhance user
engagement. The details are listed below:

Online Material

Repository for «It takes two to tango: Mixup for deep metric learning». The repos-
itory includes code, pre-trained models, as also links to presentation slides and
poster.

Repository for «Keep it simpool: Who said supervised transformers suffer from
attention deficit?». The repository includes code, pre-trained models, as also links
to presentation slides, poster and interactive demo.
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https://github.com/billpsomas/simpool
https://github.com/billpsomas/simpool
http://users.ntua.gr/psomasbill/SimPool_ICCV2023_Slides.pdf
http://users.ntua.gr/psomasbill/SimPool_ICCV2023_Poster.pdf
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Repository for «Composed image retrieval for remote sensing». The repository
includes code, pre-trained models, as also links to presentation slides.

Additionally, the following repositories support publications conducted during the
PhD but not included in this dissertation:

Online Material

Repository for «What to Hide from Your Students: Attention-Guided Masked Im-
age Modeling». The repository includes code, pre-trained models, as also links to
presentation slides and poster.

Repository for «Openfilter: A framework to democratize research access to social
media AR filters». The repository includes code, datasets, as also links to presen-
tation slides and poster.

Repository for «Evaluation of resource-efficient crater detectors on embedded sys-
tem». The repository includes code, pre-trained models, as also a link to presenta-
tion slides.

1.3 Outline

The contents of this dissertation can be divided into three parts. The first part
focuses on visual representations, detailing the development and evaluation of novel
data-centric (chapter 2) and model-centric (chapter 3) methods. The second part
delves into visual-textual (multimodal) representations, presenting innovative ap-
proaches for composed image retrieval and their applications in various domains
(chapter 4 and chapter 5). Finally, chapter 6 provides a summary of the findings,
conclusions, and suggestions for future work. A brief description of each chapter is
presented below:

Chapter 2: Learning Visual Representations via Data Augmentation. This chap-
ter presents the novel data augmentation method, Metrix, designed to address the
challenge of interpolating both examples and target labels in deep metric learn-
ing. The theoretical foundation, method development, and evaluation across var-
ious benchmark datasets are discussed, demonstrating significant improvements in
robustness and generalization.

Chapter 3: Learning Visual Representations via Model Architecture Component.
Focusing on model architecture, this chapter introduces SimPool, an attention-based
pooling method for convolutional neural networks and vision transformers. The
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chapter details the development of a generic pooling framework, the formulation of
existing methods within this framework, and the derivation of SimPool. The perfor-
mance improvements, both qualitative and quantitative, are validated on standard
benchmarks and downstream tasks.

Chapter 4: Extracting Multimodal Representations via Discrete-Space Inversion.
Transitioning to visual-textual representations, this chapter introduces FreeDom,
a training-free method for zero-shot composed image retrieval in open-world do-
main conversion. The innovative approach leverages a frozen vision-language model
and employs discrete-space textual inversion. Experimental results across multi-
ple benchmark datasets demonstrate its superior performance and the potential for
further applications in generic composed image retrieval.

Chapter 5: Extracting Multimodal Representations for Remote Sensing Com-
posed Image Retrieval. Expanding the scope of visual-textual representations, this
chapter introduces a novel task: remote sensing composed image retrieval. The
chapter discusses the unique challenges and capabilities of this task, presenting a
new benchmark dataset, PatternCom, and a training-free method, WeiCom utiliz-
ing a modality control parameter. The method’s effectiveness is evaluated through
various attribute modifications, showcasing its potential for enhancing search capa-
bilities in the remote sensing domain.

Chapter 6: Conclusion. This chapter concludes the dissertation by summarizing
the key findings and contributions of the research. It highlights the advancements
made in both visual and multimodal representation learning and discusses potential
future directions for extending the work.
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2.1 Revisiting Deep Metric Learning: The Role of
Data Interpolation in Visual Representation
Learning

Classification is one of the most studied tasks in machine learning and deep learning.
It is a common source of pre-trained models for transfer learning to other tasks [2],
[3]. It has been studied under different supervision settings [4], [5], knowledge trans-
fer [6] and data augmentation [7], including the recent research on mixup [8], [9],
where embeddings and labels are interpolated.

Deep metric learning is about learning from pairwise interactions such that inference
relies on instance embeddings, e.g . for nearest neighbor classification [10], instance-
level retrieval [11], few-shot learning [12], face recognition [13] and semantic textual
similarity [14].

Following [15], it is most often fully supervised by one class label per example,
like classification. The two most studied problems are loss functions [66] and hard
example mining [67], [68]. Tuple-based losses with example weighting [69] can play
the role of both.
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Representation Learning

Unlike classification, classes (and distributions) at training and inference are differ-
ent in metric learning. Thus, one might expect interpolation-based data augmenta-
tion like mixup to be even more important in metric learning than in classification.
Yet, recent attempts are mostly limited to special cases of embedding interpolation
and have trouble with label interpolation [16]. This raises the question: what is a
proper way to define and interpolate labels for metric learning?

In this work, we observe that metric learning is not different from classification,
where examples are replaced by pairs of examples and class labels by “positive” or
“negative”, according to whether class labels of individual examples are the same
or not. The positive or negative label of an example, or a pair, is determined in
relation to a given example which is called an anchor. Then, as shown in Figure 2.1,
a straightforward way is to use a binary (two class) label per pair and interpolate it
linearly as in standard mixup. We call our method Metric Mix, or Metrix for short.

To show that mixing examples improves representation learning, we quantitatively
measure the properties of the test distributions using alignment and uniformity [70].
Alignment measures the clustering quality and uniformity measures its distribution
over the embedding space; a well clustered and uniformly spread distribution indi-
cates higher representation quality. We also introduce a new metric, utilization, to
measure the extent to which a test example, seen as a query, lies near any of the
training examples, clean or mixed. By quantitatively measuring these three metrics,
we show that interpolation-based data augmentation like mixup is very important in
metric learning, given the difference between distributions at training and inference.

In summary, we make the following contributions:

1. We define a generic way of representing and interpolating labels, which allows
straightforward extension of any kind of mixup to deep metric learning for a
large class of loss functions. We develop our method on a generic formulation
that encapsulates these functions (section 2.3).

2. We define the “positivity” of a mixed example and we study precisely how it
increases as a function of the interpolation factor, both in theory and empirically
(subsection 2.3.6).

3. We systematically evaluate mixup for deep metric learning under different set-
tings, including mixup at different representation levels (input/manifold), mixup
of different pairs of examples (anchors/positives/negatives), loss functions and
hard example mining (subsection 2.4.3).

4. We introduce a new evaluation metric, utilization, validating that a representa-
tion more appropriate for test classes is implicitly learned during exploration of
the embedding space in the presence of mixup (subsection 2.4.5).
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5. We improve the state of the art on four common metric learning benchmarks
(subsection 2.4.3).

2.2 Contextualizing Deep Metric Learning and
Data Interpolation

Metric learning Metric learning aims to learn a metric such that positive pairs
of examples are nearby and negative ones are far away. Conventionally, methods
have been linear using the Mahalanobis distance or non-linear using kernels [71].
In deep metric learning, we learn an explicit non-linear mapping from raw input
to a low-dimensional embedding space [10], where the Euclidean distance has the
desired properties. Although learning can be unsupervised [72], deep metric learning
has mostly followed the supervised approach, where positive and negative pairs are
defined as having the same or different class label, respectively [15].

Loss functions can be distinguished into pair-based and proxy-based [66]. Pair-
based losses use pairs of examples [67], [72], which can be defined over triplets [13],
[73]–[75], quadruples [76] or tuples [10], [69], [77]. Proxy-based losses use one or
more proxies per class, which are learnable parameters in the embedding space [78]–
[82]. Pair-based losses capture data-to-data relations, but they are sensitive to noisy
labels and outliers. They often involve terms where given constraints are satisfied,
which produce zero gradients and do not contribute to training. This necessitates
mining of hard examples that violate the constraints, like semi-hard [13] and distance
weighted [67]. By contrast, proxy-based losses use data-to-proxy relations, assuming
proxies can capture the global structure of the embedding space. They involve less
computations that are more likely to produce nonzero gradient, hence have less or
no dependence on mining and converge faster.

Mixup Input mixup [8] linearly interpolates between two or more examples in the
input space for data augmentation. Numerous variants take advantage of the struc-
ture of the input space to interpolate non-linearly, e.g . for images [83]–[89]. Manifold
mixup [9] interpolates intermediate representations instead, where the structure is
learned. This can be applied to or assisted by decoding back to the input space [90]–
[94]. In both cases, corresponding labels are linearly interpolated too. Most studies
are limited to cross-entropy loss for classification. Pairwise loss functions have been
under-studied, as discussed below.

Interpolation for pairwise loss functions As discussed in subsection 2.3.3, in-
terpolating target labels is not straightforward in pairwise loss functions. In deep
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metric learning, embedding expansion [16], HDML [95] and symmetrical synthe-
sis [96] interpolate pairs of embeddings in a deterministic way within the same
class, applying to pair-based losses, while proxy synthesis [17] interpolates between
classes, applying to proxy-based losses. None performs label interpolation, which
means that [17] risks synthesizing false negatives when the interpolation factor λ is
close to 0 or 1.

In contrastive representation learning, MoCHi [97] interpolates anchor with negative
embeddings but not labels and chooses λ ∈ [0, 0.5] to avoid false negatives. This
resembles thresholding of λ at 0.5 in OptTransMix [93]. Finally, i-mix [98] and
MixCo [99] interpolate pairs of anchor embeddings as well as their (virtual) class
labels linearly. There is only one positive, while all negatives are clean, so it can-
not take advantage of interpolation for relative weighting of positives/negatives per
anchor [69].

By contrast, Metrix is developed for deep metric learning and applies to a large
class of both pair-based and proxy-based losses. It can interpolate inputs, inter-
mediate features or embeddings of anchors, (multiple) positives or negatives and
the corresponding two-class (positive/negative) labels per anchor, such that relative
weighting of positives/negatives depends on interpolation.

2.3 Integrating Mixup into Deep Metric Learning

2.3.1 Preliminaries
Problem formulation We are given a training set X ⊂ X , where X is the input
space. For each anchor a ∈ X, we are also given a set P (a) ⊂ X of positives and a
set N(a) ⊂ X of negatives. The positives are typically examples that belong to the
same class as the anchor, while negatives belong to a different class. The objective
is to train the parameters θ of a model f : X → Rd that maps input examples to a
d-dimensional embedding, such that positives are close to the anchor and negatives
are far away in the embedding space. Given two examples x, x′ ∈ X , we denote by
s(x, x′) the similarity between x, x′ in the embedding space, typically a decreasing
function of Euclidean distance. It is common to ℓ2-normalize embeddings and define
s(x, x′) := ⟨f(x), f(x′)⟩, which is the cosine similarity. To simplify notation, we drop
the dependence of f, s on θ.

Pair-based losses [10], [69], [72], [73] use both anchors and positives/negatives in X,
as discussed above. Proxy-based losses define one or more learnable proxies ∈ Rd

per class, and only use proxies as anchors [80] or as positives/negatives [78], [79],
[81]. To accommodate for uniform exposition, we extend the definition of similarity
as s(v, x) := ⟨v, f(x)⟩ for v ∈ Rd, x ∈ X (proxy anchors) and s(x, v) := ⟨f(x), v⟩
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for x ∈ X , v ∈ Rd (proxy positives/negatives). Finally, to accommodate for mixed
embeddings in subsection 2.3.5, we define s(v, v′) := ⟨v, v′⟩ for v, v′ ∈ Rd.

Thus, we define s : (X ∪Rd)2 → R over pairs of either inputs in X or embeddings in
Rd. We discuss a few representative loss functions below, before deriving a generic
form.

Contrastive The contrastive loss [72] encourages positive examples to be pulled
towards the anchor and negative examples to be pushed away by a margin m ∈ R.
This loss is additive over positives and negatives, defined as:

ℓcont(a; θ) :=
∑
p∈P (a)

−s(a, p) +
∑

n∈N(a)

[s(a, n)−m]+ (2.1)

Multi-Similarity The multi-similarity loss [69] introduces relative weighting to
encourage positives (negatives) that are farthest from (closest to) the anchor to be
pulled towards (pushed away from) the anchor by a higher weight. This loss is not
additive over positives and negatives:

ℓMS(a; θ) :=
1

β
log

1 +
∑
p∈P (a)

e−β(s(a,p)−m)

+

1

γ
log

1 +
∑

n∈N(a)

eγ(s(a,n)−m)

 (2.2)

Here, β, γ ∈ R are scaling factors for positives, negatives respectively.

Proxy Anchor The proxy anchor loss [80] defines a learnable proxy in Rd for each
class and only uses proxies as anchors. For a given anchor (proxy) a ∈ Rd, the loss
has the same form as (2.2), although similarity s is evaluated on Rd ×X .

2.3.2 Generic Loss Formulation

We observe that both additive (2.1) and non-additive (2.2) loss functions involve
a sum over positives P (a) and a sum over negatives N(a). They also involve a
decreasing function of similarity s(a, p) for each positive p ∈ P (a) and an increasing
function of similarity s(a, n) for each negative n ∈ N(a). Let us denote by ρ+, ρ−

this function for positives, negatives respectively. Then, non-additive functions differ

22



2.3. Integrating Mixup into Deep Metric Learning

Loss Anchor P/N τ(x) σ+(x) σ−(x) ρ+(x) ρ−(x)

Contrastive [72] X X x x x −x [x−m]+
Lifted structure [75] X X [x]+ log(x) log(x) e−x ex−m

Binomial dev. [100] X X x log(1 + x) log(1 + x) e−β(x−m) eγ(x−m)

Multi-similarity [69] X X x 1
β
log(1 + x) 1

γ
log(1 + x) e−β(x−m) eγ(x−m)

Proxy Anchor [80] proxy X x 1
β
log(1 + x) 1

γ
log(1 + x) e−β(x−m) eγ(x−m)

NCA [101] X X x − log(x) log(x) ex ex

ProxyNCA [78] X proxy x − log(x) log(x) ex ex

SoftTriple [79] X proxy x − log(x) log(x) eβ(x−m) eβ(x−m) +
∑
eβx

EPSHN [102] X X x − log(x) log(x) ex ex+ + ex

ProxyNCA++ [81] X proxy x − log(x) log(x) ex/T ex/T

Table 2.1: Loss functions under the generic loss formulation. Anchor/positive/neg-
ative: X: embedding of input example from training set X by f ; proxy: learnable
parameter in Rd ; T : temperature. All loss functions are encompassed by (2.3) using
the appropriate definition of functions τ, σ+, σ−, ρ+, ρ− as given here.

from additive by the use of a nonlinear function σ+, σ− on positive and negative
terms respectively, as well as possibly another nonlinear function τ on their sum:

ℓ(a; θ) := τ

σ+

 ∑
p∈P (a)

ρ+(s(a, p))

+ σ−

 ∑
n∈N(a)

ρ−(s(a, n))

 (2.3)

With the appropriate choice for τ, σ+, σ−, ρ+, ρ−, this definition encompasses con-
trastive (2.1), multi-similarity (2.2) or proxy anchor as well as many pair-based or
proxy-based loss functions, as shown in Table 2.1. It does not encompass the triplet
loss [73], which operates on pairs of positives and negatives, forming triplets with
the anchor. The triplet loss is the most challenging in terms of mining because
there is a very large number of pairs and only few contribute to the loss. We only
use function τ to accommodate for lifted structure [10], [75], where τ(x) := [x]+ is
reminiscent of the triplet loss. We observe that multi-similarity [69] differs from bi-
nomial deviance [100] only in the weights of the positive and negative terms. Proxy
anchor [80] is a proxy version of multi-similarity [69] on anchors and ProxyNCA [78]
is a proxy version of NCA [101] on positives/negatives.

This generic formulation highlights the components of the loss functions that are
additive over positives/negatives and paves the way towards incorporating mixup.

2.3.3 Improving Representations Using Mixup

To improve the learned representations, we follow [8], [9] in mixing inputs and
features from intermediate network layers, respectively. Both are developed for
classification.
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Input mixup [8] augments data by linear interpolation between a pair of input exam-
ples. Given two examples x, x′ ∈ X we draw λ ∼ Beta(α, α) as interpolation factor
and mix x with x′ using the standard mixup operation mixλ(x, x

′) := λx+(1−λ)x′.

Manifold mixup [9] linearly interpolates between intermediate representations (fea-
tures) of the network instead. Referring to 2D images, we define gm : X → Rc×w×h

as the mapping from the input to intermediate layer m of the network and
fm : Rc×w×h → Rd as the mapping from intermediate layer m to the embedding,
where c is the number of channels (feature dimensions) and w × h is the spatial
resolution. Thus, our model f can be expressed as the composition f = fm ◦ gm.

For manifold mixup, we follow [94] and mix either features of intermediate layer m
or the final embeddings. Thus, we define three mixup types in total:

fλ(x, x
′) :=


f(mixλ(x, x

′)), input mixup
fm(mixλ(gm(x), gm(x

′))), feature mixup
mixλ(f(x), f(x

′)), embedding mixup
(2.4)

Function fλ : X 2 → Rd performs both input and manifold mixup. We explore
different mixup types in subsection 2.4.4.

2.3.4 Label Representation

Classification In supervised classification, each example x ∈ X is assigned an one-
hot encoded label y ∈ {0, 1}C , where C is the number of classes. Label vectors are
also linearly interpolated: given two labeled examples (x, y), (x′, y′), the interpolated
label is mixλ(y, y

′). The loss (cross-entropy) is a continuous function of the label
vector. We extend this idea to metric learning.

Metric learning Positives P (a) and negatives N(a) of anchor a are defined as
having the same or different class label as the anchor, respectively. To every example
in P (a) ∪N(a), we assign a binary (two-class) label y ∈ {0, 1}, such that y = 1 for
positives and y = 0 for negatives:

U+(a) := {(p, 1) : p ∈ P (a)} (2.5)
U−(a) := {(n, 0) : n ∈ N(a)} (2.6)
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Thus, we represent both positives and negatives by U(a) := U+(a) ∪ U−(a). We
now rewrite the generic loss function (2.3) as:

ℓ(a; θ) := τ

(
σ+

 ∑
(x,y)∈U(a)

yρ+(s(a, x))

+

σ−

 ∑
(x,y)∈U(a)

(1− y)ρ−(s(a, x))

) (2.7)

Here, every labeled example (x, y) in U(a) appears in both positive and negative
terms. However, because label y is binary, only one of the two contributions is
nonzero. Now, in the presence of mixup, we can linearly interpolate labels exactly
as in classification.

2.3.5 Mixed Loss Function
Mixup For every anchor a, we are given a set M(a) of pairs of examples to mix.
This is a subset of (S(a)∪U(a))×U(a) where S(a) := (a, 1). That is, we allow mixing
between positive-negative, positive-positive and negative-negative pairs, where the
anchor itself is also seen as positive. We define the possible choices of mixing pairs
M(a) in subsection 2.4.1 and we assess them in subsection 2.4.4. Let V (a) be the
set of corresponding labeled mixed embeddings :

V (a) := {(fλ(x, x′),mixλ(y, y
′)) : ((x, y), (x′, y′)) ∈M(a), λ ∼ Beta(α, α)}, (2.8)

where fλ is defined by (2.4). With these definitions in place, the generic loss function
ℓ̃ over mixed examples takes exactly the same form as (2.7), with only U(a) replaced
by V (a):

ℓ̃(a; θ) := τ

(
σ+

 ∑
(v,y)∈V (a)

yρ+(s(a, v))

+

σ−

 ∑
(v,y)∈V (a)

(1− y)ρ−(s(a, v))

),
(2.9)

where similarity s is evaluated on X × Rd for pair-based losses and on Rd × Rd for
proxy anchor. Now, every labeled embedding (v, y) in V (a) appears in both positive
and negative terms and both contributions are nonzero for positive-negative pairs,
because after interpolation, y ∈ [0, 1].
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Error function Parameters θ are learned by minimizing the error function, which
is a linear combination of the clean loss (2.3) and the mixed loss (2.9), averaged over
all anchors

E(X; θ) :=
1

|X|
∑
a∈X

ℓ(a; θ) + wℓ̃(a; θ), (2.10)

where w ≥ 0 is the mixing strength. At least for manifold mixup, this combination
comes at little additional cost, since clean embeddings are readily available.

Interpretation To better understand the two contributions of a labeled embed-
ding (v, y) in V (a) to the positive and negative terms of (2.9), consider the case of
positive-negative mixing pairs, M(a) ⊂ U+(a)×U−(a). Then, for ((x, y), (x′, y′)) ∈
M(a), the mixed label is mixλ(y, y

′) = mixλ(1, 0) = λ and (2.9) becomes

ℓ̃(a; θ) = τ

(
σ+

 ∑
(v,λ)∈V (a)

λρ+(s(a, v))


+ σ−

 ∑
(v,λ)∈V (a)

(1− λ)ρ−(s(a, v))

) (2.11)

Thus, the mixed embedding v is both positive (with weight λ) and negative (with
weight 1 − λ). Whereas for positive-positive mixing, that is, for M(a) ⊂ U+(a)2,
the mixed label is 1 and the negative term vanishes. Similarly, for negative-negative
mixing, that is, for M(a) ⊂ U−(a)2, the mixed label is 0 and the positive term
vanishes.

In the particular case of contrastive (2.1) loss, positive-negative mixing (2.11) be-
comes:

ℓ̃cont(a; θ) :=
∑

(v,λ)∈V (a)

−λs(a, v) +
∑

(v,λ)∈V (a)

(1− λ)[s(a, v)−m]+ (2.12)

Similarly, for multi-similarity (2.2):

ℓ̃MS(a; θ) :=
1

β
log

1 +
∑

(v,λ)∈V (a)

λe−β(s(a,v)−m)

+

1

γ
log

1 +
∑

(v,λ)∈V (a)

(1− λ)eγ(s(a,v)−m)

 (2.13)
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2.3.6 Analysis: Mixed Embeddings and Positivity
Positivity Under positive-negative mixing, (2.11) shows that a mixed embedding
v with interpolation factor λ behaves as both positive and negative to different
extents, depending on λ: mostly positive for λ close to 1, mostly negative for λ
close to 0. The net effect depends on the derivative of the loss with respect to the
similarity ∂ℓ̃(a; θ)/∂s(a, v): if the derivative is negative, then v behaves as positive
and vice versa. This is clear from the chain rule

∂ℓ̃(a; θ)

∂v
=
∂ℓ̃(a; θ)

∂s(a, v)
· ∂s(a, v)

∂v
, (2.14)

because ∂s(a, v)/∂v is a vector pointing in a direction that makes a, v more similar
and the loss is being minimized. Let Pos(a, v) be the event that v behaves as “posi-
tive”, i.e., ∂ℓ̃(a; θ)/∂s(a, v) ≤ 0 and minimizing the loss will increase the similarity
s(a, v).

Multi-similarity We estimate the probability of Pos(a, v) as a function of λ in
the case of multi-similarity with a single embedding v obtained by mixing a positive
with a negative:

ℓ̃MS(a; θ) =
1

β
log
(
1 + λe−β(s(a,v)−m)

)
+

1

γ
log
(
1 + (1− λ)eγ(s(a,v)−m)

)
(2.15)

In this case, Pos(a, v) occurs if and only if

∂ℓ̃MS(a; θ)

∂s(a, v)
=
−λe−β(s(a,v)−m)

(1 + λe−β(s(a,v)−m))
+

(1− λ)eγ(s(a,v)−m)

(1 + (1− λ)eγ(s(a,v)−m))
≤ 0 (2.16)

By letting t := s(a, v)−m, this condition is equivalent to

(1− λ)eγt

(1 + (1− λ)eγt)
≤ λe−βt

(1 + λe−βt)
(2.17)

(1− λ)eγt(1 + λe−βt) ≤ λe−βt(1 + (1− λ)eγt) (2.18)

(1− λ)eγt + λ(1− λ)e(γ−β)t ≤ λe−βt + λ(1− λ)e(γ−β)t (2.19)

e(β+γ)t ≤ λ

1− λ
(2.20)

(β + γ)(s(a, v)−m) ≤ ln

(
λ

1− λ

)
(2.21)

s(a, v) ≤ 1

β + γ
ln

(
λ

1− λ

)
+m. (2.22)
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Figure 2.2: “Positivity” of mixed embeddings vs. λ. We measure P(Pos(a, v)) em-
pirically as P(∂ℓ̃MS(a; θ)/∂s(a, v) ≤ 0) and theoretically by (2.23), where Fλ is
again measured from data. We use embedding mixup on MS (2.2) on CUB200 at
epoch 0, based on the setup of subsection 2.4.1.

