
THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Computer Science /Informatique

Par

Shashanka Venkataramanan
Metric learning for instance and category-level visual representa-
tion

Thèse présentée et soutenue à Rennes, le 1st July 2024
Unité de recherche : INRIA Rennes

Composition of the Jury :
President: Prof. Dr. Nicolas Courty Professor, Université Bretagne Sud
Reviewers: Prof. Dr. Andrew Zisserman Professor, University of Oxford
Reviewers: Prof. Dr. Jiri Matas Professor, Czech Technical University, Prague

Dr. Piotr Bojanowski Principal Research Scientist, Meta AI (FAIR)
Examiners : Dr. Diane Larlus Principal Research Scientist, Naver Labs Europe

Dr. Andrei Bursuc Senior Research Scientist, valeo.ai

Thesis supervised by:
Thesis Director : Dr. Laurent Amsaleg Senior Researcher, HDR, CNRS
Thesis Co-directors : Dr. Yannis Avrithis HDR, Principal Investigator, IARAI

Dr. Ewa Kijak HDR, Associate Professor, University of Rennes 1

To the most influential women in my life:
K. Saraswati, Padmalatha, Jayashree, and Sritanaya

(To all the great souls who have
guided me in my path,

please accept my humble salutations)

ACKNOWLEDGEMENT

Throughout my PhD journey, I’ve been truly grateful by the support and encourage-
ment from so many wonderful people. It’s incredibly difficult to fully express the deep
gratitude I feel towards all those who have made this journey so rewarding and excit-
ing. The next few hundred words can never truly capture all the appreciation I have for
everyone who contributed to this incredible experience. I am deeply grateful for their
remarkable contributions and humbly acknowledge their role in this thesis.

First and foremost, to my exceptional supervisor Yannis Avrithis, whose unbridled
support has been an invaluable gift throughout my PhD journey. It is a rare and extraor-
dinary privilege to have had the opportunity to work with him, and I consider myself
truly fortunate. The countless hours he dedicated to reviewing and refining our papers,
coupled with his insightful feedback and unwavering belief in my abilities, have fostered
an environment of growth and innovation. I am immensely grateful for his trust, wisdom,
and the personal investment he has made in my success. I almost do not want to gradu-
ate, because I know I will miss him. His advice on research and life will stay in my heart
forever.

To my supervisors Laurent Amsaleg and Ewa Kijak, thank you for helping me integrate
into a new environment in France. Your guidance and support have shaped the course of
my doctoral pursuit.

I extend my sincere gratitude to all three of you for assembling an exceptional jury
for my defense. Words cannot adequately convey the immense pride and honor I feel to
present and defend my work in the presence of researchers whom I deeply admire. I am
immensely grateful to each member of the jury for generously devoting their valuable time
to meticulously reviewing the manuscript and for their presence during the defense.

I also owe an anonymous acknowledgement to the entire scientific community of com-
puter vision and machine learning for the incredible progress over the past two decades.
Such advancements would have been impossible for any individual researcher or team
working alone in this ever-evolving field. I am also deeply grateful to the anonymous re-
viewers and area chairs whose valuable feedback has helped me become a better researcher
today.

5

During my PhD, I had been fortunate to intern at Qualcomm Research with Amir
Ghodrati and Amirhossein Habibian. I thank them for their support and efforts in making
my time with the team both comfortable and fruitful. Their welcoming and inclusive
approach created an environment where I felt truly at ease, allowing me to contribute
to the best of my abilities. I would also like to highlight the delightful moments spent
engaging in lively discussions about Italian cuisines, property investments, literature, and
“stuff like that” with Davide Abati, which added a touch of joy to the overall experience.
I am also grateful to Haitam Ben Yahia for his patience with my constant whining about
limited computational resources, even when I occupied half of Qualcomm’s GPUs :). I
hold dear the memories of this internship experience: It was Lekker!!!

I am grateful to Yuki Asano, my collaborator, for the countless inspiring discussions
and for motivating me to find the “wow” factor in our research problems. His insightful
comments and collaborative spirit have been invaluable in shaping the direction and
quality of our research. I am truly fortunate to have had the opportunity to work alongside
such an exceptional individual. To many more collaborations ahead :) To Joao Carreira,
with whom I had the pleasure of collaborating, your one or two-liner insights were like a
jolt of lightning to my brain, leaving me pondering for weeks on end. In our brief time
together, I gained more knowledge than I ever thought possible. I’m also eternally grateful
for your unwavering commitment to the project, even when it meant sacrificing precious
time from your busy schedule. And let’s be real, that controversial yet catchy paper title?
Pure genius. I’m pretty sure it’s the reason we won that Best Paper Honorable Mention
award at ICLR, haha. To Bill Psomas, for the enthusiasm and joy you brought to our
project. Thank you for the many interesting conversations about life, Greek food, workouts
and for recommending some amazing Greek songs which I listen to on a loop :p. It was a
pleasure and I learned a lot from working with you all!

To my friend Mohammadreza Salehi, thanks for your unwavering support and moti-
vation during difficult times and inspiring me to explore life beyond just research. Your
wisdom and compassion were instrumental in helping me regain balance and perspective.
To my labmates Deniz Engin and Ali Yesilkanat, who have been my companions through-
out this research journey. Together, we have weathered the ups and downs, sharing not
only the bitter-sweet experiences of research but also the challenges and joys of life. This
collective experience has been invaluable, shaping us into better researchers and creating
lasting memories that I will cherish. To Konstantinos Tertikas, Hanwei Zhang and Karnik
Ram, thanks for being such wonderful and supportive friends. Lastly, to Kassem Kallas,

6

Guillaume Le Noe-Bienvenu, Suresh Kirthi Kumaraswamy, Ankit Sharma, Kevin Duarte,
Jogendra Kumar, Avishrey Chauhan, and Umang Jain – thank you for being a crucial
part of my home away from home, in this beautiful corner of the world.

Finally, I would like to extend my deepest appreciation to my parents Padmalatha and
Venkataramanan, and my sister Jayashree, for supporting me through thick and thin. To
my mom, who has been my rock during the challenging times, patiently listening to my
rants about unfair reviews of R2 and always finding ways to calm me down. To my dad,
who would meticulously comb through every review and comment on my papers, wielding
a red pen like a surgeon’s scalpel. Your relentless pursuit of perfection may have driven
me to the brink of insanity, but hey, at least now I can handle any critique thrown my
way. Thanks for making me bulletproof, old man! I feel like we have all graduated together
and earned this doctoral degree as a collective accomplishment. I also thank my in-laws
Srinivas and Syamasri Tatipamala for all their encouragement and support. Perhaps the
most extraordinary part of this PhD journey has been to meet Sritanaya, who has been my
pillar of support, my food partner, advisor, fan, therapist, and biggest source of happiness.

7

TABLE OF CONTENTS

1 Introduction 13
1.1 Visual Representations . 13
1.2 Data Augmentation . 18

1.2.1 Challenges of Data Augmentation 20
1.3 Outline and Contributions . 22

1.3.1 AlignMixup: a natural way of interpolation 22
1.3.2 Extending mixup to metric learning 23
1.3.3 Interpolation beyond mini-batch, beyond pairs and beyond examples 23
1.3.4 Learning strong image encoders from videos 24
1.3.5 Publications . 25

2 Background 26
2.1 What is data augmentation? . 26

2.1.1 Image space augmentation techniques 27
2.1.2 Augmentations in the feature space 29
2.1.3 Interpolation based data augmentation 31

2.2 Deep Metric Learning . 33
2.2.1 Metric learning loss functions . 34
2.2.2 Hard negative mining . 35
2.2.3 Interpolation for pairwise loss functions 37

2.3 Self-supervised learning . 39
2.3.1 Contrastive Representation Learning 39
2.3.2 Non-contrastive and Masked Image Modelling 41

2.4 Positioning the contributions . 43

3 Interpolating Aligned Features 47
3.1 Introduction . 48
3.2 Related Work . 50
3.3 AlignMixup . 51

9

TABLE OF CONTENTS

3.3.1 Preliminaries . 51
3.3.2 Interpolation of aligned feature tensors 52
3.3.3 Visualization and discussion . 54

3.4 Experiments . 56
3.4.1 Implementation details . 56
3.4.2 Algorithm . 56
3.4.3 Image classification and robustness 60
3.4.4 Overconfidence . 62
3.4.5 Weakly-supervised object localization (WSOL) 65
3.4.6 Ablation study . 66

3.5 Discussions . 69

4 Mixup for Deep Metric Learning 70
4.1 Introduction . 71
4.2 Related Work . 73
4.3 Mixup for metric learning . 74

4.3.1 Preliminaries . 74
4.3.2 Generic loss formulation . 76
4.3.3 Improving representations using mixup 76
4.3.4 Label representation . 77
4.3.5 Mixed loss function . 78
4.3.6 Analysis: Mixed embeddings and positivity 80

4.4 Experiments . 82
4.4.1 Setup . 82
4.4.2 Mixup settings . 83
4.4.3 Results . 84
4.4.4 How does mixup improve representations? 87
4.4.5 Ablations . 91

4.5 Conclusion . 93

5 Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples
95

5.1 Introduction . 96
5.2 Related Work . 98
5.3 Method . 100

10

TABLE OF CONTENTS

5.3.1 Preliminaries and background . 100
5.3.2 MultiMix . 101
5.3.3 Dense MultiMix . 102

5.4 Experiments . 105
5.4.1 Setup . 105
5.4.2 Results: Image classification and robustness 106
5.4.3 Results: Transfer learning to object detection 108
5.4.4 Reducing overconfidence . 110
5.4.5 Generalizing to unseen domains . 112
5.4.6 Analysis of the embedding space . 112
5.4.7 Manifold intrusion . 113
5.4.8 Ablations . 114

5.5 Discussion . 119

6 Learning Strong Image Encoders from Videos 121
6.1 Introduction . 123
6.2 Related Work . 125
6.3 Walking Tours Dataset . 125

6.3.1 Dataset collection and properties 125
6.3.2 Comparison with other video datasets 127
6.3.3 Dataset analysis . 128

6.4 Attention-based multi-object tracking . 129
6.5 Experiments . 134

6.5.1 Tasks and methods . 134
6.5.2 Implementation details . 135
6.5.3 Hyperparameters . 135
6.5.4 Comparison with State-of-the-art 137
6.5.5 Ablations . 141

6.6 More visualizations . 143
6.7 Conclusion . 143

7 Conclusion 147
7.1 Conclusions . 147
7.2 What comes next? . 149

11

TABLE OF CONTENTS

Bibliography 153
7.2.1 AlignMixup : une méthode naturelle d’interpolation 181
7.2.2 Extension du mixup à l’apprentissage métrique 182
7.2.3 Interpolation au-delà du mini-lot, au-delà des paires et au-delà des

exemples . 183

12

Chapter 1

INTRODUCTION

1.1 Visual Representations

Designing effective representations is a central component of many Artificial Intelli-
gence (AI) systems, and it has evolved significantly over the past decades. The perfor-
mance of an AI system is heavily dependent on the quality of the input data representation.
Just as humans find arithmetic more intuitive when working with numerals rather than
binary or Roman numerals [Dehaene, 2011], the input representation plays a crucial role in
the performance of machine learning (ML) systems. For example, in a simple ML system
tasked with identifying the risk of prostate cancer, the system does not interact directly
with the patient, but rather inputs a set of variables, such as clinical and demographic
conditions, gathered by a specialist [Stamey, 1989]. This set of variables constitutes the
patient representation seen by the ML algorithm, which then learns how these different
variables interact to make predictions.

Beyond the textual and numerical representations commonly used, modern AI systems
have expanded to encompass a wide range of data modalities. Computer vision is one such
modality, which deals with the understanding of visual data such as images and videos.
Vision algorithms leverage representations to extract meaningful information from visual
inputs, enabling AI systems to perceive, interpret, and make decisions based on visual
cues, much like humans do. In the field of computer vision, the ability to understand the
semantic content of an image is crucial for a wide range of tasks, such as classification,
retrieval, detection, segmentation etc. Furthermore, computer vision systems can leverage
multimodal data, where images or videos are coupled with textual information, to tackle
challenges such as image/video captioning and visual question answering. These tasks of-
ten involve two key components: a mechanism to extract information from the image, and
a secondary mechanism to perform the specific task based on the extracted information.

13

Introduction

What are representations? Representations refer to the mathematical or computa-
tional forms used to encode and process data. In computer vision, the features extracted
from raw image data are referred to as visual representations, or descriptors [Lowe, 2004;
Csurka, 2004; Dalal, 2005]. These representations can take various forms, such as specific
structures and patterns like edges, points, or objects, or they can be derived from a feature
extractor function (or encoder) that maps raw pixel values to a vector of fixed dimension,
which serves as the image representation [Goodfellow, 2016].

Representation learning Representation learning is the process of automatically dis-
covering the representations needed for feature detection or classification from raw data [Ben-
gio, 2012]. The goal of representation learning is to find a transformation of the input
data that makes it easier to extract useful information when building classifiers or other
predictors. This is in contrast to traditional machine learning approaches, where the rep-
resentation (e.g., the set of features) is manually engineered based on domain knowledge.

Importance of representation learning The goal is to improve the visual percep-
tion capabilities of AI systems, with the aspiration of matching or even surpassing the
natural ability of humans to perceive and understand the visual world [Krizhevsky, 2009;
Simonyan, 2015]. This motivation stems from the observation that most living beings can
effortlessly see and comprehend the visual world without requiring tremendous amounts
of energy, suggesting that visual perception could be realized by computer systems as
well [Marr, 2010].

Designing effective image featurization is a challenging task because it is not a well-
defined problem. It is not clear what information exactly needs to be extracted from an
image, nor how to extract it effectively [Bengio, 2012]. For example, in the context of
an application that detects dogs in images, the presence of a muzzle might be a useful
feature. However, precisely describing a muzzle in an image is a complex task due to the
infinite variations in lighting conditions, shadows, occlusions, and other factors that can
affect the visual representation of the muzzle [Dalal, 2005].

Representation Learning: pre deep-learning era The idea behind artificial neu-
ral networks dates back to mid 1900s, e.g. [McCulloch, 1944; Rosenblatt, 1958] and
the research in this field has undergone periods of advancement and setback until early
2000s [Goodfellow, 2016]. Some important works during this period include the percep-
tron model of [Rosenblatt, 1958], its extension to multi-layer perceptrons by [Ivakhnenko,

14

Introduction

1971], using backpropagation [Rumelhart, 1986; Werbos, 1974] for training of neural net-
works with multiple hidden units, and the introduction of convolutional neural networks
(CNN) [Fukushima, 1980; LeCun, 1989] to improve the generalization of networks by
exploiting certain data biases such as local structures in images, and invariance to trans-
lation. We encourage the readers to see [Goodfellow, 2016] for a more detailed discussion.

During the early 2000s, researchers extensively studied the problem of finding effec-
tive image representations through handcrafted approaches [Csurka, 2004; Lowe, 2004;
Perronnin, 2007]. In these methods, the representations were designed manually by hu-
mans based on visual cues such as edges, corners, and other low-level image statistics
like pixel gradients. The first generation of methods tackling the challenge of visual rep-
resentation learning included algorithms like SIFT [Lowe, 2004], HOG [Dalal, 2005] and
SURF [Bay, 2006], which were obtained through manual feature engineering. These hand-
crafted feature extraction pipelines produced representations with desirable properties,
such as invariance to scale, illumination, or rotation.

These handcrafted feature extraction techniques were widely used in the pre-deep
learning era, as they provided a systematic way to engineer useful visual representations
without requiring extensive labeled training data or computational resources.

Representation Learning: deep-learning era With the advancements in deep learn-
ing, the paradigm has shifted towards learning representations from “data”, rather than
manually designing them [Bengio, 2012]. Deep neural networks have the remarkable abil-
ity to build a hierarchical representation of their input, starting from low-level features
like edges and corners, and progressively learning higher-level concepts, such as object
parts and semantic information. This ability to learn task-specific representations di-
rectly from data has been a significant advantage of deep learning approaches. Unlike
the handcrafted features, which were often general-purpose and required manual tuning
for specific tasks, deep neural networks can learn representations that are tailored to the
problem at hand [Sharif Razavian, 2014].

The ability to learn and extract representations is directly baked into the deep neural
network architectures used in deep learning. For example, a multi-layer perceptron (MLP)
maps input to output by composing successive parametrized simple functions. The output
of each function (or layer) can be thought of as a new representation of the input, which is
then fed to the following layer. This way, the AI system can discover for itself intermediate
representations that are useful for solving the specific task, as illustrated Figure 1.1. A

15

Introduction

Figure 1.1 – Illustration on the ability of deep neural networks to learn hierarchical rep-
resentations of images. Given input images composed of pixels, low-level representations
(e.g., edges) are encoded first, which are combined to form higher-level representations
(e.g., object parts) that can be used to solve the task at hand, e.g., image classification.
Figure adapted from [Goodfellow, 2016]

well-known example is the XOR classification problem, which cannot be solved by a linear
model. Yet, a simple deep network, namely an MLP, can solve this problem since it has
the ability to learn how to transform the data into an intermediate hidden representation
that is linearly separable.

One of the seminal breakthroughs in representation learning was the introduction of
AlexNet [Krizhevsky, 2012], which demonstrated the power of learned visual representa-
tions, outperforming traditional, hand-crafted features on image classification tasks on
ImageNet [Russakovsky, 2015]. The network’s ability to automatically extract hierarchi-
cal visual features, from low-level edges to high-level object representations, paved the
way for a new era of representation learning. Building upon the success of AlexNet, re-
searchers continued to explore deeper and more sophisticated CNN architectures such
as VGGNet [Simonyan, 2015]. ResNet [He, 2016b], addressed the challenge of training
very deep networks by introducing residual connections, which allowed for the efficient

16

Introduction

Image classification Object detection Semantic Segmentation Instance Segmentation

Figure 1.2 – Transfer of Representations is a powerful technique, where the knowledge
gained by a model during pretraining on a specific task e.g. image classification can be
leveraged to improve performance on related tasks e.g. object detection, semantic and
instance segmentation. This is particularly useful when the target task has limited data
available for training, as the pretrained model can provide a strong starting point for
fine-tuning. Figure adapted from [Lin, 2014]

training of networks with over 100 layers . These deeper networks were able to learn
more complex and expressive visual representations, leading to significant performance
improvements on a wide range of computer vision tasks. The field of representation learn-
ing further expanded beyond computer vision, with the emergence of transformer-based
models, such as BERT [Devlin, 2019], in natural language processing (NLP) . Transform-
ers introduced a novel attention mechanism that enabled the model to dynamically focus
on the most relevant parts of the input sequence when generating representations. This
allowed for the capture of long-range dependencies and contextual information, leading to
state-of-the-art performance on various NLP tasks. The success of transformers in NLP
has inspired the development of similar architectures for other domains, such as computer
vision. Vision Transformers (ViT) [Dosovitskiy, 2021] have demonstrated the ability to
learn powerful visual representations by treating images as sequences of patches and ap-
plying the transformer’s attention mechanism . These models have shown competitive
performance compared to traditional CNN-based approaches, highlighting the versatility
of the transformer architecture in representation learning.

Another advantage of representations learning is that, it can be effectively transferred
across different tasks, allowing for the transfer of knowledge acquired from solving one
task to other related tasks [Bommasani, 2021]. For e.g., in Figure 1.2, the features from
a model pretrained for image classification can be transferred to tasks such as object
detection [Ren, 2015], semantic segmentation and instance segmentation [He, 2017]. This
property of transferability is particularly valuable, as it enables the use of a single rep-
resentation to solve a wide range of computer vision problems, rather than requiring the
development of specialized feature extraction pipelines for each task.

17

Introduction

1.2 Data Augmentation

What is data augmentation? Data augmentation artificially increases the size and
diversity of training data by creating modified versions of existing data without deviating
from the original data distribution. As illustrated in Figure 1.3, applying various trans-
formations to the existing data, such as flipping, rotating, cropping, or adding noise to
images, or replacing words with synonyms or paraphrasing sentences in text data, data
augmentation generates new, slightly different versions of the original training data. These
augmented samples can then be used to train the machine learning model, effectively in-
creasing the size and diversity of the training dataset without the need for additional data
collection or labeling efforts [Yang, 2022].

Data augmentation in images Data augmentation in text

Original sentence

Augmented sentence

Figure 1.3 – Common data augmentation techniques. For images, techniques such as ro-
tation and flipping are shown, while for text, replacing words with synonyms can help
increase the diversity of training data. These simple yet effective augmentation strategies
can improve model performance by providing a range of variations in the input.

Importance of data augmentation Data augmentation is crucial for several reasons:

1. Deep learning models require large amounts of diverse data to learn effectively and
generalize well. However, collecting and annotating data can be time-consuming,
expensive, or sometimes impossible. Data augmentation artificially expands the size
of the dataset by creating new, modified versions of the existing data.

2. Overfitting occurs when a model learns the training data too well, including its
noise and irrelevant patterns, leading to poor performance on new, unseen data.

18

Introduction

Data augmentation introduces variations in the training data, forcing the model to
learn more robust features and generalize better, thereby reducing overfitting.

3. Real-world data can be noisy, distorted, or incomplete. By augmenting the training
data with various transformations (e.g., rotations, flips, noise addition), the model
learns to handle such variations, making it more robust and accurate when deployed
in real-world scenarios.

4. In many applications, the available data is skewed towards certain classes, leading
to biased models. Data augmentation can help balance the class distributions by
selectively augmenting the underrepresented classes, improving the model’s ability
to learn from minority classes.

Transformations in Human Visual Perception Data augmentation techniques have
an interesting parallel with human visual perception. While state-of-the-art deep learning
models often rely on static images for training, humans perceive the world as a continuous
stream of visual information, constantly observing transformations of objects and scenes
in real-time [Cinel, 2019].

Continuous perspective transformations, such as those experienced when an object
moves or rotates, are critical for perceiving rigid motion and depth in the environ-
ment [Gibson, 1957b; Gibson, 1957a]. These transformations allow the visual system to
detect and interpret changes in the spatial configuration of objects, facilitating the per-
ception of motion and the three-dimensional structure of the world [Gibson, 1957a]. Large
continuous perspective transformations have been empirically shown to be necessary for
accurate shape perception, highlighting the importance of dynamic visual information in
understanding object properties and spatial relationships [Bingham, 2008]. This continu-
ous stream of visual data enables the brain to develop invariance to various transforma-
tions, making it possible to recognize objects despite changes in viewpoint, lighting, or
distance. Thus, the human visual system’s ability to process continuous transformations
is fundamental to how we interact with and understand our surroundings.

By drawing inspiration from the cognitive mechanisms that underlie the ability of
humans to learn and generalize, we can develop more sophisticated data augmentation
techniques that better mimic and leverage the power of continuous transformation, paving
the way for more robust and adaptable AI systems.

19

Introduction

1.2.1 Challenges of Data Augmentation

While data augmentation techniques have proven invaluable in enhancing the gener-
alization capabilities of deep learning models, they are not without challenges.

Confined to the image manifold Traditional data augmentation techniques, by their
very nature, are confined to the manifold of the original image or sample. While they can
introduce variations in orientation, scale, and other geometric properties, they cannot
venture beyond the intrinsic characteristics and features present within that specific sam-
ple. This limitation restricts the model’s exposure to novel combinations of features and
patterns that may exist outside the boundaries of the individual samples.

Lack of semantic coherence Another challenge is the potential lack of semantic coher-
ence in the augmented samples. While geometric transformations can introduce variations
in appearance, they may inadvertently distort or alter the semantic meaning of the data
in unintended ways. This can lead to augmented samples that are visually plausible but
semantically inconsistent or unrealistic, potentially introducing noise and confounding
factors during the training process.

Neglecting naturalistic variations in videos Most existing data augmentation meth-
ods rely on handcrafted transformations like flipping, cropping, rotation, etc., which have
limitations in capturing the rich semantic variations present in real-world scenarios, es-
pecially for video data. While these geometric and color transformations can artificially
increase the diversity of training samples, they often fail to account for more complex
and naturalistic variations that occur in videos, such as pose deformations, viewpoint
changes, occlusions, and background clutter. For instance, the motion and temporal dy-
namics present in videos can provide valuable cues about object movements, interactions,
and context, which are essential for tasks like action recognition, object tracking, and
video understanding.

Challenges in Augmenting Labels In image classification tasks, data augmentation
techniques can leverage the inherent label invariance of the transformations applied to the
images. For example, rotating, flipping, or cropping an image of a dog does not change
the underlying label of the image, which remains "dog." However, in instance retrieval
and metric learning tasks, where the goal is to learn discriminative representations for

20

Introduction

Perspective Distortion

Object Occlusion

Figure 1.4 – Natural augmentation in videos. differ from hand-crafted augmentation in
images. Here, we observe Perspective distortion, where objects appear smaller or larger
depending on their distance from the camera. We also see object occlusion, where the
person on the bike is occluded by the traffic pole. Natural augmentations in videos occur
organically and can enhance representations learned by encoders.

individual instances or to optimize a distance metric, the label augmentation process
becomes more complex.

In instance retrieval tasks, the objective is to retrieve specific instances of objects or
scenes from a database, given a query image. Here, the labels are not categorical classes
but rather unique identifiers for each instance. Augmenting these instance-level labels
is challenging because geometric transformations or other augmentations may alter the
visual appearance of the instance in a way that makes it distinct from the original instance,
effectively creating a new instance with a different label.

Metric learning aims to learn an embedding space where semantically similar instances
are mapped closer together, while dissimilar instances are pushed apart. In this context,
the labels represent the pairwise or triplet relationships between instances, indicating
whether they are similar or dissimilar. Augmenting these pairwise or triplet labels is
non-trivial, as transformations applied to one instance in a pair or triplet may alter the
semantic relationship between the instances, rendering the original label invalid.

21

Introduction

1.3 Outline and Contributions

To address the limitations and the challenges associated with data augmentations,
we propose different approaches that aim to enhance the performance and robustness of
image encoders. After a detailed overview of the different methods for data augmentation
in image classification, metric learning and self-supervised learning in chapter 2, we present
the different contributions conducted during this PhD program to these different settings.

1.3.1 AlignMixup: a natural way of interpolation

Interpolation based data augmention like mixup has shown to improve robustness and
model calibration [Verma, 2019]. However, as shown in [Kim, 2020a] the mixed input im-
ages tend to look unnatural and the randomness in selecting the patches and mixing their
labels may cause the classifier to learn uninformative features. This limitation suggests
that exploring interpolation in the feature space, rather than the input space, could be
an interesting direction to pursue.

[Bengio, 2013] show that traversing along the manifold of representations obtained
from deeper layers of the network more likely results in finding realistic examples. They hy-
pothesize that deeper representations learned by neural networks tend to disentangle the
underlying factors of variation better. These disentangled representations can be exploited
to produce faster-mixing Markov chains, meaning that deeper representations indeed en-
able better mixing and generate more realistic interpolations between data points.

Motivated by this observation, we propose to interpolate images in the feature space
rather than in the image space. In chapter 3, we show that the idea of deformation is
a natural way of interpolating images, where one image may deform into another, in a
continuous way. To achieve this, we investigate geometric alignment for mixup, based on
explicit semantic correspondences in the feature space. In particular, we align the feature
tensors of two images, resulting in soft correspondences. We set a new state-of-the-art
on image classification, robustness to adversarial attacks, calibration, weaklysupervised
localization and out-of-distribution detection against more sophisticated mixup operations
on several networks and datasets.

22

Introduction

1.3.2 Extending mixup to metric learning

We discussed AlignMixup, a technique that interpolates between aligned features and
improves the performance on image classification tasks. However, these mixup methods
do not generalize to different tasks such as instance retrieval and metric learning. Building
upon this, we now explore the idea of systematically applying mixup in the domain of
deep metric learning.

There exists a striking similarity between using pairwise similarity in metric learning
and using pairs of examples in mixup for classification tasks. This observation led us
to explore the possibility of interpolating between pairs in metric learning using mixup,
similar to how it works in classification. In chapter 4, we introduce mixup in the con-
text of metric learning. However, directly interpolating pairs of embeddings presents a
unique challenge. Unlike classification, loss functions in metric learning are not additive
over examples, making it non-trivial to directly interpolate target labels using traditional
mixup.

To address this challenge, we first develop a generalized formulation that encompasses
existing metric learning loss functions and modify it to accommodate mixup. This con-
tributes a principled way of interpolating labels, such that the interpolation factor affects
the relative weighting of positives and negatives. Since interpolating between all possi-
ble pairs can be computationally expensive, we leverage an efficient linear interpolation
strategy, making it significantly faster than complex non-linear interpolation methods.
By introducing mixup in metric learning and developing a generalized formulation with
efficient interpolation, we aim to improve the performance of deep metric learning tasks,
building upon the success of mixup in image classification and the insights gained from
AlignMixup in chapter 3.

1.3.3 Interpolation beyond mini-batch, beyond pairs and be-
yond examples

The previous chapter explored the effectiveness of mixup in deep metric learning,
where increasing the number of loss terms by interpolating between all pairs of embeddings
improved performance without significant computational overhead. This motivates us to
explore the potential of extending mixup further in classification tasks by generating more
interpolated examples during training. The original motivation of mixup [Zhang, 2018a],
aims to augment the training data by generating new examples through interpolation.

23

Introduction

However, it is limited to interpolation between pairs of examples in the input space, as
the convex combination of three or more examples did not bring further gains.

In chapter 5, we revisit the initial motivation of mixup and increase the number of aug-
mented examples through interpolation in the embedding space. Instead of interpolating
in the input space, we generate an arbitrarily large number of interpolated examples be-
yond the mini-batch size by interpolating the entire mini-batch in the embedding space.
Geometrically, this translates to interpolating between all points, essentially sampling
points on the convex hull of the mini-batch. By increasing the number of loss terms per
mini-batch by orders of magnitude at little additional cost, made possible by interpolating
in the embedding space, we empirically show significant improvements over state-of-the-
art mixup methods on four different benchmarks, despite the interpolation being only
linear.

1.3.4 Learning strong image encoders from videos

Building upon our exploration of interpolation-based data augmentation for improving
representation learning in image classification and deep metric learning, in chapter 6
we venture beyond this approach to investigate the possibility of discovering natural
augmentations inherent in real-world data in a self-supervised setting. This shift aligns
with the core theme of the thesis, which focuses on combining diverse learning objectives
and modalities to enhance representation learning.

The inherent richness of video data presents a unique opportunity to explore natu-
ral augmentations. Unlike synthetic augmentations, videos naturally encompass diverse
variations in pose, deformation, viewpoint, perspective, occlusion, and background clutter,
offering a wealth of rich augmentations for learning robust representations. This eliminates
the need for artificially generated augmentations, such as mixup-based interpolations, al-
lowing the model to learn from the intrinsic complexities present within the video data
itself. By leveraging the natural variations present in videos, we can potentially learn more
robust and generalizable representations without relying on synthetic augmentations. This
approach aligns with the core theme of the thesis, which aims to combine diverse learning
objectives and modalities to enhance representation learning.

Finally, to wrap up, we summarize in chapter 7 our contributions and give a (subjec-
tive) overview of the current challenges in representation learning.

24

Introduction

1.3.5 Publications

chapter 3 to chapter 6 each contain a paper which has been peer-reviewed and accepted
for publication in a conference. The papers have been left unmodified from their published
forms, with the exception of formatting changes. The publications included in this thesis
are:

1. chapter 3 is based on the paper “AlignMixup: Improving Representations By In-
terpolating Aligned Features”, Shashanka Venkataramanan, Ewa Kijak, Laurent
Amsaleg, and Yannis Avrithis. IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022 [Venkataramanan, 2021].
The code is available at https://github.com/shashankvkt/AlignMixup_CVPR22.

2. chapter 4 is based on the paper “It Takes Two to Tango: Mixup for Deep Metric
Learning”, Shashanka Venkataramanan, Bill Psomas, Ewa Kijak, Laurent Amsa-
leg, Konstantinos Karantzalos, and Yannis Avrithis. International Conference on
Learning Representations (ICLR), 2022 [Venkataramanan, 2022].
The code is available at https://github.com/billpsomas/metrix.

3. chapter 5 is based on the paper “Embedding Space Interpolation Beyond Mini-
Batch, Beyond Pairs and Beyond Examples”, Shashanka Venkataramanan, Ewa
Kijak, Laurent Amsaleg, and Yannis Avrithis. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2023 [Venkataramanan, 2023].

4. chapter 6 is based on the paper “Is ImageNet worth 1 video? Learning strong im-
age encoders from 1 long unlabelled video”, Shashanka Venkataramanan, Mamshad
Nayeem Rizve, João Carreira, Yuki M. Asano, Yannis Avrithis. International Con-
ference on Learning Representations (ICLR), 2024 (ICLR’24 Best paper Honorable
mention) [Venkataramanan, 2024b].
The project page can be found at https://shashankvkt.github.io/dora.

Publications not included

1. “Skip-attention: Improving vision transformers by paying less attention”, Shashanka
Venkataramanan, Amir Ghodrati, Yuki M. Asano, Fatih Porikli, Amirhossein Habib-
ian, International Conference on Learning Representations (ICLR), 2024 [Venkatara-
manan, 2024a]

25

https://github.com/shashankvkt/AlignMixup_CVPR22
https://github.com/billpsomas/metrix
https://shashankvkt.github.io/dora

Chapter 2

BACKGROUND

Image-based representation learning has emerged as a pivotal area in the field of com-
puter vision, playing a crucial role in enhancing the performance of various tasks such as
object recognition, image classification, and semantic segmentation. The essence of image
representation learning lies in the ability to automatically discover meaningful and hier-
archical features from raw pixel data, enabling models to capture intricate patterns and
structures within images. However, with the increasing complexity of models, the challenge
of overfitting has become more pronounced. Furthermore, in the in real-world datasets,
the distribution of images during inference often differs from the training set, leading to
instances where models make incorrect predictions with high confidence. An interesting
direction to solve this challenge has been to develop advanced data augmentation tech-
niques, recognizing the role of expanding training data to improve model generalization.

In this chapter, we explore various methods used in image recognition to tackle over-
fitting and improve model calibration through data augmentation. We also look into deep
metric learning and how data augmentation can help models learn better representa-
tions. By incorporating data augmentation techniques in deep metric learning, we aim
to equip models with the ability to generalize effectively, thereby enhancing their overall
performance and adaptability in diverse scenarios.

2.1 What is data augmentation?

For a given dataset {xi, yi}, where xi is the training samples and yi their corresponding
labels, the goal of data augmentation is to employ transformation Tj to the original
samples xi. This results in additional training samples x′

i := T (xi) without modifying
the corresponding labels. These transformations are commonly known as label-preserving
transformations. Their purpose is to ensure that the modified samples produced by the
transformations can still be semantically described by the original label yi.

Interpolation-based data augmentation, such as mixup, combine two training samples

26

Background

to create a new, synthetic sample. This approach differs from the single-image transforma-
tions. For a given dataset X ,Y , where X is the examples and Y the corresponding labels,
we sample two training examples (xi, xj) ∈ X and their labels (yi, yj) ∈ Y . The two sam-
ples along with their target labels are then linearly interpolated as x′ = λxi + (1 − λ)xj

and y′ = λyi + (1− λ)yj. Here, where λ ∼ Beta(α, α)is the interpolation factor.
Data augmentation provides an alternative approach to mitigate overfitting in models

and improving model calibration by increasing the amount of training data. We first
discuss about single-image based data augmentation and then explore interpolation based
augmentation.

2.1.1 Image space augmentation techniques

Geometric transformations: Figure 2.1 shows some widely used geometric trans-
formations, which include affine transformations, such as rotation, shearing, translation,
scaling or resizing (without zooming or cropping), mirroring, and reflection or flipping.
Within affine transformations, rotations, reflections, and translations constitute a subset
known as Euclidean transformations [Ryan, 1986]. Several works have demonstrated their
high effectiveness in numerous computer vision tasks [Xu, 2016b; Wong, 2016].

(a) Original Image (a) Rotation (a) Sheer

(d) Translation (e) Crop and Resize (f) Flip

Figure 2.1 – Affine transformations applied to an image. The transformations showcase
different manipulations of the original image, demonstrating their effects on its appearance
and spatial orientation.

However, they have a few drawbacks. Firstly, these simple transformations are useful
only if the current data distribution is similar to the actual data distribution. Secondly,
translation and rotation encounter a padding effect wherein portions of the images may

27

Background

be displaced beyond the boundary and consequently lost. Thus, some interpolation based
methods are often used to fill in these areas post-operation.

Photometric transformations Photometric effects shown in Figure 2.2, result from
camera artifacts and shooting conditions, such as motion blur, optical noise, and distor-
tions, as well as color artifacts and image data corruption. Unlike geometric transfor-
mations, photometric methods alter the pixel content of images while preserving their
spatial structure. Specifically, they involve changing visual properties like color, bright-
ness, sharpness, contrast, and saturation levels. This type of data augmentation is crucial
for enhancing the robustness of deep learning models to accommodate variations in im-
ages caused by environmental conditions like illumination changes, weather fluctuations,
and different times of the day. It also addresses artifacts introduced by imaging devices,
noise, and camera settings. Commonly, these transformations include color jittering, color
space conversion, and image enhancement and distortion techniques.

(a) Original Image (b) Motion Blur (c) Optical Noise

(d) Lens distortion (e) Solarization (f) Image corruption

Figure 2.2 – Comparison of different Photometric augmentations. Each subplot illustrates
different photometric augmentations applied to the original image such as motion blur,
optical noise, lens distortion, solarization, and image corruption.

Image Erasing Image augmentation methods using image erasing shown in Figure 2.3,
involve removing specific parts of an image. The basic idea is to replace the pixel values
in these removed areas with constant or random values. [DeVries, 2017b], introduce a

28

Background

simple regularization technique called Cutout, where square regions are randomly masked
out during the training. Hide-and-Seek (HaS) [Singh, 2018] randomly hides patches in
a training image. This encourages the network to explore other relevant content while
the most important content is temporarily hidden. Random erasing [Zhong, 2020] ran-
domly selects a rectangle region in an image and replaces its pixels with random values.
GridMask [Chen, 2020a] analyzes the need for dropping information based on deleting
regions in input images. Unlike Cutout and HaS, GridMask deletes spatially uniformly
distributed squares, allowing control over density and size. FenceMask [Li, 2020b] bal-
ances object occlusion and information retention based on simulating an object occlusion
strategy.

(a) Original image (b) Cutout (c) Random Masking (d) Random Erasing

Figure 2.3 – Comparison of Image erasing Techniques. Each subplot showcases a different
method for altering the image, demonstrating various approaches to image erasing: Orig-
inal Image, Cutout, Random Masking, and Random erasing.