Finally, the probability of Pos(a, v) as a function of λ is

P(Pos(a, v)) = Fλ

(
1

β + γ
ln

(
λ

1− λ

)
+m

)
, (2.23)

where Fλ is the CDF of similarities s(a, v) between anchors a and mixed embeddings
v with interpolation factor λ.

In Figure 2.2, we measure the probability of Pos(a, v) as a function of λ in two
ways. First, we measure the derivative ∂ℓ̃MS(a; θ)/∂s(a, v) for anchors a and mixed
embeddings v over the entire dataset and we report the empirical probability of this
derivative being non-positive versus λ. Second, we measure P(Pos(a, v)) theoreti-
cally using (2.23), where the CDF of similarities s(a, v) is again measured empirically
for a and v over the dataset, as a function of λ. Despite the simplifying assumption
of a single positive and a single negative in deriving (2.23), we observe that the two
measurements agree in general. They are both increasing functions of λ of sigmoidal
shape, they roughly yield P(Pos(a, v)) ≥ 0.5 for λ ≥ 0.5 and they confirm that a
mixed embedding is mostly positive for λ close to 1 and mostly negative for λ close
to 0.
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Dataset CUB200 [103] Cars196 [104] SOP [10] In-Shop [105]

Objects birds cars household furniture clothes
# classes 200 196 22, 634 7, 982
# training images 5, 894 8, 092 60, 026 26, 356
# testing images 5, 894 8, 093 60, 027 26, 356
# training classes 100 98 11, 318 3991
# testing classes 100 98 11, 318 3991

sampling random random balanced balanced
samples per class – – 5 5
classes per batch 65† 70† 20 20

learning rate 1× 10−4 1× 10−4 3× 10−5 1× 10−4

Table 2.2: Statistics and settings for the four datasets we use in our experiments. †:
average.

2.4 Evaluating the Impact of Mixup on Deep
Metric Learning: Performance and Insights

2.4.1 Setup

Datasets and sampling We experiment on Caltech Birds (CUB200) [103], Stan-
ford Cars (Cars196) [104], Stanford Online Products (SOP) [10] and In-Shop Cloth-
ing retrieval (In-Shop) [105] image datasets. Dataset statistics are summarized in Ta-
ble 2.2. Since the number of classes is large compared to the batch size in SOP and
In-Shop, batches would rarely contain a positive pair when sampled uniformly at
random. Hence, we use balanced sampling [106], i.e., a fixed number of classes and
examples per class, as shown in Table 2.2. For fair comparison with baseline meth-
ods, images are randomly flipped and cropped to 224×224 at training. At inference,
we resize to 256× 256 and then center-crop to 224× 224.

Network, features and embeddings We use ResNet-50 [21] (R-50) pretrained
on ImageNet-1k [107] as a backbone network. We obtain the intermediate repre-
sentation (feature), a 7 × 7 × 2048 tensor, from the last convolutional layer. Fol-
lowing [80], we combine adaptive average pooling with max pooling, followed by a
fully-connected layer to obtain the embedding of d = 512 dimensions.

Loss functions We reproduce contrastive (Cont) [72], multi-similarity (MS) [69],
proxy anchor (PA) [80] and ProxyNCA++ [81] and we evaluate them under different
mixup types. For MS (2.2), following [66], we use β = 18, γ = 75 and m = 0.77. For
PA, we use β = γ = 32 and m = 0.1, as reported by the authors. As baselines, we
reproduce and compare with triplet [74], lifted structure [10], ProxyNCA [78], mar-
gin [67] and SoftTriple [79] losses, without mixup. By reporting published results,
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we also compare with D&C [108] and EPSHN [102].

Methods We compare our method, Metrix, with proxy synthesis (PS) [17], i-
mix [98] and MoCHi [97]. For PS, we adapt the official code1 to PA on all datasets,
and use it with PA only, because it is designed for proxy-based losses. PS has been
shown superior to [16], [96], although in different networks. MoCHi and i-mix are
meant for contrastive representation learning.

Evaluation protocol We follow the standard evaluation protocol of [10], where
half of the classes are used for training and the other half for testing. For each
test example used as a query, we find its K-nearest neighbors within the test set’s
embedding space, excluding the query itself. Each query is assigned a score of 1
if it has at least one neighbor from the same class, and 0 otherwise. We measure
Recall@K, which is the mean of these scores across all test examples.

Implementation details We train R-50 using AdamW [109] optimizer for 100
epochs with a batch size 100. The initial learning rate per dataset is shown in
Table 2.2. The learning rate is decayed by 0.1 for Cont and by 0.5 for MS and PA
on CUB200 and Cars196. For SOP and In-Shop, we decay the learning rate by 0.25
for all losses. The weight decay is set to 0.0001.

2.4.2 Mixup Settings

In mixup for classification, given a batch of n examples, it is standard to form n
pairs of examples by pairing the batch with a random permutation of itself, resulting
in n mixed examples, either for input or manifold mixup. In metric learning, it is
common to obtain n embeddings and then use all 1

2
n(n− 1) pairs of embeddings in

computing the loss. We thus treat mixup types differently.

Input mixup Mixing all pairs would be computationally expensive in this case,
because we would compute 1

2
n(n − 1) embeddings. A random permutation would

not produce as many hard examples as can be found in all pairs. Thus, for each
anchor (each example in the batch), we use the k hardest negative examples and
mix them with positives or with the anchor. We use k = 3 by default.

Manifold mixup Originally, manifold mixup [9] focuses on the first few layers of
the network. Mixing all pairs would then be even more expensive than input mixup,
because intermediate features (tensors) are even larger than input examples. Hence,

1https://github.com/navervision/proxy-synthesis
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we focus on the last few layers instead, where features and embeddings are com-
pact, and we mix all pairs. We use feature mixup by default and call it Metrix/fea-
ture or just Metrix, while input and embedding mixup are called Metrix/input and
Metrix/embed, respectively. All options are studied in subsection 2.4.4.

Mixing pairs Whatever the mixup type, we use clean examples as anchors and
we define a set M(a) of pairs of examples to mix for each anchor a, with their labels
(positive or negative). By default, we mix positive-negative or anchor-negative pairs,
according to M(a) := U+(a) × U−(a) and M(a) := S(a) × U−(a), respectively,
where U−(a) is replaced by hard negatives only for input mixup. The two options
are combined by choosing uniformly at random in each iteration. More options are
studied in subsection 2.4.4.

Implementation details For any given mixup type or set of mixup pairs, the
interpolation factor λ is drawn from Beta(α, α) with α = 2. We empirically set the
mixup strength (2.10) to w = 0.4 for positive-negative pairs and anchor-negative
pairs.

2.4.3 Results

Improving the state of the art As shown in Table 2.3, all three mixup types
(input, feature, embedding) consistently improve the performance of all baseline
losses (Cont, MS, PA, ProxyNCA++) across all datasets. Metrix (feature mixup)
works best, followed by Metrix/embed (embedding mixup) and Metrix/input (in-
put mixup). Surprisingly, MS outperforms PA and ProxyNCA++ under mixup on
all datasets but SOP, where the three losses are on par. This is despite the fact
that baseline PA outperforms MS on CUB200 and Cars-196, while ProxyNCA++
outperforms MS on SOP and In-Shop. Both contrastive and MS are significantly
improved by mixup. By contrast, improvements on PA and ProxyNCA++ are
marginal, which may be due to the already strong performance of PA, or further
improvement is possible by employing different mixup methods that take advantage
of the image structure.

In terms of Recall@1, our MS+Metrix is best overall, improving by 3.6% (67.8 →
71.4) on CUB200, 1.8% (87.8 → 89.6) on Cars196, 4.1% (76.9 → 81.0) on SOP
and 2.1% (90.1 → 92.2) on In-Shop. The same solution sets new state of the art,
outperforming the previously best PA by 1.7% (69.7 → 71.4) on CUB200, MS by
1.8% (87.8→ 89.6) on Cars196, ProxyNCA++ by 0.3% (80.7→ 81.0) on SOP and
SoftTriple by 1.2% (91.0→ 92.2) on In-Shop. Importantly, while the previous state
of the art comes from a different loss per dataset, MS+Metrix is almost consistently
best across all datasets.
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Method CUB200 Cars196 SOP In-Shop

R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20

Triplet [74] 63.5 75.6 84.4 77.3 85.4 90.8 70.5 85.6 94.3 85.3 96.6 97.8
LiftedStructure [10] 65.9 75.8 84.5 81.4 88.3 92.4 76.1 88.6 95.2 88.6 97.6 98.4
ProxyNCA [78] 65.2 75.6 83.8 81.2 87.9 92.6 73.2 87.0 94.4 86.2 95.9 97.0
Margin [67] 65.0 76.2 84.6 82.1 88.7 92.7 74.8 87.8 94.8 88.6 97.0 97.8
SoftTriple [79] 67.3 77.7 86.2 86.5 91.9 95.3 79.8 91.2 96.3 91.0 97.6 98.3
D&C [108]∗ 65.9 76.6 84.4 84.6 90.7 94.1 75.9 88.4 94.9 85.7 95.5 96.9
EPSHN [102]∗ 64.9 75.3 83.5 82.7 89.3 93.0 78.3 90.7 96.3 87.8 95.7 96.8

Contrastive [72] 64.7 75.9 84.6 81.6 88.2 92.7 74.9 87.0 93.9 86.4 94.7 96.2
+Metrix/input 66.3 77.1 85.2 82.9 89.3 93.7 75.8 87.8 94.6 87.7 95.9 96.5
+Metrix 67.4 77.9 85.7 85.1 91.1 94.6 77.5 89.1 95.5 89.1 95.7 97.1
+Metrix/embed 66.4 77.6 85.4 83.9 90.3 94.1 76.7 88.6 95.2 88.4 95.4 96.8

Multi-Similarity [69] 67.8 77.8 85.6 87.8 92.7 95.3 76.9 89.8 95.9 90.1 97.6 98.4
+Metrix/input 69.0 79.1 86.0 89.0 93.4 96.0 77.9 90.6 95.9 91.8 98.0 98.9
+Metrix 71.4 80.6 86.8 89.6 94.2 96.0 81.0 92.0 97.2 92.2 98.5 98.6
+Metrix/embed 70.2 80.4 86.7 88.8 92.9 95.6 78.5 91.3 96.7 91.9 98.3 98.7

Proxy Anchor [80]∗ 69.7 80.0 87.0 87.7 92.9 95.8 – – – – – –
Proxy Anchor [80] 69.5 79.3 87.0 87.6 92.3 95.5 79.1 90.8 96.2 90.0 97.4 98.2
+Metrix/input 70.5 81.2 87.8 88.2 93.2 96.2 79.8 91.4 96.5 90.9 98.1 98.4
+Metrix 71.0 81.8 88.2 89.1 93.6 96.7 81.3 91.7 96.9 91.9 98.2 98.8
+Metrix/embed 70.4 81.1 87.9 88.9 93.3 96.4 80.6 91.7 96.6 91.6 98.3 98.3

ProxyNCA++ [81]∗ 69.0 79.8 87.3 86.5 92.5 95.7 80.7 92.0 96.7 90.4 98.1 98.8
ProxyNCA++ [81] 69.1 79.5 87.7 86.6 92.1 95.4 80.4 91.7 96.7 90.2 97.6 98.4
+Metrix/input 69.7 79.9 88.3 87.5 92.9 96.0 80.9 92.2 96.9 91.4 98.1 98.8
+Metrix 70.4 80.6 88.7 88.5 93.4 96.5 81.3 92.7 97.1 91.9 98.1 98.8
+Metrix/ embed 70.2 80.2 88.2 88.1 93.0 96.2 81.1 92.4 97.0 91.6 98.1 98.8

Table 2.3: Improving the SOTA with Metrix using ResNet-50 with embedding size
d = 512 on four datasets. R@K (%): Recall@K; higher is better. ∗: reported by
authors.

Method
CUB200 Cars196 SOP In-Shop

Mixing Pairs R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20

Contrastive [72] – 64.7 75.9 84.6 81.6 88.2 92.7 74.9 87.0 93.9 86.4 94.7 96.3
+ i-Mix [98] anc-neg 65.8 76.2 84.9 82.0 88.5 93.2 75.2 87.3 94.2 87.1 95.4 96.1
+ Metrix/input pos-neg/anc-neg 66.3 77.1 85.2 82.9 89.3 93.7 75.8 87.8 94.6 87.7 95.9 96.5

+MoCHi [97] neg-neg 63.1 74.3 83.8 76.3 84.0 89.3 68.9 83.1 91.8 81.8 91.9 93.9
+MoCHi [97] anc-neg 65.2 75.8 84.2 82.5 88.0 92.9 75.8 87.1 94.8 87.2 92.8 94.9
+Metrix/embed pos-neg/anc-neg 66.4 77.6 85.4 83.9 90.3 94.1 76.7 88.6 95.2 88.4 95.4 96.9

Proxy Anchor [80] – 69.7 80.0 87.0 87.6 92.3 95.5 79.1 90.8 96.2 90.0 97.4 98.2
+PS [17] pos-neg/neg-neg 70.0 79.8 87.2 87.9 92.8 95.6 79.6 90.9 96.4 90.3 97.4 98.0
+Metrix/embed pos-neg/anc-neg 70.4 81.1 87.9 88.9 93.3 96.4 80.6 91.7 96.6 91.6 98.3 98.3

Table 2.4: Comparison of Metrix/input and Metrix/embed with other mixing methods
using R-50 with embedding size d = 512 on four datasets. R@K (%): Recall@K;
higher is better. PS: Proxy Synthesis.
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Alternative mixing methods In Table 2.4, we compare Metrix/input with i-
Mix [98] and Metrix/embed with MoCHi [97] using contrastive loss, and with PS [17]
using PA. MoCHi and PS mix embeddings only, while labels are always negative.
For i-Mix, we mix anchor-negative pairs (S(a)×U−(a)). For MoCHi, the anchor is
clean and we mix negative-negative (U−(a)2) and anchor-negative (S(a) × U−(a))
pairs, where U−(a) is replaced by k = 100 hardest negatives and λ ∈ (0, 0.5) for
anchor-negative. PS mixes embeddings of different classes and treats them as new
classes. For clean anchors, this corresponds to positive-negative (U+(a) × U−(a))
and negative-negative (U−(a)2) pairs, but PS also supports mixed anchors.

In terms of Recall@1, Metrix/input outperforms i-Mix with anchor-negative pairs
by 0.5% (65.8 → 66.3) on CUB200, 0.9% (82.0 → 82.9) on Cars196, 0.6% (75.2 →
75.8) and 0.6% (87.1 → 87.7) on In-Shop. Metrix/embed outperforms MoCHI
with anchor-negative pairs by 1.2% (65.2 → 66.4) on CUB200, 1.4% (82.5 → 83.9)
on Cars196, 0.9% (75.8 → 76.7) and 1.2% (87.2 → 88.4) on In-Shop. The gain
over MoCHi with negative-negative pairs is significantly higher. Metrix/embed also
outperforms PS by 0.4% (70.0 → 70.4) on CUB200, 1% (87.9 → 88.9) on Cars196,
1% (79.6→ 80.6) on SOP and 1.3% (90.3→ 91.6) on In-Shop.

Computational complexity On CUB200 dataset, using a batch size of 100 on
an NVIDIA RTX 2080 Ti GPU, the average training time in ms/batch is 586 for
MS and 817 for MS+Metrix. The 39% increase in complexity is reasonable for 3.6%
increase in R@1. Furthermore, the average training time in ms/batch is 483 for
baseline PA, 965 for PA+Metrix and 1563 for PS [17]. While the computation cost
of PS is higher than Metrix by 62%, Metrix outperform PS by 0.4% and 1.3% in
terms of R@1 and R@2 respectively (Table 2.4). At inference, the computational
cost is equal for all methods.

Qualitative results of retrieval Figure 2.3 shows qualitative results of retrieval
on CUB200 using contrastive loss, with and without Metrix. This dataset has
large intra-class variations such as pose variation and background clutter. Baseline
contrastive loss may fail to retrieve the correct images due to these challenges. The
ranking is improved in the presence of Metrix.

2.4.4 Ablations
We perform ablations on Cars196 using R-50 with d = 512, applying mixup on
contrastive loss.

Hard negatives We study the effect of the number k of hard negatives using
different mixup types. The set of mixing pairs is chosen from (positive-negative,
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Figure 2.3: Retrieval results on CUB200 using contrastive loss, with and without
Metrix. Retrieved images: correct, incorrect.
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Study Hard Mixing Mixup R@1 R@2 R@4 R@8Negatives k Pairs Type

baseline 81.6 88.2 92.7 95.8

1 pos-neg/anc-neg input 82.0 89.1 93.1 96.1
2 pos-neg/anc-neg input 82.5 89.2 93.4 96.2
3 pos-neg/anc-neg input 82.9 89.3 93.7 95.5

20 pos-neg/anc-neg feature 83.5 90.1 94.0 96.5
hard negatives 40 pos-neg/anc-neg feature 84.0 90.4 94.2 96.8

all pos-neg/anc-neg feature 85.1 91.1 94.6 97.0

20 pos-neg/anc-neg embed 82.7 89.2 93.4 96.1
40 pos-neg/anc-neg embed 83.0 90.0 93.8 96.4
all pos-neg/anc-neg embed 83.4 89.9 94.1 96.4

– pos-pos input 81.0 88.2 92.6 95.6
3 pos-neg input 82.4 89.1 93.3 95.6
3 anc-neg input 81.8 89.0 93.6 95.4

– pos-pos feature 81.1 88.3 92.9 95.8
mixing pairs all pos-neg feature 84.0 90.2 94.2 96.6

all anc-neg feature 83.7 90.1 94.4 96.7

– pos-pos embed 78.3 85.7 90.8 94.4
all pos-neg embed 83.1 90.0 93.9 96.6
all anc-neg embed 82.7 89.5 93.5 96.3

{1, all} pos-neg/anc-neg {input, feature} 83.7 94.2 95.9 96.7
mixup type {3, all} pos-neg/anc-neg {input, embed} 83.0 90.9 94.1 96.4
combinations {all, all} pos-neg/anc-neg {feature, embed} 84.7 90.6 94.4 96.9

{1, all, all} pos-neg/anc-neg {input, feature, embed} 85.3 94.9 96.2 97.1

Table 2.5: Ablation study of Metrix using contrastive loss and R-50 with embedding
size d = 512 on Cars196. R@K (%): Recall@K; higher is better.

anchor-negative) uniformly at random per iteration. We choose k = 3 for input
mixup. For feature/embedding mixup, we mix all pairs in a batch by default, but
also study k ∈ {20, 40}. As shown in Table 2.5, k = 3 for input and all pairs
for feature/embedding mixup works best. Still, using few hard negatives for fea-
ture/embedding mixup is on par or outperforms input mixup. All choices signifi-
cantly outperform the baseline.

Mixing pairs We study the effect of mixing pairs M(a), in particular, U+(a)2

(positive-positive), U+(a) × U−(a) (positive-negative) and S(a) × U−(a) (anchor-
negative), again using different mixup types. As shown in Table 2.5, when using
a single set of mixing pairs during training, positive-negative and anchor-negative
consistently outperform the baseline, while positive-positive is actually outperformed
by the baseline. This may be due to the lack of negatives in the mixed loss (2.9),
despite the presence of negatives in the clean loss (2.3). Hence, we only use positive-
negative and anchor-negative by default, combined by choosing uniformly at random
in each iteration.
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Figure 2.4: Effect of mixup strength for different mixup types using contrastive loss
and R-50 with embedding size d = 512 on Cars196. Recall@K (%): higher is better.

Mixup types We study the effect of mixup type (input, feature, embedding),
when used alone. The set of mixing pairs is chosen from (positive-negative, anchor-
negative) uniformly at random per iteration. As shown in both “hard negatives” and
“mixing pairs” parts of Table 2.5, our default feature mixup works best, followed by
embedding and input mixup.

Mixup type combinations We study the effect of using more than one mixup
type (input, feature, embedding), chosen uniformly at random per iteration. The set
of mixing pairs is also chosen from (positive-negative, anchor-negative) uniformly
at random per iteration. As shown in Table 2.5, mixing inputs, features and em-
beddings works best. Although this solution outperforms feature mixup alone by
0.2% Recall@1 (85.1 → 85.3), it is computationally expensive because of using in-
put mixup. The next best efficient choice is mixing features and embeddings, which
however is worse than mixing features alone (84.7 vs . 85.1). This is why we chose
feature mixup by default.

Mixup strength w We study the effect of the mixup strength w in the combi-
nation of the clean and mixed loss (2.10) for different mixup types. As shown in
Figure 2.4, mixup consistently improves the baseline and the effect of w is small,
especially for input and embedding mixup. Feature mixup works best and is slightly
more sensitive.

Ablations on CUB200 We perform additional ablations on CUB200 using R-50
with d = 128 by applying contrastive loss. All results are shown in Table 2.6. One
may draw the same conclusions as from Table 2.5 on Cars196 with d = 512, which
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Study Hard Mixing Mixup R@1 R@2 R@4 R@8Negatives k Pairs Type

baseline 64.7 75.9 84.6 87.6

1 pos-neg/anc-neg input 62.4 73.9 83.0 89.7
2 pos-neg/anc-neg input 62.7 74.2 83.6 90.0
3 pos-neg/anc-neg input 63.1 74.5 83.5 90.3

20 pos-neg/anc-neg feature 63.9 75.0 83.9 89.9
hard negatives 40 pos-neg/anc-neg feature 63.5 75.2 83.5 89.8

all pos-neg/anc-neg feature 64.5 75.4 84.3 90.6

20 pos-neg/anc-neg embed 63.1 74.3 83.1 90.0
40 pos-neg/anc-neg embed 63.5 74.7 83.6 90.1
all pos-neg/anc-neg embed 64.0 75.1 84.8 90.9

– pos-pos input 58.7 70.7 80.1 87.1
3 pos-neg input 62.9 75.1 83.4 90.6
3 anc-neg input 62.8 74.7 83.6 90.1

– pos-pos feature 61.0 73.1 82.5 89.7
mixing pairs all pos-neg feature 63.9 75.0 83.9 89.9

all anc-neg feature 63.8 74.8 83.6 90.2

– pos-pos embed 59.7 72.2 82.7 89.5
all pos-neg embed 63.8 75.1 83.3 90.5
all anc-neg embed 63.5 75.0 83.9 90.5

{1, all} pos-neg/anc-neg {input, feature} 63.9 75.1 84.9 90.5
mixup type {3, all} pos-neg/anc-neg {input, embed} 63.4 74.9 84.5 90.1
combinations {all, all} pos-neg/anc-neg {feature, embed} 64.2 75.2 84.1 90.7

{1, all, all} pos-neg/anc-neg {input, feature, embed} 65.3 76.2 84.4 91.2

Table 2.6: Ablation study of Metrix using contrastive loss and R-50 with embedding
size d = 128 on CUB200. R@K (%): Recall@K; higher is better.

confirms that our choice of hard negatives and mixup pairs is generalizable across
different datasets and embedding sizes.

In particular, following the settings of subsection 2.4.4, we observe in Table 2.6 that
using k = 3 hard negatives for input mixup and all pairs for feature/embedding
mixup achieves the best performance in terms of Recall@1. Similarly, using a single
set of mixing pairs, positive-negative and anchor-negative consistently outperform
the baseline, whereas positive-positive is inferior than the baseline. Furthermore,
combining positive-negative and anchor-negative pairs by choosing uniformly at ran-
dom in each iteration achieves the best overall performance.

We also study the effect of using more than one mixup type (input, fea-
ture,embedding), chosen uniformly at random per iteration. The set of mixing
pairs is also chosen from (positive-negative, anchor-negative) uniformly at random
per iteration in this study. From Table 2.6, we observe that although mixing input,
features and embedding works best with an improvement of 0.8% over feature mixup
alone (64.5→ 65.3), it is computationally expensive due to using input mixup. The
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next best choice is mixing features and embeddings, which is worse than using fea-
ture mixup alone (64.2 vs . 64.5). This confirms our choice of using feature mixup
as default.

2.4.5 How Mixup Improves Representations

We analyze how Metrix improves representation learning, given the difference be-
tween distributions at training and inference. As discussed in section 2.1, since the
classes at inference are unseen at training, one might expect interpolation-based
data augmentation like mixup to be even more important than in classification.
This is so because, by mixing examples during training, we are exploring areas of
the embedding space beyond the training classes. We hope that this exploration
would possibly lead the model to implicitly learn a representation more appropriate
for the test classes, if the distribution of the test classes lies near these areas.

Alignment and Uniformity In terms of quantitative measures of properties of
the training and test distributions, we follow [70]. This work introduces two mea-
sures – alignment and uniformity (the lower the better) to be used both as loss
functions (on the training set) and as evaluation metrics (on the test set). Align-
ment measures the expected pairwise distance between positive examples in the
embedding space. A small value of alignment indicates that the positive examples
are clustered together. Uniformity measures the (log of the) expected pairwise simi-
larity between all examples regardless of class, using a Gaussian kernel as similarity.
A small value of uniformity indicates that the distribution is more uniform over the
embedding space, which is particularly relevant to our problem. Meant for con-
trastive learning, [70] use the same training and test classes, while in our case they
are different.

By training with contrastive loss on CUB200 and then measuring on the test set, we
achieve an alignment (lower the better) of 0.28 for contrastive loss, 0.28 for i-Mix [98]
and 0.19 for Metrix/input. MoCHi [97] and Metrix/embed achieve an alignment of
0.19 and 0.17, respectively. We also obtain a uniformity (lower the better) of −2.71
for contrastive loss, −2.13 for i-Mix and −3.13 for Metrix/input. The uniformity
of MoCHi and Metrix/embed is −3.18 and −3.25, respectively. This indicates that
Metrix helps obtain a test distribution that is more uniform over the embedding
space, where classes are better clustered and better separated.

Utilization The measures proposed by [70] are limited to a single distribution
or dataset, either the training set (as loss functions) or the test set (as evaluation
metrics). It is more interesting to measure the extent to which a test example, seen
as a query, lies near any of the training examples, clean or mixed. For this, we
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introduce the measure of utilization u(Q,X) of the training set X by the test set Q
as:

u(Q,X) =
1

|Q|
∑
q∈Q

min
x∈X
∥f(q)− f(x)∥2 (2.24)

Utilization measures the average, over the test set Q, of the minimum distance of a
query q to a training example x ∈ X in the embedding space of the trained model
f (lower is better). A low value of utilization indicates that there are examples in
the training set that are similar to test examples. When using mixup, we measure
utilization as u(Q, X̂), where X̂ is the augmented training set including clean and
mixed examples over a number of epochs and f remains fixed. Because X ⊂ X̂, we
expect u(Q, X̂) < u(Q,X), that is, the embedding space is better explored in the
presence of mixup (Figure 2.5).

By using contrastive loss on CUB200, utilization drops from 0.41 to 0.32 when us-
ing Metrix. This indicates that test samples are indeed closer to mixed examples
than clean in the embedding space. This validates our hypothesis that a represen-
tation more appropriate for test classes is implicitly learned during exploration of
the embedding space in the presence of mixup.

d

q

(a) Only clean examples

d

q

(b) Clean and mixed examples

Figure 2.5: Exploring the embedding space when using (a) only clean examples (b)
clean and mixed examples. Given a query q, the distance d to its nearest training
embedding (clean or mixed) is smaller with mixup (b) than without (a). Examples:
clean train; (clean) test; mixed train.
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2.5 Conclusion

Based on the argument that metric learning is binary classification of pairs of exam-
ples into “positive” and “negative”, we have introduced a direct extension of mixup
from classification to metric learning. Our formulation is generic, applying to a
large class of loss functions that separate positives from negatives per anchor and
involve component functions that are additive over examples. Those are exactly loss
functions that require less mining. We contribute a principled way of interpolating
labels, such that the interpolation factor affects the relative weighting of positives
and negatives. Other than that, our approach is completely agnostic with respect
to the mixup method, opening the way to using more advanced mixup methods for
metric learning.

We consistently outperform baselines using a number of loss functions on a number
of benchmarks and we improve the state of the art using a single loss function on all
benchmarks, while previous state of the art was not consistent in this respect. Sur-
prisingly, this loss function, multi-similarity [69], is not the state of the art without
mixup. Because metric learning is about generalizing to unseen classes and distri-
butions, our work may have applications to other such problems, including transfer
learning, few-shot learning and continual learning.
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project grant No. 101017808 and was performed using the HPC resources from
GRNET S.A. project pr011028.
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3.1 Revisiting Pooling Mechanisms in Visual
Representation Learning: From Convolu-
tional Networks to Vision Transformers

Extracting visual representations and spatial pooling have been two interconnected
processes since the study of 2D Gabor filters [18] and early convolutional net-
works [19]. Modern convolutional networks [22], [110] gradually perform local pool-
ing and downsampling throughout the architecture to extract a low-resolution fea-
ture tensor, followed by a last step of global spatial pooling. Vision transformers [23]
only downsample at input tokenization and then preserve resolution, but pooling
takes place again throughout the architecture via the interaction of patch tokens
with a cls token, inherited from language models [111].

The pooling operation has been studied extensively in instance-level tasks on con-
volutional networks [112], [113], but less so in category-level tasks or transformers.
Pooling in transformers is based on weighted averaging, using as weights the 2D
attention map of the cls token at the last layer. However, this attention map is
typically of low quality, unless under self-supervision [29].

In this work, we argue that vision transformers can be reformulated in two streams,
where one is extracting a visual representation on patch tokens and the other is per-
forming spatial pooling on the cls token; whereas, convolutional networks undergo
global spatial pooling at the very last step, before the classifier. In this sense, one
can isolate the pooling process from both kinds of networks and replace it by a new
one. This raises the following questions:

1. Can we derive a simple pooling process at the very last step of either convolu-
tional or transformer encoders that improves over their default?

2. Can this process provide high-quality attention maps that delineate object
boundaries, for both networks?

3. Do these properties hold under both supervised and self-supervised settings?

To answer these questions, we develop a generic pooling framework, parametrized
by: (a) the number of vectors in the pooled representation; (b) whether pooling is
iterative or not; (c) mappings at every stage of the process; (d) pairwise similarities,
attention function and normalization; and (e) a function determining the pooling
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input supervised supervised DINO [29] DINO [29]
image cls SimPool cls SimPool

Figure 3.1: We introduce SimPool, a simple attention-based pooling method at the
end of network, obtaining clean attention maps under supervision or self-supervision,
improving pre-training and downstream task performance. Attention maps of ViT-
S [23] trained on ImageNet-1k [114]. For baseline, we use the mean attention map
of the cls token. For SimPool, we use the attention map a (3.65). Input image:
896× 896; patches: 16× 16; attention map: 56× 56.

operation.

We then formulate a number of existing pooling methods as instantiations of this
framework, including (a) simple pooling mechanisms in convolutional networks [110],
[113], [115]–[117], (b) iterative methods on more than one vectors like k-means [118],
[119], (c) feature re-weighting mechanisms originally designed as network compo-
nents rather than pooling [120], [121], and (d) vision transformers [23], [33]. Finally,
by discussing the properties of each group of methods, we derive a new, simple,
attention-based pooling mechanism as a replacement of the default one for both
convolutional and transformer encoders. SimPool provides high-quality attention
maps that delineate object boundaries, under both supervised and self-supervised
settings, as shown for ViT-S [23] in Figure 3.1.

In summary, we make the following contributions:
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1. We formulate a generic pooling framework that allows easy inspection and
qualitative comparison of a wide range of methods.

2. We introduce a simple, attention-based, non-iterative, universal pooling mech-
anism that provides a single vector representation and answers all the above
questions in the affirmative.

3. We conduct an extensive empirical study that validates the superior qualita-
tive properties and quantitative performance of the proposed mechanism on
standard benchmarks and downstream tasks.

3.2 Contextualizing Pooling Mechanisms in Con-
volutional Networks and Vision Transformers

Spatial pooling of visual input is the process by which spatial resolution is reduced
to 1 × 1, such that the input is mapped to a single vector. This process can be
gradual and interleaved with mapping to a feature space, because any feature space is
amenable to smoothing or downsampling. The objective is robustness to deformation
while preserving important visual information.

Via a similarity function, e.g . dot product, the vector representation of an image
can be used for efficient matching to class representations for category-level tasks
or to the representation of another image for instance-level tasks. One may obtain
more than one vectors per image as a representation, but this requires a particular
kernel for matching.

Background The study of receptive fields in neuroscience [122] lead to the de-
velopment of 2D Gabor filters [18] as a model of the first processing layer in the
visual cortex. Visual descriptors based on filter banks in the frequency domain [123]
and orientation histograms [124], [125] can be seen as efficient implementations of
the same idea. Apart from mapping to a new space—that of filter responses or ori-
entation bins—they involve a form of smoothing, at least in some orientation, and
weighted local spatial pooling.

Textons [126] can be seen as a second layer, originally studied in the context of tex-
ture discrimination [127] and segmentation [126], [128] and taking the form of mul-
tidimensional histograms on Gabor filter responses. The bag of words model [129],
[130] is based on the same idea, as a histogram on other visual descriptors. Again,
apart from mapping to a new space—that of textons or visual words—they involve
local or global spatial pooling.

Histograms and every step of building visual features can be seen as a form of non-
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linear coding followed by pooling [131]. Coding is maybe the most important factor.
For example, a high-dimensional mapping before pooling, optionally followed by
dimension reduction after pooling, can reduce interference between elements [132]–
[134]. Weighting of individual elements is also important in attending important re-
gions [135]–[137] and in preventing certain elements from dominating others [138]–
[140].

The pooling operation itself is any symmetric (permutation-invariant) set function,
which can be expressed in the form F (X) = g

(∑
x∈X f(x)

)
[141]. The most common

is average and maximum [131], [142], [143].

Common ways to obtain a representation of multiple vectors are using a spatial
partition [135] or a partition in the feature space [144], [145].

Convolutional networks Following findings of neuroscience, early convolutional
networks [19], [146] are based on learnable convolutional layers interleaved with fixed
spatial pooling layers that downsample, which is an instance of the coding-pooling
framework. The same design remains until today [22], [110], [147], [148]. Again,
apart from mapping to a new space, convolutional layers involve a form of weighted
local pooling. Again, the operation in pooling layers is commonly average [146] or
maximum [142], [147].

Early networks end in a fully-connected layer over a feature tensor of low resolu-
tion [146]–[148]. This evolved into spatial pooling, e.g . global average pooling (GAP)
for classification [110], [149], regional pooling for detection [150], or global maximum
followed by a pairwise loss [115] for instance-level tasks. This is beneficial for down-
stream tasks and interpretability [151].

The spatial pooling operation at the end of the network is widely studied in instance
level-tasks [112], [113], [115], giving rise to forms of spatial attention [117], [152]–
[155], In category-level tasks, it is more common to study feature re-weighting as
components of the architecture [120], [121], [156]. The two are closely related because
e.g . the weighted average is element-wise weighting followed by sum. Most modern
pooling operations are learnable.

Pooling can be spatial [117], [153]–[156], over channels [120], or both [121], [152].
CBAM [121] is particularly related to our work in the sense that it includes global
average pooling followed by a form of spatial attention, although the latter is not
evident in its original formulation and although CBAM is designed as a feature
re-weighting rather than pooling mechanism.

One may obtain a representation of multiple vectors e.g . by some form of cluster-
ing [157] or optimal transport [118].
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Vision transformers Pairwise interactions between features are forms of self-
attention that can be seen as alternatives to convolution or forms of pooling. They
have commonly been designed as architectural components of convolutional net-
works, again over the spatial [158]–[161] or the channel dimensions [162], [163].
Originating in language models [24], vision transformers [23] streamlined these ap-
proaches and became the dominant competitors of convolutional networks.

Transformers commonly downsample only at the input, forming spatial patch tokens.
Pooling is based on a learnable cls (“classification”) token, which, beginning at the
input space, undergoes the same self-attention operation with patch tokens and
eventually provides a global image representation. That is, the network ends in
global weighted average pooling, using as weights the attention of cls over the patch
tokens. Pooling is still gradual, since cls interacts with patch tokens throughout
the network depth.

Several variants of transformers often bring back ideas from convolutional networks,
including spatial hierarchy [25], relative position encoding [164], [165], re-introducing
convolution [166], [167], re-introducing pooling layers [25], [168]–[170], or simple
pooling instead of attention [171]. In this sense, downsampling may occur inside the
transformer, e.g . for classification [25], [168] or detection [169], [170].

Few works that have studied anything other than cls for pooling in transformers
are mostly limited to GAP [25]–[28]. cls offers attention maps for free, but those
are typically of low quality unless in a self-supervised setting [29], which is not well
studied. Few works that attempt to rectify this in the supervised setting include
a spatial entropy loss [30], shape distillation from convolutional networks [31] and
skipping computation of self-attention, observing that the quality of self-attention
is still good at intermediate layers [32]. It has also been found beneficial to inject
the cls token only at the last few layers [33].

We are thus motivated to question why the pooling operation at the end of the
network needs to be different in convolutional networks and vision transformers and
why pooling with a cls token needs to be performed across the network depth. We
study pooling in both kinds of networks, in supervised and self-supervised settings
alike. We derive a simple, attention-based, universal pooling mechanism that applies
equally to all cases, improving both performance and the quality of attention maps.
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3.3 Formulating a Unified Pooling Framework
and Deriving SimPool

We develop a generic pooling framework that encompasses many simple or more
complex pooling methods, iterative or not, attention-based or not. We then examine
a number of methods as instantiations of this framework. Finally, we discuss their
properties and make particular choices in designing our solution.

3.3.1 A Generic Pooling Framework

Preliminaries Let X ∈ Rd×W×H be the 3-dimensional feature tensor obtained
from the last layer of a network for a given input image, where d is the number
of feature channels and W,H are the width and height. We represent the image
by the feature matrix X ∈ Rd×p by flattening the spatial dimensions of X, where
p := W×H is the number of spatial locations. Let xi ∈ Rp denote the i-th row of X,
that is, corresponding to the 2-dimensional feature map in channel i, and x j ∈ Rd

denote the j-th column of X, that is, the feature vector of spatial location j.

By 1n ∈ Rn, we denote the all-ones vector. Given an m × n matrix A ≥ 0, by
η1(A) := diag(A1n)

−1A we denote row-wise ℓ1-normalization; similarly, η2(A) :=
A diag(1⊤

mA)
−1 for column-wise.

Pooling process The objective of pooling is to represent the image by one or more
vectors, obtained by interaction with X, either in a single step or by an iterative
process. We denote the pooling process by function π : Rd×p → Rd′×k and the
output vectors by matrix U = π(X) ∈ Rd′×k, where d′ is the number of dimensions,
possibly d′ = d, and k is the number of vectors. In the most common case of a
single vector, k = 1, we denote U by u ∈ Rd′ . We discuss here the general iterative
process; single-step pooling is the special case where the number of iterations is 1.

Initialization We define X0 := X and make a particular choice for U0 ∈ Rd0×k,
where d0 := d. The latter may depend on the input X, in which case it is itself
a simple form of pooling or not; for example, it may be random or a learnable
parameter over the entire training set.

Pairwise interaction Given U t and X t at iteration t, we define the query and
key matrices

Q = ϕtQ(U
t) ∈ Rnt×k (3.1)

K = ϕtK(X
t) ∈ Rnt×p. (3.2)
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Here, functions ϕtQ : Rdt×k → Rnt×k and ϕtK : Rdt×p → Rnt×p may be the
identity, linear or non-linear mappings to a space of the same (nt = dt) or dif-
ferent dimensions. We let K,Q interact pairwise by defining the p × k matrix
S(K,Q) := ((s(k i,q j))

p
i=1)

k
j=1, where s : Rn × Rn → R for any n is a similarity

function. For example, s can be dot product, cosine similarity, or a decreasing func-
tion of some distance. In the case of dot product, s(x,y) := x⊤y for x,y ∈ Rd, it
follows that S(K,Q) = K⊤Q ∈ Rp×k.

Attention We then define the attention matrix

A = h(S(K,Q)) ∈ Rp×k. (3.3)

Here, h : Rp×k → [0, 1]p×k is a nonlinear function that may be elementwise, for
instance relu or exp, normalization over rows or columns of S(K,Q), or it may yield
a form of correspondence or assignment between the columns of K and Q, possibly
optimizing a cost function.

Attention-weighted pooling We define the value matrix

V = ϕtV (X
t) ∈ Rnt×p. (3.4)

Here, function ϕtV : Rdt×p → Rnt×p plays a similar role with ϕtQ, ϕ
t
K . Attention-

weighted pooling is defined by

Z = f−1(f(V )A) ∈ Rnt×k. (3.5)

Here, f : R → R is a nonlinear elementwise function that determines the pooling
operation, for instance, average or max-pooling. The product f(V )A defines k
linear combinations over the columns of f(V ), that is, the features at different
spatial locations. If the columns of A are ℓ1-normalized, then those are convex
combinations. Thus, matrix A defines the weights of an averaging operation.

Output Finally, we define the output matrices corresponding to image features
and pooling,

X t+1 = ϕtX(X
t) ∈ Rdt+1×p (3.6)

U t+1 = ϕtU(Z) ∈ Rdt+1×k. (3.7)

Functions ϕtX : Rnt×p → Rdt+1×p and ϕtU : Rnt×k → Rdt+1×k play a similar role with
ϕtQ, ϕ

t
K , ϕ

t
V but also determine the dimensionality dt+1 for the next iteration.

At this point, we may iterate by returning to the “pairwise interaction” step, or
terminate, yielding U t+1 as U with d′ = dt+1. Non-iterative methods do not use ϕtX .
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Algorithm 1: Our generalized pooling framework.
input : p: #patches, d: dimension
input : X ∈ Rd×p: features
option : k: #pooled vectors
option : init: pooling initialization
option : T : #iterations
option : {ϕtQ}, {ϕtK}: query, key mappings
option : s: pairwise similarity function
option : h: attention function
option : {ϕtV }: value mapping
option : f : pooling function
option : {ϕtX}, {ϕtU}: output mappings
output: d′: output dimension
output: U ∈ Rd′×k: pooled vectors

1 d0 ← d ▷ input dimension
2 X0 ← X ∈ Rd0×k ▷ initialize features
3 U0 ← init(X) ∈ Rd0×k ▷ initialize pooling
4 for t = 0, . . . , T − 1 do
5 Q← ϕtQ(U

t) ∈ Rnt×k ▷ query (3.1)
6 K ← ϕtK(X

t) ∈ Rnt×p ▷ key (3.2)
7 S ← 0p×k ▷ pairwise similarity
8 for i ∈ [p], j ∈ [k] do
9 sij ← s(k i,q j)

10 A← h(S) ∈ Rp×k ▷ attention (3.3)
11 V ← ϕtV (X

t) ∈ Rnt×p ▷ value (3.4)
12 Z ← f−1(f(V )A) ∈ Rnt×k ▷ pooling (3.5)
13 X t+1 ← ϕtX(X

t) ∈ Rdt+1×p ▷ update feat. (3.6)
14 U t+1 ← ϕtU(Z) ∈ Rdt+1×k ▷ update pool. (3.7)

15 d′ ← dT ▷ output dimension
16 U ← UT ▷ pooled vectors
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Algorithm Our generalized pooling framework is summarized in algorithm 1. As
input, it takes the features X ∈ Rd×p, representing p patch embeddings of dimension
d. As output, it returns the pooled vectors U ∈ Rd′×k, that is, k vectors of dimension
d′. As options, it takes the number k of vectors to pool; the pooling initialization
function init; the number T of iterations; the query and key mappings {ϕtQ}, {ϕtK};
the pairwise similarity function s; the attention function h; the value mapping {ϕtV };
the pooling function f ; and the output mappings {ϕtX}, {ϕtU}.

The mappings and dimensions within iterations may be different at each iteration,
and all optional functions may be learnable. As such, the algorithm is general
enough to incorporate any deep neural network. However, the focus is on pooling,
as is evident by the pairwise similarity between queries (pooled vectors) and keys
(features) in line 9, which is a form of cross-attention.

Notation By id we denote the identity mapping. Given n ∈ N, we define [n] :=
{1, . . . , n}. By 1A we denote the indicator function of set A, by δij the Kronecker
delta and by [P ] the Iverson bracket of statement P . By A ◦ B we denote the
Hadamard product of matrices A,B and by A◦n the Hadamard n-th power of A.
We recall that by η1, η2 we denote the row-wise and column-wise ℓ1-normalization
of a matrix, respectively, while σ2 is column-wise softmax.

3.3.2 A Pooling Landscape

Table 3.1 examines, in groups, a number of pooling methods as instantiations of
our framework. The objective is to get insight into their basic properties. How this
table is obtained is detailed below.

Group 1: Simple methods with k = 1

We examine methods with k = 1 that are non-iterative, not attention-based, there
are no queryQ, keyK, similarity matrix S or function h, and the attention is a vector
a ∈ Rp that is either fixed or a function directly of X. These methods have been
studied in category-level tasks [110], [116] or mostly in instance-level tasks [113],
[115], [117]. With the exception of HOW [117], the value matrix is V = X, that is,
ϕV = id, and we are pooling into vector u = z ∈ Rd, that is, ϕU = id. Then, (3.5)
takes the form

u = f−1(f(X)a) ∈ Rd, (3.8)

and we focus on instantiating it to identify function f and attention vector a. With
the exception of LSE [116], where f(x) = erx with learnable scale r, function f is
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Chapter 3. Learning Visual Representations via Model Architecture Component

fα (3.9) and we seek to identify α.

fα(x) :=

{
x

1−α
2 , if α ̸= 1,

lnx, if α = 1.
(3.9)

As studied by Amari [172], function fα is defined for x ≥ 0 (α ̸= 1) or x > 0 (α = 1).
It reduces to the maximum, quadratic mean (RMS), arithmetic mean, geometric
mean, harmonic mean, and minimum for α = −∞,−3,−1, 1, 3,+∞, respectively.
It has been proposed as a transition from average to max-pooling [143] and is known
as GeM [113], with γ = (1− α)/2 > 1 being a learnable parameter.

Global average pooling (GAP) [110], [149] That is:

πA(X) :=
1

p

p∑
j=1

x j = X1p/p = f−1
−1 (f−1(X)a), (3.10)

where f−1(x) = x
1−(−1)

2 = x, thus f−1 = id, and a = 1p/p.

Max pooling [115] Assuming X ≥ 0,

πmax(X) := max
j∈[p]

x j = lim
γ→∞

(
p∑
j=1

xγj

) 1
γ

(3.11)

= lim
γ→∞

(Xγ1p)
1
γ = f−1

−∞(f−∞(X)a), (3.12)

where all operations are taken element-wise and a = 1p.

Generalized mean (GeM) [113] Assuming X ≥ 0,

πGeM(X) :=

(
1

p

p∑
j=1

xγj

) 1
γ

(3.13)

= (Xγ1p/p)
1
γ = f−1

α (fα(X)a), (3.14)

where all operations are taken element-wise, γ = (1−α)/2 is a learnable parameter
and a = 1p/p.

SimPool has the same pooling function but is based on an attention mechanism.
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3.3. Formulating a Unified Pooling Framework and Deriving SimPool

Log-sum-exp (LSE) [116]

πlse(X) :=
1

r
log

(
1

p

p∑
j=1

exp(rx j)

)
(3.15)

= f−1(f(X)a), (3.16)

where all operations are taken element-wise, r is a learnable scale parameter, f(x) =
erx and a = 1p/p.

HOW [117] The attention value of each feature x j is its norm ∥x j∥. That is,

a = (∥x 1∥, . . . , ∥x p∥)⊤ = (X◦2)⊤1d (3.17)
= diag(X⊤X) ∈ Rp, (3.18)

obtained by pooling over channels. The value matrix is

V = ϕV (X) = fc(avg3(X)) ∈ Rd′×p, (3.19)

where avg3 is 3 × 3 local average pooling, fc is a fixed fully-connected (1 × 1 con-
volutional) layer incorporating centering, PCA dimension reduction and whitening
according to the statistics of the local features of the training set and d′ < d is the
output dimension. Then,

z =

p∑
j=1

ajv j = V a = f−1
−1 (f−1(V )a) ∈ Rd′ , (3.20)

where f−1 = id as in GAP. Finally, the output is u = η2(z), where the mapping
ϕU = η2 is ℓ2-normalization.