2.1.2 Augmentations in the feature space

[Bengio, 2013], show that lower-level features extracted from deep layers can be used
to reconstruct higher-level representations of input images. Essentially, the objective of
augmentation strategies inspired by these studies is to transform the data in the feature
space. This transformation encourages the resulting deep learning model to learn rep-
resentations that remain consistent despite transformations in the input space i.e. they
preserve the equivariance property in deep networks. One significant drawback of these
approaches is that feature variability arises from perturbations that lack domain knowl-
edge. Consequently, these perturbations may overlook crucial domain attributes essential
for certain tasks e.g. domain adaptation, fine-grained classification etc.. Various tech-
niques have been employed to address these challenges, broadly categorized into feature
transformation and elimination, which we discuss here.

29

Background

Feature transformations The goal of feature transformations is to boost the diversity
of extracted features, preventing the model from learning specific patterns in the input
data. [Shen, 2016] suggest applying random affine operations, like translation, scaling, and
rotation, to learned feature maps to increase their variability. [Li, 2016] propose injecting
adaptive Gaussian noises into certain layers of deep neural networks to encourage feature
diversity and prevent overfitting. A more recent technique, Shakedrop [Yamada, 2019],
extends this concept to different multi-branch CNN architectures. KRAM [Jia, 2020] uti-
lizes k-nearest neighbors technique to exploit feature relationships among instances in a
multi-dimensional classification setting, transforming the original feature representations
to enhance the performance of multi-dimensional classification models. Linear Delta [Ku-
mar, 2019] is another feature transformation, which involves computing the difference
between feature vectors from two training samples and then transforming a third feature
vector by adding this difference to it.

Feature elimination Feature elimination is a regularization technique that involves
eliminating features in the intermediate layers of the network. Among this family of ap-
proaches, Dropout and its derivatives [Hinton, 2012; Srivastava, 2014; Bouthillier, 2015;
Goodfellow, 2013] have been particularly popular and have been used in state-of-the-art
CNN backbones. The aim of these methods is to remove irrelevant features while keeping
the useful ones. [Choe, 2019] propose an attention mechanism to identify features that are
not important in a specific context. Some recent techniques, like DropBlock [Ghiasi, 2018]
Batch DropBlock [Dai, 2019] and SD-Unet [Guo, 2019a] suggest dropping entire groups
of units forming a connected region, unlike individual elements as in Dropout [Srivas-
tava, 2014]. DropBlock [Ghiasi, 2018] is an early method introducing a well-structured
dropout scheme compatible with CNN architecture, implementing a feature-level Cutout.
Similar to cutout, it zeroes out elements in randomly chosen regions of feature maps.
SD-Unet [Guo, 2019a] employs a region dropout scheme designed for U-Net architec-
tures [Ronneberger, 2015] to tackle overfitting in medical image segmentation tasks. [Dai,
2019] propose a Person Re-identification (ReID) framework with two network branches.
One branch is a regular CNN learning global image features, and the other uses an at-
tention mechanism through a Batch DropBlock (BDB) sub-model for region-wise feature
dropping. This concept involves repeatedly dropping units from the same region for each
batch of images corresponding to the same human body parts, focusing attention on these
parts.

30

Background

2.1.3 Interpolation based data augmentation

Despite the advantages of data augmentation techniques, its effectiveness is con-
strained. By operating on one image at a time and limiting to label-preserving trans-
formations, it has limited chances of exploring beyond the image manifold. Hence, it is
of little help in combating memorization of training data and sensitivity to adversarial
examples.

One approach that has gained significant attention is mixup, which augments training
data by interpolating between pairs of examples, thereby encouraging the model to learn
more robust representations. In this section, we delve into various mixup techniques and
aim to understand their underlying principles and how they contribute to enhancing
representation learning.

Figure 2.4 – A visual comparison of different mixup methods. The images were taken
from [Kim, 2020a].

Input Mixup [Zhang, 2018a] is a data augmentation technique, which generates new
training samples by linearly interpolating between pairs of examples and their correspond-
ing labels. Given two samples (xi, yi) and (xj, yj), where xi and xj are input samples and
yi and yj are their respective one-hot encoded labels, the mixup operation can be defined

31

Background

as follows:

x̃ := λxi + (1− λ)xj (2.1)

ỹ := λyi + (1− λ)yj (2.2)

Here, λ is drawn from a Beta distribution Beta(α, α) where α is a hyperparameter that
controls the strength of interpolation. Mixup encourages the model to learn more linear
decision boundaries by interpolating features from different samples, thus enhancing its
generalization capability.

Manifold Mixup [Verma, 2019] extends input mixup to operate not only in the input
space but also in the latent space. Instead of linearly interpolating between input samples,
Manifold Mixup performs mixup in the feature space, aiming to encourage the model to
learn smooth and invariant representations. Given two feature maps fi and fj correspond-
ing to images xi and xj extracted from intermediate layers of a model, the interpolation
can be defined as:

f̃ := λfi + (1− λ)fj (2.3)

Manifold Mixup promotes the exploration of the manifold structure of the data, leading
to improved robustness against adversarial attacks and out-of-distribution samples.

Cutmix [Yun, 2019] integrates the mixup concept with spatial regularization by replac-
ing rectangular regions of one image with the corresponding regions from another image
during training. This process encourages the model to attend to multiple parts of different
images simultaneously, promoting robust feature learning. The interpolation operation of
Cutmix is defined as:

f̃ := M ⊙ xi + (1−M)⊙ xj (2.4)

ỹ := λyi + (1− λ)yj (2.5)

Here, M ∈ {0, 1}H×W is a binary mask drawn from a Bernoulli distribution controlling
the areas to be replaced, and λ is sampled from a Beta distribution as in mixup. CutMix
enforces the model to learn from the features of the two images simultaneously, thereby
improving its robustness to occlusions and variations in object placement.

32

Background

PuzzleMix [Kim, 2020a] is a data augmentation method that leverages saliency in-
formation and local statistics to enhance mixup. It introduces an interpolation technique
that conditions the sample mixing on region saliency and local statistics. This results
in an interesting optimization challenge that switches between the multi-label objective
for determining the optimal mixing mask and the saliency-weighted optimal transport
objective. The interpolation strategy for PuzzleMix is given as

f̃ := ΠT
0 ⊙ xi + ΠT

1 ⊙ xj (2.6)

ỹ := λyi + (1− λ)yj (2.7)

Here, Π0 and Π1 represent the n× n transport plan of the corresponding data with n

dimensions.
Figure 2.4 shows the comparisons of different mixup methods, which perform inter-

polation in the input space. Each of these methods contributes uniquely to enhancing
representation learning by introducing various forms of regularization, encouraging fea-
ture diversity, promoting robustness, and guiding the model to learn more nuanced and
informative representations.

The success of mixup has shown to be effective in the context of image classification
tasks. These methods have shown to improve model generalization by creating synthetic
training examples that encourage the network to learn more robust decision boundaries.
However, the application of these augmentation approaches has been primarily focused on
image classification and its downstream tasks such as object detection, semantic segmen-
tation etc., leaving their potential in other domains relatively under-explored. One such
area is instance-level retrieval tasks, where the goal is to learn an embedding space that
can accurately retrieve semantically similar items. In the next section, we will examine
how the core principles of mixup can be adapted and integrated into deep metric learning
frameworks. We hypothesize that by applying mixup-based data augmentation directly
on the embeddings, the model explores new regions of the embedding space beyond the
training data, leading to more robust and discriminative representations.

2.2 Deep Metric Learning

Metric learning involves learning an embedding space where semantically similar items
are clustered together, while dissimilar items are pushed apart. The two most studied

33

Background

problems in metric learning are loss functions [musgrave] and hard negative mining
[Wu et al.; 2017; Robinson et al.; 2021].

pulled closer

pushed apart
Class A

Class B

Figure 2.5 – Deep metric learning aims to learn a function, which pulls the embedding of
similar classes together and pushes embeddings of dissimilar classes apart.

2.2.1 Metric learning loss functions

The loss functions in deep metric learning can be broadly categorized as pair-based
losses and proxy-based losses. Pair-based losses [Hadsell, 2006; Wang, 2014; Oh Song, 2016;
Wang, 2019b] aim to model relationships between pairs of examples (anchor-positives or
anchor-negatives) to learn more discriminative embeddings with the gradients formulated
as weighted pair-wise similarities. Proxy-based losses define one or more learnable proxies
per class and only use proxies as anchors [Kim, 2020c] or positives/negatives [Movshovitz-
Attias, 2017; Qian, 2019; Teh, 2020]. We illustrate some commonly used pair-based and
proxy-based loss functions in deep metric learning in Figure 2.6, and discuss some popular
loss functions.

Contrastive The contrastive loss [Hadsell, 2006] encourages positive examples to be
pulled towards the anchor (a) and negative examples to be pushed away by a margin
m ∈ R. This loss is additive over positives (p) and negatives (n), defined as

cont(a; θ) :=
∑

p∈P (a)
−s(a, p) +

∑
n∈N(a)

[s(a, n)−m]+. (2.8)

Multi-Similarity The multi-similarity loss [Wang, 2019b] introduces relative weighting
to encourage positives (negatives) that are farthest from (closest to) the anchor to be
pulled towards (pushed away from) the anchor by a higher weight. This loss is not additive

34

Background

over positives and negatives:

MS(a; θ) := 1
β

log
1 +

∑
p∈P (a)

e−β(s(a,p)−m)

+ 1
γ

log
1 +

∑
n∈N(a)

eγ(s(a,n)−m)

 . (2.9)

Here, β, γ ∈ R are scaling factors for positives, negatives respectively.

Proxy Anchor The proxy anchor loss [Kim, 2020c] defines a learnable proxy in Rd for
each class and only uses proxies as anchors. For a given anchor (proxy) a ∈ Rd, the loss
has the same form as (4.2), although similarity s is evaluated on Rd ×X .

(b) N-pair (c) Lifted Structure (d) Proxy Anchor(a) Contrastive

anchor proxy

Figure 2.6 – A visual comparison of different pair-based losses (contrastive, N-pair and
Lifted Structure) and Proxy based loss (Porxy Anchor) in deep metric learning. The
thickness of the lines denotes the strength of the similarity between the examples. The
images were adapted from [Kim, 2020c]

2.2.2 Hard negative mining

In metric learning, achieving well-separated clusters in the embedding space is chal-
lenging, as the network can easily overfit to the “easy” negative samples that are already
far away from the anchor. Hard negative mining addresses this issue by identifying the
most informative negative examples i.e. negatives that are closest to the anchor in the
embedding space and thus the most difficult to distinguish. By focusing the training on
these hard negatives, the network is encouraged to learn more discriminative features that
can better separate similar-looking but semantically distinct items.

35

Background

Selection of hard negatives [Iscen, 2018], focuses on mining hard negatives from a
large set of negative examples. They define hard negatives as samples that are similar to
the positive examples in the Euclidean feature space, but are not considered as such when
using a manifold distance metric based on the nearest neighbor graph. [Chuang, 2020],
present a debiased version of the contrastive loss function, which is designed to mitigate
the effect of “false negatives” i.e. samples that are incorrectly labeled as negative examples.
By addressing this bias, the authors aim to better approximate the “true” distribution of
negative examples, leading to more robust and accurate contrastive learning models. [Wu,
2020], introduce a variational extension to the InfoNCE loss [Oord, 2018]. They propose
a modified strategy for negative sampling, such as restricting the negative samples to a
region around the query. In a concurrent work [Ho, 2020], propose to generate more hard
positive and negative pairs on-the-fly, leveraging adversarial examples. This approach
aims to create more informative training samples, leading to improved performance of
contrastive learning models.

Relation between Hard negative mining and Loss functions Many popular met-
ric learning loss functions, such as triplet loss [Vasudeva, 2021] and lifted structured
loss [Oh Song, 2016], explicitly incorporate hard negative mining strategies. The triplet
loss, for instance, aims to pull an anchor sample closer to a positive sample from the
same class, while pushing it away from a negative sample from a different class by a
specified margin. By focusing on the "hardest" negative samples - those that are closest
to the anchor in the embedding space - the triplet loss encourages the model to learn
more discriminative features. Similarly, the lifted structured loss extends the triplet loss
by considering all negative pairs in a mini-batch, rather than just a single negative per
anchor. This allows the model to leverage the global structure of the embedding space
and focus on the "hardest" negatives across the entire batch.

The N-pair loss [Sohn, 2016] takes this a step further by directly optimizing the co-
sine similarity between the anchor and all negative samples in a batch in a probabilistic
manner. Other loss functions, such as the multi-similarity loss [Wang, 2019b], go beyond
just considering hard negatives and also weight the contribution of each negative sample
based on its similarity to the anchor. This helps the model focus on the most informative
negatives during training.

36

Background

(a) Deep Adversarial Metric Learning (DAML) (b) Hard Triplet Generation

Figure 2.7 – A visual comparison of different methods that generate synthetic samples
using generative models for metric learning. The images were adapted from [Zhao, 2018]
and [Zhao, 2018].

Generation of hard negatives Several works have explored the use of generative
models to create synthetic samples as a way for mining hard negatives. We illustrate a
few of these works in Figure 2.7. DAML [Duan, 2018] and HTG [Zhao, 2018] use GANs
to generate synthetic hard negative samples. The key idea is to train a generator network
to produce samples that are challenging negatives, i.e., they are close to the positive
samples in the feature space. HDML [Zheng, 2019] takes a different approach by using an
autoencoder to generate label-preserving synthetic samples. The main idea is the ability
to control the “hardness” of the generated negative samples. The autoencoder is trained
to produce negatives that are challenging, but still preserve the original label information.
This allows the model to learn from a mix of easy and hard negative examples, leading
to improved generalization.

While the above methods can provide a performance boost by training with synthetic
samples, they come with some drawbacks. Specifically, these approaches require additional
generative networks alongside the main metric learning framework. This can result in a
larger model size, slower training time, and more complex optimization challenges.

2.2.3 Interpolation for pairwise loss functions

Unlike classification, classes (and distributions) at training and inference are different
in metric learning. Thus, one might expect interpolation-based data augmentation like
mixup to be even more important in metric learning than in classification. However,
this task is challenging because unlike classification, the loss functions used in metric
learning are not additive over examples, so the idea of interpolating target labels is not
straightforward. We discuss recent works in deep metric learning that generate embeddings

37

Background

using mixup.

(c) MoCHi(b) Proxy Synthesis (a) Embedding Expansion

Figure 2.8 – Different methods that perform mixup in the embedding space to gener-
ate more synthetic negatives for metric learning. The images were adapted from [Ko,
2020], [Kalantidis, 2020] and [Gu, 2021].

Embedding expansion [Ko, 2020] propose to generate synthetic samples by inter-
polating between embeddings withing the same class in a deterministic way, i.e. they
interpolate between positive pairs only. This approach, called “embedding expansion”,
allows the model to learn a more robust distance metric by exposing it to a wider range
of hard negative samples during training.

Proxy Synthesis [Gu, 2021] Instead of generating individual hard negative samples,
proxy synthesis proposes to create new “proxy” classes by interpolating between existing
class embeddings. These synthetic proxy classes are then used as additional training tar-
gets, forcing the model to learn more discriminative features to distinguish between the
real and synthetic classes.

MoCHi [Kalantidis, 2020] The key idea is to create new hard negatives by linearly
interpolating between existing hard negative and easy negative pairs. This hard negative
mixing strategy encourages the model to learn a more discriminative representation by
focusing on the challenging regions of the feature space.

A summary of these works is shown in Figure 2.8. While the interpolation-based data
augmentation methods offer several advantages over GAN-based approaches, they also
have some limitations. These techniques may not be as flexible in generating diverse and
complex hard negative samples, as they are constrained by the distribution of the existing
data. More importantly, they do not interpolate between positive and negative pairs,

38

Background

limiting the labels to either positive or negative only. Furthermore, they risk synthesizing
false negatives when the interpolation factor is close to 0 or 1.

While deep metric learning has shown great promise in learning effective embedding
space, it has traditionally relied on the availability of labeled datasets. This requirement
can be a significant limitation, as obtaining high-quality labeled data can be a time-
consuming and expensive process, especially for complex domains. In the next section, we
study how metric learning loss functions can be applied in an unsupervised/self-supervised
setting. Additionally, we will discuss the impact of different data augmentation techniques
on representation learning.

2.3 Self-supervised learning

Self-supervised learning (SSL) has emerged as a powerful alternative, offering a way
to learn meaningful representations from unlabeled data. The main idea of SSL is to
define pretext tasks, where the model is trained to solve a surrogate problem using the
inherent structure and patterns present in the data itself, without the need for manual
annotations. The connection between deep metric learning and self-supervised learning
can be found in the use of the InfoNCE (Noise-Contrastive Estimation) loss function. The
idea is to learn representations from unlabeled data by contrasting a data sample (anchor)
with its augmented version (positive) against other samples in the batch (negatives).
By maximizing the similarity between the anchor and its positive, while minimizing the
similarity to the negatives, the model learns to capture the underlying structure and
semantics of the data.

2.3.1 Contrastive Representation Learning

Data augmentation has been widely employed in both supervised and unsupervised
representation learning, but it has not been systematically leveraged to define contrastive
prediction tasks. Traditionally, many existing approaches have focused on defining con-
trastive prediction tasks by modifying the neural network architecture.

Global-to-local view prediction [Hjelm, 2018] and [Bachman, 2019] have achieved
global-to-local view prediction by constraining the receptive field of the network architec-
ture. This means that the model is trained to predict the local features of an image given
its global representation.

39

Background

Figure 2.9 – Illustrations of the various data augmentation used in self-supervised learning.
Given an example image in (a), the label-preserving augmentations from (b) to (j) are:
(b) Crop + resize, (c) Crop + resize + flip, (d) Color distortion (channel drop), (e) Color
distortion (jitter), (f) Rotation, (g) Cutout, (h) Gaussian noise, (i) Gaussian blur and (j)
Sobel filtering. Provided another image in (k), semantic transformations of (a) and (k) are
(l) MixUp and (m) CutMix. Each augmentation operation has one or more parameters
determining the output image. The images in (a) to (j) are taken from [Chen, 2020b], and
the image in (k) is from ImageNet [Russakovsky, 2015].

Neighboring view prediction In contrast, [Oord, 2018] and [Henaff, 2020] have ap-
proached the problem differently, using a fixed image splitting procedure and a context
aggregation network to achieve neighboring view prediction. Here, the model is trained
to predict the features of a neighboring image patch given the surrounding context.

Simplifying contrastive prediction tasks Architectural complexity can be avoided
by employing a simpler data augmentation technique – simple random cropping (with
resizing) of target images. This simple design choice of using random cropping as the
data augmentation technique conveniently decouples the predictive task from other com-
ponents, such as the neural network architecture. This allows for greater flexibility in
defining and exploring a broader range of contrastive prediction tasks.

The random crop strategy shown in Figure 2.9 was introduced in SimCLR [Chen,

40

Background

2020b] as part of its data augmentation approach for contrastive learning. In this method,
two different augmentations of the same image are used as the positive pairs for the con-
trastive loss function. The authors show that combining random crop with color distortion
as the augmentation for positive pairs helps the model learn robust visual representations,
as it has to relate the local details in one crop to the broader context in the other.

Figure 2.10 – The multi-crop strategy for data augmentation in self-supervised learning.
The image xn is transformed into V + 2 views: two global views and V small resolu-
tion zoomed views. This strategy has been widely adopted in DINO, IBoT etc. Image
source [Caron, 2020].

Building on the random crop strategy from SimCLR, SwAV [Caron, 2020] proposed a
“multi-crop” data augmentation technique shown in Figure 2.10. Instead of using only two
full-resolution views (e.g. 224× 224 crops), the SwAV approach takes a mix of global and
local views of the same image. Specifically, the multi-crop strategy involves generating two
global views (e.g. 224× 224 crops) and 6 local views (e.g. 96× 96 crops) from each input
image. These multiple views of different resolutions are then fed into the SwAV model
during training. Mapping small parts of a scene to more global views helps the model learn
to relate local details to broader context, leading to more robust visual representations.

2.3.2 Non-contrastive and Masked Image Modelling

Non-contrastive representation learning like BYOL, DINO and SimSiam do not
require negative samples and thereby avoid the need for positive and negative pairs. The
core idea behind non-contrastive learning is to align positive pairs alone, without the need
for negative samples. This is achieved through the use of asymmetric architectural designs,

41

Background

such as a student-teacher framework in DINO, which encourages the student network to
match the teacher’s global features, even though the student only sees local patches.

DINO is a form of self-distillation, where there is a student and a teacher network
with the same ViT architecture. The teacher network is a momentum encoder, meaning its
weights are an exponentially weighted average of the student’s weights. This helps stabilize
the training process. It also uses a multi-crop training strategy, consisting of small "local"
crops and large "global" crops. These crops are then passed through the student network,
while only the global crops are passed through the teacher network. This encourages
the student network to learn to interpolate context from the small local crops, aligning
its representations with the teacher’s global understanding of the image. Additionally,
random data augmentations such as color jittering, Gaussian blur, and solarization are
applied to make the network more robust.

DINO has some interesting properties. Firstly, it learns representations that are highly
robust to various types of image transformations, such as rotation, scaling, and occlusion.
This property enhances the model’s ability to generalize to a wide range of tasks. Secondly,
the self-attention maps of the CLS token in the last layer of the ViT show that the model
has implicitly learns class-specific features, leading to unsupervised object discovery. This
property does not emerge as clearly with supervised ViTs or CNNs.

Masked Image Modeling (MIM) approaches differ from DINO and SimCLR in
their core objective - instead of learning representations through contrastive learning or
clustering, MIM models learn by predicting the content of masked image patches. Another
key distinction is the masking strategy. While contrastive learning approaches typically
use data augmentation techniques like cropping, color jittering, flipping etc., MIM models
rely on explicitly masking out a portion of the input image. The masking strategy can have
a significant impact on the learned representations, with recent works exploring techniques
like block-wise masking and attention-guided masking. These masking approaches aim to
create a more challenging pretext task that encourages the model to learn richer visual
features for dense prediction tasks.

One of the pioneering works in this direction is the Masked Autoencoder (MAE) [He,
2022]. MAE takes a partially masked image as input and trains an encoder-decoder model
to reconstruct the original, unmasked image. The encoder maps the partial input to a
latent representation, while the decoder tries to predict the missing pixel values. This
reconstruction-based pretext task encourages the model to learn rich visual representa-

42

Background

tions that can capture the underlying structure of the image. In contrast to MAE, other
MIM methods have explored alternative reconstruction targets beyond raw pixel values.
For example, BEiT [Bao, 2021] and iBOT [Zhou, 2022a] use a discrete visual tokenizer
to predict the corresponding tokens for the masked patches, rather than directly predict-
ing pixel values. SimMIM [Xie, 2022] and MaskFeat [Wei, 2022] employ a simpler linear
prediction head to regress the RGB values of the masked patches. These approaches
demonstrate that the specific choice of reconstruction target is not crucial, as long as the
model is forced to learn meaningful representations to solve the pretext task.

2.4 Positioning the contributions

We position the contributions of this thesis (presented in chapter 3 to chapter 6)
with respect to the related works discussed in this chapter. We tackle four main research
questions as follows:

1. We have observed in subsection 2.1.3 that mixup has many interesting properties as
compared to standard data augmentations e.g. it flattens class representations, re-
duces overly confident incorrect predictions etc. However, mixup images are overlays
and tend to be unnatural as shown in Figure 2.4. The randomness in patch selection
and label mixing may mislead the classifier to learn uninformative features. Hence,
we ask the question what is a good interpolation of images?

We are motivated by the idea of deformation as a natural way of
interpolating images, where one image may deform into another,
in a continuous way. To achieve this, we introduce a novel mixup
operation called AlignMixup in chapter 3, advocating interpolation
of local structure in the feature space. Thus, instead of interpolating
in image space, we investigate geometric alignment for mixup, based
on explicit semantic correspondences in the feature space.

2. The task of extending the mixup technique to a different domain, such as metric
learning, is challenging. This is because the loss functions used in metric learning are
not additive over examples. As a result, the idea of interpolating target labels is not
straightforward. Some previous works, as discussed in subsection 2.2.3 have extended
this idea to deep metric learning or risk generating false negatives. However, they

43

Background

do not perform label interpolation. Thus, we ask the question what is a proper way
to define and interpolate labels for metric learning?

We first define a generic way of representing and interpolating la-
bels, which allows straightforward extension of any kind of mixup
to deep metric learning. We develop our method on a generic for-
mulation that encapsulates different loss functions. In chapter 4,
we introduce Metrix, where we systematically evaluate mixup un-
der different settings.

3. The application of mixup to deep metric learning has shown that one can interpo-
late between all positive and negative pairs along with their target labels, without
constraining the interpolation factor. This has shown to increase the number of
interpolated examples during training, going beyond the original mixup approach.
Motivated by this observation and re-visiting the original idea of mixup, we ask how
can mixup be extended to generate a larger number of interpolated examples, beyond
the original approach, in order to enhance performance in classification tasks?

In chapter 5, we introduce MultiMix, which generates an arbitrarily
large number of interpolated examples beyond the mini-batch size
in the embedding space. Specifically, we sample on the entire con-
vex hull of the mini-batch embeddings, which acts as an implicit
regularizer by enforcing linearity and smoothness constraints on the
model’s predictions in the embedding space.

4. Finally, we discuss moving beyond interpolation-based data augmentation tech-
niques, such as mixup, to explore the potential of discovering natural augmentations
inherent in real-world data, particularly in the context of self-supervised learning.
Moving beyond the need for interpolation based augmentations like mixup or hand-
crafted augmentations like random-crop, color jitter etc., we ask the question how
can the richness and diversity of video data be leveraged to discover natural augmen-
tations that can enhance representation learning?

44

Background

First, we introduce in chapter 6 a dataset of long (1-3 hour)
open-source first-person videos recorded for virtual “walking tours”.
These videos offer advantages: high diversity of objects, 4K resolu-
tion, and contain few or no shot cuts. We then introduce DoRA,
a new self-supervised image-pretraining method, aimed at learning
from video frames. DoRA leads to emergent attention maps from
the CLS token of distinct heads in a ViT to detect and track mul-
tiple objects within a given frame across temporal sequences. By
tracking objects, we leverage the natural augmentations in videos
to learn robust representations.

45

Chapter 3

INTERPOLATING ALIGNED FEATURES

Deep neural networks excel at making accurate predictions on the training data, but
often provide incorrect and yet overly confident predictions when evaluated on slightly dif-
ferent test examples. This includes distribution shifts, outliers, and adversarial examples.
Mixup addresses limitation by interpolating between pairs of examples (input/feature)
and their target labels, effectively augmenting the training manifold. This improves model
calibration, ensuring confidence scores accurately reflect prediction likelihood.

Several mixup methods propose non-linear interpolation in the input space e.g. mask-
ing square regions [DeVries, 2017b], cutting a rectangular region from one image and
pasting it onto another [Yun, 2019], using saliency to locate objects from different images
and fit them in one [Uddin, 2021; Qin, 2020; Kim, 2020a; Kim, 2021b] as well as several
variants using arbitrary regions [Takahashi, 2018; Summers, 2019; Harris, 2020].

Manifold mixup [Verma, 2019] extends this concept from input space to feature space.
By operating in the embedding space, the interpolation process can be decoupled from the
specific input modalities. This allows for a more general approach applicable to various
data types and potentially reduces computational overhead. However, images generated
through non-linear interpolation in the input space or linear interpolation in feature space
are overlays and tend to be unnatural. Furthermore, the randomness in the patch selection
and thereby label mixing may mislead the classifier to learn uninformative features.

The seed of this chapter is to ask “what is a good interpolation of images?". Our mo-
tivation stems from the idea of deformation as a natural way of interpolating images,
allowing for a continuous transformation from one image to another. [Bengio, 2013], show
that traversing along the manifold of representations obtained from deeper layers of the
network more likely results in finding realistic examples. Thus, instead of exploring inter-
polation in the input space, we study geometric alignment for mixup, relying on explicit
semantic correspondences within the feature space. Specifically, we align the feature ten-
sors of two images, resulting in soft correspondences. By choosing to keep the coordinates
of one set or the other, we define an asymmetric operation. What we obtain is one object
continuously morphing, rather than two objects in one image.

47

Chapter 3 – Interpolating Aligned Features

This effort was published in the proceedings of IEEE/CVF Computer Vision and
Pattern Recognition (CVPR), 2022 and is the base of this chapter.

3.1 Introduction

Data augmentation [Krizhevsky, 2012; Paulin, 2014; Cubuk, 2019] is a powerful regu-
larization method that increases the amount and diversity of data, be it labeled or unla-
beled [Dosovitskiy, 2013]. It improves the generalization performance and helps learning
invariance [Simard, 1998] at almost no cost, because the same example can be transformed
in different ways over epochs. However, by operating on one image at a time and limiting
to label-preserving transformations, it has limited chances of exploring beyond the image
manifold. Hence, it is of little help in combating memorization of training data [Zhang,
2017] and sensitivity to adversarial examples [Szegedy, 2014].

Image 1 Input mixup CutMix

Image 2 Manifold mixup AlignMixup (Ours)

Figure 3.1 – Different mixup methods. AlignMixup retains the pose of image 2 and
the texture of image 1. This different from overlay (Input [Zhang, 2018a] and Mani-
fold mixup [Verma, 2019]) or combination of two objects (CutMix [Yun, 2019]). Manifold
mixup and AlignMixup visualized by a decoder (subsection 3.3.3) that is not used at
training.

Mixup operates on two or more examples at a time, interpolating between them in
the input space [Zhang, 2018a] or feature space [Verma, 2019], while also interpolating
between target labels for image classification. This flattens class representations [Verma,
2019], reduces overly confident incorrect predictions, and smoothens decision boundaries
far away from training data. However, input mixup images are overlays and tend to be
unnatural [Yun, 2019]. Interestingly, recent mixup methods focus of combining two [Yun,

48

https://openaccess.thecvf.com/content/CVPR2022/html/Venkataramanan_AlignMixup_Improving_Representations_by_Interpolating_Aligned_Features_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Venkataramanan_AlignMixup_Improving_Representations_by_Interpolating_Aligned_Features_CVPR_2022_paper.html

3.1. Introduction

2019; Kim, 2020a] or more [Kim, 2021b] objects from different images into one in the
input space, making efficient use of training pixels. However, randomness in the patch se-
lection and thereby label mixing may mislead the classifier to learn uninformative features
[Uddin, 2021], which raises the question: what is a good interpolation of images?

[Bengio, 2013], show that traversing along the manifold of representations obtained
from deeper layers of the network more likely results in finding realistic examples. This
is because the interpolated points smoothly traverse the underlying manifold of the data,
capturing salient characteristics of the two images. Furthermore, [Berthelot, 2018] show
the ability of autoencoders to capture semantic correspondences obtained by decoding
mixed latent codes. This is because the autoencoder may disentangle the underlying
factors of variation. Efforts have followed on mixing latent representations of autoencoders
to generate realistic images for data augmentation. However, these approaches are more
expensive, requiring three networks (encoder, decoder, classifier) [Berthelot, 2018] and
more complex, often also requiring an adversarial discriminator [Beckham, 2019; Liu,
2018b]. More importantly, they perform poorly compared to standard input mixup on
large datasets [Liu, 2018b], due to the low quality of generated images.

In this work, we are motivated by the idea of deformation as a natural way of interpo-
lating images, where one image may deform into another, in a continuous way. Contrary
to previous efforts, we do not interpolate directly in the input space, we do not limit to
vectors as latent codes and we do not decode. We rather investigate geometric alignment
for mixup, based on explicit semantic correspondences in the feature space. In particular,
we explicitly align the feature tensors of two images, resulting in soft correspondences.
The tensors can be seen as sets of features with coordinates. Hence, each feature in one
set can be interpolated with few features in the other.

By choosing to keep the coordinates of one set or the other, we define an asymmetric
operation. What we obtain is one object continuously morphing, rather than two objects
in one image. Interestingly, observing this asymmetric morphing reveals that we retain
the geometry or pose of the image where we keep the coordinates and the appearance or
texture of the other. Figure 3.1 illustrates that our method, AlignMixup, retains the pose
of image 2 and the texture of image 1, which is different from existing mixup methods.
Note that, as in manifold mixup, we do not decode, hence we are not concerned about
the quality of generated images.

We make the following contributions:

1. We introduce a novel mixup operation, called AlignMixup, advocating interpolation

49

Chapter 3 – Interpolating Aligned Features

of local structure in the feature space (subsection 3.3.2). Feature tensors are ideal
for alignment, giving rise to semantic correspondences and being of low resolution.
Alignment is efficient by using Sinkhorn distance [Cuturi, 2013].

2. We also show that a vanilla autoencoder can further improve representation learning
under mixup training, without the classifier seeing decoded clean or mixed images
(section 3.4).

3. We set a new state-of-the-art on image classification, robustness to adversarial
attacks, calibration, weakly-supervised localization and out-of-distribution detection
against more sophisticated mixup operations on several networks and datasets (sec-
tion 3.4).

3.2 Related Work

Mixup [Zhang, 2018a], concurrently with similar methods [Inoue, 2018; Tokozume,
2018], introduce mixup, augmenting data by linear interpolation between two examples.
While [Zhang, 2018a] apply mixup on intermediate representations, it is [Verma, 2019]
who make this work, introducing manifold mixup. Without alignment, the result is an
overlay of either images [Zhang, 2018a] or features [Verma, 2019]. [Guo, 2019b] eliminate
“manifold intrusion”—mixed data conflicting with true data. Unlike manifold mixup,
AlignMixup interpolates feature tensors from deeper layers after aligning them.

Nonlinear mixing over random image regions is an alternative, e.g. from masking
square regions [DeVries, 2017b] to cutting a rectangular region from one image and pasting
it onto another [Yun, 2019], as well as several variants using arbitrary regions [Takahashi,
2018; Summers, 2019; Harris, 2020]. Instead of choosing regions at random, saliency can
be used to locate objects from different images and fit them in one [Uddin, 2021; Qin, 2020;
Kim, 2020a; Kim, 2021b]. Exploiting the knowledge of a teacher network to mix images
based on saliency has been proposed in [Dabouei, 2021b]. Instead of combining more
than one objects in an image, AlignMixup attempts to deform one object into another.

Another alternative is Automix [Zhu, 2020a], which employs a U-Net rather than
an autoencoder, mixing at several layers. It is limited to small datasets and provides
little improvement over manifold mixup [Verma, 2019]. StyleMix and StyleCutMix [Hong,
2021] interpolate content and style between two images, using AdaIN [Huang, 2017], a
style transfer autoencoder network. By contrast, AlignMixup aligns feature tensors and
interpolates matching features directly, without using any additional network.

50

3.3. AlignMixup

Alignment Local correspondences from intra-class alignment of feature tensors have
been used in image registration [Choy, 2016; Long, 2014], optical flow [Weinzaepfel, 2013],
semantic alignment [Rocco, 2018; Han, 2017] and image retrieval [Siméoni, 2019]. Here,
we mostly use inter-class alignment. In few-shot learning, local correspondences between
query and support images are important in finding attention maps, used e.g. by CrossTrans-
formers [Doersch, 2020] and DeepEMD [Zhang, 2020]. The earth mover’s distance (EMD) [Rub-
ner, 2000], or Wasserstein metric, is an instance of optimal transport [Villani, 2008], ad-
dressed by linear programming. To accelerate, [Cuturi, 2013] computes optimal matching
by Sinkhorn distance with entropic regularization. This distance is widely applied between
distributions in generative models [Genevay, 2018; Patrini, 2020].

EMD has been used for mixup in the input space, for instance point mixup for 3D
point clouds [Chen, 2020c] and OptTransMix for images [Zhu, 2020a], which is the closest
to our work. However, aligning coordinates only applies to images with clean background.
We rather align tensors in the feature space, which is generic. We do so using the Sinkhorn
distance, which is orders of magnitude faster than EMD [Cuturi, 2013].

3.3 AlignMixup

3.3.1 Preliminaries

Problem formulation Let (x, y) be an image x ∈ X with its one-hot encoded class
label y ∈ Y , where X is the input image space, Y = [0, 1]k and k is the number of
classes. The encoder network consists of two stages. The first is F : X → Rc×w×h, which
maps x to feature tensor A := F (x), where c is the number of channels and w × h is the
spatial resolution. The second is f : Rc×w×h → Rd, which maps tensor A to embedding
e := f(A). Finally, the classifier g : Rd → Rk maps the embedding e to the vector
p := g(e) of probabilities over classes.

Mixup We follow [Verma, 2019] in mixing the representations from different layers of
the network, focusing on the deepest layers at or near the embedding. We are given two
labeled images (x, y), (x′, y′) ∈ X × Y . We draw an interpolation factor λ ∈ [0, 1] from
Beta(α, α) [Zhang, 2018a] and then we interpolate labels y, y′ linearly by the standard
mixup operator

mixλ(y, y′) := λy + (1− λ)y′ (3.1)

51

Chapter 3 – Interpolating Aligned Features

and inputs x, x′ by the generic formula

Mixf1,f2
λ (x, x′) := f2(Mixλ(f1(x), f1(x′)), (3.2)

where Mixλ is a mixup operator to be defined. This generic formula allows interpolation
of the input, feature or embedding by decomposing the network mapping f ◦ F as f2 ◦ f1

according to

input (x) : f1 := id, f2 := f ◦ F (3.3)

feature (A) : f1 := F, f2 := f (3.4)

embedding (e) : f1 := f ◦ F, f2 := id, (3.5)

where id is the identity mapping. For (3.3) and (3.5), we define Mixλ in (3.2) as stan-
dard mixup mixλ (3.1), like input [Zhang, 2018a] and manifold mixup [Verma, 2019],
respectively; while for (3.4), we define Mixλ as discussed in subsection 3.3.2.

By default, we train the encoder network and the classifier by using a classification
loss Lc on the output of the classifier g for mixed examples along with the corresponding
mixed labels:

Lc(g(Mixf1,f2
λ (x, x′)), mixλ(y, y′)), (3.6)

where Lc(p, y) := −∑k
i=1 yi log pi is the standard cross-entropy loss. More options using

an autoencoder architecture are investigated in section 3.4.

3.3.2 Interpolation of aligned feature tensors

Alignment Alignment refers to finding a geometric correspondence between image ele-
ments before interpolation. The feature tensor is ideal for this purpose, because its spatial
resolution is low, reducing the optimization cost, and allows for semantic correspondence,
because features close to the classifier—the second encoder f are small. Importantly, we
are not attempting to combine two or more objects into one image [Kim, 2020a], but
put two objects in correspondence and then interpolate into one. We make no assump-
tions on the structure of input images in terms of objects and we use no ground truth
correspondences.

Our feature tensor alignment is based on optimal transport theory [Villani, 2008] and
Sinkhorn distance (SD) [Cuturi, 2013] in particular. Let A := F (x), A′ := F (x′) be the
c×w×h feature tensors of images x, x′ ∈ X . We reshape them to c× r matrices A, A′ by

52

3.3. AlignMixup

flattening the spatial dimensions, where r := hw. Then, every column aj, a′
j ∈ Rc of A, A′

for j = 1, . . . , r is a feature vector representing corresponding to a spatial position in the
original image x, x′. Let M be the r × r cost matrix with its elements being the pairwise
distances of these vectors:

mij :=
∥∥∥ai − a′

j

∥∥∥2
(3.7)

for i, j ∈ {1, . . . , r}. We are looking for a transport plan, that is, a r × r matrix P ∈ Ur,
where

Ur := {P ∈ Rr×r
+ : P1 = P ⊤1 = 1/r} (3.8)

and 1 is an all-ones vector in Rr. That is, P is non-negative with row-wise and column-
wise sum 1/r, representing a joint probability over spatial positions of A, A′ with uniform
marginals. It is chosen to minimize the expected pairwise distance of their features, as
expressed by the linear cost function ⟨P, M⟩, under an entropic regularizer:

P ∗ = arg min
P ∈Ur

⟨P, M⟩ − ϵH(P), (3.9)

where H(P) := −∑ij pij log pij is the entropy of P , ⟨·, ·⟩ is Frobenius inner product and
ϵ is a regularization coefficient. The optimal solution P ∗ is unique and can be found
by forming the r × r similarity matrix e−M/ϵ and then applying the Sinkhorn-Knopp
algorithm [Knight, 2008], i.e., iteratively normalizing rows and columns. A small ϵ leads
to sparser P , which improves one-to-one matching but makes the optimization harder
[Alvarez-Melis, 2018], while a large ϵ leads to denser P , causing more correspondences
and poor matching.

Interpolation The assignment matrix R := rP ∗ is a doubly stochastic r × r matrix
whose element rij expresses the probability that column ai of A corresponds to column
a′

j of A′. Thus, we align A and A′ as follows:

Ã := A′R⊤ (3.10)

Ã′ := AR. (3.11)

Here, column ãi of c×r matrix Ã is a convex combination of columns of A′ that corresponds
to the same column ai of A. We reshape Ã back to c × w × h tensor Ã by expanding
spatial dimensions and we say that Ã represents A aligned to A′. We then interpolate

53

Chapter 3 – Interpolating Aligned Features

Assignment matrix 𝑅

"𝐴 = 𝐴!𝑅"

%𝐴′ = 𝐴𝑅

pairwise
distances (𝑀) Sinkhorn

𝐴

𝐴′

𝐴′

𝐴 "𝐴

%𝐴′

mix# (𝐴, "𝐴)

mix# (𝐴′, %𝐴′)

𝑒!"/$

Figure 3.2 – Feature tensor alignment and interpolation. Cost matrix M contains pair-
wise distances of feature vectors in tensors A, A′. Assignment matrix R is obtained by
Sinkhorn-Knopp [Knight, 2008] on similarity matrix e−M/ϵ. A is aligned to A′ according
to R, giving rise to Ã. We then interpolate between A, Ã. Symmetrically, we can align
A′ to A and interpolate between A′, Ã′. A, A′ on the left (toy example of 16 points in
2D) shown semi-transparent on the right for reference.

between Ã and the original feature tensor A:

mixλ(A, Ã). (3.12)

As shown in Figure 3.2 (toy example, top right), Ã is geometrically close to A. The
correspondence with A′ and the geometric proximity to A makes Ã appropriate for in-
terpolation with A. Symmetrically, we can also align A′ to A and interpolate between Ã′

and A′:

mixλ(A′, Ã′). (3.13)

When mixing feature tensors with alignment (3.4), we define Mixλ in (3.2) as the mapping
of (A, A′) to either (3.12) or (3.13), chosen at random.

3.3.3 Visualization and discussion

Decoder We use a decoder to study images generated without or with feature align-
ment. Specifically, we use f ◦ F as an encoder and a decoder D : Rd → X maps the
embedding e back to the image space, reconstructing image x̂ := D(e). The autoencoder
is trained using only clean images (without mixup) using reconstruction loss Lr between
x and x̂, where Lr(x, x′) := ∥x− x′∥2 is the squared Euclidean distance. We use gener-
ated images only for visualization purposes below, but we also use the decoder optionally

54

3.3. AlignMixup

x x′ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 λ

mixλ(A, A′)

mixλ(A, Ã) mixλ(A′, Ã′)
(a) (b)

mixλ(A, A′)

mixλ(A, Ã) mixλ(A′, Ã′)
(c) (d)

Figure 3.3 – Visualizing alignment. For different λ ∈ [0, 1], we interpolate feature tensors
A, A′ without alignment (top) or aligned feature tensors (bottom) of two images x, x′ and
then we generate a new image by decoding the resulting embedding through the decoder
D. (a), (c) We align A to A′ and mix with (3.12). (b), (d) We align A′ to A and mix
with (3.13). Only meant for illustration: No decoded images are seen by the classifier at
training.

during AlignMixup training in section 3.4.

Discussion For different λ ∈ [0, 1], we interpolate the feature tensors A, A′ of x, x′ with-
out or with alignment, using (3.12) or (3.13), and we generate a new image by decoding
the resulting embedding through the decoder D.

In Figure 3.3, we visualize such generated images. Interestingly, by aligning A to A′

and mixing using (3.12) with λ = 0, the generated image retains the pose of x and
the texture of x′. In Figure 3.3(a) in particular, when x is ‘penguin’ and x′ is ‘dog’, the
generated image retains the pose of the penguin, while the texture of the dog aligns to the
body of the penguin. Similarly, in Figure 3.3(c), the texture from the goldfish is aligned
to that of the stork, while the pose of the stork is retained. Vice versa, as shown in
Figure 3.3(b,d), by aligning A′ to A and mixing using (3.13) with λ = 0, the generated
image retains the pose of x′ and the texture of x. By contrast, the image generated from
unaligned features appears to be an overlay.

Randomly sampling several values of λ ∈ [0, 1] during training generates an abundance
of samples, capturing texture from one image and the pose from another. This allows the
model to explore beyond the image manifold, thereby improving its generalization and
enhancing its performance across multiple benchmarks, as discussed in section 3.4.

55

Chapter 3 – Interpolating Aligned Features

3.4 Experiments

3.4.1 Implementation details

Architecture

We use a residual network as the stage 1 encoder F . The output A is a c×4×4 tensor.
This is followed by a fully-connected layer as stage 2 encoder f with output embedding
e ∈ Rd and another fully-connected layer as classifier g.

Autoencoder

In Figure 3.3, we have used a decoder to visualize the effect of feature tensor align-
ment. In our experiments, we also use a decoder optionally during training of Align-
Mixup, to investigate its effect on representation learning under mixup. This results in a
vanilla autoencoder architecture, which we denote as AlignMixup/AE. We use a residual
generator [Gulrajani, 2018] as the decoder D. The encoder and decoder have the same
architecture.

Training

By default, we train AlignMixup using only the classification loss Lc (3.6) on mixed
examples. For a given mini-batch during training, we mix either x, A (using either (3.12)
or (3.13) for alignment) or e. We choose between the four cases uniformly at random. For
AlignMixup/AE, we either use the reconstruction loss Lr on clean examples, training the
encoder and decoder, or the classification loss Lc (3.6) on mixed examples, training the
encoder and classifier. This gives rise to a fifth case and we choose uniformly at random.

3.4.2 Algorithm

AlignMixup and AlignMixup/AE are summarized in algorithm 1. By default (Align-
Mixup), for each mini-batch, we uniformly draw at random one among four choices (line 2)
over mixup on input (x), embeddings (e), or feature tensors (A, using either (3.12)
or (3.13) for mixing). For AlignMixup/AE, there is a fifth choice where we only use
reconstruction loss on clean examples (line 7).

For mixup, use only classification loss (3.6) (line 27). Following [Verma, 2019], we
form, for each example (x, y) in the mini-batch, a paired example (x′, y′) from the same

56

3.4. Experiments

mini-batch regardless of class labels, by randomly permuting the indices (lines 1,10).
Inputs x, x′ are mixed by (3.2),(3.3) (line 12) and embeddings e, e′ by (3.2),(3.5) (line 14).
Feature tensors A and A′ are first aligned and then mixed by (3.2),(3.12) (A aligns to
A′) or (3.2),(3.13) (A′ aligns to A) (lines 17,26).

In computing loss derivatives, we backpropagate through embeddings e, e′ or feature
tensors A, A′ but not through the transport plan P ∗ (line 23). Hence, although the
Sinkhorn-Knopp algorithm [Knight, 2008] is differentiable, its iterations take place only
in the forward pass. Importantly, AlignMixup is easy to implement and does not require
sophisticated optimization like [Kim, 2020a; Kim, 2021b].

Hyperparameters

CIFAR-10/CIFAR-100 We train AlignMixup using SGD for 2000 epochs with an ini-
tial learning rate of 0.1, decayed by a factor 0.1 every 500 epochs. We set the momentum
as 0.9 with a weight decay of 0.0001 and use a batch size of 128. The interpolation factor
is drawn from Beta(α, α) where α = 2.0. Using these settings, we reproduce the results of
SOTA mixup methods for image classification, robustness to FGSM and PGD attacks, cal-
ibration and out-of-distribution detection. For alignment, we apply the Sinkhorn-Knopp
algorithm [Knight, 2008] for 100 iterations with entropic regularization coefficient ϵ = 0.1.

TinyImagenet We follow the training protocol of Kim et al. [Kim, 2020a], training
R-18 as stage-1 encoder F using SGD for 1200 epochs. We set the initial learning rate
to 0.1 and decay it by 0.1 at 600 and 900 epochs. We set the momentum as 0.9 with a
weight decay of 0.0001 and use a batch size of 128 on 2 GPUs. The interpolation factor
is drawn from Beta(α, α) where α = 2.0. For alignment, we apply the Sinkhorn-Knopp
algorithm [Knight, 2008] for 100 iterations with entropic regularization coefficient ϵ = 0.1.

ImageNet We follow the training protocol of Kim et al. [Kim, 2020a], where training
R-50 as F using SGD for 300 epochs. The initial learning rate of the classifier and the
remaining layers is set to 0.1 and 0.01, respectively. We decay the learning rate by 0.1 at
100 and 200 epochs. We set the momentum as 0.9 with a weight decay of 0.0001 and use
a batch size of 100 on 4 GPUs. The interpolation factor is drawn from Beta(α, α) where
α = 2.0. For alignment, we apply the Sinkhorn-Knopp algorithm [Knight, 2008] for 100
iterations with entropic regularization coefficient ϵ = 0.1.

57

Chapter 3 – Interpolating Aligned Features

Algorithm 1: AlignMixup/AE (parts involved in the AE variant indicated in
blue)

Input: encoders F, f ; decoder D; classifier g
Input: mini-batch B := {(xi, yi)}bi=1
Output: loss values L := {ℓi}bi=1

1 π ∼ unif(Sb) ▷ random permutation of {1, . . . , b}
2 mode ∼ unif{clean, input, embed, feat, feat ′} ▷ mixup?
3 for i ∈ {1, . . . , b} do
4 (x, y)← (xi, yi) ▷ current example
5 if mode = clean then ▷ no mixup
6 x̂← D(f(F (x))) ▷ encode/decode
7 ℓi ← Lr(x, x̂) ▷ reconstruction loss
8 else ▷ mixup
9 λ ∼ Beta(α, α) ▷ interpolation factor

10 (x′, y′)← (xπ(i), yπ(i)) ▷ paired example
11 if mode = input then ▷ as in [Zhang, 2018a]
12 e← f(F (mixλ(x, x′))) ▷ (3.2),(3.3)
13 else if mode = embed then ▷ as in [Verma, 2019]
14 e← mixλ(f(F ((x)), f(F (x′))) ▷ (3.2),(3.5)
15 else ▷ mode ∈ {feat, feat ′}
16 if mode = feat ′ then ▷ choose (3.13) over (3.12)
17 swap (x, x′), swap (y, y′)
18 A← F (x) , A′ ← F (x′) ▷ feature tensors
19 A← reshape c×r(A) ▷ to matrix
20 A′ ← reshape c×r(A′)
21 M ← dist(A, A′) ▷ pairwise distances (3.7)
22 P ∗ ← sinkhorn(exp(−M/ϵ)) ▷ tran. plan (3.9)
23 R← detach(rP ∗) ▷ assignments
24 Ã← A′R⊤ ▷ alignment (3.10)
25 Ã← reshape c×w×h(Ã) ▷ to tensor
26 e← f(mixλ(A, Ã)) ▷ (3.2),(3.12)
27 ℓi ← Lc(g(e), mixλ(y, y′)) ▷ classification loss (3.6)

58

3.4. Experiments

Dataset Cifar-10 Cifar-100 TI
Network R-18 W16-8 R-18 W16-8 R-18

Baseline 5.19 5.11 23.24 20.63 43.40
Input [Zhang, 2018a] 4.03 3.98 20.21 19.88 43.48
CutMix [Yun, 2019] 3.27 3.54 19.37 19.71 43.11
Manifold [Verma, 2019] 2.95 3.56 19.80 19.23 40.76
PuzzleMix [Kim, 2020a] 2.93 2.99 20.01 19.25 36.52
Co-Mixup [Kim, 2021b] 2.89 3.04 19.81 19.57 35.85
SaliencyMix [Uddin, 2021] 2.99 3.53 19.69 19.59 33.81
StyleMix [Hong, 2021] 3.76 3.89 20.04 20.45 36.13
StyleCutMix [Hong, 2021] 3.06 3.12 19.34 19.28 33.49

AlignMixup (ours) 2.95 3.09 18.08 18.67 31.81
AlignMixup/AE (ours) 2.83 3.15 17.82 18.09 32.73

Gain +0.06 -0.10 +1.52 +1.14 +1.68

Table 3.1 – Image classification top-1 error (%) on CIFAR-10/100 and TI (TinyImagenet).
R: PreActResnet, W: WRN.

We also train R-50 on ImageNet for 100 epochs, following the training protocol de-
scribed in Kim et al. [Kim, 2021b].

CUB200-2011 For weakly-supervised object localization (WSOL), we use VGG-GAP
and R-50 pretrained on ImageNet as F . The training strategy for WSOL is the same as
image classification and the network is trained without bounding box information. In R-50,
following [Yun, 2019], we modify the last residual block (layer 4) to have stride 2 instead
of 1, resulting in a feature map of spatial resolution 14 × 14. The modified architecture
of VGG-GAP is the same as described in [Zhou, 2016]. The classifier is modified to have
200 classes instead of 1000.

For fair comparisons with [Yun, 2019], during training, we resize the input image to
256× 256 and randomly crop the resized image to 224× 224. During testing, we directly
resize to 224 × 224. We train the network for 600 epochs using SGD. For R-50, the
initial learning rate of the classifier and the remaining layers is set to 0.01 and 0.001,
respectively. For VGG, the initial learning rate of the classifier and the remaining layers
is set to 0.001 and 0.0001, respectively. We decay the learning rate by 0.1 every 150 epochs.
The momentum is set to 0.9 with weight decay of 0.0001 and batch size of 16.

59

Chapter 3 – Interpolating Aligned Features

3.4.3 Image classification and robustness

We use PreActResnet18 [He, 2016b] (R-18) and WRN16-8 [Zagoruyko, 2016b] as the
backbone architecture on CIFAR-10 and CIFAR-100 datasets [Krizhevsky, 2009]. Using
our experimental settings, we reproduce the state-of-the-art (SOTA) mixup methods:
Baseline network (without mixup), Input mixup [Zhang, 2018a], Manifold mixup [Verma,
2019], CutMix [Yun, 2019], PuzzleMix [Kim, 2020a], Co-Mixup [Kim, 2021b], Salien-
cyMix [Uddin, 2021], StyleMix [Hong, 2021] and StyleCutMix [Hong, 2021] using official
code provided by the authors. We do not compare AlignMixup with AutoMix [Zhu, 2020a]
and Re-Mix [Cao, 2021], since its experimental settings are different from ours and there
is no available code.

In addition, we use R-18 as the backbone network on TinyImagenet [Yao, 2015] (TI)
and reproduce SaliencyMix [Uddin, 2021], StyleMix [Hong, 2021] and StyleCutMix [Hong,
2021] following the experimental settings of [Kim, 2021b], and Resnet-50 (R-50) on Im-
ageNet [Russakovsky, 2015], following the training protocol of [Kim, 2020a]. Using top-1
error (%) as evaluation metric, we show the effectiveness of AlignMixup on image classi-
fication and robustness to FGSM [Goodfellow, 2015] and PGD [Madry, 2018] attacks.

Image classification As shown in Table 3.1, AlignMixup and AlignMixup/AE is on
par or outperforms the SOTA methods by achieving the lowest top-1 error, especially on
large datasets. On CIFAR-10, AlignMixup and AlignMixup/AE is on par with Co-Mixup
and Puzzlemix with R-18 and WRN16-8. On CIFAR-100, AlignMixup outperforms Style-
CutMix and Manifold mixup by 1.52% and 1.14% with R-18 and WRN16-8, respectively.
On TI, AlignMixup outperforms Co-Mixup by 3.12% using R-18. From Table 3.2, Align-
Mixup/AE outperforms PuzzleMix by 2.41% on ImageNet. Importantly, while the overall
improvement by SOTA methods on ImageNet over Baseline is around 2%, AlignMixup
improves SOTA by another 2.5%.

Computational complexity Table 3.2 shows the computational analysis of Align-
Mixup training as compared with baseline and SOTA mixup methods on ImageNet, in
terms of number of parameters and msec/batch on a NVIDIA RTX 2080 TI GPU. Align-
Mixup has nearly the same computational overhead as Manifold mixup while achieving
3.16% increase of accuracy. While SOTA methods like Co-Mixup and PuzzleMix are com-
putationally more expensive than AlignMixup by 1.8× and 2.3× respectively, they are
outperformed by AlignMixup by 1% on average. AlignMixup/AE brings a further 1.49%

60

3.4. Experiments

Method param. msec/batch top-1 error

Baseline 25M 418 23.68
Input† [Zhang, 2018a] 25M 436 22.58
CutMix† [Yun, 2019] 25M 427 21.40
Manifold† [Verma, 2019] 25M 441 22.50
PuzzleMix† [Kim, 2020a] 25M 846 21.24
Co-Mixup∗ [Kim, 2021b] 25M 1022 –
SaliencyMix∗ [Uddin, 2021] 25M 462 21.26
StyleMix∗ [Hong, 2021] 25M 828 -
StyleCutMix∗ [Hong, 2021] 25M 912 -

AlignMixup (ours) 28M 450 20.32
AlignMixup/AE (ours) 35M 688 18.83

Gain +2.41

Table 3.2 – Image classification top-1 error (%) and computational analysis on ImageNet
using Resnet-50. ∗: reported by authors; †: reported by PuzzleMix.

gain in accuracy over AlignMixup. It is important to note that 40% increase in number
of parameters of AlignMixup/AE is due to the residual decoder, which is only used in
one out of five cases on clean images without mixup. Computational complexity during
inference is the same for all methods.

Challenges From Table 3.1, we observe that AlignMixup achieves SoTA top-1 error
on CIFAR-10 and CIFAR-100. These results are computed using 2000 epochs follow-
ing [Verma, 2019], which also achieves its best performance at 2000 epochs. While baseline
mixup methods [Zhang, 2018a; Yun, 2019; Kim, 2020a; Kim, 2021b; Uddin, 2021; Hong,
2021] perform best at 300 epochs, they do not benefit from long training time. Unlike these
methods, which perform mixup in the image space, Manifold mixup [Verma, 2019] and
AlignMixup performs mixup in the feature space. We hypothesize that this takes longer
training time until the network learns some meaningful representations. It is even more
challenging in our case, since we mix features at deeper layers comparing with Manifold
mixup. Empirically, when trained for 2000 epochs instead of 300 epochs, the top-1 error
drops from 21.64 → 19.80 for Manifold mixup and from 21.38 → 18.08 for AlignMixup.

Robustness to FGSM and PGD attacks Following the evaluation protocol of [Kim,
2020a], we use 8/255 l∞ ϵ-ball for FGSM and 4/255 l∞ ϵ-ball with step size 2/255 for PGD.
We reproduce the results of competitors for FGSM and PGD on CIFAR-10 and CIFAR-

61

Chapter 3 – Interpolating Aligned Features

Attack FGSM PGD

Dataset Cifar-10 Cifar-100 TI Cifar-10 Cifar-100
Network R-18 W16-8 R-18 W16-8 R-18 R-18 W16-8 R-18 W16-8

Baseline 89.41 88.02 87.12 72.81 91.85 99.99 99.94 99.97 99.99
Input [Zhang, 2018a] 78.42 79.21 81.30 67.33 88.68 99.77 99.43 99.96 99.37
CutMix [Yun, 2019] 77.72 78.33 86.96 60.16 88.68 99.82 98.10 98.67 97.98
Manifold [Verma, 2019] 77.63 76.11 80.29 56.45 89.25 97.22 98.49 99.66 98.43
PuzzleMix [Kim, 2020a] 41.11 50.73 78.70 57.77 83.91 97.73 97.00 96.42 95.28
Co-Mixup [Kim, 2021b] 40.19 48.93 77.61 56.59 – 97.59 96.19 95.35 94.23
SaliencyMix [Uddin, 2021] 57.43 68.10 77.79 58.10 81.16 97.51 97.04 95.68 93.76
StyleMix [Hong, 2021] 79.54 71.05 80.54 67.94 84.93 98.23 97.46 98.39 98.24
StyleCutMix [Hong, 2021] 38.79 46.12 77.49 56.83 80.59 97.87 96.70 93.88 93.78

AlignMixup (ours) 38.33 53.41 77.29 55.05 77.34 96.36 96.73 93.18 92.16
AlignMixup/AE (ours) 32.13 44.86 76.40 55.44 78.98 97.16 95.32 93.69 92.23

Gain +6.66 +1.26 +1.09 +1.40 +3.25 +0.86 +0.87 +0.70 +1.40

Table 3.3 – Robustness to FGSM & PGD attacks. Top-1 error (%): lower is better. Blue:
second best. Gain: reduction of error. TI: TinyImagenet. R: PreActResnet, W: WRN.

100; results of baseline, Input, Manifold, Cutmix and Puzzlemix on TI for FGSM are as
reported in [Kim, 2020a] and reproduced for SaliencyMix, StyleMix and StyleCutMix.

As shown in Table 3.3, AlignMixup is more robust comparing to SOTA methods. While
AlignMixup is on par with PuzzleMix and Co-Mixup on CIFAR-10 image classification,
it outperforms Co-Mixup and PuzzleMix by 8.06% and 8.98% in terms of robustness to
FGSM attacks. There is also significant gain of robustness to FGSM on Tiny-ImageNet
and to the stronger PGD on CIFAR-100.

3.4.4 Overconfidence

Deep neural networks tend to be overconfident about incorrect predictions far away
from the training data and mixup helps combat this problem. Two standard benchmarks
to evaluate this improvement are their ability to detect out-of-distribution data and their
calibration, i.e., the discrepancy between accuracy and confidence.

Out-of-distribution detection In-distribution (ID) refers to a test example drawn
from the same distribution which the network is trained on, while a sample drawn from
any other distribution is out-of-distribution (OOD) [Hendrycks, 2017]. At inference, given
a mixture of ID and OOD examples, the network assigns probabilities to the known classes
by softmax. An example is then classified as OOD if the maximum class probability is
below a certain threshold, else ID. A well-calibrated network should be able to assign
a higher probability to ID than OOD examples, making it easier to distinguish the two

62

3.4. Experiments

Task Out-Of-Distribution Detection

Dataset LSUN (crop) iSUN TI (crop)

Metric Det AuROC AuPR AuPR Det AuROC AuPR AuPR Det AuROC AuPR AuPR
Acc (ID) (OOD) Acc (ID) (OOD) Acc (ID) (OOD)

Baseline 54.0 47.1 54.5 45.6 66.5 72.3 74.5 69.2 61.2 64.8 67.8 60.6
Input [Zhang, 2018a] 57.5 59.3 61.4 55.2 59.6 63.0 60.2 63.4 58.7 62.8 63.0 62.1
Cutmix [Yun, 2019] 63.8 63.1 61.9 63.4 67.0 76.3 81.0 77.7 70.4 84.3 87.1 80.6
Manifold [Verma, 2019] 58.9 60.3 57.8 59.5 64.7 73.1 80.7 76.0 67.4 69.9 69.3 70.5
PuzzleMix [Kim, 2020a] 64.3 69.1 80.6 73.7 73.9 77.2 79.3 71.1 71.8 76.2 78.2 81.9
Co-Mixup [Kim, 2021b] 70.4 75.6 82.3 70.3 68.6 80.1 82.5 75.4 71.5 84.8 86.1 80.5
SaliencyMix [Uddin, 2021] 68.5 79.7 82.2 64.4 65.6 76.9 78.3 79.8 73.3 83.7 87.0 82.0
StyleMix [Hong, 2021] 62.3 64.2 70.9 63.9 61.6 68.4 67.6 60.3 67.8 73.9 71.5 78.4
StyleCutMix [Hong, 2021] 70.8 78.6 83.7 74.9 70.6 82.4 83.7 76.5 75.3 82.6 82.9 78.4

AlignMixup (ours) 76.1 80.7 85.9 75.8 73.4 85.1 84.3 80.2 79.4 85.0 88.4 85.0
AlignMixup/AE (ours) 76.9 83.5 86.7 79.4 75.6 84.1 85.9 81.7 79.7 88.0 89.7 85.7

Gain +6.1 +3.8 +3.0 +4.5 +1.7 +2.7 +2.2 +1.9 +4.4 +3.2 +2.6 +3.8

Table 3.4 – Out-of-distribution detection using PreActResnet18. Det Acc (detection accu-
racy), AuROC, AuPR (ID) and AuPR (OOD): higher is better; Blue: second best. Gain:
increase in performance. TI: TinyImagenet.

Vanilla Input Manifold CutMix PuzzleMix Co-Mixup AlignMix

0 1 0 1 0 1 0 1 0 10 10 1

1 1 11111

Confidence

A
cc
ur
ac
y

Figure 3.4 – Calibration plots on CIFAR-100 using PreActResnet18: near diagonal is
better. Baseline is clearly overconfident while Input and Manifold mixup are clearly under-
confident. AlignMixup has the best calibrated predictions.

distributions.

We compare AlignMixup with SOTA methods trained using R-18 on CIFAR-100 as
discussed in subsection 3.4.3. At inference, ID examples are test images from CIFAR-100,
while OOD examples are test images from LSUN (crop) [Yu, 2015], iSUN [Xiao, 2010] and
Tiny-ImageNet (crop); where crop denotes that the OOD examples are center-cropped to
32 × 32 to match the resolution of ID images [Yun, 2019]. We also use test images from
CIFAR-100 with Uniform and Gaussian noise as OOD samples. Uniform is drawn from
U(0, 1) and Gaussian from N (µ, σ) with µ = σ = 0.5. Following [Hendrycks, 2017], we
measure detection accuracy (Det Acc) using a threshold of 0.5, area under ROC curve
(AuROC) and area under precision-recall curve (AuPR).

As shown in Table 3.4 and Table 3.5, AlignMixup outperforms SOTA methods under
all metrics by a large margin, indicating that it is better in reducing over-confident pre-
dictions. We further observe that Input mixup is inferior to Baseline, which is consistent
with the findings of [Yun, 2019].

63

Chapter 3 – Interpolating Aligned Features

Dataset LSUN (resize) TI (resize)

Metric Det Au AuPR AuPR Det Au AuPR AuPR
Acc ROC (ID) (OOD) Acc ROC (ID) (OOD)

Baseline 67.6 73.3 76.6 68.9 65.1 70.6 73.1 67.1
Input [Zhang, 2018a] 61.5 66.5 66.4 65.8 59.6 63.8 63.0 63.4
Cutmix [Yun, 2019] 71.3 77.4 79.1 75.5 69.1 79.4 79.8 73.3
Manifold [Verma, 2019] 67.8 78.9 76.3 71.3 62.5 77.8 76.8 72.2
PuzzleMix [Kim, 2020a] 74.9 79.9 84.0 77.5 73.9 77.3 80.6 71.9
Co-Mixup [Kim, 2021b] 73.8 82.6 86.8 76.9 68.1 78.9 82.5 74.2
SaliencyMix [Uddin, 2021] 75.8 79.7 82.2 84.4 75.3 81.2 83.8 79.5
StyleMix [Hong, 2021] 73.0 74.6 72.4 73.4 72.9 79.5 78.2 74.6
StyleCutMix [Hong, 2021] 74.3 83.1 86.9 78.9 73.8 80.9 83.1 76.3

AlignMixup (ours) 76.1 84.3 87.1 85.8 74.7 82.6 86.1 80.9
AlignMixup/AE (ours) 77.0 85.8 87.9 83.7 76.2 84.8 87.2 82.3

Gain +2.1 +2.7 +1.0 +1.4 +0.9 +3.6 +3.4 +2.8

Noise Uniform Gaussian

Baseline 58.3 75.3 75.0 69.0 60.8 64.3 62.9 63.9
Input [Zhang, 2018a] 50.0 67.9 71.8 71.7 60.2 65.0 63.1 64.1
Cutmix [Yun, 2019] 74.8 80.0 84.9 72.4 75.7 79.0 84.0 70.9
Manifold [Verma, 2019] 69.8 75.9 83.2 71.9 70.8 78.8 81.3 71.6
PuzzleMix [Kim, 2020a] 78.6 85.2 86.0 74.4 78.5 85.1 85.9 74.3
Co-Mixup [Kim, 2021b] 80.4 87.6 87.4 75.2 81.6 78.6 89.5 74.2
SaliencyMix [Uddin, 2021] 83.1 87.4 89.1 76.6 82.4 85.4 81.1 81.3
StyleMix [Hong, 2021] 75.3 71.8 77.8 65.5 78.0 75.2 84.3 71.0
StyleCutMix [Hong, 2021] 84.5 83.2 88.6 78.3 84.8 81.9 83.3 73.9

AlignMixup (ours) 86.9 89.1 93.6 77.7 86.7 87.9 91.8 77.4
AlignMixup/AE (ours) 88.0 90.6 94.0 80.8 86.0 87.2 91.9 75.6

Gain +3.5 +3.0 +4.9 +2.5 +1.9 +2.8 +2.4 -3.9

Table 3.5 – OOD detection using PreActResnet18. Det Acc (detection accuracy), AuROC,
AuPR (ID) and AuPR (OOD): higher is better. Blue: second best. Gain: increase in
performance. TI: TinyImagenet.

64

3.4. Experiments

Metric ECE OE
Baseline 10.25 1.11
Input [Zhang, 2018a] 18.50 1.42
CutMix [Yun, 2019] 7.60 1.05
Manifold [Verma, 2019] 18.41 0.79
PuzzleMix [Kim, 2020a] 8.22 0.61
Co-Mixup [Kim, 2021b] 5.83 0.55
SaliencyMix [Uddin, 2021] 5.89 0.59
StyleMix [Hong, 2021] 11.43 1.31
StyleCutMix [Hong, 2021] 9.30 0.87
AlignMixup (ours) 5.78 0.41
AlignMixup/AE (ours) 5.06 0.48
Gain +0.77 +0.14

Table 3.6 – Calibration using PreActResnet18 on CIFAR-100. ECE : expected calibration
error; OE: overconfidence error. Lower is better. Blue: second best. Gain: reduction of
error.

Calibration According to [DeGroot, 1983], calibration measures the discrepancy be-
tween the accuracy and confidence level of a network’s predictions. A poorly calibrated
network may make incorrect predictions with high confidence.

As shown in Figure 3.4, while SOTA methods are under-confident compared to Base-
line, AlignMixup results in the best calibration among all competitors. We quantitatively
evaluate the calibration of AlignMixup against SOTA methods in terms of expected cali-
bration error (ECE) [Guo, 2017] and overconfidence error (OE) [Thulasidasan, 2019] using
R-18 on CIFAR-100. As shown in Table 3.6, AlignMixup outperforms SOTA methods by
achieveing lower ECE and OE, indicating that it is better calibrated.

3.4.5 Weakly-supervised object localization (WSOL)

WSOL aims to localize an object of interest using only class labels without bounding
boxes at training. WSOL works by extracting visually discriminative cues to guide the
classifier to focus on salient regions in the image.

We train AlignMixup using the same procedure as for image classification. At infer-
ence, following [Yun, 2019], we compute a saliency map using CAM [Zhou, 2016], binarize
it using a threshold of 0.15 and take the bounding box of the mask. We use VGG-GAP [Si-
monyan, 2015] and Resnet-50 [He, 2016b] as pretrained on Imagenet [Russakovsky, 2015]

65

Chapter 3 – Interpolating Aligned Features

Metric Top-1 loc. MaxboxAcc-v2
Network VGG-GAP ResNet-50 VGG-GAP ResNet-50

ACoL [Zhang, 2018b] 45.9 – 57.4 –
ADL [Choe, 2019] 52.4 – 61.3 58.4

Baseline CAM [Zhou, 2016] 37.1 49.4 59.0 59.7
Input [Zhang, 2018a] 41.7 49.3 57.1 60.6
CutMix [Yun, 2019] 52.5 54.8 62.6 64.8

AlignMixup (ours) 53.7 57.8 64.5 65.9

Gain +1.2 +3.0 +1.9 +1.1

Table 3.7 – Weakly-supervised object localization on CUB200-2011. Top-1 loc.: Top-1 lo-
calization accuracy (%), MaxBoxAcc-v2: Maximal box accuracy [Choe, 2020]. Higher is
better. Blue: second best. Gain: increase of accuracy.

and we fine-tune them on CUB200-2011 [Wah, 2011b]. We follow the evaluation protocol
by [Choe, 2020] and use top-1 localization accuracy with IoU threshold of 0.5 and Maxi-
mal Box Accuracy (MaxBoxAcc-v2) to compare AlignMixup with baseline CAM (without
mixup), Input mixup [Zhang, 2018a], CutOut [DeVries, 2017b] and CutMix [Yun, 2019].

According to Table 3.7, AlignMixup outperforms Input mixup, CutOut and CutMix
by 11.98%, 8.88% and 1.18% respectively using VGG-GAP and by 8.5%, 5.02% and
3% respectively using Resnet-50 in terms of top-1 localization accuracy. Furthermore,
AlignMixup outperforms CutMix by 1.9% and 1.1% using VGG-GAP and Resnet-50
respectively in terms of MaxBoxAcc-v2. It also outperforms dedicated WSOL methods
ACoL [Zhang, 2018b] and ADL [Choe, 2019], which focus on learning spatially dispersed
representations.

Qualitative localization results shown in Figure 3.5 indicate that AlignMixup encodes
semantically discriminative representations, resulting in better localization performance.

3.4.6 Ablation study

All ablations are performed on CIFAR-100 using R-18 as stage 1 encoder F with
feature tensor A being 512×4×4 and embedding e ∈ R512. We study the effect of mixing
different layers (x, A or e), aligning A or not before mixing, as well as the autoencoder
architecture. The latter includes a vanilla autoencoder (AlignMixup/AE), a variational
autoencoder [Kingma, 2013] (AlignMixup/VAE) and no decoder (AlignMixup). We report
top-1 accuracy (%). All results are in Table 3.8.

66

3.4. Experiments

In
pu

t
m

ix
up

IoU = 0.27 IoU = 0.41

C
ut

M
ix

IoU = 0.59 IoU = 0.52

A
lig

nM
ix

up
(O

ur
s)

IoU = 0.76 IoU = 0.63

Figure 3.5 – Localization examples using ResNet-50 on CUB200-2011. Red boxes: pre-
dicted; green: ground truth.

Layers In general, we may mix any layer in {x, A, e} in a given iteration. We ablate
the effect of allowing only a particular subset of layers. In general, e ∈ R512 is a vector.
Here, we also consider the case where e is a 128×2×2 tensor, denoted as E and obtained
from A by a convolutional layer of kernel size 2 × 2 and stride 2. In AlignMixup/AE
architecture, among different choices of unaligned layer sets, mixing from {x, e} results
in the highest classification accuracy. Furthermore, AlignMixup/AE outperforms baseline
and the best performing competitor StyleCutMix for all choices of layers, even when
features are unaligned.

Tensor alignment We ablate the effect of aligning feature tensor A or not before
mixing it, by using standard mixup (3.2) or (3.12), (3.13), respectively. In AlignMixup,
we observe that aligning A before mixing improves classification accuracy significantly.
It is important to note that when e is a vector, we do not align it. However, when it is a
tensor E, aligning it improves significantly. Overall, AlignMixup/AE works the best when

67

Chapter 3 – Interpolating Aligned Features

Method/Arch Layers Unaligned Aligned

Baseline 76.76 –
Manifold [Verma, 2019] 80.20 -
StyleCutMix [Hong, 2021] 80.66 -

AlignMixup

{x, e} 80.81 –
{A} 79.07 80.28
{e} 78.71 -
{x, A} 80.34 81.61
{x, A, E} 80.46 81.36
{x, A, e} 80.33 81.92

AlignMixup/AE

{x, e} 81.92 -
{A} 79.39 81.04
{e} 79.49 -
{x, A} 81.78 81.85
{x, E} 80.80 81.54
{x, A, e} 81.61 82.18

AlignMix/AE
{x, A2×2, e} 81.47 81.20
{x, A4×4, e} 81.61 82.18
{x, A8×8, e} 80.49 82.20

AlignMixup/VAE

{x, (µ, σ)} 81.81 –
{x, A} 81.35 81.85

{x, (M, Σ)} 80.45 81.10
{x, A, (µ, σ)} 81.00 81.89

Table 3.8 – Ablations using R-18 on CIFAR-100. Top-1 classification accuracy (%): higher
is better. Arch: autoencoder architecture. AE: vanilla; VAE: variational [Kingma, 2013].
Layer x, A, e: (3.3), (3.4), (3.5).

x, A, e are mixed, with A being aligned. This setting outperforms StyleCutMix by 1.52%.
Mixing A only helps when it is aligned; otherwise, it is preferable to just mix e.

Alignment resolution We ablate the effect of aligning A at different spatial resolu-
tions. The default is 4× 4, denoted as A4×4. Here, we investigate 2× 2 (A2×2), obtained
by average pooling, and 8 × 8 (A8×8), by removing downsampling from the last convo-
lutional layer. The accuracy of 8 × 8 is only slightly better than 4 × 4 by 0.02%, while
being computationally more expensive. Thus, we choose 4×4 as the default. By contrast,
aligning at 2×2 is worse than not aligning at all. This may be due to soft correspondences
causing loss of information by averaging.