Group 2: Iterative methods with k > 1

We examine methods, which, given X ∈ Rd×p and k < p, seek U ∈ Rd×k by
iteratively optimizing a kind of assignment between columns of X and U . The
latter are called references [118], centroids [173], or slots [119]. Assignment can
be soft [118], [119] or hard [173]. It can be an assignment of columns of X to
columns of U [119], [173] or both ways [118]. The algorithm may contain learnable
components [118], [119] or not [173].

Optimal transport kernel embedding (OTK) [118] Pooling is based on a
learnable parameter U ∈ Rd×k. We define the p×k cost matrix C = (cij) consisting
of the pairwise squared Euclidean distances between columns of X and U , i.e.,
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Chapter 3. Learning Visual Representations via Model Architecture Component

cij = ∥x i − u j∥2. We seek a p× k non-negative transportation plan matrix P ∈ P
representing a joint probability distribution over features of X and U with uniform
marginals:

P := {P ∈ Rp×k
+ : P1k = 1p/p, P

⊤1p = 1k/k}. (3.21)

The objective is to minimize the expected, under P , pairwise cost with entropic
regularization

P ∗ := argmin
P∈P
⟨P,C⟩ − ϵH(P ), (3.22)

where H(P ) = −1⊤
p (P ◦ logP )1k is the entropy of P , ⟨·, ·⟩ is the Frobenius in-

ner product and ϵ > 0 controls the sparsity of P . The optimal solution is
P ∗ = Sinkhorn(e−C/ϵ), where exponentiation is element-wise and Sinkhorn is the
Sinkhorn-Knopp algorithm [174], which iteratively ℓ1-normalizes rows and columns
of a matrix until convergence [175]. Finally, pooling is defined as

U = ψ(X)P ∗ ∈ Rd′×k, (3.23)

where ψ(X) ∈ Rd′×p and ψ : Rd → Rd′ is a Nyström approximation of a kernel
embedding in Rd, e.g . a Gaussian kernel [118], which applies column-wise to X ∈
Rd×p.

We conclude that OTK [118] is a instance of our pooling framework with learn-
able U0 = U ∈ Rd×k, query/key mappings ϕQ = ϕK = id, pairwise similarity
function s(x,y) = −∥x− y∥2, attention matrix A = h(S) = Sinkhorn(eS/ϵ) ∈
Rp×k, value mapping ϕV = ψ, average pooling function f = f−1 and output
mapping ϕU = id.

Although OTK is not formally iterative in our framework, Sinkhorn internally
iterates indeed to find a soft-assignment between the features of X and U .

k-means [173] k-means aims to find a d × k matrix U minimizing the sum of
squared Euclidean distances of each column x i of X to its nearest column u j of U :

J(U) :=

p∑
i=1

min
j∈[k]
∥x i − u j∥2 . (3.24)

Observe that (3.60) is the special case k = 1, where the unique minimum u∗ = πA(X)
is found in closed form (3.61). For k > 1, the distortion measure J is non-convex
and we are only looking for a local minimum.
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3.3. Formulating a Unified Pooling Framework and Deriving SimPool

The standard k-means algorithm is initialized by a d× k matrix U0 whose columns
are k of the columns of X sampled at random and represent a set of k centroids in
Rd. Given U t at iteration t, we define the p×k distance matrix D = (dij) consisting
of the pairwise squared Euclidean distances between columns of X and U t, i.e.,
dij =

∥∥x i − utj
∥∥2. For i ∈ [p], feature x i is assigned to the nearest centroid utj

with index

ci = argmin
j∈[k]

dij, (3.25)

where ties are resolved to the lowest index. Then, at iteration t+ 1, centroid utj is
updated as the mean of features x i assigned to it, i.e., for which ci = j:

ut+1
j =

1∑p
i=1 δcij

p∑
i=1

δcijx i. (3.26)

Let argmin1(D) be the p× k matrix M = (mij) with

mij = δcij =
[
j = argminj′∈[k]dij′

]
. (3.27)

That is, each row di ∈ Rk of D yields a row mi ∈ {0, 1}k of M that is an one-hot
vector indicating the minimal element over di. Define operator argmax1 accordingly.
Then, (3.26) can be written in matrix form as

U t+1 = Xη2(argmax1(−D)) ∈ Rd×k. (3.28)

We conclude that k-means is an iterative instance of our pooling framework with
the columns of U0 ∈ Rd×k sampled at random from the columns of X, query/key
mappings ϕQ = ϕK = id, pairwise similarity function s(x,y) = −∥x− y∥2,
attention matrix A = h(S) = η2(argmax1(S)) ∈ Rp×k, value mapping ϕV = id,
average pooling function f = f−1 and output mappings ϕX = ϕU = id.

Slot attention [119] Pooling is initialized by a random d′ × k matrix U0 sam-
pled from a normal distribution N (µ, σ2) with shared, learnable mean µ ∈ Rd′

and standard deviation σ ∈ Rd′ . Given U t at iteration t, define the query
Q = WQln(U t) ∈ Rn×k and key K = WKln(X) ∈ Rn×p, where ln is Layer-
Norm [176] and n is a common dimension. An attention matrix is defined as

A = η1(σ2(K
⊤Q/
√
n)) ∈ Rp×k. (3.29)
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Chapter 3. Learning Visual Representations via Model Architecture Component

Then, with value V = WV ln(X) ∈ Rn×p, pooling is defined as the weighted average

Z = V A ∈ Rn×k. (3.30)

Finally, U t is updated according to

G = gru(Z) ∈ Rd′×k (3.31)

U t+1 = G+ mlp(ln(G)) ∈ Rd′×k, (3.32)

where gru is a gated recurrent unit [177] and mlp a multi-layer perceptron with
ReLU activation and a residual connection [119].

We now simplify the above formulation by removing LayerNorm and residual con-
nections.

We conclude that slot attention [119] is an iterative instance of our pool-
ing framework with U0 a random d′ × k matrix sampled from N (µ, σ2) with
learnable parameters µ, σ ∈ Rd′ , query mapping ϕQ(U) = WQU ∈ Rn×k,
key mapping ϕK(X) = WKX ∈ Rn×p, pairwise similarity function s(x,y) =
x⊤y, attention matrix A = h(S) = η1(σ2(S/

√
n)) ∈ Rp×k, value mapping

ϕV (X) = WVX ∈ Rn×p, average pooling function f = f−1, output mapping
ϕU(Z) = mlp(gru(Z)) ∈ Rd′×k and output dimension d′.

SimPool is similar in its attention mechanism, but is non-iterative with k = 1 and
initialized by GAP.

Group 3: Feature re-weighting, k = 1

We examine two methods, originally proposed as components of the architecture,
which use attention mechanisms to re-weight features in the channel or the spatial
dimension. We modify them by placing at the end of the network, followed by GAP.
We thus reveal that they serve as attention-based pooling. This includes pairwise
interaction, although this was not evident in their original formulation.

Squeeze-and-excitation block (SE) [120] The squeeze operation aims to mit-
igate the limited receptive field of convolutional networks, especially in the lower
layers. It uses global average pooling over the spatial dimension,

u0 = πA(X) ∈ Rd. (3.33)

Then, the excitation operation aims at capturing channel-wise dependencies and
involves two steps. In the first step, a learnable gating mechanism forms a vector

q = σ(mlp(u0)) ∈ Rd, (3.34)
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3.3. Formulating a Unified Pooling Framework and Deriving SimPool

where σ is the sigmoid function and mlp concists of two linear layers with ReLU
activation in-between and forming a bottlenect of hidden dimension d/r. This vector
expresses an importance of each channel that is not mutually exclusive. The second
step re-scales each channel (row) of X by the corresponding element of q,

V = diag(q)X ∈ Rd×p. (3.35)

The output X ′ = V ∈ Rd×p is a new tensor of the same shape as X, which can be
used in the next layer. In this sense, the entire process is considered a block to be
used within the architecture of convolutional networks at several layers. This yields
a new family of networks, called squeeze-and-excitation networks (SENet).

However, we can also see it as a pooling process if we perform it at the end of a
network, followed by GAP:

z = πA(V ) = diag(q)X1p/p ∈ Rd, (3.36)

We conclude that this modified SE block is a non-iterative instance of our pooling
framework with u0 = πA(X) ∈ Rd, query mapping ϕQ(u) = σ(mlp(u)) ∈ Rd,
no key K, similarity matrix S of function h, uniform spatial attention a = 1p/p,
value mapping ϕV (X) = diag(q)X ∈ Rd×p and average pooling function f = f−1.

The original design does not use a or z; instead, it has an output mapping ϕX(X) =
V = diag(q)X ∈ Rd×p. Thus, it can be used iteratively along with other mappings
of X to form a modified network architecture.

Convolutional block attention module (CBAM) [121] This is an extension
of SE [120] that acts on both the channel and spatial dimension in similar ways.
Channel attention is similar to SE: It involves (a) global average and maximum
pooling of X over the spatial dimension,

U0 = (πA(X) πmax(X)) ∈ Rd×2; (3.37)

(b) a learnable gating mechanism forming vector

q = σ(mlp(U0)12/2) ∈ Rd, (3.38)

which is defined as in SE [120] but includes averaging over the two columns before
σ; and (c) re-scaling channels (rows) of X by q,

V = diag(q)X ∈ Rd×p. (3.39)
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Spatial attention performs a similar operation in the spatial dimension: (a) global
average and maximum pooling of V over the channel dimension,

S = (πA(V
⊤) πmax(V

⊤)) ∈ Rp×2; (3.40)

(b) a learnable gating mechanism forming vector

a = σ(conv7(S)) ∈ Rp, (3.41)

where conv7 is a a convolutional layer with kernel size 7 × 7; and (c) re-scaling
features (columns) of V by a,

X ′ = V diag(a) ∈ Rd×p. (3.42)

The output X ′ is a new tensor of the same shape as X, which can be used in the
next layer. In this sense, CBAM is a block to be used within the architecture, like
SE [120]. However, we can also see it as a pooling process if we perform it at the
end of a network, followed by GAP:

z = πA(X
′) = V diag(a)1p/p = V a/p ∈ Rd. (3.43)

We also simplify CBAM by removing max-pooling from both attention mechanisms
and keeping average pooling only. Then, (3.40) takes the form

s = πA(V
⊤) = V ⊤1d/d = (diag(q)X)⊤1d/d (3.44)

= X⊤q/d ∈ Rp. (3.45)

This reveals pairwise interaction by dot-product similarity between q as query and
X as key. It was not evident in the original formulation, because dot product was
split into element-wise product followed by sum.

We conclude that this modified CBAM module is a non-iterative instance of
our pooling framework with u0 = πA(X) ∈ Rd, query mapping ϕQ(u) =
σ(mlp(u))/d ∈ Rd, key mapping ϕK = id, pairwise similarity function
s(x,y) = x⊤y, spatial attention a = h(s) = σ(conv7(s))/p ∈ Rp, value map-
ping ϕV (X) = diag(q)X ∈ Rd×p, average pooling function f = f−1 and output
mapping ϕU = id.

The original design does not use z; instead, it has an output mapping ϕX(X) =
V diag(a) = diag(q)X diag(a) ∈ Rd×p. Thus, it can be used iteratively along with
other mappings of X to form a modified network architecture.

SimPool is similar in that u0 = πA(X) but otherwise its attention mechanism is
different: there is no channel attention while in spatial attention there are learnable
query/key mappings and competition between spatial locations.
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3.3. Formulating a Unified Pooling Framework and Deriving SimPool

Group 4: Transformers

We re-formulate the standard ViT [23] in two streams, where one performs pooling
and the other feature mapping. We thus show that the pooling stream is an iterative
instance of our framework, where iterations are blocks. We then examine the variant
CaiT [33], which is closer to SimPool in that pooling takes place in the upper few
layers with the features being fixed.

Vision transformer (ViT) [23] The transformer encoder tokenizes the input
image, i.e., it splits the image into p non-overlapping patches and maps them to
patch token embeddings of dimension d through a linear mapping. It then concate-
nates a learnable cls token embedding, also of dimension d, and adds a learnable
position embedding of dimension d to all tokens. It is thus initialized as

F 0 = (u0 X0) ∈ Rd×(p+1), (3.46)

where u0 ∈ Rd is the initial cls token embedding and X0 ∈ Rd×p contains the initial
patch embeddings.

The encoder contains a sequence of blocks. Given token embeddings F t = (ut X t) ∈
Rd×(p+1) as input, a block performs the following operations:

Gt = F t + msa(ln(F t)) ∈ Rd×(p+1) (3.47)

F t+1 = Gt + mlp(ln(Gt)) ∈ Rd×(p+1), (3.48)

where ln is LayerNorm [176] and mlp is a network of two affine layers with a ReLU
activation in-between, applied to all tokens independently. Finally, at the end of
block T − 1, the image is pooled into vector u = ln(uT ).

Given F t ∈ Rd×(p+1), the multi-head self-attention (msa) operation uses three linear
mappings to form the query Q = WQF

t, key K = WKF
t and value V = WV F

t,
all in Rd×(p+1). It then splits each of the three into m submatrices, each of size
d/m× (p+ 1), where m is the number of heads.

Given a stacked matrix A = (A1; . . . ;Am) ∈ Rd×n, where Ai ∈ Rd/m×n for i ∈ [m],
we denote splitting as

A = gm(A) = {A1, . . . , Am} ⊂ Rd/m×n. (3.49)

Thus, with Q = gm(Q) = {Qi}, K = gm(K) = {Ki}, V = gm(V ) = {Vi}, self-
attention is defined as

Ai = σ2

(
K⊤
i Qi/

√
d′
)
∈ R(p+1)×(p+1) (3.50)

Zi = ViAi ∈ Rd′×(p+1), (3.51)
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for i ∈ [m], where d′ = d/m. Finally, given Z = {Zi}, submatrices are grouped back
and an output linear mapping yields the output of msa:

U = WUg
−1
m (Z) ∈ Rd×(p+1). (3.52)

Here, we decompose the above formulation into two parallel streams. The first
operates on the cls token embedding ut ∈ Rd, initialized by learnable parameter
u0 ∈ Rd and iteratively performing pooling. The second operates on the patch
embeddings X t ∈ Rd×p, initialized by X0 ∈ Rd×p as obtained by tokenization and
iteratively performing feature extraction. We focus on the first one.

Given ut ∈ Rd, X t ∈ Rd×p at iteration t, we form the query Q = gm(WQln(ut)),
key K = gm(WKln(X t)) and value V = gm(WV ln(X t)). Cross-attention between
Q and K,V follows for i ∈ [m]:

ai = σ2

(
K⊤
i qi/

√
d′
)
∈ Rp (3.53)

zi = Viai ∈ Rd′ . (3.54)

Finally, denoting Z = {z1, . . . , zm}, the cls token embedding at iteration t + 1 is
given by

gt = ut +WUg
−1
m (Z) ∈ Rd (3.55)

ut+1 = gt + mlp(ln(gt)) ∈ Rd. (3.56)

We now simplify the above formulation by removing LayerNorm and residual con-
nections. We also remove the dependence of self-attention of patch embeddings on
the cls token.

We conclude that ViT [23] is an iterative instance of our pooling framework
with learnable u0 ∈ Rd, query mapping ϕQ(u) = gm(WQu) ⊂ Rd′ with d′ =
d/m, key mapping ϕK(X) = gm(WKX) ⊂ Rd′×p, pairwise similarity function
s(x,y) = x⊤y, spatial attention A = h(S) = {σ2(si/

√
d′)}mi=1 ⊂ Rp, value map-

ping ϕV (X) = gm(WVX) ⊂ Rd′×p, average pooling function f = f−1 and output
mappings ϕX(X) = mlp(msa(X)) ∈ Rd×p and ϕU(Z) = mlp(WUg

−1
m (Z)) ∈ Rd.

Although k = 1, splitting into m submatrices and operating on them independently
is the same as defining m query vectors in Rd via the block-diagonal matrix

Q =

 q1 . . . 0
... . . . ...
0 . . . qm

 ∈ Rd×m. (3.57)
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Q interacts with K by dot product, essentially operating in m orthogonal subspaces.
This gives rise to an attention matrix A ∈ Rp×m containing ai (3.53) as columns
and a pooled matrix Z ∈ Rd×m containing zi (3.54) as columns.

Thus, the m heads in multi-head attention bear similarities to the k pooled vectors
in our formulation. The fact that transformer blocks act as iterations strengthens
our observation that methods with k > 1 are iterative. However, because of linear
maps at every stage, there is no correspondence between heads across iterations.

Class-attention in image transformers (CaiT) [33] This work proposes two
modifications in the architecture of ViT [23]. The first is that the encoder consists
of two stages. In stage one, patch embeddings are processed alone, without a cls
token. In stage two, a learnable cls token is introduced that interacts with patch
embeddings with cross-attention, while the patch embeddings remain fixed. The
second modification is that it introduces two learnable diagonal matrices ΛtG,Λ

t
X ∈

Rd×d at each iteration (block) t and uses them to re-weight features along the channel
dimension.

Thus, stage one is specified by a modification of (3.47), (3.48) as follows:

Gt = X t + ΛtGmsa(ln(X t)) ∈ Rd×p (3.58)
X t+1 = Gt + ΛtXmlp(ln(Gt)) ∈ Rd×p. (3.59)

This is similar to [120], [121], only here the parameters are learnable rather than
obtained by GAP. Similarly, stage two is specified by a modification of (3.53)-(3.56).
Typically, stage two consists only of a few (1-3) iterations.

We conclude that a simplified version of stage two of CaiT [33] is an iterative
instance of our pooling framework with the same options as ViT [23] except for
the output mapping ϕX = id.

SimPool is similar in that there are again two stages, but stage one is the entire
encoder, while stage two is a single non-iterative cross-attention operation between
features and their GAP, using function fα for pooling.

Slot attention [119] is also similar to stage two of CaiT, performing few iterations
of cross-attention between features and slots with ϕX = id, but with a single head,
k > 1 and different mapping functions.

3.3.3 SimPool
Group 5 of Table 3.1 is our method, SimPool. A schematic overview is given in
Figure 3.2.
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softmax

Figure 3.2: Overview of SimPool. Given an input tensor X ∈ Rd×W×H flattened into
X ∈ Rd×p with p := W×H patches, one stream forms the initial representation u0 =
πA(X) ∈ Rd (3.62) by global average pooling (GAP), mapped by WQ ∈ Rd×d (3.63)
to form the query vector q ∈ Rd. Another stream maps X by WK ∈ Rd×d (3.64) to
form the key K ∈ Rd×p, shown as tensor K. Then, q and K interact to generate
the attention map a ∈ Rp (3.65). Finally, the pooled representation u ∈ Rd is
a generalized weighted average of X with a determining the weights and scalar
function fα determining the pooling operation (3.67).

Pooling process We are striving for a simple design. While pooling into k > 1
vectors would yield a more discriminative representation, either these would have
to be concatenated, as is the case of multi-head attention, or a particular similarity
kernel would be needed beyond dot product, which we consider to be beyond the
scope of this work. We rather argue that it is the task of the encoder to learn a single
vector representation of objects, even if those are composed of different parts. This
argument is stronger when pre-training is performed on images mostly depicting one
object, like ImageNet-1k.

We observe in Table 3.1 that only methods explicitly pooling into k > 1 vectors or
implicitly using m > 1 heads are iterative. We explain why in the next paragraph.
Following this insight, we perform pooling in a single step.

In summary, our solution is limited to a single vector u ∈ Rd for pooling, that is,
k = 1, and is non-iterative.

Initialization We observe in Table 3.1 that single-step attention-based methods
in Group 3 initialize u0 by GAP. We hypothesize that, since attention is based
on pairwise similarities, it is essential that u0 is chosen such that its similarities
with X are maximized on average, which would help to better discriminate between
foreground (high similarity) and background (low similarity). Indeed, for s(x,y) =
−∥x − y∥2, the sum of squared Euclidean distances of each column x i of X to
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u ∈ Rd

J(u) =
1

2

p∑
i=1

∥x i − u∥2 (3.60)

is a convex distortion measure with unique minimum the average of vectors {x i}

u∗ := arg min
u∈Rd

J(u) =
1

p

p∑
i=1

x i = πA(X), (3.61)

which can be found in closed form. By contrast, for k > 1 vectors, distortion can
only be minimized iteratively, e.g . by k-means. We therefore choose:

u0 = πA(X) = X1p/p. (3.62)

Pairwise interaction, attention We follow the attention mechanism of trans-
formers, in its simplest possible form. In particular, we use a single head, m = 1,
like Slot Attention [119] (which however uses k vectors). We find that the query
and key mappings are essential in learning where to attend as a separate task from
learning the representation for the given task at hand. In particular, we use linear
mappings ϕQ, ϕK with learnable parameters WQ,WK ∈ Rd×d respectively:

q = ϕQ(u
0) = WQu

0 ∈ Rd (3.63)
K = ϕK(X) = WKX ∈ Rd×p. (3.64)

As in transformers, we define pairwise similarities as dot product, that is, S(K,q) =
K⊤q ∈ Rp×k, and attention as scaled softmax over columns (spatial locations), that
is, h(S) := σ2(S/

√
d):

a = σ2

(
K⊤q/

√
d
)
∈ Rp, (3.65)

where σ2(S) := η2(exp(S)) and exp is taken elementwise.

Attention-weighted pooling As shown in Table 3.1, the average pooling oper-
ation (f = f−1) is by far the most common. However, the more general function
fα (3.9) has shown improved performance in instance-level tasks [113]. For α < −1
(γ > 1) in particular, it yields an intermediate operation between average and max-
pooling. The latter is clearly beneficial when feature maps are sparse, because it
better preserves the non-zero elements.

We adopt f = fα for its genericity: the only operation that is not included as a
special case in Table 3.1 is log-sum-exp [116]. This choice assumes X ≥ 0. This
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is common in networks ending in relu, like ResNet [110], which is also what makes
feature maps sparse. However, vision transformers and modern convolutional net-
works like ConvNeXt [22] do not end in relu; hence X has negative elements and is
not necessarily sparse. We therefore define

V = ϕV (X) = X −minX ∈ Rd×p, (3.66)

where the minimum is taken over all elements of X, such that fα operates only on
non-negative numbers.

We also define u = ϕU(z) = z and the output dimension is d′ = d. Thus, the
mappings ϕV , ϕU are parameter-free. The argument is that, for average pooling
for example (f = f−1 in (3.5)), any linear layers before or after pooling would
commute with pooling, thus they would form part of the encoder rather than the
pooling process. Moreover, Table 3.1 shows that ϕU is non-identity only for iterative
methods.

In summary, we define SimPool (sp) as

u = πsp(X) := f−1
α (fα(V )a) ∈ Rd, (3.67)

where V ∈ Rd×p is the value (3.66) and a ∈ Rp is the attention map (3.65). Pa-
rameter α is learned in GeM [113], but we find that treating it as a hyperparameter
better controls the quality of the attention maps.

Algorithm 2: SimPool. Green: learnable.
input : d: dimension, p: patches
input : features X ∈ Rd×p

output: pooled vector u ∈ Rd

1 u0 ← X1p/p ∈ Rd ▷ initialization (3.62)
2 X ← ln(X) ∈ Rd×p ▷ LayerNorm [176]
3 q ← WQu

0 ∈ Rd ▷ query (3.63)
4 K ← WKX ∈ Rd×p ▷ key (3.64)
5 a ← σ2(K

⊤q/
√
d) ∈ Rp ▷ attention (3.65)

6 V ← X −minX ∈ Rd×p ▷ value (3.66)
7 u ← f−1

α (fα(V )a) ∈ Rd ▷ pooling (3.9),(3.67)

Algorithm SimPool is summarized in algorithm 2. The addition to what pre-
sented above is LayerNorm after obtaining u0 and before K,V . That is, (3.64)
and (3.66) are modified as

K = ϕK(X) = WKln(X) ∈ Rd×p. (3.68)
V = ϕV (X) = ln(X)−min ln(X) ∈ Rd×p. (3.69)
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As shown in Table 3.12, it is our choice in terms of simplicity, performance, and
attention map quality to apply LayerNorm to key and value and linear layers to
query and key. The learnable parameters are WQ and WK .

In summary, SimPool is a non-iterative instance of our pooling framework with
k = 1, u0 = πA(X) ∈ Rd, query mapping ϕQ(u) = WQu ∈ Rd, key map-
ping ϕK(X) = WKln(X) ∈ Rd×p, pairwise similarity function s(x,y) = x⊤y,
spatial attention a = h(s) = σ2(s/

√
d) ∈ Rp, value mapping ϕV (X) =

ln(X)−min ln(X) ∈ Rd×p, average pooling function f = fα and output map-
ping ϕU = id.