Autoencoder architecture We investigate two more autoencoder architectures, Align-
Mixup/AE and AlignMixup/VAE. The latter has two vectors µ, σ ∈ R512 instead of e,

68

3.5. Discussions

Iterations (i) 0 10 20 50 100 200 500 1000

AlignMixup 80.98 80.96 81.11 81.32 81.92 81.88 81.04 81.08

Table 3.9 – Ablation of the number of iterations in Sinkhorn-Knopp algorithm using R-18
on CIFAR-100. Top-1 classification accuracy(%): higher is better.

representing mean and standard deviation, respectively. We also investigate 128 × 2 × 2
tensors, denoted as M, Σ where the two variables are mixed simultaneously. As for Align-
Mixup/AE, we investigate different combinations of layers with or without alignment.
Both AlignMixup and AlignMixup/VAE are inferior to AlignMixup/AE. However, their
best setting still outperforms Baseline and StyleCutmix. All three architecture work best
when x, A, e are mixed. Alignment improves consistently on all three architectures.

Iterations in Sinkhorn-Knopp The default number of iterations for the Sinkhorn-
Knopp algorithm in solving (3.9) is i = 100. Here, we investigate more choices, as shown
in Table 3.9. The case of i = 0 is similar to cross-attention. In this case, we only normalize
either the rows or columns in (3.8) once, such that P1 = 1/r (when A aligned to A′) or
P ⊤1 = 1/r (when A′ aligned to A). We observe that while AlignMixup outperforms the
best baseline–StyleCutMix (80.66)–in all cases, it performs best for i = 100 iterations.

3.5 Discussions

We have shown that mixup of a combination of input and latent representations is a
simple and very effective pairwise data augmentation method. The gain is most prominent
on large datasets and in combating overconfidence in predictions, as indicated by out-of-
distribution detection. Interpolation of feature tensors boosts performance significantly,
but only if they are aligned.

Our work is a compromise between a “good” hand-crafted interpolation in the image
space and a fully learned one in the latent space. A challenge is to make progress in
the latter direction without compromising speed and simplicity, which would affect wide
applicability.

69

Chapter 4

MIXUP FOR DEEP METRIC LEARNING

Deep metric learning involves learning a discriminative representation such that em-
beddings of similar classes are encouraged to be close, while embeddings of dissimilar
classes are pushed far apart. Traditionally, metric learning loss functions rely on pairwise
loss functions, focusing on pulling together positive pairs and pushing apart negative ones.
The idea of using pairwise loss functions is not limited to metric learning, and has been
widely explored in self-supervised learning [Chen, 2020b] and supervised learning [Khosla,
2020] for image classification. For e.g. SupCon [Khosla, 2020], effectively uses multiple pos-
itive and negative pairs in its loss function for image classification in a supervised setting.
This approach significantly improves performance compared to self-supervised methods
that rely on a single positive pair.

Another method that has shown to improve performance on image classification is
Mixup, which interpolates between pairs of examples and its corresponding labels. There
exists a striking similarity between using pairwise similarity in metric learning and using
pairs of examples in mixup. This led us to explore the possibility of interpolating between
pairs in metric learning using mixup, similar to how it works in classification.

In this chapter, we introduce mixup in metric learning. However, directly interpolating
the pairs of embeddings presents a unique challenge. Unlike classification, loss functions
in metric learning are not additive over examples. This makes it non-trivial to directly
interpolate target labels using traditional mixup. To address this challenge, we first de-
velop a generalized formulation that encompasses existing metric learning loss functions
and modify it to accommodate for mixup. This contributes a principled way of interpo-
lating labels, such that the interpolation factor affects the relative weighting of positives
and negatives. Since interpolating between all possible pairs (n(n − 1)/2) can be com-
putationally expensive, we leverages an efficient linear interpolation strategy, making it
significantly faster than complex non-linear interpolation methods.

We presented this work in the Tenth International Conference on Learning Represen-
tations (ICLR), 2022.

70

https://openreview.net/forum?id=ZKy2X3dgPA
https://openreview.net/forum?id=ZKy2X3dgPA

4.1. Introduction

4.1 Introduction

Figure 4.1 – Metrix (= Metric Mix) allows an anchor to interact with positive (same
class), negative (different class) and interpolated examples, which also have interpolated
labels.

Classification is one of the most studied tasks in machine learning and deep learning.
It is a common source of pre-trained models for transfer learning to other tasks [Donahue,
2014; Kolesnikov, 2020]. It has been studied under different supervision settings [Caron,
2018; Sohn, 2020], knowledge transfer [Hinton, 2015] and data augmentation [Cubuk,
2018], including the recent research on mixup [Zhang, 2018a; Verma, 2019], where embed-
dings and labels are interpolated.

Deep metric learning is about learning from pairwise interactions such that infer-
ence relies on instance embeddings, e.g. for nearest neighbor classification [Oh Song,
2016], instance-level retrieval [Gordo, 2016], few-shot learning [Vinyals, 2016], face recog-
nition [Schroff, 2015] and semantic textual similarity [Reimers, 2019].

Following [Xing, 2003b], it is most often fully supervised by one class label per example,
like classification. The two most studied problems are loss functions [Musgrave, 2020]
and hard example mining [Wu, 2017; Robinson, 2021]. Tuple-based losses with example
weighting [Wang, 2019b] can play the role of both.

Unlike classification, classes (and distributions) at training and inference are different
in metric learning. Thus, one might expect interpolation-based data augmentation like
mixup to be even more important in metric learning than in classification. Yet, recent
attempts are mostly limited to special cases of embedding interpolation and have trouble
with label interpolation [Ko, 2020]. This raises the question: what is a proper way to define

71

Chapter 4 – Mixup for Deep Metric Learning

and interpolate labels for metric learning?

In this work, we observe that metric learning is not different from classification, where
examples are replaced by pairs of examples and class labels by “positive” or “negative”,
according to whether class labels of individual examples are the same or not. The positive
or negative label of an example, or a pair, is determined in relation to a given example
which is called an anchor. Then, as shown in Figure 5.1, a straightforward way is to use
a binary (two class) label per pair and interpolate it linearly as in standard mixup. We
call our method Metric Mix, or Metrix for short.

To show that mixing examples improves representation learning, we quantitatively
measure the properties of the test distributions using alignment and uniformity [Wang,
2020]. Alignment measures the clustering quality and uniformity measures its distribution
over the embedding space; a well clustered and uniformly spread distribution indicates
higher representation quality. We also introduce a new metric, utilization, to measure
the extent to which a test example, seen as a query, lies near any of the training ex-
amples, clean or mixed. By quantitatively measuring these three metrics, we show that
interpolation-based data augmentation like mixup is very important in metric learning,
given the difference between distributions at training and inference.

In summary, we make the following contributions:

1. We define a generic way of representing and interpolating labels, which allows straight-
forward extension of any kind of mixup to deep metric learning for a large class of loss
functions. We develop our method on a generic formulation that encapsulates these
functions (section 4.3).

2. We define the “positivity” of a mixed example and we study precisely how it increases
as a function of the interpolation factor, both in theory and empirically (subsec-
tion 4.3.6).

3. We systematically evaluate mixup for deep metric learning under different settings,
including mixup at different representation levels (input/manifold), mixup of differ-
ent pairs of examples (anchors/positives/negatives), loss functions and hard example
mining (subsection 4.4.3).

4. We introduce a new evaluation metric, utilization, validating that a representation
more appropriate for test classes is implicitly learned during exploration of the em-
bedding space in the presence of mixup (subsection 4.4.4).

5. We improve the state of the art on four common metric learning benchmarks (sub-

72

4.2. Related Work

section 4.4.3).

4.2 Related Work

Metric learning Metric learning aims to learn a metric such that positive pairs of ex-
amples are nearby and negative ones are far away. In deep metric learning, we learn an
explicit non-linear mapping from raw input to a low-dimensional embedding space [Oh
Song, 2016], where the Euclidean distance has the desired properties. Although learning
can be unsupervised [Hadsell, 2006], deep metric learning has mostly followed the su-
pervised approach, where positive and negative pairs are defined as having the same or
different class label, respectively [Xing, 2003b].

Loss functions can be distinguished into pair-based and proxy-based [Musgrave, 2020].
Pair-based losses use pairs of examples [Wu, 2017; Hadsell, 2006], which can be defined
over triplets [Wang, 2014; Schroff, 2015; Weinberger, 2009; Hermans, 2017], quadru-
ples [Chen, 2017] or tuples [Sohn, 2016; Oh Song, 2016; Wang, 2019b]. Proxy-based losses
use one or more proxies per class, which are learnable parameters in the embedding
space [Movshovitz-Attias, 2017; Qian, 2019; Kim, 2020c; Teh, 2020; Zhu, 2020b]. Pair-
based losses capture data-to-data relations, but they are sensitive to noisy labels and
outliers. They often involve terms where given constraints are satisfied, which produce
zero gradients and do not contribute to training. This necessitates mining of hard exam-
ples that violate the constraints, like semi-hard [Schroff, 2015] and distance weighted [Wu,
2017]. By contrast, proxy-based losses use data-to-proxy relations, assuming proxies can
capture the global structure of the embedding space. They involve less computations that
are more likely to produce nonzero gradient, hence have less or no dependence on mining
and converge faster.

Mixup Input mixup [Zhang, 2018a] linearly interpolates between two or more exam-
ples in the input space for data augmentation. Numerous variants take advantage of the
structure of the input space to interpolate non-linearly, e.g. for images [Yun, 2019; Kim,
2020a; Kim, 2021b; Hendrycks, 2019b; DeVries, 2017b; Qin, 2020; Uddin, 2021]. Man-
ifold mixup [Verma, 2019] interpolates intermediate representations instead, where the
structure is learned. This can be applied to or assisted by decoding back to the input
space [Berthelot, 2018; Liu, 2018a; Beckham, 2019; Zhu, 2020a; Venkataramanan, 2021].
In both cases, corresponding labels are linearly interpolated too. Most studies are limited

73

Chapter 4 – Mixup for Deep Metric Learning

to cross-entropy loss for classification. Pairwise loss functions have been under-studied, as
discussed below.

Interpolation for pairwise loss functions As discussed above, interpolating target
labels is not straightforward in pairwise loss functions. In deep metric learning, embed-
ding expansion [Ko, 2020], HDML [Zheng, 2019] and symmetrical synthesis [Gu, 2020]
interpolate pairs of embeddings in a deterministic way within the same class, applying to
pair-based losses, while proxy synthesis [Gu, 2021] interpolates between classes, applying
to proxy-based losses. None performs label interpolation, which means that [Gu, 2021]
risks synthesizing false negatives when the interpolation factor λ is close to 0 or 1.

In contrastive representation learning, MoCHi [Kalantidis, 2020] interpolates anchor
with negative embeddings but not labels and chooses λ ∈ [0, 0.5] to avoid false negatives.
This resembles thresholding of λ at 0.5 in OptTransMix [Zhu, 2020a]. Finally, i-mix [Lee,
2021] and MixCo [Kim, 2020b] interpolate pairs of anchor embeddings as well as their
(virtual) class labels linearly. There is only one positive, while all negatives are clean, so
it cannot take advantage of interpolation for relative weighting of positives/negatives per
anchor [Wang, 2019b].

By contrast, Metrix is developed for deep metric learning and applies to a large class of
both pair-based and proxy-based losses. It can interpolate inputs, intermediate features or
embeddings of anchors, (multiple) positives or negatives and the corresponding two-class
(positive/negative) labels per anchor, such that relative weighting of positives/negatives
depends on interpolation.

4.3 Mixup for metric learning

4.3.1 Preliminaries

Problem formulation We are given a training set X ⊂ X , where X is the input space.
For each anchor a ∈ X, we are also given a set P (a) ⊂ X of positives and a set N(a) ⊂ X

of negatives. The positives are typically examples that belong to the same class as the
anchor, while negatives belong to a different class. The objective is to train the parameters
θ of a model f : X → Rd that maps input examples to a d-dimensional embedding, such
that positives are close to the anchor and negatives are far away in the embedding space.
Given two examples x, x′ ∈ X , we denote by s(x, x′) the similarity between x, x′ in the

74

4.3. Mixup for metric learning

embedding space, typically a decreasing function of Euclidean distance. It is common to
ℓ2-normalize embeddings and define s(x, x′) := ⟨f(x), f(x′)⟩, which is the cosine similarity.
To simplify notation, we drop the dependence of f, s on θ.

Pair-based losses [Hadsell, 2006; Wang, 2014; Oh Song, 2016; Wang, 2019b] use both
anchors and positives/negatives in X, as discussed above. Proxy-based losses define one
or more learnable proxies ∈ Rd per class, and only use proxies as anchors [Kim, 2020c] or
as positives/negatives [Movshovitz-Attias, 2017; Qian, 2019; Teh, 2020]. To accommodate
for uniform exposition, we extend the definition of similarity as s(v, x) := ⟨v, f(x)⟩ for
v ∈ Rd, x ∈ X (proxy anchors) and s(x, v) := ⟨f(x), v⟩ for x ∈ X , v ∈ Rd (proxy
positives/negatives). Finally, to accommodate for mixed embeddings in subsection 4.3.5,
we define s(v, v′) := ⟨v, v′⟩ for v, v′ ∈ Rd. Thus, we define s : (X ∪ Rd)2 → R over pairs
of either inputs in X or embeddings in Rd. We discuss a few representative loss functions
below, before deriving a generic form.

Contrastive The contrastive loss [Hadsell, 2006] encourages positive examples to be
pulled towards the anchor and negative examples to be pushed away by a margin m ∈ R.
This loss is additive over positives and negatives, defined as:

ℓcont(a; θ) :=
∑

p∈P (a)
−s(a, p) +

∑
n∈N(a)

[s(a, n)−m]+. (4.1)

Multi-Similarity The multi-similarity loss [Wang, 2019b] introduces relative weighting
to encourage positives (negatives) that are farthest from (closest to) the anchor to be
pulled towards (pushed away from) the anchor by a higher weight. This loss is not additive
over positives and negatives:

ℓMS(a; θ) := 1
β

log
1 +

∑
p∈P (a)

e−β(s(a,p)−m)

+ 1
γ

log
1 +

∑
n∈N(a)

eγ(s(a,n)−m)

 . (4.2)

Here, β, γ ∈ R are scaling factors for positives, negatives respectively.

Proxy Anchor The proxy anchor loss [Kim, 2020c] defines a learnable proxy in Rd for
each class and only uses proxies as anchors. For a given anchor (proxy) a ∈ Rd, the loss
has the same form as (4.2), although similarity s is evaluated on Rd ×X .

75

Chapter 4 – Mixup for Deep Metric Learning

4.3.2 Generic loss formulation

We observe that both additive (4.1) and non-additive (4.2) loss functions involve a
sum over positives P (a) and a sum over negatives N(a). They also involve a decreasing
function of similarity s(a, p) for each positive p ∈ P (a) and an increasing function of
similarity s(a, n) for each negative n ∈ N(a). Let us denote by ρ+, ρ− this function for
positives, negatives respectively. Then, non-additive functions differ from additive by the
use of a nonlinear function σ+, σ− on positive and negative terms respectively, as well as
possibly another nonlinear function τ on their sum:

ℓ(a; θ) := τ

σ+

 ∑
p∈P (a)

ρ+(s(a, p))
+ σ−

 ∑
n∈N(a)

ρ−(s(a, n))
 . (4.3)

With the appropriate choice for τ, σ+, σ−, ρ+, ρ−, this definition encompasses contrastive (4.1),
multi-similarity (4.2) or proxy-anchor as well as many pair-based or proxy-based loss func-
tions, as shown in Table 4.1. It does not encompass the triplet loss [Wang, 2014], which
operates on pairs of positives and negatives, forming triplets with the anchor. The triplet
loss is the most challenging in terms of mining because there is a very large number
of pairs and only few contribute to the loss. We only use function τ to accommodate
for lifted structure [Oh Song, 2016; Hermans, 2017], where τ(x) := [x]+ is reminiscent
of the triplet loss. We observe that multi-similarity [Wang, 2019b] differs from binomial
deviance [Yi, 2014] only in the weights of the positive and negative terms. Proxy an-
chor [Kim, 2020c] is a proxy version of multi-similarity [Wang, 2019b] on anchors and
ProxyNCA [Movshovitz-Attias, 2017] is a proxy version of NCA [Goldberger, 2005] on
positives/negatives.

This generic formulation highlights the components of the loss functions that are
additive over positives/negatives and paves the way towards incorporating mixup.

4.3.3 Improving representations using mixup

To improve the learned representations, we follow [Zhang, 2018a; Verma, 2019] in mix-
ing inputs and features from intermediate network layers, respectively. Both are developed
for classification.

Input mixup [Zhang, 2018a] augments data by linear interpolation between a pair of
input examples. Given two examples x, x′ ∈ X we draw λ ∼ Beta(α, α) as interpolation
factor and mix x with x′ using the standard mixup operation mixλ(x, x′) := λx+(1−λ)x′.

76

4.3. Mixup for metric learning

Loss Anchor Pos/Neg τ(x) σ+(x) σ−(x) ρ+(x) ρ−(x)

Contrastive [Hadsell, 2006] X X x x x −x [x − m]+
Lifted structure [Hermans, 2017] X X [x]+ log(x) log(x) e−x ex−m

Binomial deviance [Yi, 2014] X X x log(1 + x) log(1 + x) e−β(x−m) eγ(x−m)

Multi-similarity [Wang, 2019b] X X x 1
β

log(1 + x) 1
γ

log(1 + x) e−β(x−m) eγ(x−m)

Proxy anchor [Kim, 2020c] proxy X x 1
β

log(1 + x) 1
γ

log(1 + x) e−β(x−m) eγ(x−m)

NCA [Goldberger, 2005] X X x − log(x) log(x) ex ex

ProxyNCA [Movshovitz-Attias, 2017] X proxy x − log(x) log(x) ex ex

ProxyNCA++ [Teh, 2020] X proxy x − log(x) log(x) ex/T ex/T

Table 4.1 – Loss functions. Anchor/positive/negative: X: embedding of input example
from training set X by f ; proxy: learnable parameter in Rd ; T : temperature. All
loss functions are encompassed by (4.3) using the appropriate definition of functions
τ, σ+, σ−, ρ+, ρ− as given here.

Manifold mixup [Verma, 2019] linearly interpolates between intermediate representa-
tions (features) of the network instead. Referring to 2D images, we define gm : X →
Rc×w×h as the mapping from the input to intermediate layer m of the network and
fm : Rc×w×h → Rd as the mapping from intermediate layer m to the embedding, where c

is the number of channels (feature dimensions) and w× h is the spatial resolution. Thus,
our model f can be expressed as the composition f = fm ◦ gm.

For manifold mixup, we follow [Venkataramanan, 2021] and mix either features of
intermediate layer m or the final embeddings. Thus, we define three mixup types in total:

fλ(x, x′) :=

f(mixλ(x, x′)), input mixup

fm(mixλ(gm(x), gm(x′))), feature mixup

mixλ(f(x), f(x′)), embedding mixup.

(4.4)

Function fλ : X 2 → Rd performs both mixup and embedding. We explore different mixup
types in subsection 4.4.5.

4.3.4 Label representation

Classification In supervised classification, each example x ∈ X is assigned an one-
hot encoded label y ∈ {0, 1}C , where C is the number of classes. Label vectors are also
linearly interpolated: given two labeled examples (x, y), (x′, y′), the interpolated label is
mixλ(y, y′). The loss (cross-entropy) is a continuous function of the label vector. We extend
this idea to metric learning.

77

Chapter 4 – Mixup for Deep Metric Learning

Metric learning Positives P (a) and negatives N(a) of anchor a are defined as having
the same or different class label as the anchor, respectively. To every example in P (a) ∪
N(a), we assign a binary (two-class) label y ∈ {0, 1}, such that y = 1 for positives and
y = 0 for negatives:

U+(a) := {(p, 1) : p ∈ P (a)} (4.5)

U−(a) := {(n, 0) : n ∈ N(a)} (4.6)

Thus, we represent both positives and negatives by U(a) := U+(a) ∪ U−(a). We now
rewrite the generic loss function (4.3) as:

ℓ(a; θ) := τ

σ+

 ∑
(x,y)∈U(a)

yρ+(s(a, x))
+ σ−

 ∑
(x,y)∈U(a)

(1− y)ρ−(s(a, x))
 . (4.7)

Here, every labeled example (x, y) in U(a) appears in both positive and negative terms.
However, because label y is binary, only one of the two contributions is nonzero. Now, in
the presence of mixup, we can linearly interpolate labels exactly as in classification.

4.3.5 Mixed loss function

Mixup For every anchor a, we are given a set M(a) of pairs of examples to mix. This
is a subset of (S(a) ∪ U(a)) × U(a) where S(a) := (a, 1). That is, we allow mixing be-
tween positive-negative, positive-positive and negative-negative pairs, where the anchor
itself is also seen as positive. We define the possible choices of mixing pairs M(a) in
subsection 4.4.1. Let V (a) be the set of corresponding labeled mixed embeddings

V (a) := {(fλ(x, x′), mixλ(y, y′)) : ((x, y), (x′, y′)) ∈M(a), λ ∼ Beta(α, α)}, (4.8)

where fλ is defined by (4.4). With these definitions in place, the generic loss function ℓ̃

over mixed examples takes exactly the same form as (4.7), with only U(a) replaced by
V (a):

ℓ̃(a; θ) := τ

σ+

 ∑
(v,y)∈V (a)

yρ+(s(a, v))
+ σ−

 ∑
(v,y)∈V (a)

(1− y)ρ−(s(a, v))
 , (4.9)

78

4.3. Mixup for metric learning

where similarity s is evaluated on X × Rd for pair-based losses and on Rd × Rd for
proxy anchor. Now, every labeled embedding (v, y) in V (a) appears in both positive and
negative terms and both contributions are nonzero for positive-negative pairs, because
after interpolation, y ∈ [0, 1].

Error function Parameters θ are learned by minimizing the error function, which is
a linear combination of the clean loss (4.3) and the mixed loss (4.9), averaged over all
anchors

E(X; θ) := 1
|X|

∑
a∈X

ℓ(a; θ) + wℓ̃(a; θ), (4.10)

where w ≥ 0 is the mixing strength. At least for manifold mixup, this combination comes
at little additional cost, since clean embeddings are readily available.

Interpretation To better understand the two contributions of a labeled embedding
(v, y) in V (a) to the positive and negative terms of (4.9), consider the case of positive-
negative mixing pairs, M(a) ⊂ U+(a) × U−(a). Then, for ((x, y), (x′, y′)) ∈ M(a), the
mixed label is mixλ(y, y′) = mixλ(1, 0) = λ and (4.9) becomes

ℓ̃(a; θ) = τ

σ+

 ∑
(v,λ)∈V (a)

λρ+(s(a, v))
+ σ−

 ∑
(v,λ)∈V (a)

(1− λ)ρ−(s(a, v))
 . (4.11)

Thus, the mixed embedding v is both positive (with weight λ) and negative (with weight
1−λ). Whereas for positive-positive mixing, that is, for M(a) ⊂ U+(a)2, the mixed label
is 1 and the negative term vanishes. Similarly, for negative-negative mixing, that is, for
M(a) ⊂ U−(a)2, the mixed label is 0 and the positive term vanishes.

In the particular case of contrastive (4.1) loss, positive-negative mixing (4.11) becomes

ℓ̃cont(a; θ) :=
∑

(v,λ)∈V (a)
−λs(a, v) +

∑
(v,λ)∈V (a)

(1− λ)[s(a, v)−m]+. (4.12)

Similarly, for multi-similarity (4.2),

ℓ̃MS(a; θ) := 1
β

log
1 +

∑
(v,λ)∈V (a)

λe−β(s(a,v)−m)

+

1
γ

log
1 +

∑
(v,λ)∈V (a)

(1− λ)eγ(s(a,v)−m)

 .

(4.13)

79

Chapter 4 – Mixup for Deep Metric Learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

λ

P
r(

Po
s(

a
,v

))
empirical
theoretical

Figure 4.2 – “Positivity” of mixed embeddings vs. λ. We measure Pr(Pos(a, v)) empirically
as Pr(∂ℓ̃MS(a; θ)/∂s(a, v) ≤ 0) and theoretically by (4.14), where Fλ is again measured
from data. We use embedding mixup on MS (4.2) on CUB200 at epoch 0, based on the
setup of subsection 4.4.1.

4.3.6 Analysis: Mixed embeddings and positivity

Let Pos(a, v) be the event that a mixed embedding v behaves as “positive” for anchor a,
i.e., minimizing the loss ℓ̃(a; θ) will increase the similarity s(a, v). Under positive-negative
mixing, i.e., M(a) ⊂ U+(a) × U−(a), we then estimate the probability of Pos(a, v) as a
function of λ in the case of multi-similarity (4.2) with a single mixed embedding v:

Pr(Pos(a, v)) = Fλ

(
1

β + γ
ln
(

λ

1− λ

)
+ m

)
, (4.14)

where Fλ is the CDF of similarities s(a, v) between anchors a and mixed embeddings
v with interpolation factor λ. In Figure 4.2, we measure the probability of Pos(a, v) as
a function of λ in two ways, both purely empirically and theoretically by (4.14). Both
measurements are increasing functions of λ of sigmoidal shape, where a mixed embedding
is mostly positive for λ close to 1 and mostly negative for λ close to 0.

Positivity Under positive-negative mixing, (4.11) shows that a mixed embedding v

with interpolation factor λ behaves as both positive and negative to different extents,
depending on λ: mostly positive for λ close to 1, mostly negative for λ close to 0. The net
effect depends on the derivative of the loss with respect to the similarity ∂ℓ̃(a; θ)/∂s(a, v):
if the derivative is negative, then v behaves as positive and vice versa. This is clear from
the chain rule

∂ℓ̃(a; θ)
∂v

= ∂ℓ̃(a; θ)
∂s(a, v) ·

∂s(a, v)
∂v

, (4.15)

80

4.3. Mixup for metric learning

because ∂s(a, v)/∂v is a vector pointing in a direction that makes a, v more similar and
the loss is being minimized. Let Pos(a, v) be the event that v behaves as “positive”, i.e.,
∂ℓ̃(a; θ)/∂s(a, v) ≤ 0 and minimizing the loss will increase the similarity s(a, v).

Multi-similarity We estimate the probability of Pos(a, v) as a function of λ in the
case of multi-similarity with a single embedding v obtained by mixing a positive with a
negative:

ℓ̃MS(a; θ) = 1
β

log
(
1 + λe−β(s(a,v)−m)

)
+ 1

γ
log

(
1 + (1− λ)eγ(s(a,v)−m)

)
. (4.16)

In this case, Pos(a, v) occurs if and only if

∂ℓ̃MS(a; θ)
∂s(a, v) = −λe−β(s(a,v)−m)

(1 + λe−β(s(a,v)−m)) + (1− λ)eγ(s(a,v)−m)

(1 + (1− λ)eγ(s(a,v)−m)) ≤ 0. (4.17)

By letting t := s(a, v)−m, this condition is equivalent to

(1− λ)eγt

(1 + (1− λ)eγt) ≤
λe−βt

(1 + λe−βt) (4.18)

(1− λ)eγt(1 + λe−βt) ≤ λe−βt(1 + (1− λ)eγt) (4.19)

(1− λ)eγt + λ(1− λ)e(γ−β)t ≤ λe−βt + λ(1− λ)e(γ−β)t (4.20)

e(β+γ)t ≤ λ

1− λ
(4.21)

(β + γ)(s(a, v)−m) ≤ ln
(

λ

1− λ

)
(4.22)

s(a, v) ≤ 1
β + γ

ln
(

λ

1− λ

)
+ m. (4.23)

Finally, the probability of Pos(a, v) as a function of λ is

Pr(Pos(a, v)) = Fλ

(
1

β + γ
ln
(

λ

1− λ

)
+ m

)
, (4.24)

where Fλ is the CDF of similarities s(a, v) between anchors a and mixed embeddings v

with interpolation factor λ.
In Figure 4.2, we measure the probability of Pos(a, v) as a function of λ in two ways.

First, we measure the derivative ∂ℓ̃MS(a; θ)/∂s(a, v) for anchors a and mixed embeddings v

81

Chapter 4 – Mixup for Deep Metric Learning

Dataset CUB200 Cars196 SOP In-Shop
[Wah, 2011a] [Krause, 2013] [Oh Song, 2016] [Liu, 2016b]

Objects birds cars household furniture clothes
classes 200 196 22, 634 7, 982
training images 5, 894 8, 092 60, 026 26, 356
testing images 5, 894 8, 093 60, 027 26, 356
training classes 100 98 11, 318 3991
testing classes 100 98 11, 318 3991

sampling random random balanced balanced
samples per class – – 5 5
classes per batch 65† 70† 20 20

learning rate 1 × 10−4 1 × 10−4 3 × 10−5 1 × 10−4

Table 4.2 – Statistics and settings for the four datasets we use in our experiments. †:
average.

over the entire dataset and we report the empirical probability of this derivative being non-
positive versus λ. Second, we measure Pr(Pos(a, v)) theoretically using (4.24), where the
CDF of similarities s(a, v) is again measured empirically for a and v over the dataset, as a
function of λ. Despite the simplifying assumption of a single positive and a single negative
in deriving (4.24), we observe that the two measurements agree in general. They are both
increasing functions of λ of sigmoidal shape, they roughly yield Pr(Pos(a, v)) ≥ 0.5 for
λ ≥ 0.5 and they confirm that a mixed embedding is mostly positive for λ close to 1 and
mostly negative for λ close to 0.

4.4 Experiments

4.4.1 Setup

Datasets We experiment on Caltech-UCSD Birds (CUB200) [Wah, 2011a], Stanford
Cars (Cars196) [Krause, 2013], Stanford Online Products (SOP) [Oh Song, 2016] and
In-Shop Clothing retrieval (In-Shop) [Liu, 2016b] image datasets.

Network, features and embeddings We use Resnet-50 [He, 2016b] (R-50) pretrained
on ImageNet [Russakovsky, 2015] as a backbone network. We obtain the intermediate
representation (feature), a 7× 7× 2048 tensor, from the last convolutional layer. Follow-
ing [Kim, 2020c], we combine adaptive average pooling with max pooling, followed by a
fully-connected layer to obtain the embedding of d = 512 dimensions.

82

4.4. Experiments

Loss functions We reproduce contrastive (Cont) [Hadsell, 2006], multi-similarity (MS) [Wang,
2019b], proxy anchor (PA) [Kim, 2020c] and ProxyNCA++ [Teh, 2020] and we evalu-
ate them under different mixup types. For MS (4.2), following [Musgrave, 2020], we use
β = 18, γ = 75 and m = 0.77. For PA, we use β = γ = 32 and m = 0.1, as reported by
the authors.

Methods We compare our method, Metrix, with proxy synthesis (PS) [Gu, 2021], i-
mix [Lee, 2021] and MoCHi [Kalantidis, 2020]. For PS, we adapt the official code 1 to PA
on all datasets, and use it with PA only, because it is designed for proxy-based losses.
PS has been shown superior to [Ko, 2020; Gu, 2020], although in different networks.
MoCHi and i-mix are meant for contrastive representation learning. We evaluate using
Recall@K [Oh Song, 2016]: For each test example taken as a query, we find its K-nearest
neighbors in the test set excluding itself in the embedding space. We assign a score of 1
if an example of the same class is contained in the neighbors and 0 otherwise. Recall@K

is the average of this score over the test set.

Datasets and sampling Dataset statistics are summarized in Table 4.2. Since the
number of classes is large compared to the batch size in SOP and In-Shop, batches would
rarely contain a positive pair when sampled uniformly at random. Hence, we use balanced
sampling [Zhai, 2018], i.e., a fixed number of classes and examples per class, as shown
in Table 4.2. For fair comparison with baseline methods, images are randomly flipped and
cropped to 224×224 at training. At inference, we resize to 256×256 and then center-crop
to 224× 224.

Training We train R-50 using AdamW [Loshchilov, 2019b] optimizer for 100 epochs
with a batch size 100. The initial learning rate per dataset is shown in Table 4.2. The
learning rate is decayed by 0.1 for Cont and by 0.5 for MS and PA on CUB200 and
Cars196. For SOP and In-Shop, we decay the learning rate by 0.25 for all losses. The
weight decay is set to 0.0001.

4.4.2 Mixup settings

In mixup for classification, given a batch of n examples, it is standard to form n pairs
of examples by pairing the batch with a random permutation of itself, resulting in n mixed

1. https://github.com/navervision/proxy-synthesis

83

https://github.com/navervision/proxy-synthesis

Chapter 4 – Mixup for Deep Metric Learning

examples, either for input or manifold mixup. In metric learning, it is common to obtain
n embeddings and then use all 1

2n(n− 1) pairs of embeddings in computing the loss. We
thus treat mixup types differently.

Input mixup Mixing all pairs would be computationally expensive in this case, because
we would compute 1

2n(n− 1) embeddings. A random permutation would not produce as
many hard examples as can be found in all pairs. Thus, for each anchor (each example in
the batch), we use the k hardest negative examples and mix them with positives or with
the anchor. We use k = 3 by default.

Manifold mixup Originally, manifold mixup [Verma, 2019] focuses on the first few lay-
ers of the network. Mixing all pairs would then be even more expensive than input mixup,
because intermediate features (tensors) are even larger than input examples. Hence, we
focus on the last few layers instead, where features and embeddings are compact, and we
mix all pairs. We use feature mixup by default and call it Metrix/feature or just Metrix,
while input and embedding mixup are called Metrix/input and Metrix/embed, respectively.
All options are studied in subsection 4.4.5.

Mixing pairs Whatever the mixup type, we use clean examples as anchors and we
define a set M(a) of pairs of examples to mix for each anchor a, with their labels (posi-
tive or negative). By default, we mix positive-negative or anchor-negative pairs, according
to M(a) := U+(a) × U−(a) and M(a) := S(a) × U−(a), respectively, where U−(a) is re-
placed by hard negatives only for input mixup. The two options are combined by choosing
uniformly at random in each iteration. More options are studied in subsection 4.4.5.

Hyper-parameters For any given mixup type or set of mixup pairs, the interpolation
factor λ is drawn from Beta(α, α) with α = 2. We empirically set the mixup strength (4.10)
to w = 0.4 for positive-negative pairs and anchor-negative pairs.

4.4.3 Results

Improving the state of the art As shown in Table 4.3, Metrix consistently improves
the performance of all baseline losses (Cont, MS, PA, ProxyNCA++) across all datasets.
Surprisingly, MS outperforms PA and ProxyNCA++ under mixup on all datasets but

84

4.4. Experiments

SOP, where the three losses are on par. This is despite the fact that baseline PA out-
performs MS on CUB200 and Cars-196, while ProxyNCA++ outperforms MS on SOP
and In-Shop. Both contrastive and MS are significantly improved by mixup. By contrast,
improvements on PA and ProxyNCA++ are marginal, which may be due to the already
strong performance of PA, or further improvement is possible by employing different
mixup methods that take advantage of the image structure.

In terms of Recall@1, our MS+Metrix is best overall, improving by 3.6% (67.8→ 71.4)
on CUB200, 1.8% (87.8 → 89.6) on Cars196, 4.1% (76.9 → 81.0) on SOP and 2.1%
(90.1→ 92.2) on In-Shop. The same solution sets new state of the art, outperforming the
previously best PA by 1.7% (69.7 → 71.4) on CUB200, MS by 1.8% (87.8 → 89.6) on
Cars196, ProxyNCA++ by 0.3% (80.7→ 81.0) on SOP and SoftTriple by 1.2% (91.0→
92.2) on In-Shop. Importantly, while the previous state of the art comes from a different
loss per dataset, MS+Metrix is almost consistently best across all datasets.

Alternative mixing methods In Table 4.4, we compare Metrix/input with i-Mix [Lee,
2021] and Metrix/embed with MoCHi [Kalantidis, 2020] using contrastive loss, and with
PS [Gu, 2021] using PA. MoCHi and PS mix embeddings only, while labels are always
negative. For i-Mix, we mix anchor-negative pairs (S(a)×U−(a)). For MoCHi, the anchor
is clean and we mix negative-negative (U−(a)2) and anchor-negative (S(a)×U−(a)) pairs,
where U−(a) is replaced by k = 100 hardest negatives and λ ∈ (0, 0.5) for anchor-negative.
PS mixes embeddings of different classes and treats them as new classes. For clean anchors,
this corresponds to positive-negative (U+(a) × U−(a)) and negative-negative (U−(a)2)
pairs, but PS also supports mixed anchors.

In terms of Recall@1, Metrix/input outperforms i-Mix with anchor-negative pairs by
0.5% (65.8 → 66.3) on CUB200, 0.9% (82.0 → 82.9) on Cars196, 0.6% (75.2 → 75.8)
and 0.6% (87.1 → 87.7) on In-Shop. Metrix/embed outperforms MoCHI with anchor-
negative pairs by 1.2% (65.2 → 66.4) on CUB200, 1.4% (82.5 → 83.9) on Cars196,
0.9% (75.8 → 76.7) and 1.2% (87.2 → 88.4) on In-Shop. The gain over MoCHi with
negative-negative pairs is significantly higher. Metrix/embed also outperforms PS by 0.4%
(70.0→ 70.4) on CUB200, 1% (87.9→ 88.9) on Cars196, 1% (79.6→ 80.6) on SOP and
1.3% (90.3→ 91.6) on In-Shop.

Computational complexity On CUB200 dataset, using a batch size of 100 on an
NVIDIA RTX 2080 Ti GPU, the average training time in ms/batch is 586 for MS and

85

Chapter 4 – Mixup for Deep Metric Learning

CUB200 Cars196 SOP In-Shop

Method 1 2 4 1 2 4 1 10 100 1 10 20

Triplet [Weinberger, 2009] 63.5 75.6 84.4 77.3 85.4 90.8 70.5 85.6 94.3 85.3 96.6 97.8
LiftedStructure [Oh Song, 2016] 65.9 75.8 84.5 81.4 88.3 92.4 76.1 88.6 95.2 88.6 97.6 98.4
ProxyNCA [Movshovitz-Attias, 2017] 65.2 75.6 83.8 81.2 87.9 92.6 73.2 87.0 94.4 86.2 95.9 97.0
Margin [Wu, 2017] 65.0 76.2 84.6 82.1 88.7 92.7 74.8 87.8 94.8 88.6 97.0 97.8
SoftTriple [Qian, 2019] 67.3 77.7 86.2 86.5 91.9 95.3 79.8 91.2 96.3 91.0 97.6 98.3
D&C [Sanakoyeu, 2019]∗ 65.9 76.6 84.4 84.6 90.7 94.1 75.9 88.4 94.9 85.7 95.5 96.9
EPSHN [Xuan, 2020]∗ 64.9 75.3 83.5 82.7 89.3 93.0 78.3 90.7 96.3 87.8 95.7 96.8
ProxyNCA++ [Teh, 2020]∗ 69.0 79.8 87.3 86.5 92.5 95.7 80.7 92.0 96.7 90.4 98.1 98.8

Cont [Hadsell, 2006] 64.7 75.9 84.6 81.6 88.2 92.7 74.9 87.0 93.9 86.4 94.7 96.2
+Metrix/input 66.3 77.1 85.2 82.9 89.3 93.7 75.8 87.8 94.6 87.7 95.9 96.5

+1.6 +1.2 +0.6 +1.3 +1.1 +1.0 +0.9 +0.8 +0.7 +1.3 +1.2 +0.3
+Metrix 67.4 77.9 85.7 85.1 91.1 94.6 77.5 89.1 95.5 89.1 95.7 97.1

+2.7 +2.0 +1.1 +3.5 +2.9 +1.9 +2.6 +2.1 +1.5 +2.7 +1.0 +0.9
+Metrix/embed 66.4 77.6 85.4 83.9 90.3 94.1 76.7 88.6 95.2 88.4 95.4 96.8

+1.7 +1.7 +0.8 +2.3 +2.1 +1.4 +1.8 +1.6 +1.3 +2.0 +0.7 +0.6

MS [Wang, 2019b] 67.8 77.8 85.6 87.8 92.7 95.3 76.9 89.8 95.9 90.1 97.6 98.4
+Metrix/input 69.0 79.1 86.0 89.0 93.4 96.0 77.9 90.6 95.9 91.8 98.0 98.9

+1.2 +1.3 +0.4 +1.2 +0.7 +0.7 +1.0 +0.8 +0.0 +1.7 +0.4 +0.5
+Metrix 71.4 80.6 86.8 89.6 94.2 96.0 81.0 92.0 97.2 92.2 98.5 98.6

+3.6 +2.8 +1.2 +1.8 +1.5 +0.7 +4.1 +2.2 +1.3 +2.1 +0.9 +0.2
+Metrix/embed 70.2 80.4 86.7 88.8 92.9 95.6 78.5 91.3 96.7 91.9 98.3 98.7

+2.4 +2.6 +1.1 +1.0 +0.2 +0.3 +1.6 +1.5 +0.8 +1.8 +0.7 +0.3

PA [Kim, 2020c]∗ 69.7 80.0 87.0 87.7 92.9 95.8 – – – – – –
PA [Kim, 2020c] 69.5 79.3 87.0 87.6 92.3 95.5 79.1 90.8 96.2 90.0 97.4 98.2

+Metrix/input 70.5 81.2 87.8 88.2 93.2 96.2 79.8 91.4 96.5 90.9 98.1 98.4
+0.8 +1.2 +0.8 +0.5 +0.3 +0.4 +0.7 +0.6 +0.3 +0.9 +0.7 +0.2

+Metrix 71.0 81.8 88.2 89.1 93.6 96.7 81.3 91.7 96.9 91.9 98.2 98.8
+1.3 +1.8 +1.2 +1.4 +0.7 +0.9 +2.2 +0.9 +0.7 +1.9 +0.8 +0.6

+Metrix/embed 70.4 81.1 87.9 88.9 93.3 96.4 80.6 91.7 96.6 91.6 98.3 98.3
+0.7 +1.1 +0.9 +1.2 +0.4 +0.6 +1.5 +0.9 +0.4 +1.6 +0.9 +0.1

ProxyNCA++ [Teh, 2020]∗ 69.0 79.8 87.3 86.5 92.5 95.7 80.7 92.0 96.7 90.4 98.1 98.8
ProxyNCA++ [Teh, 2020] 69.1 79.5 87.7 86.6 92.1 95.4 80.4 91.7 96.7 90.2 97.6 98.4

+Metrix/input 69.7 79.9 88.3 87.5 92.9 96.0 80.9 92.2 96.9 91.4 98.1 98.8
+0.6 +0.1 +0.6 +0.9 +0.4 +0.3 +0.2 +0.2 +0.2 +1.0 +0.0 +0.0

+Metrix 70.4 80.6 88.7 88.5 93.4 96.5 81.3 92.7 97.1 91.9 98.1 98.8
+1.3 +0.8 +1.0 +1.9 +0.9 +0.8 +0.6 +0.7 +0.4 +1.5 +0.0 +0.0

+Metrix/ embed 70.2 80.2 88.2 88.1 93.0 96.2 81.1 92.4 97.0 91.6 98.1 98.8
+1.1 +0.4 +0.5 +1.5 +0.5 +0.5 +0.4 +0.4 +0.3 +1.2 +0.0 +0.0

Gain over SOTA +1.7 +1.8 +0.5 +1.8 +1.3 +0.9 +0.6 +0.0 +0.5 +1.2 +0.4 +0.0

Table 4.3 – Improving the SOTA with our Metrix (Metrix/feature) using Resnet-50 with
embedding size d = 512. R@K (%): Recall@K; higher is better. ∗: reported by authors.
Bold black: best baseline (previous SOTA, one per column). Red: Our new SOTA. Gain
over SOTA is over best baseline. MS: Multi-Similarity, PA: Proxy Anchor.

86

4.4. Experiments

CUB200 Cars196 SOP In-Shop

Method Mixing Pairs R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20

Cont [Hadsell, 2006] – 64.7 75.9 84.6 81.6 88.2 92.7 74.9 87.0 93.9 86.4 94.7 96.3
+ i-Mix [Lee, 2021] anc-neg 65.8 76.2 84.9 82.0 88.5 93.2 75.2 87.3 94.2 87.1 95.4 96.1
+ Metrix/input pos-neg / anc-neg 66.3 77.1 85.2 82.9 89.3 93.7 75.8 87.8 94.6 87.7 95.9 96.5

+MoCHi [Kalantidis, 2020] neg-neg 63.1 74.3 83.8 76.3 84.0 89.3 68.9 83.1 91.8 81.8 91.9 93.9
+MoCHi [Kalantidis, 2020] anc-neg 65.2 75.8 84.2 82.5 88.0 92.9 75.8 87.1 94.8 87.2 92.8 94.9
+Metrix/embed pos-neg / anc-neg 66.4 77.6 85.4 83.9 90.3 94.1 76.7 88.6 95.2 88.4 95.4 96.9

PA [Kim, 2020c] – 69.7 80.0 87.0 87.6 92.3 95.5 79.1 90.8 96.2 90.0 97.4 98.2
+PS [Gu, 2021] pos-neg / neg-neg 70.0 79.8 87.2 87.9 92.8 95.6 79.6 90.9 96.4 90.3 97.4 98.0
+Metrix/embed pos-neg / anc-neg 70.4 81.1 87.9 88.9 93.3 96.4 80.6 91.7 96.6 91.6 98.3 98.3

Table 4.4 – Comparison of our Metrix/embed with other mixing methods using R-50 with
embedding size d = 512. R@K (%): Recall@K; higher is better. PA: Proxy Anchor, PS:
Proxy Synthesis.

817 for MS+Metrix. The 39% increase in complexity is reasonable for 3.6% increase in
R@1. Furthermore, the average training time in ms/batch is 483 for baseline PA, 965
for PA+Metrix and 1563 for PS [Gu, 2021]. While the computation cost of PS is higher
than Metrix by 62%, Metrix outperform PS by 0.4% and 1.3% in terms of R@1 and R@2
respectively (Table 4.4). At inference, the computational cost is equal for all methods.

Qualitative results of retrieval Figure 4.3 shows qualitative results of retrieval on
CUB200 using Contrastive loss, with and without mixup. This dataset has large intra-
class variations such as pose variation and background clutter. Baseline Contrastive loss
may fail to retrieve the correct images due to these challenges. The ranking is improved
in the presence of mixup.

Visualization of embedding space We visualize CUB200 test examples for 10, 15
and 20 classes in the embedding space using Contrastive loss, with and without mixup
in Figure 4.4. We observe that in the presence of mixup, the embeddings are more tightly
clustered and more uniformly spread, despite the variations in pose and background in
the test set. This finding validates our quantitative analysis of alignment and uniformity
in subsection 4.4.4.

4.4.4 How does mixup improve representations?

We analyze how Metrix improves representation learning, given the difference between
distributions at training and inference. As discussed in section 4.1, since the classes at
inference are unseen at training, one might expect interpolation-based data augmentation

87

Chapter 4 – Mixup for Deep Metric Learning

Figure 4.3 – Retrieval results on CUB200 using Contrastive loss, with and without mixup.
For each query, the top-5 retrieved images are shown. Images highlighted in green (red)
are correctly (incorrectly) retrieved images.

10 classes 15 classes 20 classes

Cont.

Cont.
+

Metrix

Figure 4.4 – Embedding space visualization of CUB200 test examples of a given number
of classes using Contrastive loss, with and without mixup.

88

4.4. Experiments

like mixup to be even more important than in classification. This is so because, by mixing
examples during training, we are exploring areas of the embedding space beyond the
training classes. We hope that this exploration would possibly lead the model to implicitly
learn a representation more appropriate for the test classes, if the distribution of the test
classes lies near these areas.

Alignment and Uniformity In terms of quantitative measures of properties of the
training and test distributions, we follow [Wang, 2020]. This work introduces two measures
– alignment and uniformity (the lower the better) to be used both as loss functions (on
the training set) and as evaluation metrics (on the test set). Alignment measures the
expected pairwise distance between positive examples in the embedding space. A small
value of alignment indicates that the positive examples are clustered together. Uniformity
measures the (log of the) expected pairwise similarity between all examples regardless of
class, using a Gaussian kernel as similarity. A small value of uniformity indicates that the
distribution is more uniform over the embedding space, which is particularly relevant to
our problem. Meant for contrastive learning, [Wang, 2020] use the same training and test
classes, while in our case they are different.

By training with contrastive loss on CUB200 and then measuring on the test set, we
achieve an alignment (lower the better) of 0.28 for contrastive loss, 0.28 for i-Mix [Lee,
2021] and 0.19 for Metrix/input. MoCHi [Kalantidis, 2020] and Metrix/embed achieve an
alignment of 0.19 and 0.17, respectively. We also obtain a uniformity (lower the better) of
−2.71 for contrastive loss, −2.13 for i-Mix and −3.13 for Metrix/input. The uniformity of
MoCHi and Metrix/embed is −3.18 and −3.25, respectively. This indicates that Metrix
helps obtain a test distribution that is more uniform over the embedding space, where
classes are better clustered and better separated.

Utilization The measures proposed by [Wang, 2020] are limited to a single distribution
or dataset, either the training set (as loss functions) or the test set (as evaluation metrics).
It is more interesting to measure the extent to which a test example, seen as a query, lies
near any of the training examples, clean or mixed. For this, we introduce the measure of
utilization u(Q, X) of the training set X by the test set Q as

u(Q, X) = 1
|Q|

∑
q∈Q

min
x∈X
∥f(q)− f(x)∥2 (4.25)

89

Chapter 4 – Mixup for Deep Metric Learning

Clean train examples
Mixed train examples
Test examples

(a) (b)

𝑑 𝑑

𝑞 𝑞

Figure 4.5 – Exploring the embedding space when using (a) only clean examples (b) clean
and mixed examples. Given a query q, the distance d to its nearest training embedding
(clean or mixed) is smaller with mixup (b) than without (a).

Utilization measures the average, over the test set Q, of the minimum distance of a query
q to a training example x ∈ X in the embedding space of the trained model f (lower is
better). A low value of utilization indicates that there are examples in the training set
that are similar to test examples. When using mixup, we measure utilization as u(Q, X̂),
where X̂ is the augmented training set including clean and mixed examples over a number
of epochs and f remains fixed. Because X ⊂ X̂, we expect u(Q, X̂) < u(Q, X), that is,
the embedding space is better explored in the presence of mixup.

By using contrastive loss on CUB200, utilization drops from 0.41 to 0.32 when using
Metrix. This indicates that test samples are indeed closer to mixed examples than clean in
the embedding space. This validates our hypothesis that a representation more appropriate
for test classes is implicitly learned during exploration of the embedding space in the
presence of mixup.

We provide an illustration of this exploration in Figure 4.5, where we visualize the
embedding space using (a) only clean train examples and (b) clean and mixed train
examples. In case (a), the model is trained using only clean examples, exploring a smaller
area of the embedding space. In case (b), it is trained using both mixed and clean examples,
exploring a larger area. It is clear that the distance between a query and its nearest training
example (clean or mixup) is smaller in the presence of mixup. Utilization is the average of
this distance over the test set. This shows that the model implicitly learns a representation
closer the test example in the presence of mixup during training and it partially explains
why mixup leads to better performance.

90

4.4. Experiments

4.4.5 Ablations

We perform ablations on Cars196 using R-50 with d = 512, applying mixup on con-
trastive loss.

Hard negatives We study the effect of the number k of hard negatives using dif-
ferent mixup types. The set of mixing pairs is chosen from (positive-negative, anchor-
negative) uniformly at random per iteration. We choose k = 3 for input mixup. For fea-
ture/embedding mixup, we mix all pairs in a batch by default, but also study k ∈ {20, 40}.
As shown in Table 4.5, k = 3 for input and all pairs for feature/embedding mixup works
best. Still, using few hard negatives for feature/embedding mixup is on par or outperforms
input mixup. All choices significantly outperform the baseline.

Mixing pairs We study the effect of mixing pairs M(a), in particular, U+(a)2 (positive-
positive), U+(a) × U−(a) (positive-negative) and S(a) × U−(a) (anchor-negative), again
using different mixup types. As shown in Table 4.5, when using a single set of mixing
pairs during training, positive-negative and anchor-negative consistently outperform the
baseline, while positive-positive is actually outperformed by the baseline. This may be
due to the lack of negatives in the mixed loss (4.9), despite the presence of negatives in
the clean loss (4.3). Hence, we only use positive-negative and anchor-negative by default,
combined by choosing uniformly at random in each iteration.

Mixup types We study the effect of mixup type (input, feature, embedding), when
used alone. The set of mixing pairs is chosen from (positive-negative, anchor-negative)
uniformly at random per iteration. As shown in both “hard negatives” and “mixing pairs”
parts of Table 4.5, our default feature mixup works best, followed by embedding and input
mixup.

Mixup type combinations We study the effect of using more than one mixup type
(input, feature, embedding), chosen uniformly at random per iteration. The set of mixing
pairs is also chosen from (positive-negative, anchor-negative) uniformly at random per
iteration. As shown in Table 4.5, mixing inputs, features and embeddings works best.
Although this solution outperforms feature mixup alone by 0.2% Recall@1 (85.1→ 85.3),
it is computationally expensive because of using input mixup. The next best efficient

91

Chapter 4 – Mixup for Deep Metric Learning

Study Hard Negatives k Mixing Pairs Mixup Type R@1 R@2 R@4 R@8

baseline 81.6 88.2 92.7 95.8

1 pos-neg / anc-neg input 82.0 89.1 93.1 96.1
2 pos-neg / anc-neg input 82.5 89.2 93.4 96.2
3 pos-neg / anc-neg input 82.9 89.3 93.7 95.5

20 pos-neg / anc-neg feature 83.5 90.1 94.0 96.5
hard negatives 40 pos-neg / anc-neg feature 84.0 90.4 94.2 96.8

all pos-neg / anc-neg feature 85.1 91.1 94.6 97.0

20 pos-neg / anc-neg embed 82.7 89.2 93.4 96.1
40 pos-neg / anc-neg embed 83.0 90.0 93.8 96.4
all pos-neg / anc-neg embed 83.4 89.9 94.1 96.4

– pos-pos input 81.0 88.2 92.6 95.6
3 pos-neg input 82.4 89.1 93.3 95.6
3 anc-neg input 81.8 89.0 93.6 95.4

– pos-pos feature 81.1 88.3 92.9 95.8
mixing pairs all pos-neg feature 84.0 90.2 94.2 96.6

all anc-neg feature 83.7 90.1 94.4 96.7

– pos-pos embed 78.3 85.7 90.8 94.4
all pos-neg embed 83.1 90.0 93.9 96.6
all anc-neg embed 82.7 89.5 93.5 96.3

{1, all} pos-neg / anc-neg {input, feature} 83.7 94.2 95.9 96.7
mixup type {3, all} pos-neg / anc-neg {input, embed} 83.0 90.9 94.1 96.4
combinations {all, all} pos-neg / anc-neg {feature, embed} 84.7 90.6 94.4 96.9

{1, all, all} pos-neg / anc-neg {input, feature, embed} 85.3 94.9 96.2 97.1

Table 4.5 – Ablation study of our Metrix using contrastive loss and R-50 with embedding
size d = 512 on Cars196. R@K (%): Recall@K; higher is better.

choice is mixing features and embeddings, which however is worse than mixing features
alone (84.7 vs. 85.1). This is why we chose feature mixup by default.

Mixup strength w We study the effect of the mixup strength w in the combination of
the clean and mixed loss (4.10) for different mixup types. As shown in Figure 4.6, mixup
consistently improves the baseline and the effect of w is small, especially for input and
embedding mixup. Feature mixup works best and is slightly more sensitive.

Ablation on CUB200 We perform additional ablations on CUB200 using R-50 with
d = 128 by applying contrastive loss. All results are shown in Table 4.6. One may draw
the same conclusions as from Table 4.5 on Cars196 with d = 512, which confirms that
our choice of hard negatives and mixup pairs is generalizable across different datasets and
embedding sizes.

In particular, following the settings of subsection 4.4.5, we observe in Table 4.6 that
using k = 3 hard negatives for input mixup and all pairs for feature/embedding mixup

92

4.5. Conclusion

0.2 0.4 0.6 0.8 1

80

82

84

86

88

90

mixup strength w

R
ec

al
l@

1

baseline input
embedding feature

Figure 4.6 – Effect of mixup strength for different mixup types using contrastive loss and
R-50 with embedding size d = 512 on Cars196. Recall@K (%): higher is better.

achieves the best performance in terms of Recall@1. Similarly, using a single set of mixing
pairs, positive-negative and anchor-negative consistently outperform the baseline, whereas
positive-positive is inferior than the baseline. Furthermore, combining positive-negative
and anchor-negative pairs by choosing uniformly at random in each iteration achieves the
best overall performance.

We also study the effect of using more than one mixup type (input, feature,embedding),
chosen uniformly at random per iteration. The set of mixing pairs is also chosen from
(positive-negative, anchor-negative) uniformly at random per iteration in this study.
From Table 4.6, we observe that although mixing input, features and embedding works
best with an improvement of 0.8% over feature mixup alone (64.5→ 65.3), it is computa-
tionally expensive due to using input mixup. The next best choice is mixing features and
embeddings, which is worse than using feature mixup alone (64.2 vs. 64.5). This confirms
our choice of using feature mixup as default.

4.5 Conclusion

Based on the argument that metric learning is binary classification of pairs of exam-
ples into “positive” and “negative”, we have introduced a direct extension of mixup from
classification to metric learning. Our formulation is generic, applying to a large class of
loss functions that separate positives from negatives per anchor and involve component
functions that are additive over examples. Those are exactly loss functions that require
less mining. We contribute a principled way of interpolating labels, such that the inter-

93

Chapter 4 – Mixup for Deep Metric Learning

Study Hard Negatives k Mixing Pairs Mixup Type R@1 R@2 R@4 R@8

baseline 61.6 73.7 83.6 90.1

1 pos-neg / anc-neg input 62.4 73.9 83.0 89.7
2 pos-neg / anc-neg input 62.7 74.2 83.6 90.0
3 pos-neg / anc-neg input 63.1 74.5 83.5 90.3

20 pos-neg / anc-neg feature 63.9 75.0 83.9 89.9
hard negatives 40 pos-neg / anc-neg feature 63.5 75.2 83.5 89.8

all pos-neg / anc-neg feature 64.5 75.4 84.3 90.6

20 pos-neg / anc-neg embed 63.1 74.3 83.1 90.0
40 pos-neg / anc-neg embed 63.5 74.7 83.6 90.1
all pos-neg / anc-neg embed 64.0 75.1 84.8 90.9

– pos-pos input 58.7 70.7 80.1 87.1
3 pos-neg input 62.9 75.1 83.4 90.6
3 anc-neg input 62.8 74.7 83.6 90.1

– pos-pos feature 61.0 73.1 82.5 89.7
mixing pairs all pos-neg feature 63.9 75.0 83.9 89.9

all anc-neg feature 63.8 74.8 83.6 90.2

– pos-pos embed 59.7 72.2 82.7 89.5
all pos-neg embed 63.8 75.1 83.3 90.5
all anc-neg embed 63.5 75.0 83.9 90.5

{1, all} pos-neg / anc-neg {input, feature} 63.9 75.1 84.9 90.5
mixup type {3, all} pos-neg / anc-neg {input, embed} 63.4 74.9 84.5 90.1
combinations {all, all} pos-neg / anc-neg {feature, embed} 64.2 75.2 84.1 90.7

{1, all, all} pos-neg / anc-neg {input, feature, embed} 65.3 76.2 84.4 91.2

Table 4.6 – Ablation study of our Metrix using contrastive loss and R-50 with embedding
size d = 128 on CUB200. R@K (%): Recall@K; higher is better.

polation factor affects the relative weighting of positives and negatives. Other than that,
our approach is completely agnostic with respect to the mixup method, opening the way
to using more advanced mixup methods for metric learning.

We consistently outperform baselines using a number of loss functions on a number
of benchmarks and we improve the state of the art using a single loss function on all
benchmarks, while previous state of the art was not consistent in this respect. Surprisingly,
this loss function, multi-similarity [Wang, 2019b], is not the state of the art without mixup.
Since metric learning can be seen to generalize to unseen classes and distributions, our
work may have applications to other such problems, including transfer learning, few-shot
learning and continual learning.

94

Chapter 5

INTERPOLATING BEYOND MINI-BATCH,
BEYOND PAIRS AND BEYOND EXAMPLES

We observe in chapter 4, the effectiveness of mixup in deep metric learning, where
increasing the number of loss terms by interpolating between all pairs of embeddings im-
proves performance without incurring significant computational overhead. This motivates
us to explore the potential of extending mixup further in classification by increasing the
number of interpolated examples generated during training.

This approach aligns with the original motivation of mixup [Zhang, 2018a], which
sought to augment the training data by generating new examples through interpolation.
Augmenting the training data provides a better approximation of the risk integral, po-
tentially leading to improved generalization performance. However, the original mixup
paper [Zhang, 2018a] shows that the convex combination of three or more examples in
the input space does not bring further gain and limits the interpolation between pairs of
examples.

In this chapter, we revisit the initial motivation of mixup and increase the number
of augmented examples through interpolation in the embedding space. Here, we generate
an arbitrarily large number of interpolated examples beyond the mini-batch size, and
interpolate the entire mini-batch in the embedding space. Geometrically, this translates
to interpolating between all points, essentially sampling points on the convex hull of the
mini-batch. On sequence data we further propose to increase the number of loss terms.
We densely interpolate features and target labels at each spatial location and also apply
the loss densely. To mitigate the lack of dense labels, we inherit labels from examples and
weight interpolation factors by attention as a measure of confidence.

Overall, we increase the number of loss terms per mini-batch by orders of magnitude
at little additional cost. This is only possible because of interpolating in the embedding
space. We empirically show that our solutions yield significant improvement over state-
of-the-art mixup methods on four different benchmarks, despite interpolation being only
linear. This effort was presented in the Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS), 2023.

95

https://openreview.net/forum?id=HKueO74ZTB
https://openreview.net/forum?id=HKueO74ZTB

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

5.1 Introduction

Mixup [Zhang, 2018a] is a data augmentation method that interpolates between pairs
of training examples, thus regularizing a neural network to favor linear behavior in-
between examples. Besides improving generalization, it has important properties such
as reducing overconfident predictions and increasing the robustness to adversarial exam-
ples. Several follow-up works have studied interpolation in the latent or embedding space,
which is equivalent to interpolating along a manifold in the input space [Verma, 2019], and
a number of nonlinear and attention-based interpolation mechanisms [Yun, 2019; Kim,
2020a; Kim, 2021b; Uddin, 2021; Chen, 2022]. However, little progress has been made in
the augmentation process itself, i.e., the number n of generated examples and the number
m of examples being interpolated.

Mixup was originally motivated as a way to go beyond empirical risk minimization
(ERM) [Vapnik, 1999] through a vicinal distribution expressed as an expectation over an
interpolation factor λ, which is equivalent to the set of linear segments between all pairs of
training inputs and targets. In practice however, in every training iteration, a single scalar
λ is drawn and the number of interpolated pairs is limited to the size b of the mini-batch
(n = b), as illustrated in Figure 5.1(a). This is because if interpolation takes place in the
input space, it would be expensive to increase the number of pairs per iteration. To our
knowledge, these limitations exist in all mixup methods.

mixed
clean

(a) mixup (b) MultiMix (ours)

Figure 5.1 – Data augmentation in a mini-
batch B of b = 10 points in two dimensions.
(a) mixup: sampling n = b points on linear
segments between b pairs of points using the
same interpolation factor λ. (b) MultiMix :
sampling n = 300 points in the convex hull
of B.

In this work, we argue that a data
augmentation process should increase the
data seen by the model, or at least by its
last few layers, as much as possible. In this
sense, we follow manifold mixup [Verma,
2019] and generalize it in a number of
ways to introduce MultiMix.

First, we increase the number n of gen-
erated examples beyond the mini-batch
size b, by orders of magnitude (n ≫ b).
This is possible by interpolating at the
deepest layer, i.e., just before the classi-
fier, which happens to be the most effec-
tive choice. To our knowledge, we are the

96

5.1. Introduction

Method Space Terms Mixed Fact Distr

Mixup [Zhang, 2018a] input b 2 1 Beta
Manifold mixup [Verma, 2019] embedding b 2 1 Beta
ζ-Mixup [Abhishek, 2022] input b 25 1 RandPerm
SuperMix [Dabouei, 2021a] input b 3 1 Dirichlet

MultiMix (ours) embedding n b n Dirichlet
Dense MultiMix (ours) embedding nr b nr Dirichlet

Table 5.1 – Interpolation method properties. Space: Space where interpolation takes place;
Terms: number of loss terms per mini-batch; Mixed: maximum number m of examples
being interpolated; Fact: number of interpolation factors λ per mini-batch; Distr: distri-
bution used to sample interpolation factors; RandPerm: random permutations of a fixed
discrete probability distribution. b: mini-batch size; n: number of generated examples per
mini-batch; r: spatial resolution.

first to investigate n > b.
Second, we increase the number m of examples being interpolated from m = 2 (pairs)

to m = b (a single tuple containing the entire mini-batch). Effectively, instead of linear
segments between pairs of examples in the mini-batch, we sample on their entire convex
hull as illustrated in Figure 5.1(b). This idea has been investigated in the input space:
the original mixup method [Zhang, 2018a] found it non-effective, while [Dabouei, 2021a]
found it effective only up to m = 3 examples and [Abhishek, 2022] went up to m = 25 but
with very sparse interpolation factors. To our knowledge, we are the first to investigate
m > 2 in the embedding space and to show that it is effective up to m = b.

Third, instead of using a single scalar value of λ per mini-batch, we draw a different
vector λ ∈ Rm for each interpolated example. A single λ works for standard mixup because
the main source of randomness is the choice of pairs (or small tuples) out of b examples.
In our case, because we use a single tuple of size m = b, the only source of randomness
being λ.

We also argue that, what matters more than the number of (interpolated) examples is
the total number of loss terms per mini-batch. A common way to increase the number of
loss terms per example is by dense operations when working on sequence data, e.g. patches
in images or voxels in video. This is common in dense tasks like segmentation [Noh, 2015]
and less common in classification [Kim, 2021a]. We are the first to investigate this idea
in mixup, introducing Dense MultiMix.

In particular, this is an extension of MultiMix where we work with feature tensors of
spatial resolution r and densely interpolate features and targets at each spatial location,

97

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

generating r interpolated features per example and nr > n per mini-batch. We also apply
the loss densely. This increases the number of loss terms further by a factor r, typically one
or two orders of magnitude, compared with MultiMix. Of course, for this to work, we also
need a target label per feature, which we inherit from the corresponding example. This
is a weak form of supervision [Zhou, 2018]. To carefully select the most representative
features per object, we use an attention map representing our confidence in the target
label per spatial location. The interpolation vectors λ are then weighted by attention.

Table 5.1 summarizes the properties of our solutions against existing interpolation
methods. Overall, we make the following contributions:

1. We generate an arbitrary large number of interpolated examples beyond the mini-
batch size, each by interpolating the entire mini-batch in the embedding space, with
one interpolation vector per example. (subsection 5.3.2).

2. We extend to attention-weighted dense interpolation in the embedding space, further
increasing the number of loss terms per example (subsection 5.3.3).

3. We improve over state-of-the-art (SoTA) mixup methods on image classification,
robustness to adversarial attacks, object detection and out-of-distribution detection.
Our solutions have little or no additional cost while interpolation is only linear
(section 5.4).

4. Analysis of the embedding space shows that our solutions yield classes that are
tightly clustered and uniformly spread over the embedding space (section 5.4).

5.2 Related Work

Metric learning Metric learning aims to learn a metric such that positive pairs of ex-
amples are nearby and negative ones are far away. In deep metric learning, we learn an
explicit non-linear mapping from raw input to a low-dimensional embedding space [Oh
Song, 2016], where the Euclidean distance has the desired properties. Although learning
can be unsupervised [Hadsell, 2006], deep metric learning has mostly followed the su-
pervised approach, where positive and negative pairs are defined as having the same or
different class label, respectively [Xing, 2003b].

Loss functions can be distinguished into pair-based and proxy-based [Musgrave, 2020].
Pair-based losses use pairs of examples [Wu, 2017; Hadsell, 2006], which can be defined
over triplets [Wang, 2014; Schroff, 2015; Weinberger, 2009; Hermans, 2017], quadru-
ples [Chen, 2017] or tuples [Sohn, 2016; Oh Song, 2016; Wang, 2019b]. Proxy-based losses

98

5.2. Related Work

use one or more proxies per class, which are learnable parameters in the embedding
space [Movshovitz-Attias, 2017; Qian, 2019; Kim, 2020c; Teh, 2020; Zhu, 2020b]. Pair-
based losses capture data-to-data relations, but they are sensitive to noisy labels and
outliers. They often involve terms where given constraints are satisfied, which produce
zero gradients and do not contribute to training. This necessitates mining of hard exam-
ples that violate the constraints, like semi-hard [Schroff, 2015] and distance weighted [Wu,
2017]. By contrast, proxy-based losses use data-to-proxy relations, assuming proxies can
capture the global structure of the embedding space. They involve less computations that
are more likely to produce nonzero gradient, hence have less or no dependence on mining
and converge faster.

Mixup Input mixup [Zhang, 2018a] linearly interpolates between two or more exam-
ples in the input space for data augmentation. Numerous variants take advantage of the
structure of the input space to interpolate non-linearly, e.g. for images [Yun, 2019; Kim,
2020a; Kim, 2021b; Hendrycks, 2019b; DeVries, 2017b; Qin, 2020; Uddin, 2021]. Man-
ifold mixup [Verma, 2019] interpolates intermediate representations instead, where the
structure is learned. This can be applied to or assisted by decoding back to the input
space [Berthelot, 2018; Liu, 2018a; Beckham, 2019; Zhu, 2020a; Venkataramanan, 2021].
In both cases, corresponding labels are linearly interpolated too. Most studies are limited
to cross-entropy loss for classification. Pairwise loss functions have been under-studied, as
discussed below.

Interpolation for pairwise loss functions As discussed above, interpolating target
labels is not straightforward in pairwise loss functions. In deep metric learning, embed-
ding expansion [Ko, 2020], HDML [Zheng, 2019] and symmetrical synthesis [Gu, 2020]
interpolate pairs of embeddings in a deterministic way within the same class, applying to
pair-based losses, while proxy synthesis [Gu, 2021] interpolates between classes, applying
to proxy-based losses. None performs label interpolation, which means that [Gu, 2021]
risks synthesizing false negatives when the interpolation factor λ is close to 0 or 1.

In contrastive representation learning, MoCHi [Kalantidis, 2020] interpolates anchor
with negative embeddings but not labels and chooses λ ∈ [0, 0.5] to avoid false negatives.
This resembles thresholding of λ at 0.5 in OptTransMix [Zhu, 2020a]. Finally, i-mix [Lee,
2021] and MixCo [Kim, 2020b] interpolate pairs of anchor embeddings as well as their
(virtual) class labels linearly. There is only one positive, while all negatives are clean, so

99

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

it cannot take advantage of interpolation for relative weighting of positives/negatives per
anchor [Wang, 2019b].

By contrast, Metrix is developed for deep metric learning and applies to a large class of
both pair-based and proxy-based losses. It can interpolate inputs, intermediate features or
embeddings of anchors, (multiple) positives or negatives and the corresponding two-class
(positive/negative) labels per anchor, such that relative weighting of positives/negatives
depends on interpolation.

5.3 Method

5.3.1 Preliminaries and background

Problem formulation Let x ∈ X be an input example and y ∈ Y its one-hot encoded
target, where X = RD is the input space, Y = {0, 1}c and c is the total number of classes.
Let fθ : X → Rd be an encoder that maps the input x to an embedding z = fθ(x), where
d is the dimension of the embedding. A classifier gW : Rd → ∆c−1 maps z to a vector
p = gW (z) of predicted probabilities over classes, where ∆n ⊂ Rn+1 is the unit n-simplex,
i.e., p ≥ 0 and 1⊤

c p = 1, and 1c ∈ Rc is an all-ones vector. The overall network mapping
is f := gW ◦ fθ. Parameters (θ, W) are learned by optimizing over mini-batches.

Given a mini-batch of b examples, let X = (x1, . . . , xb) ∈ RD×b be the inputs, Y =
(y1, . . . , yb) ∈ Rc×b the targets and P = (p1, . . . , pb) ∈ Rc×b the predicted probabilities of
the mini-batch, where P = f(X) := (f(x1), . . . , f(xb)). The objective is to minimize the
cross-entropy

H(Y, P) := −1⊤
c (Y ⊙ log(P))1b/b (5.1)

of predicted probabilities P relative to targets Y averaged over the mini-batch, where ⊙
is the Hadamard (element-wise) product. In summary, the mini-batch loss is

L(X, Y ; θ, W) := H(Y, gW (fθ(X))). (5.2)

The total number of loss terms per mini-batch is b.

Mixup Mixup methods commonly interpolate pairs of inputs or embeddings and the
corresponding targets at the mini-batch level while training. Given a mini-batch of b

100

5.3. Method

examples with inputs X and targets Y , let Z = (z1, . . . , zb) ∈ Rd×b be the embeddings
of the mini-batch, where Z = fθ(X). Manifold mixup [Verma, 2019] interpolates the
embeddings and targets by forming a convex combination of the pairs with interpolation
factor λ ∈ [0, 1]:

Z̃ = Z(λI + (1− λ)Π) (5.3)

Ỹ = Y (λI + (1− λ)Π), (5.4)

where λ ∼ Beta(α, α), I is the identity matrix and Π ∈ Rb×b is a permutation matrix.
Input mixup [Zhang, 2018a] interpolates inputs rather than embeddings:

X̃ = X(λI + (1− λ)Π). (5.5)

Whatever the interpolation method and the space where it is performed, the interpo-
lated data, e.g. X̃ [Zhang, 2018a] or Z̃ [Verma, 2019], replaces the original mini-batch
data and gives rise to predicted probabilities P̃ = (p1, . . . , pb) ∈ Rc×b over classes, e.g.
P̃ = f(X̃) [Zhang, 2018a] or P̃ = gW (Z̃) [Verma, 2019]. Then, the average cross-entropy
H(Ỹ , P̃) (5.1) between the predicted probabilities P̃ and interpolated targets Ỹ is mini-
mized. The number of generated examples per mini-batch is n = b, same as the original
mini-batch size, and each is obtained by interpolating m = 2 examples. The total number
of loss terms per mini-batch is again b.

5.3.2 MultiMix

Interpolation The number of generated examples per mini-batch is now n≫ b and the
number of examples being interpolated is m = b. Given a mini-batch of b examples with
embeddings Z and targets Y , we draw interpolation vectors λk ∼ Dir(α) for k = 1, . . . , n,
where Dir(α) is the symmetric Dirichlet distribution and λk ∈ ∆m−1, that is, λk ≥ 0 and
1⊤

mλk = 1. We then interpolate embeddings and targets by taking n convex combinations
over all m examples:

Z̃ = ZΛ (5.6)

Ỹ = Y Λ, (5.7)

where Λ = (λ1, . . . , λn) ∈ Rb×n. We thus generalize manifold mixup [Verma, 2019]:

101

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

x1
z1

⊙ norm

a1

⊙

λ

encoder fθ ⊕

z̃

x2
z2

⊙ norm

a2

⊙

1− λ

Figure 5.2 – Dense MultiMix (subsection 5.3.3) for the special case m = 2 (two examples),
n = 1 (one interpolated embedding), r = 9 (spatial resolution 3 × 3). The embeddings
z1, z2 ∈ Rd×9 of input images x1, x2 are extracted by encoder fθ. Attention maps a1, a2 ∈
R9 are extracted (5.9), multiplied element-wise with interpolation vectors λ, (1 − λ) ∈
R9 (5.10) and ℓ1-normalized per spatial position (5.11). The resulting weights are used to
form the interpolated embedding z̃ ∈ Rd×9 as a convex combination of z1, z2 per spatial
position (5.12). Targets are interpolated similarly (5.13).

1. from b to an arbitrary number n ≫ b of generated examples: interpolated embed-
dings Z̃ ∈ Rd×n (5.6) vs. Rd×b in (5.3), targets Ỹ ∈ Rc×n (5.7) vs. Rc×b in (5.4);

2. from pairs (m = 2) to a tuple of length m = b, containing the entire mini-batch:
m-term convex combination (5.6),(5.7) vs. 2-term in (5.3),(5.4), Dirichlet vs. Beta
distribution;

3. from fixed λ across the mini-batch to a different λk for each generated example.

Loss Again, we replace the original mini-batch embeddings Z by the interpolated em-
beddings Z̃ and minimize the average cross-entropy H(Ỹ , P̃) (5.1) between the predicted
probabilities P̃ = gW (Z̃) and the interpolated targets Ỹ (5.7). Compared with (5.2), the
mini-batch loss becomes

LM(X, Y ; θ, W) := H(Y Λ, gW (fθ(X)Λ)). (5.8)

The total number of loss terms per mini-batch is now n≫ b.

5.3.3 Dense MultiMix

We now extend to the case where the embeddings are structured, e.g. in tensors. This
happens e.g. with token vs. sentence embeddings in NLP and patch vs. image embeddings
in vision. It works by removing spatial pooling and applying the loss function densely over

102

5.3. Method

all tokens/patches. The idea is illustrated in Figure 5.2. For the sake of exposition, our
formulation uses sets of matrices grouped either by example or by spatial position. In
practice, all operations are on tensors.

Preliminaries The encoder is now fθ : X → Rd×r, mapping the input x to an embed-
ding z = fθ(x) ∈ Rd×r, where d is the number of channels and r is its spatial resolution—if
there are more than one spatial dimensions, these are flattened.