3.4 Assessing SimPool: Performance, Properties,
and Insights

3.4.1 Datasets, Networks and Evaluation Protocols
Supervised pre-training We train ResNet-18, ResNet-50 [110], ConvNeXt-
S [22], ViT-S and ViT-B [23] for image classification on ImageNet-1k. For the
analysis subsection 3.4.2 and ablation subsection 3.4.4, we train ResNet-18 on the
first 20% of training examples per class of ImageNet-1k [114] (called ImageNet-20%)
for 100 epochs. For the benchmark of subsection 3.4.3, we train ResNet-50 for 100
and 200 epochs, ConvNeXt-S and ViT-S for 100 and 300 epochs and ViT-B for 100
epochs, all on the 100% of ImageNet-1k. We evaluate on the full validation set in
all cases and measure top-1 classification accuracy. The baseline is the default per
network, i.e. GAP for convolutional networks and cls token for transformers.

Self-supervised pre-training On the 100% of ImageNet-1k, we train DINO [29]
with ResNet-50, ConvNeXt-S and ViT-S for 100 epochs. We evaluate on the valida-
tion set by k-NN and linear probing on the training set. For linear probing, we train
a linear classifier on top of features as in DINO [29]. For k-NN [178], we freeze the
model and extract features, then use a k-nearest neighbor classifier with k = 10.

Downstream tasks We fine-tune supervised and self-supervised ViT-S on
CIFAR-10 [179], CIFAR-100 [179] and Oxford Flowers [180] for image classification,
measuring top-1 classification accuracy. CIFAR-100 is just like CIFAR-10, except it
has 100 classes containing 600 images each. Oxford Flowers consists of 102 flower
categories containing between 40 and 258 images each. We perform object localiza-
tion without fine-tuning using supervised and self-supervised ViT-S on CUB [103]
and ImageNet-1k, measuring MaxBoxAccV2 [181]. We perform unsupervised object
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discovery without fine-tuning using self-supervised ViT-S with DINO-SEG [29] and
LOST [182] on VOC07 [183] trainval, VOC12 [183] trainval and COCO 20K [184],
measuring CorLoc [185]. The latter is a subset of COCO2014 trainval dataset [184],
comprising 19,817 randomly selected images. VOC07 comprises 9,963 images de-
picting 24,640 annotated objects. VOC12 comprises 11,530 images depicting 27,450
annotated objects. We perform semantic segmentation with fine-tuning using self-
supervised ViT-S on ADE20K [186], measuring mIoU, mAcc, and aAcc. We fine-
tune a linear layer. The training set of ADE20K consists of 20k images and the val-
idation set of 2k images in 150 classes. We validate robustness against background
changes using ViT-S on ImageNet-9 [187] (IN-9) and its variations. We use the linear
head and linear probe for supervised and self-supervised ViT-S, respectively, mea-
suring top-1 classification accuracy. IN-9 contains nine coarse-grained classes with
seven variations of both background and foreground. We perform image retrieval,
extracting features from a self-supervised ResNet-50 and ViT-S and evaluating them
on ROxford and RParis [188], measuring mAP. ROxford and RParis are the re-
visited Oxford [189] and Paris [190] datasets, comprising 5,062 and 6,412 images
collected from Flickr [191] by searching for Oxford and Paris landmarks respec-
tively. We perform fine-grained classification, extracting features from a supervised
and self-supervised ResNet-50 and ViT-S and evaluating them on Caltech-UCSD
Birds (CUB200) [103], Stanford Cars (CARS196) [104], In-Shop Clothing Retrieval
(In-Shop) [192] and Stanford Online Products (SOP) [193], measuring Revall@K.
Dataset statistics are summarized in Table 2.2.

Ablations For the ablations of subsection 3.4.4, we train supervised ResNet-18
and ViT-T for image classification on ImageNet-20% and ImageNet-1k respectively.

3.4.2 Experimental Analysis

Figure 3.3 evaluates different methods in groups following Table 3.1, regardless of
their original design for (a) pooling or not, (b) different tasks, e.g . instance-level or
category-level, (c) different networks, e.g . convolutional or transformers.

Group 1 consists of simple pooling methods with: (a) no parameters: GAP [149],
max [115], GAP+max [194]; and (b) scalar parameter: GeM [113] and LSE [116].
HOW [117] is the only method to use (parameter-free) attention. GeM is performing
the best, with LSE following second. These methods are inferior to those in other
groups.

Group 2 incorporates methods with k > 1 vectors. We set k = 3 and take the
maximum of the 3 logits per class. OTK and Slot use attention. Slot attention [119]
works best, outperforming k-means by 1.3%.
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Figure 3.3: Image classification on ImageNet-20. Supervised training of ResNet-18
for 100 epochs.

Group 3 refers to parametric attention-based methods, weighting features based on
their importance for the task: CBAM [121], Squeeze-Excitation [120] and Gather-
Excite [156]. While originally designed as components within the architecture, we
adapt them to pooling by GAP at the end. Gather-Excite [156] performs best.

Group 4 refers to parametric attention-based methods found in vision transformers.
ViT [23] refers to multi-head self-attention learnable cls and four heads, which we
incorporate as a single layer at the end of the model. CaiT [33] is the same but
using only cross-attention between cls and patch embeddings. CaiT performs the
best.

SimPool outperforms all other methods. Seeing this experiment as a tournament,
we select the best performing method of each group and qualify it for the benchmark
of subsection 3.4.3.

3.4.3 Benchmark

Image Classification Table 3.2 compares SimPool with baseline and tournament
winners per group of subsection 3.4.2 on supervised pre-training for classification.
For 100 epochs, SimPool outperforms all methods, consistently improving the base-
line by 0.6% using convolutional networks, 1.6% using ViT-S and 1.0% using ViT-B.
Gather-Excite [156] improves over the baseline only on convolutional networks, while
Slot [119] only on ViT-S. CaiT improves over the baseline only for ConvNeXt-S. By
contrast, SimPool improves everywhere. For more than 100 epochs, SimPool im-
proves the baseline by 0.5% using ResNet-50, 0.4% using ConvNeXt-S and 0.8%
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Method Epochs ResNet-50 ConvNext-S ViT-S ViT-B

Baseline 100 77.4 81.1 72.7 74.1
CaiT [33] 100 77.3 81.2 72.6 -
Slot [119] 100 77.3 80.9 72.9 -
GE [156] 100 77.6 81.3 72.6 -
SimPool 100 78.0 81.7 74.3 75.1

Baseline 300 78.1† 83.1 77.9 -
SimPool 300 78.7† 83.5 78.7 -

Table 3.2: Image classification top-1 accuracy (%) on ImageNet-1k. Supervised
pre-training for 100 and 300 epochs. Best competitors selected per group from
Figure 3.3. Baseline: GAP for convolutional, cls for transformers; †: 200 epochs.

Method Epochs ResNet-50 ConvNeXt-S ViT-S

k-NN Prob k-NN Prob k-NN Prob

Baseline 100 61.8 63.0 65.1 68.2 68.9 71.5
SimPool 100 63.8 64.4 68.8 72.2 69.8 72.8

Table 3.3: Image classification top-1 accuracy (%) on ImageNet-1k. Self-supervised
pre-training with DINO [29] for 100 epochs. Prob: linear probing; Baseline: GAP
for convolutional, cls for transformers.

using ViT-S.

Table 3.3 evaluates self-supervised pre-training for 100 epochs. SimPool improves
over the baseline by 2.0% k-NN and 1.4% linear probing on ResNet-50; 3.7% k-NN
and 4.0% linear probing on ConvNeXt-S; and 0.9% k-NN and 1.3% linear probing
on ViT-S. We also train ViT-S with DINO on ImageNet-1k for 300 epochs. SimPool
improves over the baseline by 0.4% k-NN (72.2 → 72.6) and 0.7% linear probing
(74.3 → 75.0).

Fine-tuning for classification Table 3.4 evaluates fine-tuning for classification
on different datasets [179], [180] of a supervised and a self-supervised ViT-S. SimPool
brings small improvement over the baseline in all cases.

Method Supervised Self-Supervised

CIFAR-10 CIFAR-100 Flowers CIFAR-10 CIFAR-100 Flowers

Baseline 98.1 86.0 97.1 98.7 89.8 98.3
SimPool 98.4 86.2 97.4 98.9 89.9 98.4

Table 3.4: Image classification accuracy (%), fine-tuning for classification for 1000
epochs. ViT-S pre-trained on ImageNet-1k for 100 epochs. Self-supervision with
DINO [29].
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Method Supervised Self-Supervised

CUB ImageNet CUB ImageNet

Baseline 63.1 53.6 82.7 62.0
SimPool 77.9 64.4 86.1 66.1

Baseline@20 62.4 50.5 65.5 52.5
SimPool@20 74.0 62.6 72.5 58.7

Table 3.5: Localization accuracy MaxBoxAccV2 on CUB test and ImageNet-1k vali-
dation set. ViT-S pre-trained on ImageNet-1k for 100 epochs. Self-supervision with
DINO [29]. @20: at epoch 20.

Method DINO-seg [29], [182] LOST [182]

VOC07 VOC12 COCO VOC07 VOC12 COCO

Baseline 30.8 31.0 36.7 55.5 59.4 46.6
SimPool 53.2 56.2 43.4 59.8 65.0 49.4

Baseline@20 14.9 14.8 19.9 50.7 56.6 40.9
SimPool@20 49.2 54.8 37.9 53.9 58.8 46.1

Table 3.6: Object discovery CorLoc. ViT-S pre-trained on ImageNet-1k for 100
epochs. Self-supervision with DINO [29]. @20: at epoch 20.

Object localization Accurate localization can have a significant impact on clas-
sification accuracy, particularly under multiple objects, complex scenes and back-
ground clutter. Table 3.5 evaluates localization accuracy under both supervision
settings. SimPool significantly improves the baseline by up to 7% MaxBoxAccV2
when self-supervised and up to 14% when supervised. In the latter case, the gain is
already up to 12% at epoch 20.

Unsupervised object discovery Table 3.6 studies LOST [182], which uses the
raw features of a vision transformer pre-trained using DINO [29] for unsupervised
single-object discovery, as well as the baseline DINO-seg [29], [182], which uses
the attention maps instead. SimPool significantly outperforms the baseline on all
datasets by up to 25.2% CorLoc for DINO-seg and 5.6% for LOST on VOC12.
Again, the gain is significant already at the first 20 epochs.

Semantic segmentation We evaluate semantic segmentation on ADE20K [186]
under self-supervised pre-training. To evaluate the quality of the learned repre-
sentation, we only fine-tune a linear layer on top of the fixed patch features, as
in iBOT [195]. SimPool improves the baseline by 1,5% mIoU (26.4 → 27.9), 1.7%
mAcc (34.0→ 35.7) and 1.0% aAcc (71.6→ 72.6). These results testify the improved
quality of the learned representations when pre-training with SimPool.
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Method OF MS MR MN NF OBB OBT IN-9

Supervised

Baseline 66.4 79.1 67.4 65.5 37.2 12.9 15.2 92.0
SimPool 71.8 80.2 69.3 67.3 42.8 15.2 15.6 92.9

Self-supervised + Linear probing

Baseline 87.3 87.9 78.5 76.7 47.9 20.0 16.9 95.3
SimPool 87.3 88.1 80.6 78.7 48.2 17.8 16.7 95.6

Table 3.7: Background robustness on IN-9 [187] and its variations; more details in
the appendix. ViT-S pre-trained on ImageNet-1k for 100 epochs. Self-supervision
with DINO [29].

Network Method ROxford RParis

Medium Hard Medium Hard

Baseline 27.2 7.9 47.3 19.0ResNet-50 SimPool 29.7 8.7 51.6 23.0

Baseline 29.4 10.0 54.6 26.2ViT-S SimPool 32.1 10.6 56.5 27.3

Table 3.8: Image retrieval mAP (%) without fine-tuning on ROxford and
RParis [188]. Self-supervised pre-training with DINO [29] on ImageNet-1k for 100
epochs.

Background changes Deep neural networks often rely on the image background,
which can limit their ability to generalize well. To achieve better performance, these
models must be able to cope with changes in the background and prioritize the fore-
ground. To evaluate SimPool robustness to the background changes, we use the
ImageNet-1k-9 [187] (IN-9) dataset. In four of these datasets, i.e., Only-FG (OF),
Mixed-Same (MS), Mixed-Rand (MR), and Mixed-Next (MN), the background is
modified. The rest, i.e., No-FG (NF), Only-BG-B (OBB), and Only-BG-T (OBT),
feature masked foregrounds. Table 3.7 shows that SimPool improves over the base-
line under both supervision settings with only 2 out of 8 exceptions under DINO [29]
pre-training. The latter is justified, given that none of the foreground objects or
masks are present in these settings.

Image retrieval While classification accuracy indicates ability of a model to rec-
ognize objects of the same classes as those it was trained for, it does not necessarily
reflect its ability to capture the visual similarity between images, when tested on
a dataset from a different distribution. Here, we evaluate this property of visual
features using ResNet-50 and ViT-S; for particular object retrieval without fine-
tuning on ROxford and RParis [188]. In Table 3.8, we observe that SimPool is very
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network Method CUB200 CARS196 SOP In-Shop

R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20

Supervised

Baseline 42.7 55.2 67.7 42.3 54.2 65.7 48.3 63.2 71.8 27.6 49.9 56.5ResNet-50 SimPool 43.0 55.2 67.9 43.8 56.2 67.4 48.7 64.1 72.9 27.0 49.9 56.5

Baseline 55.8 68.3 78.3 38.2 50.3 61.8 54.1 69.2 81.6 30.9 56.5 63.2ViT-S SimPool 56.8 69.6 79.2 38.9 50.7 63.3 54.2 69.4 81.9 32.8 57.6 64.3

Self-supervised

Baseline 26.0 36.2 46.9 34.1 44.2 55.0 51.2 65.3 76.5 37.1 58.4 64.1ResNet-50 SimPool 30.7 40.9 53.3 33.6 43.6 54.3 52.1 66.5 77.2 38.1 60.0 65.6

Baseline 56.7 69.4 80.5 37.5 47.5 58.4 59.8 74.4 85.4 40.4 63.9 70.3ViT-S SimPool 61.8 74.4 83.6 37.6 48.0 58.4 59.5 73.9 85.0 41.1 64.3 70.8

Table 3.9: Fine-grained classification Recall@K (R@K, %) without fine-tuning on
four datasets, following the same protocol as [196], [197]. Models pre-trained on
ImageNet-1k for 100 epochs. Self-supervision with DINO [29].

effective, improving the retrieval performance of both models on all datasets and
evaluation protocols over the baseline.

Fine-grained classification We evaluate fine-grained classification using
ResNet-50 and ViT-S, both supervised and self-supervised, following [197]. We
extract features from test set images and directly apply nearest neighbor search,
measuring Recall@K. Table 3.9 shows that SimPool is superior to the baseline
in most of the datasets, models and supervision settings, with the exception of
ResNet-50 supervised on In-Shop, ResNet-50 self-supervised on Cars196 and ViT-S
self-supervised on SOP (3 out of 16 cases). The improvement is roughly 1-2% Re-
call@1 in most cases, and is most pronounced on self-supervised on CUB200, roughly
5%.

Method ResNet-18 ResNet-50 ConvNeXt-S ViT-S

#par flo #par flo #par flo #par flo

Baseline 11.7 1.82 25.6 4.13 50.2 8.68 22.1 4.24
CaiT 18.0 1.85 75.9 4.60 57.3 8.75 23.8 4.29
Slot 14.6 1.87 71.7 4.89 56.7 8.79 23.7 4.30
GE 11.7 1.83 26.1 4.15 50.3 8.69 22.1 4.25
SimPool 12.2 1.84 33.9 4.34 51.4 8.71 22.3 4.26

Table 3.10: Computation resources on Imagenet-1k, with d = 512 (ResNet-18), 2048
(ResNet-50), 768 (ConvNeXt), 384 (ViT-S). #par: # parameters, in millions; flo:
GFLOPS.
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Network Pooling Depth Init Accuracy #params

Base GAP 12 12 73.3 22.1M

Base

cls

12 0 72.7 22.1M
Base + 1 13 0 73.2 23.8M
Base + 2 14 0 73.7 25.6M
Base + 3 15 0 73.8 27.4M
Base + 4 16 0 73.9 29.2M
Base + 5 17 0 74.6 30.9M

Base

SimPool

12 12 74.3 22.3M
Base − 1 11 11 73.9 20.6M
Base − 2 10 10 73.6 18.7M
Base − 3 9 9 72.5 17.0M

Table 3.11: Trade-off between performance and parameters. Supervised pre-training
of ViT-S on ImageNet-1k for 100 epochs. Init: Initial layer of pooling token.
Base: original network. Base+b (Base−b): b blocks added to (removed from) the
network.

Computation resources Table 3.10 shows the number of parameters and floating
point operations per second for the best competitors of Figure 3.3. Resources depend
on the embedding dimension d. SimPool is higher than the baseline but not the
highest.

Performance vs. parameters Table 3.11 aims to answer the question of how
much the performance improvement of SimPool is due to parameters of the query
and key mappings. Interestingly, ViT-S works better with GAP than the default
cls. SimPool adds 0.2M parameters to the network. For fair comparison, we remove
blocks from the network (Base) when using SimPool and add blocks when using cls.
We find that, to exceed the accuracy of Base SimPool, Base cls needs 5 extra
blocks, i.e., 9M more parameters. Equally interestingly, removing 3 blocks from
Base SimPool is only slightly worse than Base cls, having 5M fewer parameters.

3.4.4 Ablations
We ablate the design and components of SimPool. More ablations are found in
the appendix. In particular, for function fα (3.9), we set γ = 2 for convolutional
networks and γ = 1.25 for transformers by default, where γ = (1 − α)/2 is a
hyperparameter.

Design In Table 3.12 (left), we ablate (a) the attention function h (3.3); (b)
the number of iterations with shared parameters at every iteration (Layers) or
not (Iter); (c) the initialization U0; (d) the pairwise similarity function s; (e)
the number k of pooled vectors, obtained by k-means instead of GAP. We also
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Ablation Option Acc Linear LN Acc

h(S)
σ2(Si/

√
d)mi=1 56.6 Q K V Q K V

η2(σ1(S/
√
d)) 55.6 ✓ ✓ ✓ ✓ ✓ ✓ 57.0

Layers 3 56.8 ✓ ✓ ✓ ✓ ✓ 56.6
5 55.9 ✓ ✓ ✓ ✓ 56.5

Iter 3 56.5 ✓ ✓ ✓ ✓ 56.4
5 56.4 ✓ ✓ ✓ 55.6

U0 U 56.3 ✓ ✓ ✓ ✓ 56.3
diag(X⊤X) 56.6 ✓ ✓ ✓ 56.0

s(x,y)
−∥x− y∥2 56.5 ✓ ✓ ✓ 56.2

cosine 56.3 ✓ ✓ ✓ ✓ 56.6

k (max) 2 56.5 ✓ ✓ ✓ 56.4
5 56.4 ✓ ✓ ✓ ✓ 56.2

k (concat) 2 56.5 ✓ ✓ 56.2
5 55.9 ✓ ✓ 54.4

ϕQ, ϕK WQ =WK 56.4 54.5

SimPool 57.1 GAP 55.0

Table 3.12: SimPool ablation on ImageNet-20% using ResNet-18 trained for 100
epochs. Ablation of (left) design; (right) linear and LayerNorm (LN) [176] layers.
q, k, v: query, key, value. σ2(Si/

√
d)mi=1: same as our default, but with multi-head

attenion, m = 4 heads; k (max): maximum taken over output logits; k (concat):
concatenation and projection to the same output dimensions d′. Green: learnable
parameter; blue: winning choice per group of experiments; steel blue: Our chosen
default. Using pooling operation f = fα (3.9) (left); f = f−1 (right).
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Figure 3.4: Image classification top-1 accuracy (%) vs . exponent γ = (1−α)/2 (3.67)
for ResNet-18 supervised on ImageNet-20% and ViT-T supervised on ImageNet-1k,
both for 100 epochs.

consider queries and keys sharing the same mapping, WQ = WK . We observe that
multi-head, few iterations and initialization by diag(X⊤X) perform slightly worse,
without adding any extra parameters, while setting WQ = WK performs slightly
worse, having 50% less parameters.

Linear and LayerNorm layers In Table 3.12 (right), we systematically ablate
linear and LayerNorm (LN) [176] layers on query q, key k and value v. We strive for
performance and quality while at the same time having a small number of compo-
nents and parameters. In this sense, we choose the setup that includes linear layers
on q, k and LN on k, v, yielding 56.6 accuracy. We observe that having linear and
LN layers everywhere performs best under classification accuracy. However, this
setup has attention maps of lower quality and more parameters.

Pooling parameter α (3.67) We ablate the effect of parameter α of the pooling
function fα (3.67) on the classification performance of SimPool using ResNet-18 on
ImageNet-20% and ViT-T on ImageNet-1k for 100 epochs. We find learnable α
(or γ = (1 − α)/2) to be inferior both in terms of performance and attention map
quality. For ResNet-18 on ImageNet-20%, it gives top-1 accuracy 56.0%. Clamping
to γ = 5 gives 56.3% and using a 10× smaller learning rate gives 56.5%.

In Figure 3.4, we set exponent γ to be a hyperparameter and observe that for both
networks, values between 1 and 3 are relatively stable. Specifically, the best choice
is 2 for ResNet-18 and 1.25 for ViT-T. Thus, we choose exponent 2 for convolutional
networks (ResNet-18, ResNet-50 and ConvNeXt-S) and 1.25 for vision transformers
(ViT-T, ViT-S and ViT-B).
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input supervised supervised DINO [29] DINO [29]
image cls SimPool cls SimPool

Figure 3.5: Attention maps of ViT-S [23] trained on ImageNet-1k for 100 epochs
under supervision and self-supervision [29]. For ViT-S baseline, we use the mean
attention map of the cls token. For SimPool, we use the attention map a (3.65).
Input image resolution: 896×896; patches: 16×16; output attention map: 56×56.
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3.4.5 Visualizations

Attention maps: ViT Figure 3.5 shows attention maps of supervised and self-
supervised ViT-S trained on ImageNet-1k. The ViT-S baseline uses the cls token
for pooling by default. For SimPool, we remove the cls stream entirely from the
encoder and use the attention map a (3.65).

We observe that under self-supervision, the attention map quality of SimPool is
on par with the baseline and in some cases the object of interest is slightly more
pronounced, e.g ., rows 1, 3, 6 and 7.

What is more impressive is supervised training. In this case, the baseline has very low
quality of attention maps, focusing only on part of the object of interest (e.g ., rows
1, 2, 5, 6, 10), focusing on background more than self-supervised (e.g ., rows 1, 4, 6,
7, 8), even missing the object of interest entirely (e.g ., rows 3, 9). By contrast, the
quality of attention maps of SimPool is superior even to self-supervised, attending
more to the object surface and less background.

Segmentation masks Figure 3.6 shows the same images for the same setting
as in Figure 3.5, but this time overlays segmentation masks on top input images,
corresponding to more than 60% mass of the attention map. Again, SimPool is on
par with baseline when self-supervised, supervised baseline has poor quality and
supervised SimPool is a lot better, although its superiority is not as evident as with
the raw attention maps.

Object localization Figure 3.7 visualizes object localization results, comparing
bounding boxes of SimPool with the baseline. The results are obtained from the
experiments of Table 3.5, using ViT-S with supervised pre-training. We observe
that the baseline systematically fails to localize the objects accurately. On the other
hand, SimPool allows reasonable localization of the object of interest just from the
attention map, without any supervision other than the image-level label.