Given a mini-batch of b examples, we have again inputs X = (x1, . . . , xb) ∈ RD×b and
targets Y = (y1, . . . , yb) ∈ Rc×b. Each embedding zi = fθ(xi) = (z1

i , . . . , zr
i) ∈ Rd×r for

i = 1, . . . , b consists of features zj
i ∈ Rd for spatial position j = 1, . . . , r. We group features

by position in matrices Z1, . . . , Zr, where Zj = (zj
1, . . . , zj

b) ∈ Rd×b for j = 1, . . . , r.

Attention In the absence of dense targets, each spatial location inherits the target of
the corresponding input example. This is weak supervision, because the target object is
not visible everywhere. To select the most reliable locations, we define a level of confidence
according to an attention map. Given an embedding z ∈ Rd×r with target y ∈ Y and a
vector u ∈ Rd, the attention map

a = h(z⊤u) ∈ Rr (5.9)

measures the similarity of features of z to u, where h is a non-linearity, e.g. softmax
or ReLU followed by ℓ1 normalization. There are different ways to define vector u. For
example, u = z1r/r by global average pooling (GAP) of z, or u = Wy assuming a linear
classifier with W ∈ Rd×c, similar to class activation mapping (CAM) [Zhou, 2016]. In case
of no attention, a = 1r/r is uniform.

Given a mini-batch, let ai = (a1
i , . . . , ar

i) ∈ Rr be the attention map of embedding
zi (5.9) for i = 1, . . . , b. We group attention by position in vectors a1, . . . , ar, where
aj = (aj

1, . . . , aj
b) ∈ Rb for j = 1, . . . , r. Figure 5.6 in the supplementary shows the

attention obtained by (5.9). We observe high confidence on the entire or part of the object.
Where confidence is low, we assume the object is not visible and thus the corresponding
interpolation factor should be low.

Interpolation There are again n≫ b generated examples per mini-batch, with m = b

examples being densely interpolated. For each spatial position j = 1, . . . , r, we draw
interpolation vectors λj

k ∼ Dir(α) for k = 1, . . . , n and define Λj = (λj
1, . . . , λj

n) ∈ Rm×n.

103

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

Since input examples are assumed to contribute according to the attention vector aj ∈ Rm,
we scale the rows of Λj accordingly and normalize its columns back to ∆m−1 to define
convex combinations:

M j = diag(aj)Λj (5.10)

M̂ j = M j diag(1⊤
mM j)−1 (5.11)

We then interpolate embeddings and targets by taking n convex combinations over m

examples:

Z̃j = ZjM̂ j (5.12)

Ỹ j = Y M̂ j. (5.13)

This is similar to (5.6),(5.7), but there is a different interpolated embedding matrix Z̃j ∈
Rd×n as well as target matrix Ỹ j ∈ Rc×n per position, even though the original target
matrix Y is one. The total number of interpolated features and targets per mini-batch is
now nr.

Classifier The classifier is now gW : Rd×r → Rc×r, maintaining the same spatial reso-
lution as the embedding and generating one vector of predicted probabilities per spatial
position. This is done by removing average pooling or any down-sampling operation. The
interpolated embeddings Z̃1, . . . , Z̃r (5.12) are grouped by example into z̃1, . . . , z̃n ∈ Rd×r,
mapped by gW to predicted probabilities p̃1, . . . , p̃n ∈ Rc×r and grouped again by position
into P̃ 1, . . . , P̃ r ∈ Rc×n.

In the simple case where the original classifier is linear, i.e. W ∈ Rd×c, it is seen as
1× 1 convolution and applied densely to each column (feature) of Z̃j for j = 1, . . . , r.

Loss Finally, we learn parameters θ, W by minimizing the weighted cross-entropy H(Ỹ j, P̃ j; s)
of P̃ j relative to the interpolated targets Ỹ j again densely at each position j, where

H(Y, P ; s) := −1⊤
c (Y ⊙ log(P))s/(1⊤

n s) (5.14)

generalizes (5.1) and the weight vector is defined as s = 1⊤
mM j ∈ Rn. This is exactly the

vector used to normalize the columns of M j in (5.11). The motivation is that the columns
of M j are the original interpolation vectors weighted by attention: A small ℓ1 norm indi-

104

5.4. Experiments

cates that for the given position j, we are sampling from examples of low attention, hence
the loss is to be discounted. The total number of loss terms per mini-batch is now nr.

5.4 Experiments

5.4.1 Setup

We use a mini-batch of size b = 128 examples in all experiments. Following manifold
mixup [Verma, 2019], for every mini-batch, we apply MultiMix with probability 0.5 or in-
put mixup otherwise. For MultiMix, the default settings are given in subsection 4.4.5. We
use PreActResnet-18 (R-18) [He, 2016b] and WRN16-8 [Zagoruyko, 2016b] as encoder on
CIFAR-10 and CIFAR-100 datasets [Krizhevsky, 2009]; R-18 on TinyImagenet [Yao, 2015]
(TI); and Resnet-50 (R-50) and ViT-S/16 [Dosovitskiy, 2021] on ImageNet [Russakovsky,
2015]. To better understand the effect of mixup in ViT, we evaluate MultiMix and Dense
MultiMix on ImageNet without using strong augmentations like Auto-Augment [Cubuk,
2018], Rand-Augment [Cubuk, 2020], random erasing [Zhong, 2020] and CutMix [Yun,
2019]. We reproduce TransMix [Chen, 2022] and TokenMix [Liu, 2022a] using these set-
tings.

Settings and hyperparameters We train MultiMix and Dense MultiMix with mixed
examples only. We use a mini-batch of size b = 128 examples in all experiments. Following
Manifold Mixup [Verma, 2019], for every mini-batch, we apply MultiMix with probability
0.5 or input mixup otherwise. For input mixup, we interpolate the standard m = b

pairs (5.5). For MultiMix, we use the entire network as the encoder fθ by default, except
for the last fully-connected layer, which we use as classifier gW . We use n = 1000 tuples
and draw a different α ∼ U [0.5, 2.0] for each example from the Dirichlet distribution by
default. For multi-GPU experiments, all training hyperparameters including m and n are
per GPU.

For Dense MultiMix, the spatial resolution is r = 4 × 4 = 16 on CIFAR-10/100 and
r = 7 × 7 = 49 on Imagenet by default. We obtain the attention map by (5.9) using
GAP for vector u and ReLU followed by ℓ1 normalization as non-linearity h by default.
To predict class probabilities and compute the loss densely, we use the classifier gW as
1 × 1 convolution by default; when interpolating at earlier layers, we follow the process
described in subsection 5.3.3.

105

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

CIFAR-10/100 training Following the experimental settings of AlignMixup [Venkatara-
manan, 2021], we train MultiMix and its variants using SGD for 2000 epochs using the
same random seed as AlignMixup. We set the initial learning rate to 0.1 and decay it by
a factor of 0.1 every 500 epochs. The momentum is set to 0.9 and the weight decay to
0.0001. We use a batch size b = 128 and train on a single NVIDIA RTX 2080 TI GPU
for 10 hours.

TinyImageNet training Following the experimental settings of PuzzleMix [Kim, 2020a],
we train MultiMix and its variants using SGD for 1200 epochs, using the same random
seed as AlignMixup. We set the initial learning rate to 0.1 and decay it by a factor of 0.1
after 600 and 900 epochs. The momentum is set to 0.9 and the weight decay to 0.0001.
We train on two NVIDIA RTX 2080 TI GPUs for 18 hours.

ImageNet training Following the experimental settings of PuzzleMix [Kim, 2020a], we
train MultiMix and its variants using the same random seed as AlignMixup. We train R-
50 using SGD with momentum 0.9 and weight decay 0.0001 and ViT-S/16 using AdamW
with default parameters. The initial learning rate is set to 0.1 and 0.01, respectively. We
decay the learning rate by 0.1 at 100 and 200 epochs. We train on 32 NVIDIA V100 GPUs
for 20 hours.

Tasks and metrics We use top-1 accuracy (%, higher is better) and top-1 error (%,
lower is better) as evaluation metrics on image classification and robustness to adversarial
attacks (subsection 5.4.2). Additional datasets and metrics are reported separately for
transfer learning to object detection (subsection 5.4.3) and out-of-distribution detection
(subsection 5.4.4)

5.4.2 Results: Image classification and robustness

Image classification In Table 5.2 we observe that MultiMix and Dense MultiMix al-
ready outperform SoTA on all datasets except CIFAR-10 with R-18, where they are on
par with Co-Mixup. Dense MultiMix improves over vanilla MultiMix and its effect is com-
plementary on all datasets. On TI for example, Dense MultiMix improves over MultiMix
by 1.33% and SoTA by 1.59%.

In Table 5.3 we observe that on ImageNet with R-50, vanilla MultiMix outperforms
all methods except AlignMixup. Dense MultiMix outperforms all SoTA with both R-50

106

5.4. Experiments

Dataset Cifar-10 Cifar-100 TI
Network R-18 W16-8 R-18 W16-8 R-18

Baseline† 95.41±0.02 94.93±0.06 76.69±0.26 78.80±0.55 56.49±0.21
Input mixup [Zhang, 2018a]† 95.98±0.10 96.18±0.06 79.39±0.40 80.16±0.1 56.60±0.16
CutMix [Yun, 2019]† 96.79±0.04 96.48±0.04 80.56±0.09 80.25±0.41 56.87±0.39
Manifold mixup [Verma, 2019]† 97.00±0.05 96.44±0.02 80.00±0.34 80.77±0.26 59.31±0.49
PuzzleMix [Kim, 2020a]† 97.04±0.04 97.00±0.03 79.98±0.05 80.78±0.23 63.52±0.42
AugMix⋆ [Hendrycks, 2019b] 96.67±0.05 – 80.10±0.03 – –
Co-Mixup [Kim, 2021b]† 97.10±0.03 96.44±0.08 80.28±0.13 80.39±0.34 64.12±0.43
SaliencyMix [Uddin, 2021]† 96.94±0.05 96.27±0.05 80.36±0.56 80.29±0.05 66.14±0.51
StyleMix [Hong, 2021]† 96.25±0.04 96.27±0.04 80.01±0.79 79.77±0.17 63.88±0.27
StyleCutMix [Hong, 2021]† 96.94±0.05 96.95±0.04 80.67±0.07 80.79±0.04 66.55±0.13
SuperMix [Dabouei, 2021a]‡ 96.03±0.05 96.13±0.05 79.07±0.26 79.42±0.05 64.43±0.39
AlignMixup [Venkataramanan, 2021]† 97.06±0.04 96.91±0.01 81.71±0.07 81.24±0.02 66.85±0.07
ζ-Mixup [Abhishek, 2022]⋆ 96.26±0.04 96.35±0.04 80.46±0.26 79.73±0.15 63.18±0.14

MultiMix (ours) 97.07±0.03 97.06±0.02 81.82±0.04 81.44±0.03 67.11±0.04
Dense MultiMix (ours) 97.09±0.02 97.09±0.02 81.93±0.04 81.77±0.03 68.44±0.05

Gain -0.01 +0.09 +0.22 +0.53 +1.59

Table 5.2 – Image classification on CIFAR-10/100 and TI (TinyImagenet). Top-1 ac-
curacy (%): higher is better. R: PreActResnet, W: WRN. ⋆: reproduced, †: reported by
AlignMixup, ‡: reproduced with same teacher and student model. Bold black: best; Blue:
second best; underline: best baseline. Gain: improvement over best baseline.

and ViT-S/16, bringing an overall gain of 3% over the baseline with R-50 and 2.2% with
ViT-S/16. The gain over AlignMixup with R-50 is small, but it is impressive that it comes
with only linear interpolation. To better isolate the effect of each method, we reproduce
TransMix [Chen, 2022] and TokenMix [Liu, 2022a] with ViT-S/16 using their official code
with our settings, i.e., without strong regularizers like CutMix, Auto-Augment, Random-
Augment etc. MultiMix is on par, while Dense MultiMix outperforms them by 1%.

Training speed Table 5.3 also shows the training speed as measured on NVIDIA V-100
GPU including forward and backward pass. The vanilla MultiMix has nearly the same
speed with the baseline, bringing an accuracy gain of 2.49% with R-50. Dense MultiMix
is slightly slower, increasing the gain to 3.10%. The inference speed is the same for all
methods.

Robustness to adversarial attacks We follow the experimental settings of Align-
Mixup [Venkataramanan, 2021] and use 8/255 l∞ ϵ-ball for FGSM [Goodfellow, 2015]
and 4/255 l∞ ϵ-ball with step size 2/255 for PGD [Madry, 2018] attack. In Table 5.4 we
observe that MultiMix is already more robust than SoTA on all datasets and settings.
Dense MultiMix also increases the robustness and is complementary.

107

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

Network Resnet-50 ViT-S/16
Method Speed Acc Speed Acc

Baseline† 1.17 76.32 1.01 73.9
Input mixup [Zhang, 2018a]† 1.14 77.42 0.99 74.1
CutMix [Yun, 2019]† 1.16 78.60 0.99 74.2
Manifold mixup [Verma, 2019]† 1.15 77.50 0.97 74.2
PuzzleMix [Kim, 2020a]† 0.84 78.76 0.73 74.7
AugMix [Hendrycks, 2019b]⋆ 1.12 77.70 – –
Co-Mixup [Kim, 2021b]† 0.62 – 0.57 74.9
SaliencyMix [Uddin, 2021]† 1.14 78.74 0.96 74.8
StyleMix [Hong, 2021]† 0.99 75.94 0.85 74.8
StyleCutMix [Hong, 2021]† 0.76 77.29 0.71 74.9
SuperMix [Dabouei, 2021a]‡ 0.92 77.60 – –
TransMix [Chen, 2022]⋆ – – 1.01 75.1
TokenMix [Liu, 2022a]⋆ – – 0.87 75.3
AlignMixup [Venkataramanan, 2021]† 1.03 79.32 – –

MultiMix (ours) 1.16 78.81 0.98 75.2
Dense MultiMix (ours) 0.95 79.42 0.88 76.1

Gain +0.1 +1.2

Table 5.3 – Image classification and training speed on ImageNet. Top-1 accuracy (%):
higher is better. Speed: images/sec (×103): higher is better. †: reported by AlignMixup;
⋆: reproduced; ‡: reproduced with same teacher and student model. Bold black: best;
Blue: second best; underline: best baseline. Gain: improvement over best baseline.

The overall gain is more impressive than in classification according to Table 5.2. For
example, against the strong PGD attack on CIFAR-10 with W16-8, the SoTA Co-Mixup
improves the baseline by 3.8% while Dense MultiMix improves it by 7.3%, which is dou-
ble. MultiMix and Dense MultiMix outperform Co-Mixup and PuzzleMix by 3-6% in
robustness on CIFAR-10, even though they are on-par on classification. There is also a
significant gain over SoTA AlignMixup by 1-3% in robustness to FGSM on TinyImageNet
and to the stronger PGD.

5.4.3 Results: Transfer learning to object detection

We evaluate the effect of mixup on the generalization ability of a pre-trained network
to object detection as a downstream task. Following the settings of CutMix [Yun, 2019], we
pre-train R-50 on ImageNet with mixup methods and use it as the backbone for SSD [Liu,
2016a] with fine-tuning on Pascal VOC07+12 [Everingham, 2010] and Faster-RCNN [Ren,
2015] with fine-tuning on MS-COCO [Lin, 2014].

108

5.4. Experiments

A
tt

ac
k

FG
SM

PG
D

D
at

as
et

C
if

ar
-1

0
C

if
ar

-1
00

T
I

C
if

ar
-1

0
C

if
ar

-1
00

N
et

w
or

k
R

-1
8

W
16

-8
R

-1
8

W
16

-8
R

-1
8

R
-1

8
W

16
-8

R
-1

8
W

16
-8

B
as

el
in

e†
88

.8
±

0.
11

88
.3

±
0.

33
87

.2
±

0.
10

72
.6

±
0.

22
91

.9
±

0.
06

99
.9

±
0.

0
99

.9
±

0.
01

99
.9

±
0.

01
99

.9
±

0.
01

In
pu

t
m

ix
up

[Z
ha

ng
,2

01
8a

]†
79

.1
±

0.
07

79
.1

±
0.

12
81

.4
±

0.
23

67
.3

±
0.

06
88

.7
±

0.
08

99
.7

±
0.

02
99

.4
±

0.
01

99
.9

±
0.

01
99

.3
±

0.
02

C
ut

M
ix

[Y
un

,2
01

9]
†

77
.3

±
0.

06
78

.3
±

0.
05

86
.9

±
0.

06
60

.2
±

0.
04

88
.6

±
0.

03
99

.8
±

0.
03

98
.1

±
0.

02
98

.6
±

0.
01

97
.9

±
0.

01

M
an

ifo
ld

m
ix

up
[V

er
m

a,
20

19
]†

76
.9

±
0.

14
76

.0
±

0.
04

80
.2

±
0.

06
56

.3
±

0.
10

89
.3

±
0.

06
97

.2
±

0.
01

98
.4

±
0.

03
99

.6
±

0.
01

98
.4

±
0.

03

Pu
zz

le
M

ix
[K

im
,2

02
0a

]†
57

.4
±

0.
22

60
.7

±
0.

02
78

.8
±

0.
09

57
.8

±
0.

03
83

.8
±

0.
05

97
.7

±
0.

01
97

.0
±

0.
01

96
.4

±
0.

02
95

.2
±

0.
03

A
ug

M
ix

[H
en

dr
yc

ks
,2

01
9b

]⋆
58

.2
±

0.
02

–
79

.1
±

0.
04

–
–

98
.2

±
0.

01
–

96
.3

±
0.

02
–

C
o-

M
ix

up
[K

im
,2

02
1b

]†
60

.1
±

0.
05

58
.8

±
0.

10
77

.5
±

0.
02

56
.5

±
0.

04
–

97
.5

±
0.

02
96

.1
±

0.
03

95
.3

±
0.

03
94

.2
±

0.
01

Sa
lie

nc
yM

ix
[U

dd
in

,2
02

1]
†

57
.4

±
0.

08
68

.0
±

0.
05

77
.8

±
0.

10
58

.1
±

0.
06

81
.1

±
0.

06
97

.4
±

0.
03

97
.0

±
0.

04
95

.6
±

0.
03

93
.7

±
0.

05

St
yl

eM
ix

[H
on

g,
20

21
]†

80
.0

±
0.

23
71

.2
±

0.
21

80
.6

±
0.

15
68

.2
±

0.
17

85
.1

±
0.

16
98

.1
±

0.
09

97
.5

±
0.

07
98

.3
±

0.
09

98
.3

±
0.

09

St
yl

eC
ut

M
ix

[H
on

g,
20

21
]†

57
.7

±
0.

04
56

.0
±

0.
07

77
.4

±
0.

05
56

.8
±

0.
03

80
.5

±
0.

04
97

.8
±

0.
04

96
.7

±
0.

02
91

.8
±

0.
01

93
.7

±
0.

01

Su
pe

rM
ix

[D
ab

ou
ei

,2
02

1a
]‡

60
.0

±
0.

11
58

.2
±

0.
12

78
.8

±
0.

13
58

.3
±

0.
19

81
.1

±
0.

12
97

.6
±

0.
02

97
.2

±
0.

09
91

.4
±

0.
03

92
.7

±
0.

01

A
lig

nM
ix

up
[V

en
ka

ta
ra

m
an

an
,2

02
1]

†
54

.8
±

0.
03

56
.0

±
0.

05
74

.1
±

0.
04

55
.0

±
0.

03
78

.8
±

0.
03

95
.3

±
0.

04
96

.7
±

0.
03

90
.4

±
0.

01
92

.1
±

0.
03

ζ
-M

ix
up

[A
bh

ish
ek

,2
02

2]
⋆

72
.8

±
0.

23
67

.3
±

0.
24

75
.3

±
0.

21
68

.0
±

0.
21

84
.7

±
0.

18
98

.0
±

0.
06

98
.6

±
0.

03
97

.4
±

0.
10

96
.1

±
0.

10

M
ul

tiM
ix

(o
ur

s)
54

.1
±

0
.0

9
55

.3
±

0.
04

73
.8

±
0.

04
54

.5
±

0.
01

77
.5

±
0.

01
94

.2
±

0.
04

94
.8

±
0.

01
90

.0
±

0.
01

91
.6

±
0.

01

D
en

se
M

ul
tiM

ix
(o

ur
s)

54
.1

±
0

.0
1

53
.3

±
0

.0
3

73
.5

±
0

.0
3

52
.9

±
0

.0
4

75
.5

±
0

.0
4

92
.9

±
0

.0
4

92
.6

±
0

.0
1

88
.6

±
0

.0
3

90
.8

±
0

.0
1

G
ai

n
+

0.
7

+
2.

7
+

0.
6

+
2.

1
+

3.
3

+
2.

4
+

3.
5

+
1.

4
+

1.
3

Table 5.4 – Robustness to FGSM & PGD attacks. Top-1 error (%): lower is better. ⋆:
reproduced, †: reported by AlignMixup. ‡: reproduced, same teacher and student model.
Bold black: best; Blue: second best; underline: best baseline. Gain: reduction of error
over best baseline. TI: TinyImagenet. R: PreActResnet, W: WRN.109

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

Dataset VOC07+12 MS-COCO
Detector SSD Speed FR-CNN Speed
Baseline† 76.7 9.7 33.27 23.6
Input mixup† 76.6 9.5 34.18 22.9
CutMix† 77.6 9.4 35.16 23.2
AlignMixup† 78.4 8.9 35.84 20.4
MultiMix (ours) 77.9 9.6 35.93 23.2
Dense MultiMix (ours) 79.2 8.8 36.19 19.8
Gain +0.8 +0.35

Table 5.5 – Transfer learning to object detection. Mean average precision (mAP, %): higher
is better. †: reported by AlignMixup. Bold black: best; Blue: second best; underline: best
baseline. Gain: increase in mAP. Speed: images/sec: higher is better.

Metric ECE OE
Baseline 10.25 1.11
Input Mixup [Zhang, 2018a] 18.50 1.42
Manifold Mixup [Verma, 2019] 18.41 0.79
CutMix [Yun, 2019] 7.60 1.05
PuzzleMix [Kim, 2020a] 8.22 0.61
Co-Mixup [Kim, 2021b] 5.83 0.55
AlignMixup [Venkataramanan, 2021] 5.78 0.41
MultiMix (ours) 5.63 0.39
Dense MultiMix (ours) 5.28 0.27

Table 5.6 – Model calibration using R-18 on CIFAR-100. ECE: expected calibration error;
OE: overconfidence error. Lower is better.

In Table 5.5, we observe that, while MultiMix is slightly worse than AlignMixup on
Pascal VOC07+12, Dense MultiMix brings improvements over the SoTA on both datasets
and is still complementary. This is consistent with classification results. Dense MultiMix
brings a gain of 0.8 mAP on Pascal VOC07+12 and 0.35 mAP on MS-COCO.

5.4.4 Reducing overconfidence

Model calibration A standard way to evaluate over-confident predictions is to measure
model calibration. We assess model calibration using MultiMix and Dense MultiMix on
CIFAR-100. We report mean calibration error (mCE) and overconfidence error (OE)

110

5.4. Experiments

Task Out-Of-Distribution Detection

Dataset LSUN (crop) iSUN TI (crop)

Metric Det AuROC AuPR AuPR Det AuROC AuPR AuPR Det AuROC AuPR AuPR
Acc (ID) (OOD) Acc (ID) (OOD) Acc (ID) (OOD)

Baseline† 54.0 47.1 54.5 45.6 66.5 72.3 74.5 69.2 61.2 64.8 67.8 60.6
Input mixup [Zhang, 2018a]† 57.5 59.3 61.4 55.2 59.6 63.0 60.2 63.4 58.7 62.8 63.0 62.1
Cutmix [Yun, 2019]† 63.8 63.1 61.9 63.4 67.0 76.3 81.0 77.7 70.4 84.3 87.1 80.6
Manifold mixup [Verma, 2019]† 58.9 60.3 57.8 59.5 64.7 73.1 80.7 76.0 67.4 69.9 69.3 70.5
PuzzleMix [Kim, 2020a]† 64.3 69.1 80.6 73.7 73.9 77.2 79.3 71.1 71.8 76.2 78.2 81.9
AugMix [Hendrycks, 2019b]⋆ 62.9 73.2 80.8 72.6 68.2 78.7 81.1 74.1 71.4 83.9 84.6 78.6
Co-Mixup [Kim, 2021b]† 70.4 75.6 82.3 70.3 68.6 80.1 82.5 75.4 71.5 84.8 86.1 80.5
SaliencyMix [Uddin, 2021]† 68.5 79.7 82.2 64.4 65.6 76.9 78.3 79.8 73.3 83.7 87.0 82.0
StyleMix [Hong, 2021]† 62.3 64.2 70.9 63.9 61.6 68.4 67.6 60.3 67.8 73.9 71.5 78.4
StyleCutMix [Hong, 2021]† 70.8 78.6 83.7 74.9 70.6 82.4 83.7 76.5 75.3 82.6 82.9 78.4
SuperMix [Dabouei, 2021a]‡ 70.9 77.4 80.1 72.3 71.0 76.8 79.6 76.7 75.1 82.8 82.5 78.6
AlignMixup [Venkataramanan, 2021]† 74.2 79.9 84.1 75.1 72.8 83.2 84.1 80.3 77.2 85.0 87.8 85.0
ζ-Mixup [Abhishek, 2022]⋆ 68.1 73.2 80.8 73.1 72.2 82.3 82.2 79.4 74.4 84.3 82.2 77.2

MultiMix (ours) 79.2 82.6 85.2 77.6 75.6 85.1 87.8 83.1 78.3 86.6 89.0 88.2
Dense MultiMix (ours) 80.8 84.3 85.9 78.0 76.8 85.4 88.0 84.6 81.4 89.0 90.8 88.0

Gain +6.6 +4.4 +1.8 +2.9 +2.9 +2.2 +3.9 +4.3 +4.2 +4.0 +3.0 +3.2

Table 5.7 – Out-of-distribution detection using R-18. Det Acc (detection accuracy), Au-
ROC, AuPR (ID) and AuPR (OOD): higher is better. ⋆: reproduced, †: reported by
AlignMixup. ‡: reproduced, same teacher and student model. Bold black: best; Blue:
second best; underline: best baseline. Gain: increase in performance. TI: TinyImagenet.

in Table 5.6. MultiMix has lower error than all SoTA methods and Dense MultiMix even
lower.

Out-of-distribution detection This is another standard way to evaluate over-confidence.
Here, in-distribution (ID) are examples on which the network has been trained, and out-
of-distribution (OOD) are examples drawn from any other distribution. Given a mixture
of ID and OOD examples, the network should predict an ID example with high confi-
dence and an OOD example with low confidence, i.e., the confidence of the predicted
class should be below a certain threshold.

Following AlignMixup [Venkataramanan, 2021], we compare MultiMix and its vari-
ants with SoTA methods trained using R-18 on CIFAR-100 as ID examples, while using
LSUN [Yu, 2015], iSUN [Xiao, 2010] and TI to draw OOD examples. We use detection
accuracy, Area under ROC curve (AuROC) and Area under precision-recall curve (AuPR)
as evaluation metrics. In Table 5.7, we observe that MultiMix and Dense MultiMix outper-
form SoTA on all datasets and metrics by a large margin. Although the gain of MultiMix
and Dense MultiMix over SoTA mixup methods is small on image classification, they
significantly reduce over-confident incorrect predictions and achieve superior performance
on out-of-distribution detection.

111

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

Domain Clipart Real-World Product Art
DAML [Shu, 2021] 45.13 65.99 61.54 53.13
MultiMix (ours) 46.01 66.59 60.99 54.58
Dense MultiMix (ours) 46.32 66.87 62.28 56.01

Table 5.8 – Generalizing to unseen domains. Image classification using R-18 on Office-
Home dataset [Venkateswara, 2017] under the open-domain setting, using the official
settings of DAML [Shu, 2021]. Accuracy (%): higher is better.

Baseline AlignMixup MultiMix (ours) Dense MultiMix (ours)

Figure 5.3 – Embedding space visualization for 100 test examples per class of 10 randomly
chosen classes of CIFAR-100 with PreActResnet-18, using UMAP [McInnes, 2018].

5.4.5 Generalizing to unseen domains

We evaluate the ability of MultiMix and Dense MultiMix to generalize to unseen
domains on the Office-Home dataset [Venkateswara, 2017] under the open-domain setting,
using the official settings of DAML [Shu, 2021]. Table 5.8 shows that, while both MultiMix
and DAML use the Dirichlet distribution to sample interpolation weights, MultiMix and
Dense MultiMix generalize to unseen domains better than DAML. We hypothesize this
is due to sampling an arbitrarily large number of samples. In addition, Dense MultiMix
brings significant gain, up to nearly 3%.

5.4.6 Analysis of the embedding space

Qualitative analysis We qualitatively analyze the embedding space on 10 CIFAR-100
classes in Figure 5.3. We observe that the quality of embeddings of the baseline is ex-
tremely poor with severely overlapping classes, which explains its poor performance on
image classification. All mixup methods result in clearly better clustered and more uni-
formly spread classes. AlignMixup [Venkataramanan, 2021] yields five somewhat clustered
classes and five moderately overlapping ones. Our best setting, i.e., Dense MultiMix, re-

112

5.4. Experiments

sults in five tightly clustered classes and another five somewhat overlapping but less than
all competitors.

Quantitative analysis We also quantitatively assess the embedding space on the CIFAR-
100 test set using alignment and uniformity [Wang, 2020]. Alignment measures the ex-
pected pairwise distance of examples in the same class. Lower alignment indicates that
the classes are more tightly clustered. Uniformity measures the (log of the) expected pair-
wise similarity of all examples using a Gaussian kernel as a similarity function. Lower
uniformity indicates that classes are more uniformly spread in the embedding space.

On CIFAR-100, we obtain alignment 3.02 for baseline, 2.04 for AlignMixup, 1.27 for
MultiMix and 0.92 for Dense MultiMix. We also obtain uniformity -1.94 for the baseline,
-2.38 for AlignMixup [Venkataramanan, 2021], -4.77 for MultiMix and -5.68 for Dense
MultiMix. These results validate the qualitative analysis of Figure 5.3.

5.4.7 Manifold intrusion

Manifold intrusion [Guo, 2019b] can occur when mixed examples are close to classes
other than the ones being interpolated in the embedding space. To evaluate for manifold
intrusion, we define the intrusion distance (ID) as the minimum distance of a mixed
embedding to the clean embeddings of all classes except the ones being interpolated,
averaged over a mini-batch: ID(Z̃, Z) = 1

|Z̃|

∑
z̃∈Z̃

minz∈Z ∥z̃ − z∥2. Here, Z̃ is the set of
mixed embeddings in a mini-batch and Z is the set of clean embeddings from all classes
other than the ones being interpolated in the mini-batch. Intuitively, a larger ID(Z̃, Z)
denotes that mixed embeddings in Z̃ are farther away from the manifold of other classes
in Z, thereby preventing manifold intrusion.

Averaged over the training set of CIFAR-100 using Resnet-18, the intrusion distance
is 0.46 for Input Mixup, 0.47 for Manifold Mixup, 0.45 for AlignMixup, 0.46 for MultiMix
and 0.47 for Dense MultiMix. This is roughly the same for most SoTA mixup methods.
This may be due to the fact that true data occupy only a tiny fraction of the embedding
space, thus generated mixed examples lie in empty space between class-specific manifolds
with high probability. The visualization in Figure 5.3 indeed shows that the embedding
space is sparsely populated, even in two dimensions. This sparsity is expected to grow
exponentially in the number of dimensions, which is in the order of 103.

113

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

MultiMix Dense MultiMix Default Standard

0 0,1 0,2 0,3 0,4

79
80
81
82

(a) Mixing layers

A
cc

ur
ac

y

101 102 103 104 105

80
80.5

81
81.5

82

(b) # mixed examples n

2 25 50 100 128
80

80.5
81

81.5
82

(c) # examples interpolated m

0.5 1 1.5 2

80.5

81

81.5

(d) Dirichlet parameter α

Figure 5.4 – Ablation study on CIFAR-100 using R-18. (a) Interpolation layers (R-18 block;
0: input mixup). (b) Number n of interpolated examples per mini-batch with m = b
(Default) and m = 2 (Standard). (c) Number m of examples being interpolated, with
n = 1000 (Default) and n = 100 (Standard). (d) Fixed value of Dirichlet parameter α.

5.4.8 Ablations

All ablations are performed using R-18 on CIFAR-100. We study the effect of the layer
where we interpolate, the number n of generated examples per mini-batch, the number m

of examples being interpolated and the Dirichlet parameter α. More ablations are given
in the supplementary.

Interpolation layer For MultiMix, we use the entire network as the encoder fθ by
default, except for the last fully-connected layer, which we use as classifier gW . Thus,
we interpolate embeddings in the deepest layer by default. Here, we study the effect of
different decompositions of the network f = gW ◦ fθ, such that interpolation takes place
at a different layer. In Figure 5.4(a), we observe that mixing at the deeper layers of the
network significantly improves performance. The same behavior is observed with Dense
MultiMix, which validates our default choice.

It is interesting that the authors of input mixup [Zhang, 2018a] found that convex
combinations of three or more examples in the input space with weights from the Dirichlet
distribution do not bring further gain. This agrees with the finding of SuperMix [Dabouei,
2021a] for four or more examples. Figure 5.4(a) suggests that further gain emerges when
mixing in deeper layers.

Number n of generated examples per mini-batch This is important since our
aim is to increase the amount of data seen by the model, or at least part of the model.
We observe from Figure 5.4(b) that accuracy increases overall with n and saturates for
n ≥ 1000 for both variants of MultiMix. The improvement is more pronnounced when
m = 2, which is standard for most mixup methods. Our best solution, Dense MultiMix,

114

5.4. Experiments

Method Vanilla Dense

Baseline 76.76 78.16
Input mixup [Zhang, 2018a] 79.79 80.21
CutMix [Yun, 2019] 80.63 81.40
Manifold mixup [Verma, 2019] 80.20 80.87
PuzzleMix [Kim, 2020a] 79.99 80.62
Co-Mixup [Kim, 2021b] 80.19 80.84
SaliencyMix [Uddin, 2021] 80.31 81.21
StyleMix [Hong, 2021] 79.96 80.76
StyleCutMix [Hong, 2021] 80.66 81.41
SuperMix [Dabouei, 2021a]‡ 79.01 80.12
AlignMixup [Venkataramanan, 2021] 81.71 81.36

MultiMix (ours)∗ 81.81 81.84
MultiMix (ours) 81.81 81.88

Table 5.9 – The effect of dense loss. Image classification on CIFAR-100 using R-18. Top-1
accuracy (%): higher is better. ‡: reproduced with same teacher and student model. ∗:
Instead of Dense MultiMix, we only apply the loss densely.

works best at n = 1000 and n = 10, 000. We choose n = 1000 as default, given also that
the training cost increases with n. The training speed as a function of n is given in the
supplementary and is nearly constant for n ≤ 1000.

Number m of examples being interpolated We vary m between 2 (pairs) and b =
128 (entire mini-batch) by using Λ′ ∈ Rm×n drawn from Dirichlet along with combinations
(subsets) over the mini-batch to obtain Λ ∈ Rb×n with m nonzero elements per column
in (5.6),(5.7). We observe in Figure 5.4(c) that for both MultiMix and Dense MultiMix
the performance increases with m. The improvement is more pronnounced when n = 100,
which is similar to the standard setting (n = b = 128) of most mixup methods. Our choice
of m = b = 128 brings an improvement of 1-1.8% over m = 2. We use this as our default
setting.

Dirichlet parameter α Our default setting is to draw α uniformly at random from
[0.5, 2] for every interpolation vector (column of Λ). Here we study the effect of a fixed
value of α. In Figure 5.4(d), we observe that the best accuracy comes with α = 1 for
most MultiMix variants, corresponding to the uniform distribution over the convex hull
of the mini-batch embeddings. However, all measurements are lower than the default
α ∼ U [0.5, 2]. For example, from Table 5.2(a) (CIFAR-100, R-18), Dense MultiMix has
accuracy 81.93, compared with 81.59 in Figure 5.4(d) for α = 1.

115

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

101 102 103 104 105
800

1,000

1,200

1,400

1,600

1,800

tuples n

im
ag

es
/s

ec
Baseline
MultiMix
Dense MultiMix

Figure 5.5 – Training speed (images/sec) of MultiMix and its variants vs. number of tuples
n on CIFAR-100 using R-18. Measured on NVIDIA RTX 2080 TI GPU, including forward
and backward pass.

Mixup methods with dense loss In Table 5.9 we observe that dense interpolation and
dense loss improve MultiMix. Here, we study the effect of the dense loss only when applied
to SoTA mixup methods; dense interpolation is not straightforward or not applicable in
general with other methods.

Given a mini-batch of b examples, we follow the mixup strategy of the SoTA mixup
methods to obtain the mixed embedding Z̃j ∈ Rd×b for each spatial position j = 1, . . . , r.
Then, as discussed in subsection 5.3.3, we obtain the predicted class probabilities P̃ j ∈
Rc×b again for each j = 1, . . . , r. Finally, we compute the cross-entropy loss H(Ỹ , P̃ j) (5.1)
densely at each spatial position j, where the interpolated target label Ỹ ∈ Rc×b is given
by (5.4).

In Table 5.9, we observe that using a dense loss improves the performance of all SoTA
mixup methods. The baseline improves by 1.4% accuracy (76.76 → 78.16) and manifold
mixup by 0.67% (80.20 → 80.87). On average, we observe a gain of 0.7% brought by the
dense loss. An exception is AlignMixup [Venkataramanan, 2021], which drops by 0.35%
(81.71 → 81.36). This may be due to the alignment process, whereby the interpolated
dense embeddings are not very far from the original. MultiMix and Dense MultiMix still
improve the state of the art under this setting.

Training speed In Figure 5.5, we analyze the training speed of MultiMix and Dense
MultiMix as a function of number n of interpolated examples. In terms of speed, MultiMix
is on par with the baseline up to n = 1000, while bringing an accuracy gain of 5%. The best
performing method—Dense MultiMix—is only slower by 10.6% at n = 1000 as compared
to the baseline, which is arguably worth given the impressive 5.12% accuracy gain. Further

116

5.4. Experiments

m 2 25 50 100
Input Mixup [Zhang, 2018a] 77.44 78.29 78.98 79.52
Manifold Mixup [Verma, 2019] 78.63 79.41 79.87 80.32
MultiMix (ours) 80.90 81.30 81.60 81.80

Table 5.10 – Effect of batch size m < 128. Image classification using R-18 on CIFAR-100.
Top-1 accuracy (%): higher is better.