Attention maps: The effect of γ Figure 3.8 and Figure 3.9 visualize the effect
of exponent γ = (1 − α)/2 of pooling operation fα (3.9) on the quality of the
attention maps of ResNet-18 and ViT-T, respectively. The use of the average pooling
operation f−1 as opposed to fα (3.9) is referred to as no γ. For ResNet-18, we observe
that for γ < 1.25 or γ > 3.0, the attention maps are of low quality, failing to delineate
the object of interest (e.g ., row 1), missing the object of interest partially (e.g ., rows
2, 4) or even entirely (e.g ., row 3). For ViT-T, it is impressive that for γ around
or equal to 1.25, the attention map quality is high, attending more (e.g ., row 4) or
even exclusively (e.g ., rows 1, 2) the object instead of background.
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input supervised supervised DINO [29] DINO [29]
image cls SimPool cls SimPool

Figure 3.6: Segmentation masks of ViT-S [23] trained on ImageNet-1k for 100 epochs
under supervision and self-supervision [29]. For ViT-S baseline, we use the attention
map of the cls token. For SimPool, we use the attention map a (3.65). Same as
Figure 3.5, with attention map value thresholded at 60% of mass and mask overlaid
on input image. 77
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Figure 3.7: Object localization on ImageNet-1k with ViT-S [23] supervised pre-
training on ImageNet-1k-1k for 100 epochs. Bounding boxes obtained from exper-
iment of Table 3.5, following [181]. Green: ground-truth bounding boxes; red:
baseline, predicted by the attention map of the cls token; blue: predicted by Sim-
Pool, using the attention map a (3.65).
78



3.4. Assessing SimPool: Performance, Properties, and Insights

input no γ γ = 0.5 γ = 1.0 γ = 1.25 γ = 1.5 γ = 2.0 γ = 2.5 γ = 3.0 γ = 5.0image

Figure 3.8: The effect of γ. Attention maps of ResNet-18 [110] with SimPool using
different values of γ trained on ImageNet-20% for 100 epochs under supervision. We
use the attention map a (3.65). Input image resolution: 896×896; output attention
map: 28×28; no γ: using the average pooling operation f−1 instead of fα (3.9). We
set γ = 2 by default for convolutional networks.

input no γ γ = 0.5 γ = 1.0 γ = 1.25 γ = 1.5 γ = 2.0 γ = 2.5 γ = 3.0 γ = 5.0image

Figure 3.9: The effect of γ. Attention maps of ViT-T [23] with SimPool using
different values of γ trained on ImageNet-1k for 100 epochs under supervision. We
use the attention map a (3.65). Input image resolution: 896×896; patches: 16×16;
output attention map: 56×56; no γ: using the average pooling operation f−1 instead
of fα (3.9). We set γ = 1.25 by default for transformers.
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input block block block block block block block block block block block block Sim
image 1 2 3 4 5 6 7 8 9 10 11 12 Pool

Figure 3.10: cls vs. SimPool. Attention maps of ViT-T [23] trained on ImageNet-
1k for 100 epochs under supervision. For cls, we use the mean attention map of
the cls token of each block. For SimPool, we use the attention map a (3.65). Input
image resolution: 896× 896; patches: 16× 16; output attention map: 56× 56.
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input supervised DINO input supervised DINO input supervised DINO
image SimPool SimPool image SimPool SimPool image SimPool SimPool

Figure 3.11: Attention maps of ResNet-50 [110] trained on ImageNet-1k for 100
epochs under supervision and self-supervision [29]. We use the attention map
a (3.65). Input image resolution: 896× 896; output attention map: 28× 28.

Attention maps: cls vs. SimPool Figure 3.10 compares the quality of the
attention maps of supervised ViT-T trained with cls to that of SimPool. For cls,
we visualize the mean attention map of the heads of the cls token for each of the
12 blocks. For SimPool, we visualize the attention map a (3.65). SimPool has
attention maps of consistently higher quality, delineating and exclusively focusing
on the object of interest (e.g ., rows 3, 5, 7). It is impressive that while cls interacts
with patch tokens in 12 different blocks, it is inferior to SimPool, which interacts
only once at the end.

Attention maps: ResNet, ConvNeXt Figure 3.11 and Figure 3.12 show at-
tention maps of supervised and self-supervised ResNet-50 and ConvNeXt-S, respec-
tively. Both networks are pre-trained on ImageNet-1k for 100 epochs. We use the
attention map a (3.65). We observe that SimPool enables the default ResNet-50 and
ConvNeXt-S to obtain raw attention maps of high quality, focusing on the object
of interest and not on background or other objects. This is not possible with the
default global average pooling and is a property commonly thought of vision trans-
formers when self-supervised [29]. Between supervised and self-supervised SimPool,
the quality differences are small, with self-supervised being slightly superior.
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input supervised DINO input supervised DINO input supervised DINO
image SimPool SimPool image SimPool SimPool image SimPool SimPool

Figure 3.12: Attention maps of ConvNeXt-S [22] trained on ImageNet-1k for 100
epochs under supervision and self-supervision [29]. We use the attention map
a (3.65). Input image resolution: 896× 896; output attention map: 28× 28.

3.5 Conclusion

We have introduced SimPool, a simple, attention-based pooling mechanism that
acts at the very last step of either convolutional or transformer encoders, deliv-
ering highly superior quantitative results on several benchmarks and downstream
tasks. In addition, SimPool delivers decent attention maps in both convolutional and
transformer networks under both supervision and self-supervision with remarkable
improvement in delineating object boundaries for supervised transformers. Despite
this progress, we believe that investigating why the standard cls-based attention
fails under supervision deserves further study.
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4.1 Revisiting Composed Image Retrieval: A
Training-Free Approach for Multimodal Rep-
resentations

Image-to-image retrieval is a computer vision task with applications to land-
marks [198], fashion products [199], face recognition [200], remote sensing [201] and
medical images [202], among others. The retrieval is performed purely according
to the visual content of the query [40], [41]. On the other hand, if the object can
be described with text, then, text-to-image retrieval [42]–[44] applies. The most
flexible way to express the user intent is a query comprising both an image and a
text description. This is explored in composed image retrieval (CIR) [34]–[39], which
aims to retrieve target images not only visually similar to the query image, but also
modified in accordance with the specifics of the text query.

Traditionally, CIR methods are supervised by triplets [34], [45], [46]. However,
the labor-intensive process of labeling confined early research to specific applica-
tions in fashion [47]–[49], physical states [50], object attributes and object composi-
tion [34], [203], [204]. The emergence of vision-language models (VLM) [52]–[54] led
to their integration into CIR. Initially, this has been achieved by fine-tuning using
triplets [37]. More recently, zero-shot composed image retrieval (ZS-CIR) [39], [51]
significantly increases the spectrum of possible applications. Most existing meth-
ods employ textual inversion, i.e., mapping the query image to text, thus allowing
query composition purely by means of text. Also, most methods are trained using
unlabeled images [39], [51], or are not trained at all [55], but they do require the use
of large language models [56] (LLM).

In this paper, we focus on a specific variant of composed image retrieval, namely
domain conversion, where the text query serves as a description of the target do-
main [39]. Unlike conventional cross-domain retrieval [59], where models are trained
to use queries of a source domain and retrieve items from another target domain,
we address a more practical, open-domain setting, where the query and database
may be from any unseen domain. We target different variants of this task, where
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(a)
image: category
domain: style

image query text query: “cartoon” text query: “origami” text query: “toy”

(b)
image: category
domain: context

image query text query: “grass” text query: “autumn” text query: “rock”

(c)
image: instance
domain: style

image query text query: “archive” image query text query: “today”

Figure 4.1: We introduce FreeDom, a training-free, composed image retrieval
method for domain conversion based on CLIP [52]. Given an image query (framed)
and a text query that names a domain, we retrieve images having the class of the
image query and the domain in the text query. We target a range of applications
where classes can be defined at category level (a,b) [205], [206] or instance level
(c) [207], and domains can be defined as styles (a,c), or context/environment (b).
For each image query, retrieved images shown for different text queries.
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the class of the query object is defined at category-level or at instance-level, while
the domain corresponds to descriptions of style or context, as shown in Figure 4.1.
Even though domain conversion is a subset of the tasks handled by existing CIR
methods, the variants considered in our work reflect a wider set of applications than
what was encountered in prior art [39].

Large pre-trained VLMs provide powerful representations of objects, domains and
their combinations. Our approach is training-free by using a frozen VLM and per-
forming textual inversion in a non-parametric way, assuming access to an external
large memory of words. Inversion maps images to the discrete input space of text,
instead of the continuous latent space of word tokens as in prior work [51]. Com-
pared to such alternative, our memory-based inversion is not only more efficient
and intuitive, but also comes with great performance benefits. While our empha-
sis lies in domain conversion, the proposed approach is versatile and applicable to
various composed image retrieval tasks, where its performance is competitive to the
state-of-the-art approaches.

In summary, we make the following contributions:

1. We are the first to focus on composed image retrieval in the context of domain
conversion, and introduce three new benchmarks additional to the one explored
in existing work.

2. We introduce FreeDom, a training-Free CIR method for Domain conversion
that operates in an open world by inheriting the capabilities of a frozen CLIP
model.

3. We demonstrate that textual inversion performs better in the discrete input
space of known words than in the continuous latent space of pseudo-words.

4. We outperform all existing methods by a large margin on four different bench-
marks. Our experimental results form a testbed for future comparisons in this
task.

4.2 Contextualizing Composed Image Retrieval:
Advances and Methods

Composed image retrieval (CIR) Image-to-image [40], [41] and text-to-
image [42]–[44] retrieval provide useful ways to explore large image collections. Nev-
ertheless, composed image retrieval provides more flexible ways to express the query
and enables novel applications. TIRG [34] is the first to compose image and text
as a search query, where text serves as a modification of the image to refine the
retrieval results. Training is supervised with cross-entropy loss, using triplets of
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the form reference image, query text, target image. Following the same setting,
JVSM [45] learns image-text compositional embeddings in a unified space using
multiple matching losses.

Other methods exploit attention in the form of a multi-modal disentangled non-local
blocks [46] to correlate text with image regions [36] extracted by an RPN [208], to
perform the composition at multiple depths [35], to modulate content [38], and to
discover the relation between composed query and target image [209]. DRA [210]
learns a dual relation alignment network, while MPC [204] introduces a variant of
the task with multiple queries. All these methods perform training from scratch and
rely on triplets related to fashion [47]–[49], physical states [50], object attributes
and object composition [34], [203], [204]. Labeling such triplets is expensive and
limits the widespread use of CIR.

Inspired by vision-language foundation models [52], [53], [211], recent work builds
upon them in different ways. CIRPLANT [212] and FashionVLP [213] extract
features from a reference image as well as text features using a tokenizer [111], [214]
and fine-tune the VLM [52], [214], [215] using triplets. CLIP4CIR [37] fine-tunes
CLIP [52] and trains a small network to combine image and text features using
triplets. BLIP4CIR [216] builds upon CLIP4CIR with BLIP [54] and trains using
reversed triplets, along with the original ones.

Due to the need for richer and more data, datasets are collected by crowd-
sourcing with human-generated text [212], by exploiting LAION-5B [217], [218] or
VQA v2.0 [219], [220], or by automatically synthesizing millions of high-quality
triplets [221] using generative models [222]. All these methods benefit by the com-
positional ability of vision-language models [52], [54], [214], [215], but still rely on
triplet datasets.

Pic2Word [39] relies on a VLM and is the first to avoid triplets and to perform
domain conversion as one of the tasks. It follows self-supervised training to invert
the query image to a text token. Thus, query composition takes place in the text
domain by combining this token with the query text. SEARLE [51] performs tex-
tual inversion with test-time optimization per query image. Then, a network is
trained to imitate the result of such optimization, so that inference is performed
more efficiently. Our memory-based textual inversion avoids pre-training or test-
time optimization and is shown to outperform all prior work by a large margin.

Concurrent to our work, notable efforts in the field include CIReVL [55], SPRC [223],
and ISA [224], each contributing unique to the composition. CIReVL [55] composes
image and text solely in the language domain. It uses CLIP [52] as image and text
encoder, BLIP-2 [225] to caption the reference image and GPT-3.5 turbo [56] to re-
compose the generated caption based on the query text. All models are pre-trained,
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making the method training-free, modular, but also computationally intensive.

Training-free use of VLMs The emergence of vision-language models
(VLMs) [52]–[54], [225] revolutionized the field of multimodal learning. Trained
on massive datasets [217], these models have instrumental abilities to map images
and text into a shared embedding space and are successful in training-free scenar-
ios. MaskCLIP [226] and CLIP-DIY [227] demonstrate the intrinsic potential of
CLIP for semantic segmentation, while FLDM [228] highlights its effectiveness in
text-guided video editing. The training-free paradigm extends to text-guided image
editing [229] and layout control [230], both using cross-attention. VLMs are promis-
ing in specialized applications too, such as deepfake detection [231], cross-domain
image composition [232] and phrase localization [233]. Related to our training-free
approach, CIReVL [55] uses VLMs and LLMs to compose image and text queries in
the language domain.

Cross-domain image retrieval (CDIR) This is the task where the query im-
age and database images come from different domains and the challenge is to bridge
domain gap [57]. As visual domain, one might consider style [58], color [234], tex-
ture [58], context [59], lighting conditions [59] or images captured using different
sensors [235]. One main line of research is in sketch-based image retrieval [58],
[236]–[241], and another on consumer scenarios such as street-to-shop [59], [242],
[243].

Early methods do not generalize to new object classes or domains. This is the goal of
zero-shot sketch-based retrieval [244]–[246]. More recent methods dispense with the
need for labeled cross-modal pairs and are unsupervised [60]–[63]. Generalization
to an unseen domain is only demonstrated by UCDR [64]. Nevertheless, no CDIR
method includes the domain of the query image in the database, which becomes
meaningful in our task, i.e. domain conversion with image-text queries.

4.3 Revisiting Textual Inversion: A Discrete-
Space Retrieval-Based Approach

4.3.1 Preliminaries

Composed image retrieval is the task where the goal is to retrieve images based on
an composed image-text query, that is, a query that consists of a visual part, the
query image, and a textual part, the query text. In this work, we focus on a specific
variant of composed image retrieval that targets domain conversion [39].
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Query Image
Proxy Images

most frequent words
"tiger shark"

"shark"

Query Text

"origami"

"tiger shark origami"

"shark origami"

Database Images

NN search
image-to-image

NN search
image-to-text

NN search
text-to-image

frequency count

"tiger
shark"

"shark" "orka" "fish"

"apple"
"flower"
"mango"
"shark"

:
:

"window"

Visual
Memory

top-1 ranked Image

0.60.50.80.30.4

0.3 0.4 0.9

Database Images

0.6 0.7

Textual
Memory

["great white shark", "shark", "fish"]

["tiger shark", "bull shark", "shark"]

["shark", "tiger shark", "tylosaurus"]

similarity aggregation

["shark", "tiger shark", "orka"]

Textual Labels

Figure 4.2: Overview of FreeDom. Given a query image and a query text indicating
the target domain, we first retrieve proxy images to the query, by an image-to-image
search over a visual memory. Then, we associate a set of text labels to each proxy
image, by an image-to-text search over a textual memory. Each of the most frequent
text labels is composed with the query text in the text space and images are retrieved
from the database by text-to-image search. The resulting lists of similarities are
linearly combined with the frequencies of occurrence as weights. Here: k = 4,
n = 3, m = 2.
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In particular, the query image y depicts an object of class C(y) in source domain
D(y), while the query text t represents the target domain, D(t). The two elements
are jointly referred to as the composed query, q = (y, t). Given an image dataset X,
the goal is to retrieve images from X whose class is same as that of the query image,
C(y), and whose domain is same as that of the query text, D(t). Retrieval amounts
to ranking images x ∈ X according to their composed similarity s(q, x) ∈ R to the
query q.

We rely on a pre-trained vision-language model that consists of a visual encoder
f : I → Rd and a text encoder g : T → Rd, which map respectively input images
from image space I and words1 from text space T to the same embedding space of
dimension d. Using those encoders, we extract a visual embedding y = f(y) ∈ Rd

and text embedding t = g(t) ∈ Rd for the query. Similarly, the embedding of an
image x ∈ X or a word w are denoted by x = f(x) ∈ Rd and w = g(w) ∈ Rd,
respectively. All embeddings are ℓ2-normalized.

Given the visual-language model, the goal in this work is to represent the composed
query in the same embedding space as images and text. That is, define a composed
encoder h : I × T → Rd such that the composed query q is mapped to q = h(q) =
h(y, t) ∈ Rd, again ℓ2-normalized. For any image x ∈ X, this allows us to express
the composed similarity as the cosine similarity

s(q, x) := h(q)⊤f(x) = h(y, t)⊤f(x). (4.1)

Thus, given the encoders f, g, the goal is to define h.

4.3.2 Expanded Textual Inversion
Textual inversion The ability of the text encoder, by design, to combine different
concepts at its input and map them jointly to the embedding space, motivates us to
represent the composed query q = (y, t) entirely in the text space T and then map
it to the embedding space, using g. The query text t is already in T ; but to map
the query image y to w∗ ∈ T , we need to first embed it to y = f(y) and then map
it from the embedding space back to T :

w∗ = g−1(f(y)). (4.2)

The process of mapping the query image y to text in T is called textual inversion
and the challenge is that the inverse mapping g−1 is unknown.

Common approaches are pre-training [39] and test-time optimization [51], both rep-
resenting w∗ in the latent space of vector tokens. The former defines a decoder

1With the term words, we shall refer to both words and sentences.
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and trains it on a dataset to learn the inverse mapping g−1 of the text encoder.
Its challenge is the sheer scale of training required to reach anywhere close to the
quality of the pre-trained text encoder g. The latter defines a variable at the input
of g and finds the optimal solution w∗ such that g(w∗) = f(y). Its challenge is that
there is a multitude of local optimal solutions, thus the approach overly relies on
the initialization of the variable, which remains unknown.

Memory-based inversion Contrary to existing approaches, we achieve the inver-
sion by nearest neighbor search over an external vocabulary V ⊂ T of words [247],
without training or optimization, and we find w∗ in the discrete text space T rather
than in the continuous latent space of vector tokens.

In particular, if V = {v1, . . . , vN}, we map vocabulary words vi to text embeddings
vi = g(vi) for i = 1, . . . , N . The text memory of words vi and associated embeddings
vi is the restriction g|V : V → T of g to V :

g|V : {v1, . . . , vN} → {v1, . . . ,vN}. (4.3)

Given an embedding vi ∈ V = g(V ) = {v1, . . . ,vN}, we can instantly determine the
associated word vi. This process essentially defines the restriction g−1|V : V → V of
the otherwise unknown inverse g−1 to V . For brevity, we refer to g−1|V as g−1 in the
following.

What remains is, given the query embedding y ∈ Rd, to approximate it by one or
more vectors in V . We do this by finding the m nearest neighbors of y in V ,

W = {w1, . . . ,wm} = NNm(y;V), (4.4)

given by descending order of (cosine) similarity. Since W ⊂ V , we can map an
embedding wi ∈ W by g−1 back to the associated word wi = g−1(wi) in V . Thus,
all neighbors are mapped to words

W = {w1, . . . , wm} = g−1(W). (4.5)

Putting everything together, this set of words is given by W = ϕV (y), where NN-
inversion

ϕV (y) := g−1(NNm(f(y); g(V ))) (4.6)
is an approximation of (4.2) by vocabulary V . The larger the vocabulary, the better
the quality of approximation—but the more expensive the process. We use function
ϕV (4.6) to define different versions of composed encoder h below.

Memory-based inversion is similar to zero-shot recognition, where the query image
y is represented by a set of words W from vocabulary V . We call the words found
by ϕV (y) the text labels or labels of y.
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Single-word inversion The closest word w1 to the query image is merged with
the query text t to form a composed query w1 ⊕ t in the text space alone, where ⊕
denotes space-delimited string concatenation. Thus, h becomes

h1(y, t) := β1(ϕV (y), t), (4.7)

where ϕV is given by (4.6) and

β1(W, t) := g(w1 ⊕ t). (4.8)

A single word may often work well. Nevertheless, using more words may help when
the correct class is not top-ranked or when a collection of words may better represent
a particular image query.

Multi-word inversion: early fusion We take advantage of the ability of the
text encoder to combine a number of words in its input. Now, we form a composed
query w1 ⊕ . . .⊕ wm ⊕ t in the text space and h becomes

hE(y, t) := βE(ϕV (y), t), (4.9)

where ϕV is given by (4.6) and

βE(W, t) := g(w1 ⊕ · · · ⊕ wm ⊕ t). (4.10)

We refer to this approach as early fusion, since the words wi are combined at the
earliest possible stage.

Multi-word inversion: late fusion Early fusion may be sensitive to words
assigned incorrectly by NN-inversion ϕV (4.6). The other extreme is late fusion,
whereby we compose words at the latest possible stage. In particular, we form one
composed query wi ⊕ t in the text space for each word wi, embed it separately and
form a linear combination of these embeddings. Thus, h becomes

hL(y, t) := βL(ϕV (y), t), (4.11)

where ϕV is given by (4.6),

βL(W, t, a) :=
m∑
i=1

aig(wi ⊕ t) (4.12)

and ai ∈ R is a weight associated with word wi, by default uniform a = 1 ∈ Rm.
Because of the linearity of (4.1), this is equivalent to m independent queries followed
by a linear combination of the resulting similarities.
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Memory-based expansion Even if we use multiple nearest neighbors, the under-
lying cross-modal (image-to-text) similarity of (4.4) remains challenging. To achieve
more reliable zero-shot recognition, we employ a retrieval-based augmentation mech-
anism. We use a visual memory of images zi and associated embeddings zi = f(zi)
from an external image set Z. We first expand the query image through a set of k
proxy images, found as nearest neighbors of y in the embeddings Z = f(Z) based
on unimodal (image-to-image) similarity:

Y = {y1, . . . ,yk} = NNk(y;Z). (4.13)

Then, following (4.4), for each proxy image yj in the embedding space, we find its
n nearest neighbors in V and the associated words in the text space

Wj = {wj1, . . . , wjn} = g−1(NNn(yj;V)). (4.14)

From the union W+ = ∪kj=1Wj with |W+| ≤ nk because of repeating words wji,
we select the m most frequent words Ŵ = {ŵ1, . . . , ŵm} and we define âi as the
frequency associated with word ŵi. We write this filtered set of words as Ŵ =
ϕ+
X,V (y) as a function of the image query y, where ϕ+

X,V is called expanded NN-
inversion. Finally, h can be defined via either early fusion

hE+(y, t) := βE(ϕ
+
X,V (y), t), (4.15)

where βE is given by (4.10), or by late fusion

hL+(y, t) := βL(ϕ
+
X,V (y), t,1) and (4.16)

hL+
α
(y, t) := βL(ϕ

+
X,V (y), t, â), (4.17)

with uniform and frequency weights 1, â ∈ Rm, respectively, where βL is given by
(4.12). This last version expressed by (4.17) is the complete FreeDom method,
summarized in Figure 4.2.

4.4 Benchmarking Composed Image Retrieval:
Performance Analysis and Insights

4.4.1 Datasets, Networks and Evaluation Protocol
We target a range domain conversion applications where classes can be defined at
category level [205], [206], [248] or instance level [207], and domains can be defined
as styles [205], [207], [248], or context/environment [206], and additionally evaluate
on generic composed image retrieval benchmarks.
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Datasets for domain conversion ImageNet-R [205] has renditions of 200
ImageNet-1k [249] classes comprising 30,000 images. Following Pic2Word, exper-
iments are preformed with four domains: cartoon, origami, sculpture and toy.
MiniDomainNet [248] is a subset of DomainNet [250] with about 140,000 images
of 126 classes and four domains: clipart, painting, real and sketch. Although this
is a classification dataset, we adapt it for retrieval by using the official test set as
our query set and the rest as the database. Nico++ [206] is an Out-Of-Distribution
classification benchmark of 88, 866 real photographs from six domains: autumn,
dimlight, grass, outdoor, rock and water. It contains 60 categories. The query set
is composed of 10% randomly selected images. The rest is used as the database.
Large time lags location (LTLL) [251] contains images of 25 locations captured over
a range of more than 150 years; 225 historical and 275 modern ones. Experiments
are perfomed on two domains: today and archive.

Datasets for generic composed image retrieval are also used in our perfor-
mance evaluation, namely FashionIQ [49], CIRR [212] and CIRCO [51].

Network We use the OpenAI pre-trained CLIP with a ViT-L/14 image en-
coder [252].

Evaluation Protocol Unlike Precision@k and Recall@k, which are commonly
used in literature and focus on specific points in a ranked list, mean Average Pre-
cision (mAP) provides a more comprehensive assessment by considering precision
across the entire ranking. Thus, we choose mAP as our evaluation metric for both
domain conversion and generic composed image retrieval benchmarks. On CIRR
and CIRCO, we evaluate on the validation set, which is a valid choice since no
method performs training/validation on this set; the test set is behind an evaluation
server.