Method u h Acc
Uniform – – 81.33

Attention (5.9)

CAM softmax 81.21
CAM ℓ1 ◦ relu 81.63
GAP softmax 81.78
GAP ℓ1 ◦ relu 81.88

Table 5.11 – Variants of spatial attention in Dense MultiMix. Image classification on
CIFAR-100 using R-18. Top-1 accuracy (%): higher is better. GAP: Global Average Pool-
ing; CAM: Class Activation Maps [Zhou, 2016]; ℓ1 ◦ relu: ReLU followed by ℓ1 normaliza-
tion.

increasing beyond n > 1000 brings a drop in training speed, due to computing Λ and then
using it to interpolate (5.6),(5.7). Because n > 1000 also brings little performance benefit
according to Figure 5.4(b), we set n = 1000 as default for all MultiMix variants.

Using a smaller batch size We compare Input Mixup, Manifold Mixup and MultiMix
for image classification using R-18 on CIFAR-100, with a batch size b < 128. By default,
we use n = 1000 generated examples and m = b examples being interpolated, following
the same experimental settings described in subsection 5.4.1. As shown in Table 5.10, the
increase of MultiMix accuracy with increasing batch size b is similar to the increase with
the number m of examples being interpolated, as observed in Figure 5.4(c). This is to
be expected because, m and b are increasing together. An exhaustive hyper-parameter
sweep could result in a different observation; currently, hyper-parameters are adjusted to
the default choice m = b = 128. We also observe that the performance improvement of
MultiMix over Input or Manifold Mixup is higher for smaller batch size. This may be due
to the ability of MultiMix to draw from a larger pool of interpolated examples.

117

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

Figure 5.6 – Attention visualization. Attention maps obtained by (5.9) with u as GAP and
h as ℓ1 ◦ relu using Resnet-50 on the validation set of ImageNet. The attention localizes
the complete or part of the object with high confidence.

Dense MultiMix: Spatial attention In subsection 5.3.3, we discuss different options
for attention in dense MultiMix. In particular, no attention amounts to defining a uniform
a = 1r/r. Otherwise, a is defined by (5.9). The vector u can be defined as u = z1r/r by
global average pooling (GAP) of z, which is the default, or u = Wy assuming a linear
classifier with W ∈ Rd×c. The latter is similar to class activation mapping (CAM) [Zhou,
2016], but here the current value of W is used online while training. The non-linearity
h can be softmax or ReLU followed by ℓ1 normalization (ℓ1 ◦ relu), which is the default.
Here, we study the affect of these options on the performance of dense Multimix.

In Table 5.11, we observe that using GAP for u and ℓ1 ◦ relu as h yields the best
performance overall. Changing GAP to CAM or ℓ1 ◦ relu to softmax is inferior. The
combination of CAM with softmax is the weakest, even weaker than uniform attention.
CAM may fail because of using the non-optimal value of W while training; softmax
may fail because of being too selective. Compared to our best setting, uniform attention
is clearly inferior, by nearly 0.6%. This validates that the use of spatial attention in
dense MultiMix is clearly beneficial. Our intuition is that in the absence of dense targets,
assuming the same target of the entire example at every spatial position naively implies
that the object of interest is present everywhere, whereas spatial attention provides a
better hint as to where the object may really be.

We validate this hypothesis in Figure 5.6, where we visualize the attention maps
obtained using our best setting with u as GAP and h as ℓ1 ◦ relu. This shows that the
attention map enables dense targets to focus on the object regions, which explains its
superior performance.

118

5.5. Discussion

Dense MultiMix: Spatial resolution We study the effect of spatial resolution on
dense MultiMix. By default, we use a resolution of 4× 4 at the last residual block of R-18
on CIFAR-100. Here, we additionally investigate 1× 1 (downsampling by average pooling
with kernel size 4, same as GAP), 2 × 2 (downsampling by average pooling with kernel
size 2) and 8 × 8 (upsampling by using stride 1 in the last residual block). We measure
accuracy 81.07% for spatial resolution 1 × 1, 81.43% for for 2 × 2, 81.88% for 4 × 4 and
80.83% for 8× 8. We thus observe that performance improves with spatial resolution up
to 4×4, which is the optimal, and then drops at 8×8. This drop may be due to assuming
the same target at each spatial position. The resolution 8 × 8 is also more expensive
computationally.

5.5 Discussion

The take-home message of this work is that, instead of devising smarter and more
complex interpolation functions in the input space or intermediate features, it is more
beneficial to use MultiMix, even though its interpolation is only linear. In this work, we
combine three elements:

1. Increase the number n of generated mixed examples beyond the mini-batch size b.
2. Increase the number m of examples being interpolated from m = 2 (pairs) to m = b.
3. Perform interpolation in the embedding space rather than the input space.
Figure 5.4 shows that all three elements are important in achieving SoTA performance

and removing any one leads to sub-optimal results. We discuss their significance and
interdependence here.

Increasing the number n of generated examples The expected risk is defined as
an integral over the underlying continuous data distribution. Since that distribution is
unknown, the integral is approximated by a finite sum, i.e., the empirical risk. A better
approximation is the vicinal risk, where a number of augmented examples is sampled
from a distribution in the vicinity of each training example, thus increasing the number
of loss terms per training example. Input mixup [Zhang, 2018a] is inspired by the vicinal
risk. However, as a practical implementation, all mixup methods still generate b mixed
examples and thus incur b loss terms for a mini-batch of size b. As discussed in section 5.2,
previous works have used more loss terms than b per mini-batch, but not for mixup.

Our hypothesis for the significance of element 1 is that more mixed examples, thus

119

Chapter 5 – Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples

more loss terms by interpolation, provide a better approximation of the expected risk
integral. Dense interpolation further increases the number of loss terms, thus further
improving the quality of approximation.

Increasing the number m of examples being interpolated As discussed in sec-
tion 5.2, previous works, starting from input mixup [Zhang, 2018a] have attempted to
interpolate m > 2 examples in the input space by sampling λ from Dirichlet or other dis-
tributions but have found the idea not effective for large m. Our finding is that element
2 becomes effective only by interpolating in the embedding space, that is, element 3.

Interpolating in embedding space Element 3 is originally motivated by Manifold
Mixup [Verma, 2019], where “interpolations in deeper hidden layers capture higher level
information [Zeiler, 2014].” ACAI [Berthelot, 2018] explicitly studies interpolation in the
latent space of an autoencoder to produce a smooth semantic warping effect in data space.
This suggests that nearby points in the latent space are semantically similar, which in
turn improves representation learning. Mixed examples generated by sampling in the
embedding space lie on the learned manifold. We hypothesize that the learned manifold
is a good surrogate of the true, unknown data manifold.

A natural extension of this work is to settings other than supervised classification. A
limitation is that it is not straightforward to combine the sampling scheme of MultiMix
with complex interpolation methods, unless they are fast to compute in the embedding
space.

120

Chapter 6

LEARNING STRONG IMAGE ENCODERS

FROM VIDEOS

Our previous chapters explored the potential of interpolation-based data augmentation
for improving representation learning for image classification (chapter 3, chapter 5) and
deep metric learning (chapter 4) in a supervised setting. While these methods effectively
generate synthetic augmentations, we now venture beyond this approach to investigate
the possibility of discovering natural augmentations inherent in real-world data. This
shift aligns with the core theme of the thesis, which focuses on combining diverse learning
objectives and modalities to enhance representation learning.

The inherent richness of videos presents a unique opportunity to explore natural aug-
mentations. Unlike synthetic augmentations, videos naturally encompass diverse varia-
tions in pose, deformation, viewpoint, perspective, occlusion, and background clutter,
offering a wealth of rich augmentations for learning robust representations. This elimi-
nates the need for artificially generated augmentations such as mixup based interpolations,
allowing the model to learn from the intrinsic complexities present within the video data.

To facilitate this exploration, we first introduce a novel dataset of open-source first-
person videos specifically recorded for virtual “walking tours” inspired by [Wiles, 2022]).
These videos possess several key advantages. Firstly, these videos exhibit a high density of
diverse semantic categories within individual frames. Secondly, the videos directly capture
the perspective of a human, minimizing the presence of cuts, special effects, and are long
(1-3 hours). Lastly, the entire dataset is readily viewable, fostering transparency and
facilitating deeper understanding of the learning process.

Our primary objective is to leverage the rich information embedded within these video
frames to build robust representations. However, standard self-supervised learning meth-
ods such as DINO [Caron, 2021] often rely on establishing correspondences between dif-
ferent views. While it is relatively straightforward to establish correspondences in images,
it becomes more challenging when dealing with temporal deformations, requiring some

121

Chapter 6 – Learning Strong Image Encoders from Videos

form of object tracking. In videos with a large field of view or ego-motion, obtaining
correspondences becomes even more difficult.

This chapter delves into addressing these challenges and explores the potential of
natural video augmentations for self-supervised representation learning. We propose a
novel approach that leverages the inherent variations within video data to learn robust
representations, potentially surpassing the limitations of traditional methods that rely
on synthetic augmentations. This effort was presented in as an Oral (top 1.2%) in the
Twelfth International Conference on Learning Representations (ICLR), 2024.

122

https://openreview.net/forum?id=Yen1lGns2o

6.1. Introduction

6.1 Introduction
(To the question “Have you read all the books in
here?”) No, only four of them. But I read those very,
very carefully.

Jacques Derrida

Learning from large scale datasets has been at the core of great progress. In particular,
the field of self-supervised learning has allowed pretraining of neural networks to scale
beyond the size of labelled datasets. By avoiding costly annotation, strong performance
has been demonstrated by increasing the training dataset sizes into billions of images.

But how well are those images really used? At a rate of one image per second, a
dataset of 1B images would take 317 years to watch. Yet, humans develop functioning
visual systems much faster i.e. face recognition [Haan, 2001] and color sensitivity [Adams,
1987] is developed in three months, depth perception in five months [Campos, 1978] and
visual acuity in six months [Sokol, 1978]. Besides potential genetic visual priors in humans,
one stark difference is the type of data. Humans observe their visual surroundings in one
continuous stream, only interrupted by sleep. Indeed, learning visual representations of
images from videos is not new. However, previous works have found significant gaps in
performance to image-pretrained models. They have mostly used object-centric videos
scraped from the internet, and adapted image-based pretraining methods to use different
frames as an extra form of data augmentation [Gordon, 2020; Parthasarathy, 2023].

In this work, we investigate two directions. First, in the direction of data, we introduce a
new dataset of open-source first-person videos, recorded for the purpose of virtual “walking
tours”, inspired by [Wiles, 2022]. These videos have several advantages. Not only are the
individual frames dense in semantic categories – much more so than movies, as we analyze
– but these videos also directly represent the viewpoint of a human, contain few or no
shot cuts nor special effects and are long (1-3h). Another benefit is their transparency:
indeed, one can watch the whole dataset in one setting. The dataset we create contains
10 Walking Tours (WT) videos with CC-BY license.

Second, in the direction of the method, we develop a new self-supervised image-
pretraining method that is uniquely suited for learning from natural, non-object-centric
videos. Our approach is inspired by observing toddlers first learn to track objects and an-
imals, then to recognize and differentiate them [Bomba, 1983; Quinn, 1993; Spelke, 2007].
Our method, called DoRA, is an end-to-end training approach that “tracks to learn to

123

Chapter 6 – Learning Strong Image Encoders from Videos

Figure 6.1 – Examples of frames from the Walking Tours dataset, containing hours-long,
continuous egocentric 4K videos from urban scenes in different cities, under CC-BY li-
cense. There are a large number of objects and actions in a variety and natural transition
of places, e.g. residential area, park, market, waterfront, etc., with natural transition of
lighting conditions and object augmentations.

recognize”: given a video clip, objects in an initial frame are implicitly Discovered and
tRAcked across time. The tracked objects are incentivized to be diverse by introducing
a Sinkhorn-Knopp clustering of patch embeddings; the tracked instances are used as a
learning signal for a classical multi-view SSL loss.

Surprisingly, contrary to previous works, we find that our novel method obtains ImageNet-
level performances by training on a single WT video, as evidenced by performances on
segmentation and object detection downstream tasks. While humorously intentioned, Der-
rida’s quote rings true to this finding and our results give some hope for alternative di-
rections in SSL that depart from blind dataset scaling towards more efficient and smarter
use of existing video data.

To summarize, our key contributions in this work are as follows:

1. We introduce a new dataset of 10 WT videos, with single-video and mixed-video
splits. The latter is conveniently equal in size to ImageNet. We analyze their use-
fulness compared to existing video and image datasets.

2. We propose a new end-to-end self-supervised visual pretraining method called DoRA.
It builds upon DINO but is tailored to promote tracking of multiple objects across
frames. We use it to learn strong image encoders and trace the source of its im-
provements through extensive ablations.

3. We obtain strong performance on ADE20k segmentation and MS COCO detection,
outperforming ImageNet-pretrained DINO, while instead pretraining on a single
long video.

124

6.2. Related Work

6.2 Related Work

Self-supervised learning of image encoders from video data is a very active area of re-
search. Video, and more generally temporal streams, have long been theorized to be ideal
signals for unsupervised learning [Wiskott, 2002]. In computer vision, early methods have
been very diverse and included pretext tasks such as egomotion prediction [Agrawal, 2015;
Jayaraman, 2015], active recognition [Jayaraman, 2016], pose estimation [Chakraborty,
2017], unsupervised object discovery [Croitoru, 2017], dense prediction [Pathak, 2017;
Li, 2019b], optical flow [Mahendran, 2018; Xiong, 2021], frame order prediction [Misra,
2016], view-point matching [Sermanet, 2018; Pirk, 2020] or learning visual correspon-
dences [Wang, 2019a].

More recently, there have been considerable advances in self-supervised learning us-
ing ImageNet, with the main theme being extracting multiple augmentations of an im-
age [Chen, 2020b; Caron, 2021] and training models to pull them together/apart. These
methods have since percolated to learning from video frames [Gordon, 2020; Parthasarathy,
2023; Tschannen, 2020; Wang, 2015; Orhan, 2020]. Similar to this work, TimeTuning [Salehi,
2023] leverages the passage of time in videos by not treating it as simple augmenta-
tions. However, in contrast to our work, it requires an already image-pretrained back-
bone. VITO [Parthasarathy, 2023] improves performance relative to ImageNet, by using
VideoNet, a large YouTube dataset of 10s videos from a similar class distribution and
the same number of examples as ImageNet. In this paper, we show that it is possible to
obtain strong results from a single long video, with a very different visual distribution
compared to ImageNet / VideoNet.

6.3 Walking Tours Dataset

6.3.1 Dataset collection and properties

We collect from YouTube a new dataset of urban scenes called “Walking Tours”
(WTours, or WT) comprising 10 egocentric videos of a person walking in different cities
in Europe and Asia. The cities include Amsterdam, Bangkok, Chiang Mai, Istanbul,
Kuala Lampur, Singapore, Stockholm, Venice, and Zurich. We also include a video from
a Wildlife safari. Examples are shown in Figure 6.1. These videos are captured in 4K
resolution (3840 × 2160 pixels) at 60 frames-per-second and are under Creative Com-
mons License (CC-BY). The minimum video duration is 59 minutes (Wildlife safari), the

125

Chapter 6 – Learning Strong Image Encoders from Videos

Dataset Domain Ego Pre Bal Annot Avg. Dur Dur #Videos Frame
(sec) (hr) resolution

Diverse Pretraining

Kinetics-400 [Kay, 2017] Actions ✗ ✓ ✓ Class 10.2 851 400 340 × 255
AVA [Gu, 2018] Actions ✗ ✓ ✓ Class 900 107.5 80 320 × 400
WebVid-2M [Bain, 2021] Open ✗ ✓ ✗ Weak 18 13k – 320 × 240
HowTo100M [Miech, 2019] Instructions ✗ ✓ ✗ Weak 4 135k – –

Egocentric

Epic-Kitchens [Damen, 2022] Cooking ✓ ✗ ✗ Loc. 510 100 37 1920 × 1080
Ego-4D [Grauman, 2022] Daily ✓ ✗ ✗ Loc. 1446 120 931 1920 × 1080
Meccano [Ragusa, 2023] Industry ✓ ✗ ✗ Loc. 1247 849 20 1920 × 1080
Assembly-101 [Sener, 2022] Assembly ✓ ✗ ✗ Loc. 426 167 362 1920 × 1080

ImageNet-aligned

R2V2 [Gordon, 2020] ImageNet ✗ ✓ ✓ Class – – – 467 × 280
VideoNet [Parthasarathy, 2023] ImageNet ✗ ✓ ✓ Class 10 3055 –

Walking Tours (ours) Urban ✓ ✓ ✗ None 4968 23 10 3840 × 2160

Table 6.1 – Walking Tours vs. existing video datasets. Ego: egocentric; Pre: used for
pretraining; Bal: class balance control; Annot: annotation type. Weak: associated data
per clip (text or other modality); Class: class label per frame or clip; Loc: localization per
frame (e.g. bounding box, segmentation, mask 3D pose). Avg. Dur: average duration
per video; Dur: total duration.

maximum is 2 hours 55 minutes (Bangkok) and the average is 1 hour 38 minutes. Such
videos are particularly interesting for visual learning because of the following properties:

1. Large number of objects and actions. Each frame or clip taken from a video depicts
several objects and actions, e.g. walking, riding a bike, sitting, drinking etc.

2. Natural transition in lighting conditions. In some videos, the lighting gradually tran-
sitions from bright (late afternoon) to dim (dusk) then to dark (post sunset).

3. Natural transition in scenes. The videos depict transitions between places, e.g. from
city center to market place to residential areas to parks to water fronts etc.

4. Natural object augmentations. Continuous variation e.g. of pose, deformation, view-
point, perspective distortion, relative object position, occlusion, background clutter.

The abundance of information within these videos, encompassing a multitude of ob-
jects and complex scenes, presents a formidable challenge for manual annotation or cura-
tion, making it appropriate for unsupervised pretraining. To the best of our knowledge,
we are the first to propose an egocentric video dataset for pretraining and evaluate it on
a wealth of downstream tasks.

In Table 6.2, we provide statistics of individual videos in the WTours dataset. In the
following, we first compare WTours with other video datasets and then analyze WTours

126

6.3. Walking Tours Dataset

Video
(a) Properties (b) Analysis

Domain #Frames Duration #Shots #Objects / #Classes
(×1000) (min) Frame (avg.)

Amsterdam Urban 147.4 72.6 0 48 684
Bangkok Urban 314.7 153.0 12 44 703
Chiang Mai Urban 122.2 87.5 2 40 711
Istanbul Urban 122.4 82.8 0 42 604
Kuala Lampur Urban 131.1 77.2 0 39 689
Singapore Urban 174.0 71.0 0 49 732
Stockholm Urban 119.7 70.4 0 32 590
Venice Urban 197.8 90.0 0 39 701
Wildlife Wildlife 85.7 59.3 1 12 374
Zurich Urban 117.0 64.0 1 40 572

Average 153.2 82.8 1.6 38.5 636

Table 6.2 – Individual WTours video statistics. (a) Properties. (b) Analysis: shots de-
tected by [Castellano,]; objects and classes detected by Detic [Zhou, 2022b], trained on
ImageNet-21k.

videos in terms of automatically extracted information, including lightness, shot changes
and number of objects and categories depicted.

6.3.2 Comparison with other video datasets

In Table 6.1, we compare WTours with existing video datasets. Self-supervised pre-
training on videos has been mostly limited to video datasets that rely on weak annotation
in the form of video-text pairs [Bain, 2021; Miech, 2019] or even are curated, e.g. their
class balance is controlled, even if their annotation is unused [Kay, 2017]. Their average
clip duration is small, e.g. less than 20 sec, and their resolution is also small, limiting the
capacity to detect objects at a greater distance. By contrast, WTours videos are contin-
uous, hours-long at high resolution and provide natural transitions of scenes and viewing
conditions. They are not curated and thus better suited for the self-supervised setting.

ImageNet-aligned datasets such as R2V2 [Gordon, 2020] and VideoNet [Parthasarathy,
2023] contain videos that are curated and annotated with the same distribution and classes
as ImageNet, meant for pretraining image encoders. These videos are short, i.e. 10 seconds
on average. By contrast, WTours consists of a continuous stream of egocentric video, where
the average number of classes is close to that of ImageNet, as shown in subsection 6.3.3.
The rich information contained in 4K resolution, together with a high number of objects
in a frame, makes it appropriate for representation learning. Importantly, the continuity
and absence of curation make it more realistic and more comparable with human learning.

127

Chapter 6 – Learning Strong Image Encoders from Videos

Under review as a conference paper at ICLR 2024

WTours EPIC-Kitchen AVA Movierom

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

time (min)

lig
ht

ne
ss

0 20 40 60 80 100

0

20

40

60

time (min)

#o
bj

ec
ts

0 200 400 600

100

102

104

rank

fr
eq

ue
nc

y

Amste
rda

m

Ban
gk

ok

Chia
ng

M
ai

Ist
an

bu
l

Kua
la

Lam
pu

r

Sing
ap

ore

Stoc
kh

olm
Ven

ice

Zuri
ch EK

AVA

M
ov

ie ac
t

M
ov

ie rom

100

101

102

103

#
sh

ot
s

(a) Lightness (b) #Objects per frame (c) Total #classes (d) Shots

Figure 2: Dataset analysis of a WTours video compared with videos from Epic-Kitchens (Damen
et al., 2022), AVA (Gu et al., 2018) and two entire movies, concatenated or cropped to match the
duration of the WTours video. (a) Lightness vs. time. (b) Number of objects per frame vs. time. (c)
Frequency of classes in entire video. (d) Number of shots. Objects detected by Detic (Zhou et al.,
2022b), trained on ImageNet-21k.

videos, but are the result of significant manual work. In this paper we aim to learn from videos
publicly available online.

WTours videos are continuous, longer and higher-resolution than even other egocentric datasets.
Using object detectors, we find that the average number of object classes is close to that of ImageNet
and there is a high number of objects per frame, making WTours appropriate for representation
learning. WTours is not curated and does not rely on search terms. It is data-first and more open-
ended, thus well suited for the self-supervised setting. It is scalable since it requires no human
labeling effort and more videos can be easily downloaded or even made. We are inspired by a 10k
walking tours videos created by Wiles et al. (2022), which however is not publicly released and not
studied for self-supervised learning. A more detailed discussion is given in subsection A.1.

3.3 DATASET ANALYSIS

In Figure 2, we analyse the properties of a single WTours video compared with videos of the same
length from two other datasets, as well as two movie videos. In summary, our findings are as
follows. From Figure 2(a), WT may exhibit gradual shifts in lightness, transitioning from bright to
dim to dark, while Epic-Kitchens and AVA videos exhibit random brightness fluctuations. Lightness
variations are not well expored in self-supervised pretraining. From Figure 2(b,c), unique classes
appear more frequently and there are more unique objects per frame in WTours than in the other
datasets. This makes WTours semantically richer. From Figure 2(d), WTours and Epic-Kitchens
videos contain only one or two shots per entire video on average, while the other datasets contain
hundreds. In subsection 5.2 and in Appendix C, we show that WTours significantly outperforms
movies in downstream tasks, which is partially attributed to the absence of cuts. More detailed
discussion of dataset analysis is given in subsection A.2.

4 ATTENTION-BASED MULTI-OBJECT TRACKING

High-level idea We introduce DORA, based on multi-object Discovery and tRAcking. As shown
in Figure 3, it leverages the attention from the [CLS] token of distinct heads in a vision transformer
to identify and consistently track multiple objects within a given frame across temporal sequences.
On these, a teacher-student distillation loss is then applied. Importantly, we do not use any off-the-
shelf object tracker or optical flow network. This keeps our pipeline simple and does not require any
additional data or training. It also ensures that the learned representation is robust.

Preliminaries We are given a video clip consisting of T frames Xt 2 Rh⇥w⇥c for t 2 {1, . . . , T},
where h ⇥ w is the spatial resolution and c is the number of channels. Each frame is split into
n = hw/p2 non-overlapping patches of resolution p ⇥ p. The patches are linearly projected into
embeddings of dimension d and a [CLS] token embedding is prepended. This representation is input
to a transformer encoder (Dosovitskiy et al., 2020). The output embeddings are Zt = g✓(Xt) 2
R(n+1)⇥d, where mapping g✓ includes the tokenizer and encoder, while ✓ denotes its learnable
parameters. Given an embedding Z 2 R(n+1)⇥d, we write Z = [Z [CLS]; Z̃], where Z [CLS] 2 R1⇥d

is the [CLS] token embedding and Z̃ 2 Rn⇥d are the patch embeddings.

4

Figure 6.2 – Dataset analysis of a WTours video compared with videos from Epic-
Kitchens [Damen, 2022], AVA [Gu, 2018] and two entire movies, concatenated or cropped
to match the duration of the WTours video. (a) Lightness vs. time. (b) Number of objects
per frame vs. time. (c) Frequency of classes in entire video. (d) Number of shots. Objects
detected by Detic [Zhou, 2022b], trained on ImageNet-21k.

Our dataset does not rely on a set of objects, human activities or other search terms but
instead is data-first and more open-ended.

Egocentric videos Despite the large number of high-quality videos, egocentric video
datasets [Damen, 2022; Grauman, 2022; Sener, 2022] have been used only for downstream
tasks and thus come with extensive annotation. In comparison, WTours has 4-10 times
longer average duration and twice the frame resolution. While WTours is smaller in terms
of total duration and number of videos, it is scalable under the self-supervised setting since
it requires no human labeling effort and more videos can be easily found, downloaded or
even made. This makes collecting more data as simple as a walk in the park.

Very long video datasets. A large dataset of 10k WTours videos was created recently
by [Wiles, 2022] but was not publicly released and not studied for self-supervised learning.
Another dataset having hour-long videos is introduced in [Khan, 2020a], in the context
of sports analytics; it has not been explored for self-supervised learning either.

6.3.3 Dataset analysis

In Figure 6.2, we analyse the properties of a single WTours video compared with videos
of the same length from two other datasets, as well as two movie videos, an action movie
and a romantic movie.

Variation in lightness We measure the change in perceived brightness using the light-
ness value (L) across consecutive frames. From Figure 6.2(a), we observe a gradual shift

128

6.4. Attention-based multi-object tracking

at roughly 150 min into the WTours video, transitioning from bright to dim to dark. By
contrast, Epic-Kitchens and AVA videos exhibit random brightness fluctuations, alternat-
ing between dim and bright conditions. Typically, self-supervised pretraining happens on
datasets with uniform brightness levels. Datasets featuring such brightness variations are
less expored.

Variation in number of objects Using Detic [Zhou, 2022b], a DETR-style object
detector trained on ImageNet-21k, we detect objects in each frame. Figure 6.2(b) shows
the number of objects per frame and Figure 6.2(c) shows their frequency in the entire
video. We observe that the WTours video contains 703 unique object categories, while
Epic-Kitchens has 373, AVA has 663 and Movie-2 has 259. The unique objects appear more
frequently and there are more unique objects per frame in WTours than in the other
datasets. This makes WTours semantically richer, despite coming from one continuous
stream of video. Using videos with a large number of objects can encourage the model
to capture complex relations and variations in the data. Detailed statistics of objects and
classes per WTours video are given in Table 6.2(b). Except for the wildlife video, WTours
videos in general contain 40 or more objects per frame and 600 or more unique object
categories per video.

Variation in shots Egocentric videos are typically captured in a single uninterrupted
take, with exceptions being post-processed special effects or cuts. In Figure 6.2(d), we
find that, on average, WTours and Epic-Kitchens videos contain only one or two shots
per entire video, while AVA contains 406, an action movie (Movieact) [Skiptrace,] contains
2000 and a romantic movie (Movierom) [Central,] contains 667. The substantial number
of shots in movies and AVA poses challenges for representation learning methods that rely
on object tracking or optical flow. In subsection 6.5.5, we show that WTours significantly
outperforms movies in downstream tasks, which may be attributed to the absence of cuts.
The number of shots per WTours video is also given in Table 6.2(b).

6.4 Attention-based multi-object tracking

Our goal is to build robust representations by leveraging the rich information in video
frames. Standard SSL frameworks [Chen, 2020b; Caron, 2020] often assume correspon-
dences between different views. This is true whether using dense [Zhou, 2022a] or global

129

Chapter 6 – Learning Strong Image Encoders from Videos

⊗
		𝐾

⊗ 	𝑍%

𝐴!
𝐴"𝐴#

	𝑄%×𝐴$

	𝑃concat heads; remove [CLS]

SK
object-patch

correspondence

𝑀∗ ×

	𝐾+&

concat heads ;
remove [CLS]

Li
ne

ar

projection

	𝑍%

		𝑃′×

object
prototypes

choose
random heads

		𝑄

		𝑉

teacher
2nd last layer

(𝑍&!)

multi-object
masks

refined
object

prototypes

multi-object tracker

Li
ne

arteacher
2nd last layer

(𝑍&)
		𝐾

Teacher

Student

⊙ 𝑇&'

	𝑍[)*+]

	𝑍[)*+]

𝐿&-

input frame
(𝑿𝒕)

masked frame
(𝑿𝒕

𝒐𝒊)

multi-object
masks

multi-object
loss

EMA

multi-object
tracker

stop
gradient

//

input frame
(𝑿𝒕𝟎)

//

Figure 6.3 – DoRA, our self-supervised image pretraining method from video. (Left) From
an input frame Xt0 , the output of the second-last layer of the teacher model is used by
a multi-object tracker to generate cross-attention maps T ′

t with frame Xt. We use those
to mask Xt (6.7), feed it to the student model and apply a distillation loss LO

t between
[cls] token embeddings (6.8). (Right) In the tracker, we obtain the query Q, key K and
output Z embeddings. From the multi-head attention maps Ai (6.1), we draw a subset
I of k heads and form object prototypes P by pooling over patch queries Q̃ (6.2). We
refine them into P ′ to discover distinct objects, using Sinkhorn-Knopp (SK) to establish
correspondences M∗ between P and patch embeddings Z̃ (6.4) and pooling over Z̃ (6.5).
We then track the objects over frames Xt by cross-attention T ′

t with patch key embeddings
K̃t (6.6).

representations by pooling [Caron, 2021]. While it is relatively straightforward to estab-
lish correspondences in images, it becomes more challenging when dealing with temporal
deformations, requiring some form of object tracking [Salehi, 2023]. In videos with a large
field of view or ego-motion, obtaining correspondences becomes even more difficult.

High-level idea We introduce DoRA, based on multi-object Discovery and tRAcking.
As shown in Figure 6.3, it leverages the attention from the [cls] token of distinct heads in a
vision transformer to identify and consistently track multiple objects within a given frame
across temporal sequences. On these, a teacher-student distillation loss is then applied.
Importantly, we do not use any off-the-shelf object tracker or optical flow network. This
keeps our pipeline simple and does not require any additional data or training. It also
ensures that the learned representation is robust.

Preliminaries We are given a video clip consisting of T frames Xt ∈ Rh×w×c for t ∈
{1, . . . , T}, where h × w is the spatial resolution and c is the number of channels. Each
frame is split into n = hw/p2 non-overlapping patches of resolution p × p. The patches
are linearly projected into embeddings of dimension d and a [cls] token embedding is

130

6.4. Attention-based multi-object tracking

prepended. This representation is input to a transformer encoder [Dosovitskiy, 2021]. The
output embeddings are Zt = gθ(Xt) ∈ R(n+1)×d, where mapping gθ includes the tokenizer
and encoder, while θ denotes its learnable parameters. Given an embedding Z ∈ R(n+1)×d,
we write Z = [Z [cls]; Z̃], where Z [cls] ∈ R1×d is the [cls] token embedding and Z̃ ∈ Rn×d

are the patch embeddings.
Following DINO [Caron, 2021], there is a student network with parameters θ and a

teacher network with identical architecture and parameters θ′ obtained as the exponential
moving average (EMA) of θ according to θ′ ← αθ′ + (1− α)θ. The encoder is followed by
a head that includes an MLP and a scaled softmax, such that the output token embed-
dings can be interpreted as probabilities. We denote by fθ the mapping that includes the
tokenizer, encoder and head.

Discovering objects with multi-head attention Starting at a first frame Xt0 , we
obtain the query and key embeddings Q, K ∈ R(n+1)×d from the last transformer layer of
the teacher network 1. According to multi-head attention, these embeddings are partitioned
as Q = [Q1, . . . , Qh], K = [K1, . . . , Kh], where Qi, Ki ∈ R(n+1)×d/h for i = 1, . . . , h and
h is the number of heads. For each head i, the self-attention matrix Ai ∈ R(n+1)×(n+1) is
based on the dot-product similarity between the query and key embeddings:

Ai := softmax
(
Qi(Ki)⊤/

√
d
)
∈ R(n+1)×(n+1). (6.1)

Given an attention matrix A ∈ R(n+1)×(n+1), let A[cls] := [a1,2, . . . , a1,n] ∈ R1×n be the
[cls]-attention vector between the [cls] and patch embeddings, where ai,j is the element
(i, j) of A. We draw at random a subset I := {i1, . . . , ik} of k < h heads and collect
their [cls]-attention vectors into AI := [(Ai1)[cls]; . . . ; (Aik)[cls]] ∈ Rk×n. Intuitively, as
expressed in rows of matrix AI , the different heads attend to different objects in the
frame [Caron, 2021].

To represent the k objects in the embedding space, we use matrix AI ∈ Rk×n to form
linear combinations of patch embeddings Q̃ ∈ Rn×d, obtaining object prototypes

P := AIQ̃ ∈ Rk×d. (6.2)

This can be seen as the representation of k different [cls] tokens in the full embedding
space, capturing k objects at frame t0. Then, given the key embeddings Kt ∈ R(n+1)×d at

1. For simplicity, we drop t0 from the notation.

131

Chapter 6 – Learning Strong Image Encoders from Videos

t = 1 t = 2 t = 3 t = 4 t = 5

Xt

Tt

T ′
t

Figure 6.4 – For each input frame t of a video clip (top), cross-attention map Tt ∈
Rk×n (6.3) (middle) and refined cross-attention map T ′

t ∈ Rk×n (6.6) (bottom), using
Sinkhorn-Knopp algorithm. For each object, one row of Tt or T ′

t is reshaped as h/p×w/p
and upsampled to an h× w attention map overlaid on the input frame for k = 3 objects
encoded in blue, red and green channel. Mixed colors yellow and cyan for Tt (middle,
in red circle) indicate spatial overlap of two objects, while T ′

t (bottom) yields three well
separated objects shown in primary colors blue, red and green.

another frame t, we could track the objects by cross-attention

Tt := softmax
(
PK̃⊤

t /
√

d
)
∈ Rk×n, (6.3)

where K̃t ∈ Rn×d. Unfortunately, we observe in Figure 6.4 that the k attention maps
obtained this way are spatially overlapping, meaning that each attention map is not
delineating a single object.

Establishing object-patch correspondences To discover spatially distinct objects,
we propose to establish correspondences between prototypes and patch tokens. Let Z =
gθ′(Xt0) ∈ R(n+1)×d be the output embeddings of the teacher network, still at frame t0.
We seek a correspondence between the rows of P ∈ Rk×d and Z̃ ∈ Rn×d, where Z̃ are the
patch token embeddings.

The goal is to find a transport plan M ∈ Rk×n that minimizes the expected pairwise

132

6.4. Attention-based multi-object tracking

cost C := −PZ̃⊤ ∈ Rk×n between prototypes and patches, while incorporating an en-
tropic regularizer with coefficient ϵ. Matrix M is non-negative with row-wise sum 1/k

and column-wise sum 1/n, representing a joint probability over P and Z̃ with uniform
marginals. The minimal solution M∗ is unique and can be found by forming the ma-
trix e−C/ϵ and then applying the Sinkhorn-Knopp (SK) algorithm [Cuturi, 2013], i.e.,
iteratively normalizing its rows and columns:

M∗ = SK
(
exp

(
PZ̃⊤/ϵ

))
∈ Rk×n, (6.4)

Observe the similarity with (6.1) and (6.3), where scaling is by
√

d rather than ϵ, exp is in-
cluded in softmax and normalization is on rows only rather than iterative. Then, similarly
with (6.2), we use the optimal transport plan M∗ ∈ Rk×n to form linear combinations of
patch embeddings Z̃ ∈ Rn×d, obtaining the refined object prototypes

P ′ = M∗Z̃ ∈ Rk×d. (6.5)

Now, given the key embeddings Kt ∈ R(n+1)×d at another frame t, we track the objects
by the refined cross-attention, similarly with (6.3):

T ′
t := softmax

(
P ′K̃⊤

t /
√

d
)
∈ Rk×n, (6.6)

where K̃t ∈ Rn×d. Indeed, Figure 6.4 confirms that each of the k resulting attention maps
is associated with a spatially distinct object, thanks to the established correspondences.

In contrast to previous works that use SK in the context of self-supervised learning to
force an equi-partitioning of images to cluster labels [Asano, 2020; Caron, 2020; Oquab,
2023], we rather use optimal transport to re-balance spatial correspondences to different
objects.

Multi-object masking We use the cross-attention (6.6) to mask the input video clip
for the student network, such that each masked clip can be considered as a multi-object
crop. This crop plays a similar role with local crops in DINO [Caron, 2021], but it has
arbitrary shape and tracks an object over video frames. In particular, given an input frame
X ∈ Rh×w×c with cross-attention matrix T ′ ∈ Rk×n (6.6) and an object i ∈ {1, . . . , k},
we reshape the i-th row of T ′ as h/p × w/p and upsample to a h × w attention map to
match the spatial resolution of X, as shown in Figure 6.4. We repeat along the channel

133

Chapter 6 – Learning Strong Image Encoders from Videos

dimension to form tensor Ti ∈ Rh×w×c and we mask X as

Xoi := X⊙Ti, (6.7)

where ⊙ is the Hadamard product. Following DINO [Caron, 2021], given an input frame
Xt, we generate two standard resolution augmented global views Xa

t , Xb
t . We introduce a

multi-object loss
LO

t for frame t, applied to the [cls] token between the teacher fθ′ output for one global
view Xu

t and the student fθ output for the masked version Xv,oi
t of the other view Xv

t for
i ∈ {1, . . . , k}, where u, v ∈ V = {a, b} and u ̸= v:

LO
t :=

∑
u,v∈V

1u̸=v

k∑
i=1

fθ′(Xu
t)[cls] log

(
fθ(Xv,oi

t)[cls]
)

. (6.8)

Following DINO [Caron, 2021] and iBOT [Zhou, 2022a], we apply the multi-crop strat-
egy [Caron, 2020]. In particular, we generate m local crops Xℓi

t of smaller resolution for
i ∈ {1, . . . , m}. The local loss LLC

t for frame t is applied to the [cls] token between the
teacher fθ′ output for a global view Xu

t and the student fθ output for the local crop Xℓi
t

for i ∈ {1, . . . , m}:

LLC
t :=

∑
v∈V

m∑
i=1

fθ′(Xv
t)[cls] log

(
fθ(Xℓi

t)[cls]
)

(6.9)

The overall loss L is the sum of the multi-object loss LO
t (6.8) and the local loss

LLC
t (6.9), averaged over all T frames:

L := 1
T

T∑
t=1

(LO
t + LLC

t). (6.10)

6.5 Experiments

6.5.1 Tasks and methods

We perform self-supervised pretraining on a single WT tour video in Venice (referred
to as WTVenice) or all 10 WT videos (referred to as WTall) and compare with other image
and video datasets. To evaluate the quality of the learned representations, we use frozen
features for classification, unsupervised object discovery and video object segmentation.
We fine-tune for semantic segmentation, object detection and object tracking. We compare

134

6.5. Experiments

DoRA with SoTA SSL methods [Costa, 2022] using our settings. We provide more details
in individual sections per task.