Text and visual memory We use the 20k words of the Open Images V7 dataset
[247] as the text memory. It is sufficiently large and it is used in zero-shot recogni-
tion [253] as well as by SEARLE [51], which also allows direct comparison between
the methods. Unless otherwise stated, we use the image database as visual memory.

4.4.2 Simple Baselines

Unimodal Unimodal-query baselines rely only on similarity using one of the query
modalities: text-only by hT (y, t) := g(t) and visual-only by hV (y, t) := f(y), referred
to as “Text” and “Image” respectively in Table 4.1. They are both expected to fail
since the final similarity does not capture both aspects of the composed query.
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Product This baseline is a combination of the two unimodal approaches by using
the product of the corresponding similarities. It is referred to as “Text × Image”
in Table 4.1.

Sum A common baseline in the literature combines these two unimodal approaches
by summation, i.e. hS(y, t) := g(t)+f(y), referred to as “Text + Image” in Table 4.1.
The problem is that the text and image embeddings follow very different distribu-
tions.

4.4.3 Advanced Baselines

InstructPix2Pix In this baseline, InstructPix2Pix [254] is used to generate an
image from our visual and textual queries. Then retrieval is done by image-to-image
similarities. The performance of this baseline is low, which is an indicator that the
combination of the two modalities through the visual encoder is sub-optimal. We
observe that even though several of the generated images are quite successful, at the
same time a large amount of them are completely unsuccessful.

FreeDom w/ img-cap In this baseline we assume access to a dataset of image-
caption pairs; we use the first 40M images and captions of LAION 400M [255]. This
set forms a joint visual-textual memory. Images are retrieved from this memory,
and their captions are treated as the text labels of textual inversion. Those are
combined with the query text and late fusion follows with weights equal to the
similarities between query and memory images. The hyperparameters are chosen
to be the same as our standard FreeDom. Interestingly, this baseline surpasses
FreeDom on LTLL for the case of ”today“ as source.

FreeDom w/ captioners In this baseline we use two captioners, namely
BLIP [54], and BLIP2 [225]. Every query image is captioned by each captioner
and the results are used as two text labels of the image. Subsequently, our standard
processing pipeline is followed, while the weights are the similarities of each caption
with the query image. This baseline is 15 times slower than the standard FreeDom
and is consistently beneath, even though it uses extra architectures.

4.4.4 Competitors

We compare FreeDom to recently proposed zero-shot composed image retrieval
methods on four datasets: Pic2Word [39], CompoDiff [221], SEARLE [51], and
WeiCom [256]. For all competitors, the same ViT-L/14 [252] is used as image
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encoder and also as text encoder for Pic2Word and SEARLE, while CompoDiff uses
ViT-G/14 [252] as text encoder. All these methods are run and evaluated by us.

Pic2Word [39] achieves textual inversion in the latent space of text tokens
through a three-layered MLP. In all experiments with Pic2Word, we use the of-
ficially pre-trained mapping network released by the authors. For ImageNet-R and
MiniDN, the composed query has the same format as in the original paper: “a [target
domain] of *”, e.g . “a cartoon of *”. For NICO++, the composed query is “a * in
[target domain]”, e.g . “a * in autumn”. Finally, for the LTLL dataset, we use the
composed query “a [target domain] photo of *”, e.g . “an archive photo of *”.

CompoDiff [221] is built on top of frozen CLIP. We follow the publicly released
official implementation for our experiments. We use the officially pre-trained de-
noising Transformer released by the authors. We do not use any mask, nor any
mixed text condition (negative query text). The query text includes only the target
domain word, i.e. “[target domain]”.

SEARLE [51] performs textual inversion by test-time optimization to represent
query images in the latent space of vector tokens. We opt for the optimization
variant, instead of their feed-forward network, since it is shown to perform better.
We use the publicly released official implementation for our experiments and refer
to the version with default optimization hyper-parameters as “SEARLE (default)”
and to our improved hyper-parameters by “SEARLE (tuned)” in Table 4.1. Each
query image is associated to different concepts retrieved from a vocabulary, which is
similar to the text labels of our method. We refer to the number of those concepts
by m in Table 4.4. The final composed queries are adapted for each dataset in the
same way as for Pic2Word. For SEARLE (tuned), we perform hyper-parameter
search for learning rate in {0.2, 0.02, 0.002, 0.0002}, optimization iterations in
{5,10,50,200,350,500} and number of textual labels m in {1,3,7,10,15}. The best
hyper-parameters across datasets are: lr = 0.0002, iters = 350 and m = 1.

WeiCom [256] is a composed image retrieval method specialized for remote sens-
ing. It fits a normal distribution to the similarities between the text query g(t) and
all the database images f(x) for x ∈ X, and similarly for the image query f(y).
It uses the corresponding cumulative distribution function for each distribution in
order to transform the similarities. It transforms the similarities of the two dis-
tributions closer to the uniform distribution, and it combines the similarities by
summation.
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4.4.5 Experimental Results

Comparison with SOTA As shown in Table 4.1, FreeDom outperforms all
baselines and competitors by a large margin and for every individual source domain.
In particular, it outperforms the second best method on ImageNet-R by 15.83%
mAP, on MiniDomainNet by 14.32%, on NICO++ by 10.96% and on LTLL by
6.49%. On ImageNet-R, the second best method is SEARLE (tuned). On MiniDo-
mainNet, CompoDiff and SEARLE (tuned) are the second and third best, respec-
tively, while WeiCom performs lower than the simple baselines “Text × Image” and
“Text + Image”. On NICO++, SEARLE (tuned) is the only competitor that beats
the simple baselines for more than 1%, while Pic2Word performs lower than the
simple baseline “Text × Image”. On LTLL, WeiCom is the second best method,
while interestingly, the baseline “Text × Image” performs higher than Pic2Word,
CompoDiff, and SEARLE (default).

Additionally, in Table 4.2, we compare FreeDom with all previous methods that
evaluate Recall@k on ImageNet-R. Following the literature [39], [51], [221], we
evaluate using only Photo as the source domain and compare with baselines
and competitors. Baselines and SEARLE are performed by us, Pic2Word perfor-
mance is reported from the original paper, the rest of the Pic2Word experiments,
ARTEMIS [209], CLIP4CIR [37], and CompoDiff are reported from the CompoDiff
paper. FreeDom outperforms all baselines and competitors by a large margin.
CIReVL is the second best in most of the cases.

Qualitative analysis In Figure 4.3 we show the histogram of similarities be-
tween the query and the positives and negatives of different kinds of images. The
unimodal baselines fail as expected. The sum baseline gives high importance to the
image query. The normalized variant of WeiCom improves that to a small extent
but performs poorly as well. Early fusion improves further but gives too much im-
portance to the object, since several text labels are merged with a single word for
the domain. Late fusion significantly improves this imbalance. The use of proxy
images and weighting further boost the performance, which is visualized by the blue
histogram moving to the right relative to the orange.

4.4.6 Ablations

Impact of hyper-parameters In Table 4.3 we show the impact of the number
k of proxy images and number of nearest words from the vocabulary. The experi-
ment is performed for a fixed number of text labels m. Observe that none of the
combinations with k = 1 or n = 1 is the best. Therefore, the two steps of nearest
neighbor search are meaningful. Note that the query image is part of the database,
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meaning that k = 1 corresponds to no expansion. In the rest of our experiments, we
set k = 20 and n = 7, which appear to perform well across all datasets. In Table 4.4,
we show the impact of varying m, where benefits are demonstrated on all datasets
by going beyond one text label and performance is stable for a large range of values.

Method components In Table 4.4 we show an experiment where each of our
components is added one by one leading to the final method. Additionally, we
directly compare to SEARLE. SEARLE performs best if a single concept is used.
Our simplest variant with a single text label performs better than SEARLE on three
out of four datasets, showcasing the benefit of our textual inversion in discrete words.
FreeDom benefits by using additional text labels and outperforms SEARLE on all
datasets. Late fusion gives a large boost in performance compared to early fusion
and so does expansion to proxy images. The use of weights is beneficial on average
and only harms slightly on LTLL.
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(a) ImageNet-R [205]
Method Car Ori Pho Scu Toy Avg

Text 0.82 0.63 0.68 0.78 0.77 0.74
Image 4.27 3.12 0.84 5.86 5.09 3.84
Text × Image 8.19 5.62 6.98 8.95 9.43 7.83
Text + Image 6.61 4.45 2.18 9.18 8.62 6.21

InstructPix2Pix 3.90 5.70 1.97 5.70 5.62 4.58
FreeDom w/ i.-c. 15.11 6.70 19.77 18.08 16.58 15.24
FreeDom w/ c. 16.68 11.74 17.44 15.68 16.94 15.70

Pic2Word 7.60 5.53 7.64 9.39 9.27 7.88
CompoDiff 13.71 10.61 8.76 15.17 16.17 12.88
SEARLE (default) 10.16 4.48 3.18 10.11 8.88 7.37
SEARLE (tuned) 18.11 9.02 9.94 17.26 15.83 14.04
WeiCom 10.07 7.61 10.06 11.26 13.38 10.47

FreeDom 35.93 11.66 27.95 36.56 37.24 29.87

(b) MiniDomainNet [248]
Method Clip Paint Pho Ske Avg

Text 0.63 0.52 0.63 0.51 0.57
Image 7.15 7.31 4.37 7.78 6.65
Text × Image 8.99 8.65 15.85 5.88 9.85
Text + Image 9.58 9.98 9.22 8.52 9.32

InstructPix2Pix 8.57 8.86 7.08 7.20 7.93
FreeDom w/ i.-c. 21.88 17.54 31.78 15.35 21.64
FreeDom w/ c. 27.65 17.42 33.42 17.24 23.91

Pic2Word 13.39 8.63 17.96 8.03 12.00
CompoDiff 19.06 24.27 23.41 25.05 22.95
SEARLE (default) 15.14 10.49 9.89 12.50 12.00
SEARLE (tuned) 25.04 18.72 23.77 19.61 21.78
WeiCom 7.52 7.04 15.13 4.40 8.52

FreeDom 41.90 31.67 41.14 34.35 37.27

(c) NICO++ [206]
Method Aut Dim Gra Out Roc Wat Avg

Text 1.00 0.99 1.15 1.23 1.10 1.05 1.09
Image 6.45 4.85 5.67 7.67 7.65 5.65 6.32
Text × Image 8.24 6.36 12.11 12.71 10.46 8.84 9.79
Text + Image 8.47 6.58 9.22 11.90 11.20 8.41 9.30

InstructPix2Pix 4.18 2.66 4.60 4.78 5.19 3.56 4.16
FreeDom w/ i.-c. 15.56 11.64 19.34 19.18 17.56 13.81 16.18
FreeDom w/ c. 14.07 9.54 18.67 20.86 17.34 12.37 15.48

Pic2Word 9.79 8.09 11.24 11.27 11.01 7.16 9.76
CompoDiff 10.07 7.83 10.53 11.41 11.93 10.15 10.32
SEARLE (default) 9.32 8.81 10.95 12.64 11.37 8.79 10.32
SEARLE (tuned) 13.49 13.73 17.91 17.99 15.79 11.84 15.13
WeiCom 8.58 7.39 13.04 13.17 11.32 9.73 10.54

FreeDom 24.36 24.42 30.05 30.49 26.87 20.35 26.09

(d) LTLL [207]
Method Today Arch Avg

Text 5.32 6.12 5.72
Image 8.45 24.53 16.49
Text × Image 16.44 29.92 23.18
Text + Image 9.60 26.13 17.87

InstructPix2Pix 9.83 20.02 14.92
FreeDom w/ i.-c. 42.58 19.16 30.87
FreeDom w/ c. 26.52 18.76 22.19

Pic2Word 17.86 24.67 21.27
CompoDiff 15.45 27.76 21.61
SEARLE (default) 13.48 24.33 18.90
SEARLE (tuned) 20.82 30.10 25.46
WeiCom 24.56 28.63 26.60

FreeDom 30.68 35.50 33.09

Table 4.1: Domain conversion mAP (%) on four datasets; comparison of FreeDom
with baselines and competitors. For each source domain (e.g. Toy) average mAP
over all target domains. AVG: average mAP over all source-target domain combina-
tions; FreeDom w/ i.-c.: FreeDom with img-cap; FreeDom w/ c.: FreeDom
with captioners.
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Method Cartoon Origami Toy Sculpture Avg

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Text 0.15 0.95 0.87 3.73 0.71 1.77 0.36 1.89 0.52 2.09
Image 0.31 4.51 0.21 1.73 0.54 5.65 0.33 4.04 0.35 3.98
Text + Image 1.96 12.91 2.18 10.68 1.34 9.89 1.82 12.15 1.83 11.41

Pic2Word 8.00 21.90 13.50 25.60 8.70 21.60 10.00 23.80 10.05 23.23
Pic2Word (CC-3M) 7.35 18.53 12.79 25.54 10.39 22.96 10.24 23.76 10.19 22.70
Pic2Word (LAION 2B-en) 8.17 20.86 14.08 25.06 8.73 22.07 10.43 23.63 10.35 22.91
ARTEMIS w/ CompoDiff 11.42 23.81 15.49 25.44 11.21 24.01 10.84 21.07 12.24 23.58
CLIP4Cir w/ CompoDiff 10.90 24.12 16.08 25.60 11.01 23.57 10.45 21.86 12.11 23.79
CompoDiff (T5-XL) 8.43 20.40 15.73 25.69 11.19 22.48 9.19 18.45 11.14 21.76
CompoDiff (CLIP+T5-XL) 12.91 24.40 17.22 26.40 11.57 26.11 11.53 22.54 13.31 24.86
CompoDiff (CLIP) 13.21 24.06 17.03 26.17 11.22 26.25 11.24 22.96 13.18 24.86
KEDs 14.80 34.20 23.50 34.80 16.50 36.30 17.40 36.40 18.00 35.40

SEARLE (default) 1.49 12.38 3.78 13.88 1.99 15.34 2.18 15.34 2.36 14.24
SEARLE (tuned) 10.17 30.32 17.02 32.00 8.23 9.10 11.60 32.41 11.76 30.96
WeiCom 11.61 24.36 15.24 23.72 8.00 17.89 13.81 26.18 12.17 23.04
CIReVL 19.20 42.80 22.2 43.10 30.20 41.30 23.40 45.00 23.75 43.05
FreeDom 23.77 48.80 32.86 42.82 25.71 47.47 27.87 48.96 27.55 47.01

Table 4.2: Domain conversion Recall@k (%) on ImageNet-R. Comparison of Free-
Dom with baselines and competitors. Source domain: photo; target domains:
cartoon, origami, toy, and sculpture. AVG: average performance over all
target domains. Top: baseline methods; middle: methods that require training.
bottom: training-free methods. †: run by us.
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Text

AP 0.92

neg.
pos. w.r.t. object

pos. w.r.t. domainpos.

Image

AP 1.67

Text + Image

AP 3.98

Text + Image (N)

AP 6.16

FreeDom: E

AP 18.01

FreeDom: L

AP 25.47

FreeDom: L+

AP 55.31

FreeDom: L+
α

AP 55.55

Figure 4.3: Histogram of similarities between a query and database images: neg-
ative (wrong object and domain); positive only w.r.t. the object (correct object,
wrong domain); positive only w.r.t. the domain (wrong object, correct domain);
positive (correct object and domain). E: early fusion; L: late fusion; L+: late fu-
sion with memory-based expansion; L+

α : late fusion with memory-based expansion
and histogram frequencies as weights; AP: average precision of the query. For better
visualization, we sample an equal number of negatives, positives w.r.t. object and
positives w.r.t. domain, while the values in the histogram of positives are multiplied
by 10. Image query from MiniDomainNet; text query: “clipart”.
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Memory Avg ImageNet-R MiniDn NICO++ LTLL

No Memory 27.96 25.75 32.05 23.19 30.83
LAION 40M 28.57 25.00 33.85 24.31 31.11
Database + LAION 40M 29.52 26.07 34.92 24.91 32.17
Database 31.58 29.87 37.27 26.09 33.09

Table 4.5: Impact of the visual memory: performance comparison between no visual
memory and a visual memory comprising 40 million LAION [255] images, or the
database, or their union.

Impact of visual memory In Table 4.5 we show the performance for using differ-
ent datasets as a visual memory. Compared to no visual memory at all, all options
improve the performance on average, with an exception on ImageNet-R/LAION due
to the low availability of images in specific domains such as origami. Therefore, the
efficacy of the memory remains robust even when dealing with unstructured datasets
such as LAION. Additionally, the inclusion of task-relevant images, even in small
proportions, proves advantageous. The best improvements are achieved using the
database as memory, which is our default choice.

4.4.7 Oracle Experiments

Information injection In the inversion problem, a common challenge arises from
the source domain appearing within the text labels, which introduces conflicting
domains into the query composition. Conversely, the correct query class or the
source domain may not be found in the m text labels. To study the impact of each,
we conduct an oracle experiment and summarize the results in Table 4.6. In the
first two columns we compare early and late fusion with memory-based inversion
after adding the query class to the m text labels. Late fusion achieves almost twice
the gain compared to early fusion, showing that it can benefit more from the correct
information. In the last two columns we compare the performance after including
the source domain as a distractor. Late fusion suffers almost half the loss compared
to early fusion, showing more robust behavior to incorrect information.

Sensitivity to the vocabulary We question whether FreeDom strongly de-
pends on having the most appropriate word for describing the query object class in
the vocabulary. To reflect that, we perform an oracle experiment where the name
of the ground truth class of the query image is used to remove its ℓ nearest words
from the vocabulary. After removal with ℓ = 5, FreeDom performs 23.48, 31.95,
23.60 and 30.67 mAP on ImageNet-R, MiniDomainNet, NICO++, and LTLL, re-
spectively. Even with the lack of the most appropriate words, FreeDom is still the
best performing method.
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Dataset Object Gain Domain Loss

E+ L+ E+ L+

ImageNet-R +0.72 +1.16 -4.30 -1.64
NICO++ +0.21 +0.40 -0.66 -1.29
MiniDN +0.72 +0.59 -7.43 -2.79
LTLL +1.56 +4.00 -2.86 -1.58

Avg +0.80 +1.54 -3.81 -1.83

Table 4.6: Oracle experiment to study the impact of inliers and outliers in the
m text labels. Inlier represents the query object name and outlier is the source
domain name. Gain or loss by adding inliers or outliers in text labels, respectively,
is reported. Under memory-based expansion (E+ and L+), late fusion benefits from
inliers and is more robust to outliers.

Performance upper-bound We use a single text label that is the name of the
ground-truth object class for the image query. In this case, FreeDom achieves
46.58, 34.00, 46.06 and 31.18 mAP on ImageNet-R, MiniDomainNet, NICO++ and
LTLL, respectively. This reference performance indicates there is still more space
for improvement in the category-level benchmarks. However, this oracle experiment
underperforms FreeDom on LTLL. This is no surprise as class names are not
representative of the depicted object for this instance-level benchmark.

4.4.8 Beyond Domain Conversion Benchmarks

In this work we focus on the task of domain conversion, motivated by the significance
of its applications. Addressing the challenges of this task, particularly the utilization
of bi-modal queries, and the open-world recognition across domains and objects,
prove to be non-trivial. Given that our method handles these challenges well and
taking into account that these challenges extend universally to the generic composed
image retrieval, we evaluate FreeDom on benchmarks of the generic task and
present the results in Table 4.7.

Even though FreeDom is training-free, the results indicate that it is either the
single best approach (CIRCO) or on par with another method (with SEARLE on
CIRR) or below the best by a small margin (Fashion-IQ). Simple baselines perform
comparably to all methods (Fashion-IQ), a little lower than other methods (CIRR)
or a little higher than other methods (CIRCO). In conclusion, the improvements of
all methods over the baselines on these tasks appear comparatively modest when
compared to improvements of FreeDom on domain conversion. On CIRR and
CIRCO, we evaluate on the validation set, which is a valid choice since no method
performs training/validation on this set; the test set is behind an evaluation server.
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Method Fashion-IQ CIRR CIRCO

Text + Image (N) 6.77 18.84 10.61
Text × Image 10.58 24.42 10.92
Pic2Word 10.52 29.75 8.16
SEARLE 10.70 31.50 14.48

FreeDom (default) 9.67 28.96 13.06
FreeDom (k = 1) 10.04 30.60 15.43
FreeDom (k = 1, n = 15,m = 15) 10.30 31.51 13.41

Table 4.7: Composed image retrieval beyond domain conversion: performance
(mAP) evaluation performed by us for all methods on generic composed retrieval
benchmarks. FreeDom is evaluated for the default parameters and for additional
setups found to be beneficial.

4.4.9 Visualizations
Figure 4.4 shows visualizations of the top-k ranked database images of FreeDom
on ImageNet-R. We use Photo as source domain and convert to any target domain.
FreeDom is able to retrieve correct images in all cases. Figure 4.5 shows visual-
izations of the top-k ranked database images of FreeDom on MiniDomainNet. We
perform Sketch→ Photo conversion, i.e. sketch-based image retrieval [244]–[246].
Interestingly, FreeDom is performing well in this task, in contrast to Pic2Word [39].

Furthermore, we present challenging cases where state-of-the-art methods under-
perform and we demonstrate the performance of FreeDom. Figure 4.6 shows
visualizations of the top-k ranked database images of FreeDom vs . competitors
on instance-level LTLL. We perform Archive→ Today and Today → Archive
domain conversions. We observe that competitors confuse both domains and in-
stances. Figure 4.7 shows visualizations of the top-k ranked database images of
FreeDom vs . competitors on NICO++. We perform Autumn → Dimlight and
Grass → Autumn domain conversions. FreeDom has the best retrieval results,
while competitors fail almost everywhere.

In our visual examples we excluded exact duplicates and we performed aspect ratio
change for better presentation.
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(a)

(b)

(c)

(d)

image query 1 2 3 4 5 6 7 8

Figure 4.4: top-k retrieval results of FreeDom. Domain conversion on ImageNet-R:
(a) Photo→ Cartoon; (b) Photo→ Origami; (c) Photo→ Sculpture; (d)
Photo→ Toy. Orange: image query, green: correctly retrieved; red: incorrectly
retrieved; k=8.

107



Chapter 4. Extracting Multimodal Representations via Discrete-Space Inversion

image query 1 2 3 4 5 6 7 8

Figure 4.5: top-k retrieval results of FreeDom. Sketch-based image retrieval
(Sketch → Photo) on MiniDomainNet. Orange: image query, green: correctly
retrieved; red: incorrectly retrieved; k=8.
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Figure 4.6: top-k retrieval results. Competitors vs. FreeDom. Domain conver-
sion (Archive → Today, Today → Archive) on LTLL. Orange: image query;
green: correctly retrieved; red: incorrectly retrieved; k=8.
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Figure 4.7: top-k retrieval results. Competitors vs. FreeDom. Domain conversion
(Autumn→Dimlight, Grass→Autumn) on NICO++. Orange: image query;
green: correctly retrieved; red: incorrectly retrieved; k=8.
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4.5 Conclusion

We have introduced FreeDom, a training-free composed image retrieval method
for domain conversion, based on a pre-trained CLIP model. The key component is
textual inversion of the query image based on soft assignment to a sparse vocabulary
of words. Our detailed ablations show the importance of every component of the
method as well as its robustness to the choice of hyper-parameters. We have also
introduced three new benchmarks with different domain types, providing a broad
testbed for further research in this area. Despite its zero requirements for super-
vision, data or training, FreeDom outperforms the state-of-the-art methods by a
large margin on the task at hand. Composed image retrieval with free-form long
sentences remains highly challenging and is still in its early stages. We claim that
delving into a challenging sub-task, characterized by more restrictive textual queries
as in domain conversion, is beneficial for further understanding and progress.
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5.1 Advancing Remote Sensing with Composed
Image Retrieval: A New Era of Multimodal
Search

In recent years, earth observation (EO) through remote sensing (RS) has witnessed
an enormous growth in data volume, creating a challenge in managing and extracting
relevant information. This surge is largely attributed to the proliferation of open
satellite data programs, which have democratized access to EO data and broadened
the scope of research and applications in various fields. The capacity to efficiently
organize extensive archives and quickly retrieve specific images is crucial.

Remote sensing image retrieval (RSIR) [65], which aims to search and retrieve images
from RS image archives, has emerged as a key solution. RSIR methods can be
categorized into unisource and cross-source [257], where the categorization is based
on whether the query image and the retrieved images are from the same source. In
the case of unisource, there exists single-label [258]–[263] and multi-label [264]–[269]
retrieval, depending on whether an image is associated with one or multiple labels
respectively. In the case of cross-source, the term “source” is used loosely and can
correspond to modality, view, etc.

In all cases, RSIR methods encounter a major limitation: the reliance on a query
of single modality. This constraint often restricts users from fully expressing their
specific requirements, especially given the complex and dynamic nature of Earth’s
surface as depicted in RS imagery. Ideally, users would benefit from a system that
allows them to articulate nuanced modifications or specifications in conjunction
with an image-based query. This is where composed image retrieval (CIR) [34]–
[39] comes into play. CIR, integrating both image and text in the search query, is
designed to retrieve images that are not only visually similar to the query image
but also relevant to the details of the accompanying query text. By incorporating
CIR into RS, we aim to offer a more expressive and flexible search capability that
closely aligns with the intricate needs of users in this field. Figure 5.1 presents two
examples of composed queries, each combining an image with text. We observe the
new possibilities that this task unlocks, as the text component allows users to specify
desired modifications in the image. Additionally, our method’s flexibility facilitates
seamless transitions between image and text, enabling a focus on either structural
or modification aspects, respectively.

In this paper, we recognize, present and qualitatively evaluate the capabilities and
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dense

concrete

Query Image λ = 0 λ = 0.5 λ = 0.75 λ = 0.95 λ = 1 Query Text

Figure 5.1: We introduce remote sensing composed image retrieval (RSCIR), a novel
and expressive remote sensing image retrieval (RSIR) task integrating both image
and text in the search query. We also introduce WeiCom, a flexible, training-free
method based on vision-language models, utilizing a weighting parameter λ for more
image- or text-oriented results, with λ → 0 or λ → 1 respectively. For each query
image and query text, retrieved images shown for different λ.

challenges that CIR introduces within the RS domain. We demonstrate how users
can now pair a query image with a query text specifying modifications related to
color, context, density, existence, quantity, shape, size or texture of one or more
classes. Quantitatively, we focus on color, context, density, existence, quantity, and
shape modifications, establishing a benchmark and an evaluation protocol. Our
approach is training-free by using a frozen vision-language model.

In summary, we make the following contributions:

1. We are the first to introduce composed image retrieval into remote sensing,
accompanied with PatternCom, a benchmark dataset.

2. We introduce WeiCom, a training-free method utilizing a modality control
parameter for more image- or text-oriented results according to the needs of
each search.

3. We evaluate both qualitatively and quantitatively the performance of SimPool,
setting the state-of-the-art on remote sensing composed image retrieval.

5.2 Exploring the Intersection of Remote Sensing
and Composed Image Retrieval

Remote Sensing Image Retrieval With the aim to effectively search and re-
trieve information from extensive RS image archives, remote sensing image retrieval
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(RSIR) can be categorized into unisource and cross-source [257]. Initially, RSIR
methods focus on handcrafted and low-level visual features [270]–[279]. With the
advent of deep learning, neural networks are utilized for unisource single-label re-
trieval: (a) as feature extractors [258], [280]–[288], (b) trained from scratch [201],
[259], [260], [289]–[293], (c) integrating attention modules [261], [294]–[296] and (d)
using metric learning [262], [263], [297]–[300]. Neural networks are also used for
unisource multi-label [264]–[269], [278], cross-source cross-sensors [301]–[304], cross-
source cross-modal [296], [305]–[310] and cross-source cross-view retrieval [311]–
[316]. Our work fills a notable gap and enhances user intent expression in RSIR by
combining query image with query text.

Composed Image Retrieval Image-to-image [40], [41], [198] and text-to-
image [42]–[44] retrieval provide ways to explore large image archives. However,
the most accurate and flexible way to express the user intent is a query composed
of both an image and a text. Composed Image Retrieval (CIR) [34]–[39] aims to
retrieve images not only visually similar to the query image, but also altered to
align with the specifics of the query text. Traditionally, CIR methods are super-
vised by triplets of the form query image, query text, target image [34]–[36], [38],
[45], [46], [208], [209]. The labor-intensive process of labeling such triplets limit
early works to specific applications in fashion [47]–[49], physical states [50], ob-
ject attributes and composition [34], [203], [204]. The emergence of vision-language
models (VLMs) [52]–[54] led to their integration into CIR, introducing zero-shot
composed image retrieval (ZS-CIR) [39], [51], [55]. This increases the spectrum of
possible applications [51]. Methods are trained using unlabeled images [39], [51],
or are not trained at all [55]. Recognizing the unexplored potential of CIR in RS,
our work pioneers its introduction in this domain, particularly leveraging ZS-CIR
empowered by VLMs.

Vision-Language Models The emergence of VLMs [52]–[54], [225] revolutionizes
the field of multimodal learning. Trained on large-scale image-text datasets [217],
these models map images and text into a shared embedding space. Apart from zero-
shot classification, CLIP [52] can be used for detection [317], segmentation [318] and
captioning [319]. CLIP can also be aligned to be used with medical data [320] or
satellite data [321], [322]. In this work, we leverage CLIP and RemoteCLIP [321], a
vision-language model for remote sensing, in a training-free setting.
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Visual
Encoder

Query Text

Text
Encoder

Distribution
Normalization

Distribution
Normalization

Composed Query Composed Encoder

Query Image

Similarities

Similarities
Retrieved Image

argmax0.1 0.3 ... 0.2 0.2 0.1 ... 0.4 0.2 0.1 ... 0.4

Visual
EncoderImage

Dataset       

Figure 5.2: WeiCom: A Weighted Composed Image Retrieval Method. It utilizes a
dual-encoder approach to process both query image y and query text t. Initially,
the query image is passed into a visual encoder f and the query text into a text
encoder g, producing corresponding d-dimensional representations. Subsequently,
similarity scores with the representations in the image dataset are calculated. These
scores are then normalized and combined using a convex combination controlled
by a λ ∈ [0, 1]. Finally, an argmax(argsort) operation identifies the most relevant
retrieved image(s) x.

5.3 WeiCom: A Modality-Control Method for
Remote Sensing Composed Image Retrieval

5.3.1 Problem Formulation

In composed image retrieval, the goal is to retrieve images based on a composed
image-text query, that is, a query that consists of a visual part, the query image,
and a textual part, the query text. In this work, we introduce remote sensing
composed image retrieval. To do so, we establish a benchmark and an evaluation
protocol.

We denote the query image as y, its class as Cy and an attribute of the depicted
class as Ay. We also denote the query text as t, which represents a modified target
attribute At. We refer to the two queries as the composed query, q = (y, t). Given
an image dataset X, our goal is to retrieve images from X that share class with the
query image class Cy and have the attribute At defined by the text query t. Retrieval
aims to rank images x ∈ X with respect to their composed similarity s(q, x) ∈ R to
the query. The task is extendable to multiple classes and multiple attributes.

To define s, we make use of pre-trained VLMs that consist of a visual encoder f :
I → Rd and a text encoder g : T → Rd, which map input images from image space
I and words from the text space T to the same embedding space with dimension
d. We extract the visual embedding vy = f(y) ∈ Rd and the text embedding
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vt = g(t) ∈ Rd to use as queries. Finally, the embedding of a dataset image x ∈ X
is denoted as vx = f(x) ∈ Rd. All embeddings are ℓ2-normalized.

5.3.2 Baselines
Unimodal baselines rely solely on a single type of query to determine similar-
ity. We denote: text-only by sg(q, x) = g(t)Tf(x) and image-only by sf (q, x) =
f(y)Tf(x). Unimodal baselines are expected to fail since the final similarity cannot
embody information from both image and text.

Multimodal combines the two unimodal approaches by averaging their similari-
ties:

sa(q, x) =
sg(q, x) + sf (q, x)

2
(5.1)

Note that this baseline is equivalent to averaging the two features g(t), f(y) and
then calculating the similarities once. The drawback of this approach is that the
features that come from same modalities have similarities significantly greater than
the cross-modal similarities, making it an approach biased in favor of the image
query.

5.3.3 WeiCom

In our proposed method, WeiCom, we estimate the similarities of the image query
sf (q, x) and the text query sg(q, x) with the database. Then we perform similarity
normalization in order to have a starting point of equal contribution from both
modalities and we notate s′f (q, x), s′g(q, x). Finally, we use the weighted average of
the two similarity sets using a modality control parameter λ:

sWC(q, x) = λs′g(q, x) + (1− λ)s′f (q, x) (5.2)

Similarity Normalization In order to ensure that both image and text queries
contribute equally to the retrieval, we normalize their similarities with the database.
We first transform the empirical distribution of similarity scores into a standard
normal distribution. Subsequently, we apply the cumulative distribution function
(CDF) of the standard normal distribution to the standardized data, resulting in
values that range between 0 and 1. Assuming the standardized data adhere to
a normal distribution, this transformation yields data that approximates a uniform
distribution. Transforming data into a uniform distribution diminishes the influence

118



5.4. Benchmarking WeiCom: Performance and Insights

of outliers and reduces skewness, smoothing any excessively peaked distributions.
This approach leads to more robust similarity scores.

The modality control parameter λ After normalizing the similarities, we can
control the influence of each modality using a parameter λ as a weight. Here λ = 0
refers to image-only retrieval, λ = 1 to text-only retrieval and λ = 0.5 to equal
contribution of image and text. The full WeiCom method is summarized in Fig-
ure 5.2.

5.4 Benchmarking WeiCom: Performance and
Insights

5.4.1 Datasets, Networks and Evaluation Protocol

Datasets To evaluate quantitatively the methods, we introduce PatternCom,
a new benchmark based on PatternNet [323]. PatternNet is a large-scale high-
resolution remote sensing image retrieval dataset. There are 38 classes and each class
has 800 images of size 256×256 pixels. In PatternCom, we select some classes to
be depicted in query images, and add a query text that defines an attribute relevant
to that class. For instance, query images of “swimming pools” are combined with
text queries defining “shape” as “rectangular”, “oval”, and “kidney-shaped”. In total,
PatternCom includes six attributes consisted of up to four different classes each.
Each attribute can be associated with two to five values per class. The number
of positives ranges from 2 to 1345 and there are more than 21k queries in total.
Statistics for all attributes are shown in Table 5.1.

Networks We use the pre-trained CLIP [52] and RemoteCLIP [321], both with a
ViT-L/14 image encoder.

Evaluation Protocol We evaluate using mAP. Average Precision (AP) is the
average of the precision values obtained for the set of top-k results, up to each
relevant item found in the ranking. The mAP is then the mean of these AP values
over all queries.

5.4.2 Experimental Results

Qualitative results In Figure 5.3, we present the qualitative results of performing
composed image retrieval in PatternCom using WeiCom with RemoteCLIP. Each
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Attribute Class Value #Positives #Queries

color

airplane white 672 53
purple 53 672

nursing home white 85 383
gray 383 85

crosswalk white 412 388
yellow 388 412

tennis court

blue 339 287
brown 2 624
gray 50 576
green 211 415
red 24 602

context bridge concrete 800 800
water 800 800

density residential sparse 800 800
dense 800 800

existence
parking with cars 947 653

without cars 653 947

pier with boats 1345 255
without boats 255 1345

quantity

storage tank

one 356 261
two 119 498

three 65 552
four 77 540

wast. tr. plant

one 724 78
two 44 758

three 10 792
four 24 778

basketball court

one 340 383
two 286 437

three 21 702
half 61 662

two-halfs 15 708

shape

swimming pool
rectangular 261 299

oval 52 508
kidney-shaped 247 313

river curved 177 623
straight 623 177

road cross 800 800
round 800 800

Table 5.1: Statistics of PatternCom, the first remote sensing composed image
retrieval benchmark.
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example corresponds to one of the selected attributes with the query text specifying
a modification in each attribute value.

Comparison with baselines As shown in Table 5.2, WeiCom outperfoms both
unimodal (“Text", “Image") and multimodal (“Text & Image") baselines by a large
margin. In particular, it outperforms the second best by 8.95% mAP using CLIP
and 15.14% mAP using RemoteCLIP on average. Note that, as expected, the RS
specialized RemoteCLIP performs better than the original CLIP on average.

(a) CLIP [52]
Method Color Context Density Existence Quantity Shape Avg

Text 13.47 4.83 3.58 4.38 3.31 6.22 5.97
Image 14.66 8.32 13.49 13.50 7.84 15.76 12.26
Text & Image 23.13 11.02 15.87 13.77 10.13 21.38 15.88

WeiComλ=0.5 46.08 17.45 16.49 9.24 18.15 23.97 21.90
WeiComλ=0.3 46.74 20.97 22.07 12.07 20.96 26.22 24.83

(b) RemoteCLIP [321]
Method Color Context Density Existence Quantity Shape Avg

Text 10.75 8.87 22.16 12.49 8.25 24.12 14.44
Image 14.40 6.62 15.11 9.29 6.99 15.18 11.27
Text & Image 23.67 10.01 18.45 10.56 7.97 19.63 15.05

WeiComλ=0.5 43.68 31.45 39.94 14.27 20.51 29.78 29.94
WeiComλ=0.6 41.04 31.59 41.56 14.79 20.79 31.24 30.19

Table 5.2: Attribute modification mAP (%) on PatternCom using CLIP (a) and
RemoteCLIP (b); comparison of WeiCom with baselines. For each attribute value
of an attribute (e.g. “rectangular" of Shape), average mAP over all the rest at-
tribute values (e.g. “oval" of Shape). AVG: average mAP over all combinations.

5.4.3 Ablations

The impact of λ In Table 5.3 we show the impact of modality control parameter
λ on WeiCom using RemoteCLIP. λ = 0 refers to image-only, λ = 1 to text-only
retrieval. For λ = 0.6 we get the best average mAP, thus we set this as our method’s
default. The same study for CLIP gives λ = 0.3.

5.5 Conclusion

We introduce remote sensing composed image retrieval, a novel task integrating both
image and text in the search query, accompanied with PatternCom, a benchmark
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λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Color 14.5 55.3 53.0 49.6 46.4 43.7 41.0 38.2 35.0 30.4 10.8
Context 6.6 13.3 20.2 25.7 29.5 31.5 31.6 29.6 24.8 16.9 8.9
Density 15.1 23.3 29.5 34.0 37.4 39.9 41.6 42.0 40.7 35.9 22.2
Existence 9.3 10.3 11.1 12.3 13.5 14.3 14.8 15.0 14.8 14.0 12.5
Quantity 7.0 17.6 18.9 19.7 20.2 20.5 20.8 20.9 20.8 20.1 8.3
Shape 15.2 23.8 24.7 26.2 28.0 29.8 31.2 32.0 32.0 31.3 24.1
Average 11.3 23.9 26.2 27.9 29.2 29.9 30.2 29.6 28.0 24.8 14.4

Table 5.3: The effect of the modality control parameter λ on WeiCom using Re-
moteCLIP, measured in attribute modification mAP.

dataset. We demonstrate its versatility through use cases modifying attributes like
color or shape and also introduce WeiCom, a flexible and training-free method
utilizing a modality control parameter λ, setting the state-of-the-art on the task.
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Query Query Retrieved
Image Text Image

purple

(a) Color

dense

(c) Density

four

(e) Quantity

big

(g) Size

Query Query Retrieved
Image Text Image

water

(b) Context

full

(d) Existence

oval

(f) Shape

fine

(h) Texture

Figure 5.3: Demonstrating remote sensing composed image retrieval. Subfigures
(a) to (h) depict key attributes of image composition: color, context, density, ex-
istence, quantity, shape, size, and texture. Each one illustrates various utilizations
of composed image retrieval in remote sensing, demonstrating the wide range of
applications and scenarios. Subfigures (b), (d) are examples that extend the task to
multiple classes and attributes.
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6.1 Summary

In this dissertation, we have explored novel methods for learning both visual and
visual-textual (multimodal) representations, focusing on applications in deep metric
learning, image classification, and composed image retrieval. Our research has been
driven by the need to enhance the quality, robustness, and generalization of models
through innovative approaches that address both data-centric and model-centric
challenges.

The first part of the dissertation focused on visual representation learning. We
introduced Metrix, a deep metric learning method utilizing mixup for data augmen-
tation. This method addressed the challenge of interpolating both examples and
target labels, overcoming the non-additive nature of traditional metric learning loss
functions. Through extensive experiments on four benchmark datasets, we demon-
strated that Metrix significantly improves robustness and generalization, setting a
new state-of-the-art in deep metric learning.
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In the second part, we shifted our focus to model architecture, introducing SimPool,
a simple, attention-based pooling method for convolutional neural networks and
vision transformers. We developed a generic pooling framework, allowing for the
formulation and comparison of existing pooling methods. The proposed method
was shown to generate high-quality attention maps, enhancing object localization
and robustness to background changes. Our empirical studies validated its superior
performance on standard benchmarks and downstream tasks.

The third part of the dissertation delved into visual-textual representations, start-
ing with FreeDom, a training-free method for zero-shot composed image retrieval in
open-world domain conversion. Leveraging the descriptive power of a frozen vision-
language model and employing discrete-space textual inversion, FreeDom demon-
strated superior performance across multiple benchmark datasets. This innovative
approach highlighted the potential for further applications in generic composed im-
age retrieval.

Finally, we introduced composed image retrieval into the domain of remote sens-
ing with the novel task of remote sensing composed image retrieval. We presented
WeiCom, a training-free method utilizing a modality control parameter, and es-
tablished a new benchmark dataset, PatternCom. Our method’s effectiveness was
evaluated through various attribute modifications, showcasing its potential for en-
hancing search capabilities in remote sensing.

Throughout this dissertation, we have contributed to advancing the state-of-the-
art in visual and multimodal representation learning. The methods developed and
evaluated herein provide a robust foundation for future research and applications in
these domains.

6.2 Future Work

While this dissertation has made significant strides in visual and multimodal repre-
sentation learning, there are several avenues for future work that can build on our
findings and further advance the field.

Advanced data augmentation In the context of deep metric learning, we have
explored the use of mixup to enhance the robustness and generalization of visual
representations. A promising extension of this work would be to develop a feature
mixup method that leverages attention mechanisms to identify and align semantic
correspondences between images before interpolation. For example, when interpo-
lating between a cat and a dog, the method could align the eyes of the cat with
the eyes of the dog, creating a more meaningful interpolation. This would involve
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identifying corresponding features in the respective feature maps, potentially lead-
ing to more sophisticated and effective data augmentation strategies. Additionally,
this approach could be combined with the extension of our existing work, Metrix, to
ViTs. In the original work, Metrix was integrated into CNNs; however, ViTs, with
their self-attention mechanisms, offer a new avenue for exploration. The interplay
between self-attention and feature mixup could introduce new challenges, such as
handling the global context that ViTs capture, and it could also offer novel insights
into the behavior of interpolated features in a transformer-based architecture.

Multimodal data mixing for representation learning Another intriguing
direction is the exploration of multimodal data mixing within the framework of rep-
resentation learning. While mixup has shown promise in the image domain, its ex-
tension to multimodal data—such as combining visual and textual inputs—remains
underexplored. A multimodal mixup could involve blending not only the pixel-
level information from images but also the semantic information from associated
text, thereby generating new multimodal training samples. This could be particu-
larly useful in tasks that require a strong understanding of both visual and textual
modalities, such as image captioning or VQA. Investigating how multimodal mixing
influences the learned representations and how it can be optimized to improve the
performance on downstream tasks would be a valuable contribution to the field.

Pooling as probing An interesting direction would be to employ an attention-
pooling mechanism like SimPool in pre-trained and frozen models, thereby avoiding
costly training. This approach could serve as an intermediate step between linear
probing and full fine-tuning in self-supervised learning scenarios. By using SimPool
before the classifier, we could train only the pooling layer and the classifier, thereby
reducing the number of learnable parameters compared to full fine-tuning while still
capturing more nuanced feature representations than linear probing. This approach,
termed attentive probing, could effectively utilize the learned frozen features, poten-
tially achieving competitive performance with a fraction of the computational cost.
Future research could explore the balance between complexity and performance in
various self-supervised learning tasks, using this method as a flexible and efficient
alternative to existing approaches.

Exploring hierarchical and iterative pooling In our exploration of SimPool,
we tested several extensions, including applying SimPool across different layers,
using iterative pooling, and generating multiple local representations instead of a
single global representation. While these variations performed on par with or worse
than the original SimPool, they were also more computationally expensive. How-
ever, this outcome might be influenced by the characteristics of the ImageNet-1k
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dataset, particularly its bias towards images containing a single dominant object.
Given this, future research could revisit these extensions, either by further optimiz-
ing them within the ImageNet-1k framework or by testing them on datasets with
more complex scenes that contain multiple objects. This exploration could help
uncover whether these advanced pooling mechanisms can provide benefits in more
challenging settings, where capturing multiple local features or iterative refinement
might offer a significant advantage.

Textual inversion for image generation Textual inversion [324] has its ori-
gins in the task of personalized image generation, where the goal is to invert an
image into a latent pseudo-word vector that can be used for instance-conditioned
image generation. Extending this idea, a future direction could involve developing a
discrete-space inversion method like FreeDom for image generation. The challenge
here lies in describing specific, fine-grained attributes of an object (e.g., the exact
appearance of a particular black dog) using a discrete set of tokens. One possible
approach could involve inverting various properties of an object into distinct tokens
that can be composed to form a detailed description in discrete space. This set of
tokens could then serve as an initial conditioning for image generation, which might
be further refined through optimization in continuous space. The system would start
with a structured phrase describing the object’s attributes and then iteratively op-
timize these tokens to achieve a more accurate and specific instance representation.
This dual approach could bridge the gap between discrete and continuous represen-
tations, potentially improving the fidelity and controllability of instance-conditioned
image generation.

Extending textual inversion to other modalities Another promising direc-
tion is to extend the concept of textual inversion beyond images and text to other
modalities, such as video, audio, or 3D data. This could involve developing tech-
niques to invert specific features from these modalities into a latent discrete space,
enabling new forms of multimodal retrieval and generation. For example, in video,
inversion could focus on capturing temporal dynamics or specific actions, while in 3D
data, it could involve encoding shape or spatial structure. Exploring how discrete-
space inversion can be adapted and optimized for these diverse data types could
open up new applications and challenges in multimodal learning.

Advancing composed image retrieval through image-to-image search
Traditional composed image retrieval methods typically invert an image into a tex-
tual token, which is then combined with a text query for text-to-image retrieval.
A future direction worth exploring is to shift from text-to-image to image-to-image
retrieval, maintaining the rich visual information inherent in the image modality.
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This could be achieved by either generating a synthetic image that visually repre-
sents the composed query or by mixing the features of the image and text query
directly in the feature space. The goal would be to create a composite feature vector
that can be used for efficient image-to-image retrieval, potentially leading to more
precise and visually coherent results. This approach would involve advanced feature
manipulation techniques, such as attention-based feature blending, to ensure the ac-
curate combination of visual attributes while preserving the integrity of the original
image features.

Remote sensing composed image retrieval for change detection One of
the most intriguing future directions for our new task is its application to change
detection. In scenarios involving time series of high-resolution satellite images, users
might query an image depicting a specific scene and use a textual query to specify
a particular type of change—such as the appearance or disappearance of an object,
or alterations in the scene’s background. This approach could significantly enhance
the ability to monitor and analyze environmental changes, urban development, or
disaster impacts over time. By integrating RSCIR into change detection frameworks,
we could develop more intuitive and powerful tools for temporal analysis in remote
sensing, potentially leading to more timely and accurate insights into dynamic Earth
processes.

Training new method on PatternCom and expanding the benchmark
In our work, we introduced a new benchmark dataset, PatternCom, and developed
the training-free WeiCom method, which was integrated into CLIP and Remote-
CLIP. A natural extension of this research would involve designing and training a
new method directly on PatternCom to fully explore its potential. This is aligned
with our observation that WeiCom with RemoteCLIP outperforms its counterpart
with the original CLIP. This method should work again on top of pre-trained CLIP
or RemoteCLIP models, Additionally, further improvements might be achievable by
training on an even larger dataset. Therefore, another direction could be to expand
PatternCom or develop a new, larger benchmark that encompasses a wider va-
riety of remote sensing scenes and attributes. This would not only provide a more
comprehensive testbed for evaluating RSCIR methods but also push the boundaries
of what is achievable with foundation models like CLIP and RemoteCLIP in the
remote sensing domain.
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