6.5.2 Implementation details

Code will be published as open-source code. We use ViT-S/16 [Dosovitskiy, 2021] as
the backbone in all our experiments. For each mini-batch, we randomly sample clips from
the video, consisting of T = 8 frames temporally separated by 1 second i.e. we sample
one frame every 30. Objects discovered in the first frame are tracked over the following 7
frames. Since each frame contains several different objects, applying the standard multi-
crop augmentation [Caron, 2020] to the entire frame would result in crops with very
different visual content or noisy positive pairs. Instead, we apply multi-crop to a 300×300
crop that we first take from the frame. Following DINO [Caron, 2021], we obtain two global
crops and six local crops. Masking (6.7) is applied to the global crops seen by the student
for the multi-object loss (6.8), while local crops are seen directly by the student for the
local loss (6.9). We train for 100 epochs by default.

Objects are discovered using attention heads, where the total number of heads is
in ViT-S/16 is limited to h = 6. For the purpose of the ablation of the number k of
objects for k > h in Table 6.7b, we modify the MSA block in the final layer, resulting
in configurations of 16 and 32 heads. Consequently, we can identify and track up to 16
and 32 objects within the video clip. To accomplish this, we decompose the query and
key embeddings of dimension d = 768 into 16 and 32 subvectors, resulting in new feature
dimensions of 24 and 12 respectively, as opposed to 64 for 6 heads. In Table 6.7b, we
observe that tracking 16 or 32 objects results in overall poor performance possibly due to
the small feature dimension, which encodes poor representations.

6.5.3 Hyperparameters

ImageNet-1k: Linear probing and k-NN We pretrain DoRA in a self-supervised
setting with ViT-S/16 using DINO for 100 and 300 epochs. We use two global and six
local crops for each clip and train on 8 A100 GPUs with a global batch size of 16×8 = 128.
We use LARS [<empty citation>] with a learning rate of 5× 10−4, minimum learning
rate of 1× 10−6, global crop scale of [0.4, 1.0] and local crop scale [0.05, 0.4].

For linear probing, we follow [Caron, 2021] and use the frozen features of the trans-
former backbone to train a linear classifier in a supervised setting. We use global batch

135

Chapter 6 – Learning Strong Image Encoders from Videos

size of 1024 on the training set and evaluate on the validation set of ImageNet-1k. We
use top-1 accuracy (%) as our evaluation metric. For k-NN, we freeze the backbone and
extract features of training images, then use a k-nearest neighbour classifier with k = 20.

Pascal-VOC 2012: Object discovery We use the validation set of Pascal VOC
2012 [Everingham,], which comprises a total of 1449 images. Following LOST [Siméoni,
2021], we use the averaged self-attention map, extracted from the final layer of a our pre-
trained ViT-S/16, to retain 80% of the mass. We use the Jaccard similarity J measured as
overlap between predicted mask P and the ground truth mask G as J(P, G) = G∩P

G∪P
. We

also use CorLoc, which measures the number of correct predicted boxes, where a predicted
box is said to be correct if its IoU ≥ 0.5.

ADE20k: Semantic segmentation We evaluate DoRA on ADE20k [Zhou, 2017] for
semantic segmentation. The dataset includes 20,000 images in the training set and 2,000
images in the validation set. We use UperNet [Xiao, 2018] as the segmentation model
and use DoRA pretrained on WT to initialize the backbone. Following the experimental
settings in iBOT [Zhou, 2022a], we use AdamW [Loshchilov, 2019a] with an initial learning
rate of 6× 10−5, weight decay of 1× 10−2, and linear warmup of 1,500 iterations. We fine-
tune for 160,000 iterations with a batch size of 4.

MS-COCO: Object detection We evaluate DoRA for object detection and instance
segmentation on MS-COCO. We use Cascade Mask R-CNN [Cai, 2019], which produces
bounding boxes and instance masks simultaneously on the COCO dataset. We use a multi-
scale training strategy, where we resize images to have a shorter side ranging between 480
and 800, ensuring that the longer side does not exceed 1,333 pixels. The learning rate is
1 × 10−4 and the weight decay is 0.05. During training, we fine-tune the entire network
using a 1× schedule, which involves 12 epochs with learning rate reductions by a factor of
10 at epochs 9 and 11. We explore different layer decay rates, specifically 0.65, 0.75, 0.8, 0.9,
with a rate of 1.0 indicating no decay.

To generate hierarchical feature maps, we utilize the features produced by layers 4, 6,
8, and 12 of our network and apply two deconvolutions for layer 4, one deconvolution for
layer 6, identity mapping for layer 8, and max-pooling for layer 12. These post-processing
steps enable the creation of hierarchical feature representations. It is important to note
that we do not employ multi-scale testing in our experiments.

136

6.5. Experiments

DAVIS-2017: Video object segmentation We assess the performance of DoRA
for video object segmentation on DAVIS 2017 dataset [Pont-Tuset, 2017], which involves
segmenting between 2 to 4 objects within the video frames. We follow DINO [Caron, 2021]
and evaluate on video frames with a resolution of 480p. We apply label propagation on
the attention map from our pretrained model and use mean region-based similarity Jm

and mean contour-based accuracy Fm as our evaluation metrics.

GOT-10k: Object tracking We evaluate the object-tracking performance of DoRA
on the GOT-10k dataset [Huang, 2019]. This is a large-scale benchmark for object tracking
that contains 563 categories of common moving objects. The training set contains around
10,000 videos and the test set contains 180 videos. Another challenging aspect of this
dataset is that the object classes in the training and test set are non-overlapping. We
use the SeqTrack [Chen, 2023] codebase to evaluate the performance of different methods
on this dataset. In particular, we initialize the encoder weights of SeqTrack with the
self-supervised weights and keep them frozen during training. While training, we only
update the parameters of the lightweight decoder which consists of 2 transformer blocks.
We use all the default hyperparameters. We report mean average overlap (mAO) and
success rate (SR) at different thresholds. The mAO measures the class-balanced average
overlap between the ground truth and predicted bounding boxes whereas SR indicates the
percentage of accurately tracked ground truth bounding boxes where the overlap crosses
a certain threshold.

6.5.4 Comparison with State-of-the-art

Dense scene understanding Table 6.3(a) shows semantic segmentation by fine-tuning
on ADE20k [Zhou, 2017] using UperNet [Xiao, 2018]. DoRA outperforms DINO by 3%
mIoU, and 1.8% Accm. It is interesting to note that DORA pretrained on 200k frames of
a single WTours video outperforms DINO pretrained on 1.3M images of ImageNet-1k

by 1.5% mIoU. A more comparable setting is DoRA pretrained on 1.5M frames of
WTall, which outperforms DINO pretrained on ImageNet by 3% mIoU.

Table 6.3(b) shows object detection and instance segmentation by fine-tuning on MS-
COCO [Lin, 2014] using Cascade RCNN [Cai, 2019]. DoRA outperforms DINO by 2.4%
mAP and 2.6% mIoU. DoRA pretrained on WTall outperforms DINO pretrained on
ImageNet by 0.8% mIoU and 1.2% mAP. This shows that pretraining on WTours videos
significantly improves the generality of DoRA to dense prediction tasks, requiring only

137

Chapter 6 – Learning Strong Image Encoders from Videos

Method epochs Pretrain (a) Semantic seg. (b) Object det. (c) Instance seg.

mIoU Gain Accm Gain mAP Gain mIoU Gain

ViT-S/16 100 None 25.1 33.3 28.6 24.3

iBOT [Zhou, 2022a] 100 WTVenice 33.9 43.3 37.6 33.0
AttMask [Kakogeorgiou, 2022] 100 WTVenice 33.6 42.7 36.5 32.5
VITO [Parthasarathy, 2023] 300 VideoNet 39.4 – 44.0 –
DINO [Caron, 2021] 100 IN-1k 33.9 44.3 39.9 35.1

DoRA (ours) 100 WTall 36.9 48.0 40.7 36.3

DINO [Caron, 2021] 100 WTVenice 32.4 43.7 37.1 32.1
DoRA (ours) 100 WTVenice 35.4 +3.0 45.5 +1.8 39.5 +2.4 34.7 +2.6

Table 6.3 – Semantic segmentation, object detection and instance segmentation. ViT-
S/16 pretrained, then fine-tuned. WTVenice: Walking Tours (ours), single video of Venice;
WTall: all videos. IN-1k: ImageNet-1k. (a) Semantic segmentation: fine-tuning on ADE20k
using UperNet. mIoU: mean IoU; Accm: mean-class accuracy. (b) Object detection and
(c) Instance segmentation: fine-tuning on MS-COCO using Cascade RCNN. mAP: mean
average precision; mIoU: mean IoU.

one tenth of the total images.

Video understanding Table 6.4(a) shows video object segmentation by using frozen
features on DAVIS-2017 [Pont-Tuset, 2017], which assesses the ability to segment an ob-
ject over its dynamic temporal changes. DoRA captures detailed temporal deformations
and outperforms baseline DINO by 3.4% Jm and 4.2% Fm. Using only a single video
for pretraining, DoRA achieves almost the same performance of DINO pretrained on
ImageNet (56.4% vs. 57.4% Jm). Table 6.4(b) shows multi-object tracking by fine-tuning
on GOT-10k [Huang, 2021] using SeqTrack [Chen, 2023]. GOT-10k assesses the ability to
track extremely fast moving objects, objects with illumination variation and low resolu-
tion. DoRA achieves significant gains between 4-6% over DINO.

Image classification and unsupervised object discovery We pretrain DoRA on
WTours and then we keep it frozen on the downstream task, indicating the quality of the
pretrained features. Table 6.5(a) shows image classification on ImageNet-1k, measuring
accuracy for linear probing and k-nearest neighbor. Table 6.5(b) shows unsupervised object
discovery on Pascal-VOC 2012,

using attention maps as segmentation masks to measure Jaccard similarity and Cor-
Loc.

On both tasks, non-contrastive methods (DINO, iBOT, VICReg) outperform con-
trastive methods (SimCLR, SwAV), when pretrained on a single WT video. Importantly,

138

6.5. Experiments

Method epochs Pretrain (a) Video object segmentation (b) Object tracking

(J &F)m Gain Jm Gain Fm Gain mAO Gain SR0.5 Gain SR0.75 Gain

ViT [Dosovitskiy, 2021] 100 None 26.9 25.4 28.3 23.1 19.0 3.4

iBOT [Zhou, 2022a] 100 WTVenice 57.4 56.7 58.0 41.5 47.5 16.6
DINO [Caron, 2021] 100 IN-1k 59.4 57.4 61.4 46.4 54.3 24.1

DoRA (ours) 100 WTall 57.6 55.1 60.2 45.9 53.4 23.7

DINO [Caron, 2021] 100 WTVenice 54.6 53.0 56.2 37.4 41.4 13.4
DoRA (ours) 100 WTVenice 58.4 +3.8 56.4 +3.4 60.4 +4.2 41.4 +4.0 47.2 +5.8 18.2 +4.8

Table 6.4 – Video object segmentation and object tracking. ViT-S/16 pretrained, then
frozen or fine-tuned. WTVenice: Walking Tours (ours), single video from Venice; WTall: all
videos. IN-1k: ImageNet-1k. (a) Video object segmentation: frozen features on DAVIS-
2017. Jm: mean region similarity; Fm: mean contour-based accuracy. (b) Multi-object
tracking: fine-tuning on GOT-10k. mAO: mean average overlap; SR: success rate, thresh-
old 50% and 75%.

Method epochs Pretrain #Frames (a) Classification (b) Object discovery

(M) LP Gain k-NN Gain Jacc. Gain CorLoc Gain

SimCLR [Chen, 2020b] 100 WTVenice 0.2 26.3 25.9 40.4 50.2
SwAV [Caron, 2020] 100 WTVenice 0.2 28.0 26.4 40.6 51.4
iBOT [Zhou, 2022a] 100 WTVenice 0.2 36.8 32.8 43.0 53.1
AttMask [Kakogeorgiou, 2022] 100 WTVenice 0.2 35.8 31.9 43.5 54.5
VicReg [Bardes, 2021] 100 WTVenice 0.2 36.5 30.1 42.7 52.1

DINO [Caron, 2021] 100 WTVenice 0.2 33.8 29.9 43.8 51.2
DoRA (ours) 100 WTVenice 0.2 45.4 +11.6 33.8 +3.9 44.0 +0.2 56.2 +5.0

DINO [Caron, 2021] 100 WTall 1.5 36.6 31.1 42.9 55.8
DoRA (ours) 100 WTall 1.5 45.3 +8.7 35.7 +4.6 44.3 +1.4 57.1 +1.3

Table 6.5 – Image classification and object discovery. ViT-S/16 pretrained, then frozen.
WTVenice: Walking Tours (ours), single video from Venice; WTall: all videos. (a) Clas-
sification top-1 accuracy (%) on validation set of ImageNet-1k. LP: linear probing. (b)
Unsupervised object discovery on validation set of Pascal-VOC 2012. Jacc.: Jaccard sim-
ilarity; CorLoc: Correct Localization.

139

Chapter 6 – Learning Strong Image Encoders from Videos

Method Epochs Classification Object disc. Semantic Seg. Object Det.

LP k-NN Jacc CorLoc mIoU Accm mAP mIoU

DINO [Caron, 2021] 100 71.4 69.0 44.5 59.6 33.9 44.3 37.1 32.1
iBOT [Zhou, 2022a] 100 72.1 69.4 44.5 59.7 35.2 45.1 38.9 34.4

DoRA⋆ (ours) 60 71.9 69.4 44.4 60.0 35.4 44.9 39.3 34.9
DoRA⋆ (ours) 100 72.2 69.6 44.8 60.2 35.8 45.1 39.9 35.1

Table 6.6 – Pretraining on ImageNet-1k. ViT-S/16 pretrained, then frozen (classification
and object discovery, same settings as Table 6.5) or fine-tuned (semantic segmentation
and object detection, same settings as Table 6.3). DoRA⋆: DoRA without tracking; when
pretrained for 60 epochs, it has the same training time as DINO and iBOT.

non-contrastive methods are also more efficient to train, since no negative pairs are used.
Also on both tasks, DoRA outperforms DINO by a large margin, e.g. 11.6% LP and
3.9% k-NN on classification, when trained on a single WT video. Comparing DoRA on
WTVenice with the WTall dataset, the improvement brought by the full dataset is small
when using DoRA, although it is 10 times larger.

Pretraining on ImageNet-1k We pretrain DoRA on ImageNet-1k and compare with
SoTA methods on multiple tasks. Unlike videos, we discover objects but do not track them.
Instead, images in a mini-batch are processed independently. Given an input image X,
we obtain refined object prototypes as usual (6.5), but the refined cross-attention (6.6)
is with K̃t replaced by K̃ of the same image X. The same image X is masked for the
student (6.7). The loss is given again by (6.8) and (6.9) with Xt replaced by X, averaged
over the mini-batch. We refer to this version as DoRA without tracking or DoRA⋆.

DINO [Caron, 2021] and iBOT [Zhou, 2022a] use only one global crop for the student,
while DoRA uses k object crops. To compensate, we perform an experiment where we
pretrain DoRA⋆ for 60 epochs and the competitors for 100, thus all methods having the
same training time.

From Table 6.9, we observe that DoRA outperforms state-of-the-art self-supervised
learning (SSL) methods like DINO and iBOT on image downstream tasks. This demon-
strates that the multi-object loss not only enhances performance when pretrained on
WTours videos but also achieves superior results when pretrained on ImageNet-1k im-
ages.

140

6.5. Experiments

Method Pretrain #Frames LP CorLoc
(M)

DINO Movierom 0.19 34.9 51.5
DoRA Movierom 0.19 35.3 51.6

DINO K-400∗ 0.2 40.7 52.4
DoRA K-400∗ 0.2 43.0 55.2

DINO EK∗ 0.2 38.6 53.5
DoRA EK∗ 0.2 41.8 56.0

DINO WTVenice 0.2 33.8 51.2
DoRA WTVenice 0.2 44.5 56.2

(a) Video datasets

Method k LP CorLoc

DINO ✗ 33.8 51.2

DoRA 1 39.9 53.9
DoRA 2 43.1 55.7
DoRA 3 44.5 56.2
DoRA 4 39.2 53.8
DoRA 5 36.7 50.3
DoRA 6 35.8 48.8
DoRA 16 28.3 48.5
DoRA 32 27.1 46.8

(b) #Objects k on
WTVenice

Method SK Mask LP CorLoc

DINO ✗ ✗ 33.8 51.2

DoRA ✗ Random 33.0 49.8
DoRA ✗ Object 42.5 55.3
DoRA ✓ Random 29.9 46.7
DoRA ✓ Object 44.5 56.2

(c) SK and masking on
WTVenice

Table 6.7 – Effect of parameters. ViT-S/16 pretrained, then frozen. (a) Different pretrain-
ing video dataset, (b) Number k of tracked objects. (c) Random or multi-object mask,
without SK (6.3) and with SK (6.6). ∗: subset of videos with same total duration as a
single WTours video. K-400: Kinetics-400, EK: Epic-Kitchens. LP: top-1 accuracy (%)
of linear probing on the validation set of ImageNet-1k. CorLoc: correct localization on
validation set of Pascal-VOC 2012.

6.5.5 Ablations

We examine the effect of using different pretraining video dataset and different op-
tions and parameters for DoRA, measuring performance of classification on ImageNet-
1k [Deng, 2009] by linear probing (LP) accuracy and unsupervised object discovery on
Pascal-VOC 2012 [Everingham,] by correct localization (CorLoc) [Siméoni, 2021].

Pretraining video dataset We study the impact of pretraining on diverse video
datasets, encompassing object-centric videos such as Kinetics-400 (K-400) [Kay, 2017], ego-
centric videos like Epic-Kitchens (EK) [Damen, 2022] and a single movie, Movierom [Cen-
tral,]. To maintain uniformity in terms of the number of frames, we curate a subset of
videos from K-400 and EK, such that their total duration is the same as a single WT
video. In Table 6.7a, we observe that although K-400

is object-centric, pretraining on WTours videos yields superior performance on Im-
ageNet and Pascal-VOC 2012. Pretraining on a single movie yields is inferior to both
WTours and K-400 by a large margin. This is possibly due to the presence of cuts, which
is shown in Table 6.8b.

Number of tracked objects We study the impact of the number k of objects. Objects
are discovered using attention heads, where the total number of heads is in ViT-S/16 is
h = 6. For k > h, we modify the MSA block as described in subsection 6.5.2. In Table 6.7b,

141

Chapter 6 – Learning Strong Image Encoders from Videos

Video LP CorLoc

Amsterdam 45.4 54.5
Bangkok 42.1 54.3
Chiang Mai 44.9 55.5
Istanbul 44.5 54.6
Kuala Lampur 43.9 54.1
Singapore 42.7 54.7
Stockholm 44.1 54.7
Venice 44.5 56.2
Wildlife 44.0 54.9
Zurich 44.9 54.4

Mean 44.1 54.8

(a) WT videos

Method PT LP CorLoc

DINO WT 33.8 51.2

DoRA Movie 35.3 51.6
DoRA Movie† 39.8 54.8
DoRA WT 44.5 56.2

(b) Cuts

Table 6.8 – Effect of pretraining video and cuts. ViT-S/16 pretrained, then frozen. (a)
Different WTours video, using DoRA. (b) Effect of cuts. ∗: subset of videos with same
total duration as a single WTours video. †: sampling without cuts. LP: top-1 accuracy
(%) of linear probing on the validation set of ImageNet-1k. CorLoc: correct localization
on validation set of Pascal-VOC 2012.

we observe that k = 3 works best. We hypothesize that this is a compromise between the
number of objects that can be tracked and the multi-object loss (6.8) attempting to match
small objects with the global crop.

Choice of masking and Sinkhorn-Knopp We explore the effect of using a multi-
object mask (6.7) vs. random block-wise [Zhou, 2022a] and the effect of improving object-
patch correspondence through SK in refined cross-attention (6.6) vs. (6.3). In Table 6.7c,
we observe that a multi-object mask leads to a remarkable performance improvement
even in the absence of SK. In fact, random block-wise mask undermines object-patch
correspondence, making the effect of SK negative. By contrast, SK improves performance
in the presence of multi-object mask.

Pretraining WT video We study the effect of pretraining on different videos of
WTours. In Table 6.8a, we observe that the effect is minimal on both image classification
and unsupervised object discovery. Notably, the fluctuation in illumination conditions
within the Bangkok video influences the performance on image classification. It is also
interesting to note that, while pretraining on Amsterdam is best on image classification,
pretraining on Venice is best on object discovery. This could be due to the large overlap
of objects in these videos with respect to the downstream datasets. However, the consis-
tency of our method across diverse videos indicates that DoRA is robust to variations in

142

6.6. More visualizations

Method Epochs Classification Object disc. Semantic Seg. Object Det.

LP k-NN Jacc CorLoc mIoU Accm mAP mIoU

DINO [Caron, 2021] 100 71.4 69.0 44.5 59.6 33.9 44.3 37.1 32.1
iBOT [Zhou, 2022a] 100 72.1 69.4 44.5 59.7 35.2 45.1 38.9 34.4

DoRA⋆ (ours) 60 71.9 69.4 44.4 60.0 35.4 44.9 39.3 34.9
DoRA⋆ (ours) 100 72.2 69.6 44.8 60.2 35.8 45.1 39.9 35.1

Table 6.9 – Pretraining on ImageNet-1k. ViT-S/16 pretrained, then frozen (classification
and object discovery, same settings as Table 6.5) or fine-tuned (semantic segmentation
and object detection, same settings as Table 6.3). DoRA⋆: DoRA without tracking; when
pretrained for 60 epochs, it has the same training time as DINO and iBOT.

scenes, number of objects and lighting conditions.

Presence of cuts We now analyse the effect of cuts in representation learning. Cuts
are defined as instant transitions from one shot to the next, which is frequent in movies.
In action movies, a single shot lasts around 4 seconds, while in romance movies, around
12 seconds on average 2. To understand the effect of cuts, we compare pretraining on
WTours videos and a romance movie. We use PySceneDetect [Castellano,] to extract
the cut timestamps in the movie and we pretrain DoRA by sampling clips that do not
intersect cuts; cuts naturally do not exist in WT videos. In Table 6.8b, we observe that
the performance improves significantly in the absence of cuts, as tracking in DoRA will
fail across a cut.

6.6 More visualizations

Figures 6.5 and 6.6 show example attention maps obtained using SK on different clips.
These figures show that SK (6.6) leads to attention maps that exhibit spatial locality and
are well aligned with objects in the scene. Remarkably, the masks seem to be even robust
to occlusions, as shown in the sequence with a bicycle moving behind traffic lights.

6.7 Conclusion

We have introduced a dataset of 10 walking tour videos – first-person videos taken by
people touring a city, with no cuts, high resolution and that are hours long. We show that

2. https://stephenfollows.com/many-shots-average-movie/

143

https://stephenfollows.com/many-shots-average-movie/

Chapter 6 – Learning Strong Image Encoders from Videos

t = 1 t = 2 t = 3 t = 4 t = 5

Xt

T ′
t

(a)

Xt

T ′
t

(b)

Xt

T ′
t

(c)

Figure 6.5 – For each input frame Xt of a video clip, refined cross-attention map T ′
t ∈

Rk×n (6.6), using Sinkhorn-Knopp. For each object, one row of T ′
t is reshaped as h/p×w/p

and upsampled to an h× w attention map overlaid on the input frame for k = 3 objects
encoded in blue, red and green channel. T ′

t yields three well separated objects shown in
blue, red and green.

144

6.7. Conclusion

t = 1 t = 2 t = 3 t = 4 t = 5

Xt

T ′
t

(a)

Xt

T ′
t

(b)

Xt

T ′
t

(c)

Figure 6.6 – For each input frame Xt of a video clip, refined cross-attention map T ′
t ∈

Rk×n (6.6), using Sinkhorn-Knopp. For each object, one row of T ′
t is reshaped as h/p×w/p

and upsampled to an h× w attention map overlaid on the input frame for k = 3 objects
encoded in blue, red and green channel. T ′

t yields three well separated objects shown in
blue, red and green.

145

Chapter 6 – Learning Strong Image Encoders from Videos

learning from clips taken from these videos is surprisingly powerful: with an appropriately
tailored self-supervised learning method for videos, we obtain representations that rival
those obtained on ImageNet when transferring to popular downstream image and video
tasks. This differs from previous state-of-the-art approaches to learning image encoders
from video, which also obtain such results but require large video datasets, following
closely the ImageNet blueprint.

Our proposed learning method DoRA is inspired by DINO, generalizing it to video
by incorporating implicit multi-object tracking across video clips. We observe that the
method leads to interesting emergent attention masks within the transformer model, that
seem to latch on to particular objects, even through occlusions. This makes it uniquely
suited to our newly introduced dataset.

146

Chapter 7

CONCLUSION

We recap the contributions outlined in this manuscript before providing an overview
of key open problems and challenges in the field of representation learning.

7.1 Conclusions

AlignMixup In chapter 1, we discussed that one of the main challenges in interpolation
based data augmentation methods like mixup is the potential lack of semantic coherence
in the augmented samples. Mixup can lead to samples that are visually plausible but
semantically inconsistent or unrealistic, potentially introducing noise and confounding
factors during the training process. We have shown in chapter 3, interpolation of features
by traversing along the manifold of representations from deeper layers of the network more
likely results in realistic examples. Specifically, we have observed that alignment of features
is a critical factor in achieving the desired improvements from the interpolation-based data
augmentation approach. As compared to observations in Manifold Mixup [Verma, 2019],
we have shown that mixup of a combination of input and latent representations of feature
tensors from deeper layers is a simple and very effective pairwise data augmentation
method. Our most interesting observations are as follows:

1. The idea of deformation as a natural way of interpolating images, where one image
may continuously deform into another, aligns with the intuition that images can be
smoothly transformed into each other, rather than just being linearly combined.

2. A key challenge identified is to make progress in the direction of a fully learned in-
terpolation approach without compromising the speed and simplicity of the method,
which would affect its wide applicability.

Metrix In chapter 4, we introduce a direct extension of the mixup technique from
classification to metric learning. The key insight is that metric learning can be viewed as
a binary classification problem of pairs of examples into "positive" and "negative" classes.

147

This observation allows the application of the mixup principle to metric learning, where
the interpolation of labels affects the relative weighting of positives and negatives. The
proposed approach is generic and can be applied to a wide range of loss functions that
separate positives from negatives per anchor and involve component functions that are
additive over examples. This is particularly beneficial for loss functions that require less
mining, as the mixup-based approach provides a principled way of handling the positive
and negative examples. Interestingly, we observed that:

1. We show that Metrix is completely agnostic with respect to the mixup method,
opening the way to using more advanced mixup methods for metric learning. This
allows for further improvements by incorporating more complex mixup techniques.

2. Interestingly, the multi-similarity loss function, which was not the state of the art
without mixup, becomes the state of the art when using Metrix.

3. Because metric learning is about generalizing to unseen classes and distributions,
our work may have applications to other such problems, including transfer learning,
few-shot and continual learning.

MultiMix The key takeaway from chapter 5 is that a simple yet effective approach,
MultiMix, can outperform more complex interpolation methods in the input space or
intermediate features. The three critical elements of MultiMix - increasing the number
of generated mixed examples, increasing the number of examples being interpolated, and
performing interpolation in the embedding space - complement each other to provide
state-of-the-art performance. By better approximating the expected risk integral through
dense interpolation and leveraging the learned manifold in the embedding space, MultiMix
demonstrates the following interesting properties:

1. Increasing the number of generated mixed examples per mini-batch provides a better
approximation of the expected risk integral, which is typically estimated using a
finite sum over the training data. By sampling more augmented examples from the
vicinity of each training point, MultiMix can more accurately capture the underlying
data distribution.

2. Interpolating in the embedding space, rather than the input space, allows MultiMix
to leverage the learned manifold structure. This suggests that the learned manifold
is a good proxy for the true, unknown data manifold, and that points nearby in the
embedding space are semantically similar.

148

3. The key insight is that a relatively simple approach, with linear interpolation in the
embedding space, can outperform more complex and sophisticated interpolation
methods in the input space or intermediate features. This highlights the importance
of carefully designing data augmentation techniques, rather than solely relying on
increased model complexity.

DoRA Finally, in chapter 6, we focus towards capturing natural variations of objects,
which offer rich semantic information present in real-world scenarios, using video data.
We introduced a novel dataset of 10 walking tour videos, which are first-person videos
taken by people touring a city, with no cuts, high resolution, and hours-long duration.
We demonstrate that learning from clips extracted from these videos is remarkably pow-
erful: by employing an appropriately tailored self-supervised learning method for videos,
we obtain representations that rival those obtained on ImageNet when transferring to
popular downstream image and video tasks. This contrasts with previous state-of-the-
art approaches to learning image encoders from video, which also achieve such results
but require large video datasets, closely following the ImageNet blueprint. Our proposed
learning method, DoRA, is inspired by DINO and generalizes it to video by incorporating
implicit multi-object tracking across video clips. In DoRA, we observed that:

1. It leads to the emergence of attention masks that can latch onto specific objects
even through occlusions. This makes DoRA particularly well-suited for the walking
tour video dataset, where the ability to track objects across clips is crucial.

2. Unlike previous state-of-the-art methods that rely on large video datasets and closely
follow the ImageNet based downstream tasks, DoRA shows that it can achieve
comparable results without the need for such extensive video data or large scale
image datasets.

3. The dataset of walking tour videos, with their continuous, high-resolution, and
lengthy nature, provides a rich source of information for self-supervised learning.
The representations obtained from this dataset rival those learned on the large-scale
ImageNet dataset, highlighting the potential of this real-world egocentric dataset.

7.2 What comes next?

Over the past couple of years, we have witnessed tremendous progress in the field of
representation learning, particularly with the emergence of foundational models in VLMs,

149

LLMs, and diffusion models. However, as I reflect on the current state of the field, my
personal and honest opinion is that I don’t believe the challenges have been fully solved.
Much of the research so far has been conducted in highly controlled settings, which are still
far removed from real-world applications. In my view, there are still many open questions
and remaining challenges that need to be addressed in representation learning.

Learning from Videos vs Large-scale text data Building on my previous work on
DoRA in chapter 6, and drawing inspiration from Prof. Yann LeCun’s recent talks on
V-JEPA [Bardes, 2024], I’ve been struck by the stark contrast between the capabilities of
large language models (LLMs) and the learning abilities of young children.

As Prof. LeCun pointed out, the largest LLMs have been trained on around 10 trillion
tokens, which is equivalent to about 1 Exabyte of data. In comparison, a 4-year-old child
has access to an estimated 1 quintillion bytes of data through their visual and auditory
experiences over the course of 16,000 waking hours. That is 50 times more data than even
the biggest LLMs have been exposed to. Moreover, Prof. LeCun noted that it would take
a human 170,000 years to read all the high-quality text available on the internet, which
is the primary training data for LLMs. This highlights the inherent limitations of text
as a modality for learning about the world, as it is simply too low-bandwidth and scarce
compared to the rich experiences that humans have access to from a young age.

In contrast, video data is more redundant and provides the kind of rich, multimodal
information that can be leveraged for effective self-supervised learning. This redundancy is
precisely what’s needed for self-supervised learning to work well. So, while the progress in
representation learning has been impressive, I believe there is still a lot of work to be done
to truly capture the depth and breadth of human learning. By exploring new modalities,
such as video, and drawing inspiration from the way children learn, I’m confident we can
make further advancements in this field.

Synthetic data vs. Real-world data The use of synthetic data, such as from video
games like GTA-5, can be a powerful complement to real-world data for self-supervised
learning models as illustrated in Figure 7.1. Several works [Richter, 2016; Martinez, 2017]
have demonstrated the potential of leveraging the vast amount of information available
in gaming environments to pre-train models. This synthetic environments can generate
an essentially unlimited amount of diverse data at a fraction of the cost of collecting real-
world data. This allows self-supervised models to be trained on massive datasets. The

150

environments can also be programmed to include rare events such as sudden showers of
rain or snow, dangerous scenarios due to natural calamities such as landslide, floods etc.
and diverse conditions that may be difficult to capture in real-world data collection.

Frames from GTA-5

Frames from Walking Tour videos

Figure 7.1 – Gaming vs. Real world videos We observe a high similarity between real-world
video frames and scenes from the video game GTA 5. Using these synthetic frames for
self-supervised learning, can enable vision encoders to learn meaningful representations
without needing large amounts of labeled data.

However, there may be a discrepancy between the statistical properties and visual fi-
delity of synthetic data compared to real-world data. Additionally, synthetic environments
may struggle to capture the full complexity and subtleties of the real world, which could
lead to overfitting or blind spots in the self-supervised model.

The most promising approach is to leverage both synthetic and real-world data for
self-supervised pre-training and fine-tuning as shown in [Tian, 2024b; Tian, 2024a]. The
synthetic data can provide the scale, diversity, and safety benefits to kickstart the self-
supervised learning, while the real-world data can help bridge the domain gap and instill
the model with real-world nuance.

Multi-modal information in real-world data The models developed in this manuscript
operate on images or videos only. However, most real-world applications involve data from
multiple modalities, such as videos that include audio, captions or hashtags, geolocation
data, and other associated information.

151

This multimodal nature of real-world data presents an exciting opportunity to develop
more robust and comprehensive representation learning systems. By ingesting and pro-
cessing data from different modalities, these systems can learn richer and more generic
representations that capture the inherent relationships and complementary information
across the various data streams.

One promising approach in this direction is the development of vision-language mod-
els, which leverage both visual and textual information to learn powerful representations.
These models, such as CLIP [Radford, 2021] and DALL-E [Ramesh, 2021], have demon-
strated impressive capabilities in tasks like image classification, captioning, and even zero-
shot learning, by tapping into the similarities between visual and linguistic data. Similarly,
incorporating audio information alongside visual data can lead to even more comprehen-
sive representations. Just as humans learn about the world through a combination of sight
and sound, multimodal models that fuse visual and auditory cues can potentially capture
a more holistic understanding of the environment and the objects within it.

By leveraging these diverse modalities, SSL algorithms can uncover deeper, more
meaningful patterns in the data, leading to representations that are more transferable
and applicable to a wider range of tasks and real-world scenarios. The redundancy and
complementarity of the different data streams can serve as a powerful signal for the SSL
models to learn robust and generalizable features. Overall, the shift towards multimodal
representation learning is an exciting direction that holds great promise for advancing
the state of the art in various applications, from computer vision and natural language
processing to emodied AI and beyond. By embracing the richness of real-world data, we
can develop AI systems that better mimic the way humans learn and understand the
world around them.

152

BIBLIOGRAPHY

[Abhishek, 2022] Kumar Abhishek, Colin J Brown, and Ghassan Hamarneh. Multi-Sample ζ-
mixup: Richer, More Realistic Synthetic Samples from a p-Series Interpolant.
In: arXiv preprint arXiv:2204.03323 (2022) (cit. on pp. 97, 107, 109, 111).

[Adams, 1987] Russell J Adams. An evaluation of color preference in early infancy. In: Infant
Behavior and Development (1987) (cit. on p. 123).

[Agrawal, 2015] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by mov-
ing. In: ICCV. 2015 (cit. on p. 125).

[Ahn, 2019] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. Weakly Supervised Learning
of Instance Segmentation with Inter-Pixel Relations. In: CVPR. 2019.

[AlBahar, 2019] Badour AlBahar and Jia-Bin Huang. Guided image-to-image translation with
bi-directional feature transformation. In: ICCV. 2019.

[Allingham, 2021] James Urquhart Allingham, Florian Wenzel, Zelda E Mariet, Basil Mustafa,
Joan Puigcerver, Neil Houlsby, et al. Sparse MoEs meet efficient ensembles.
In: arXiv preprint arXiv:2110.03360 (2021).

[Alvarez-Melis, 2018] David Alvarez-Melis and Tommi S Jaakkola. Gromov-Wasserstein alignment
of word embedding spaces. In: EMNLP. 2018 (cit. on p. 53).

[Asano, 2020] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via
simultaneous clustering and representation learning. In: ICLR. 2020 (cit. on
p. 133).

[Bachman, 2019] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning rep-
resentations by maximizing mutual information across views. In: NeurIPS
(2019) (cit. on p. 39).

[Bain, 2021] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time:
A joint video and image encoder for end-to-end retrieval. In: ICCV. 2021 (cit.
on pp. 126, 127).

[Bao, 2021] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training
of image transformers. In: arXiv preprint arXiv:2106.08254 (2021) (cit. on
p. 43).

[Bardes, 2024] Adrien Bardes, Quentin Garrido, Jean Ponce, Michael Rabbat, Yann LeCun,
Mahmoud Assran, et al. Revisiting Feature Prediction for Learning Visual
Representations from Video. In: arXiv preprint (2024) (cit. on p. 150).

153

[Bardes, 2021] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-
covariance regularization for self-supervised learning. In: arXiv preprint arXiv:2105.04906
(2021) (cit. on p. 139).

[Bay, 2006] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In: ECCV. 2006 (cit. on p. 15).

[Beckham, 2019] Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh
Ghadiri, R Devon Hjelm, et al. On adversarial mixup resynthesis. In: NIPS.
2019 (cit. on pp. 49, 73, 99).

[Bell, 2015] Sean Bell and Kavita Bala. Learning visual similarity for product design with
convolutional neural networks. In: ACM Tansactions on Graphics (TOG)
(2015).

[Bello, 2019] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le.
Attention augmented convolutional networks. In: ICCV. 2019.

[Bengio, 2012] Yoshua Bengio. Deep learning of representations for unsupervised and trans-
fer learning. In: ICMLW on unsupervised and transfer learning. 2012 (cit. on
pp. 14, 15).

[Bengio, 2013] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. Better
mixing via deep representations. In: 2013 (cit. on pp. 22, 29, 47, 49, 181).

[Berthelot, 2018] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understand-
ing and improving interpolation in autoencoders via an adversarial regular-
izer. In: arXiv preprint arXiv:1807.07543 (2018) (cit. on pp. 49, 73, 99, 120).

[Bingham, 2008] Geoffrey P Bingham and Mats Lind. Large continuous perspective transfor-
mations are necessary and sufficient for accurate perception of metric shape.
In: Perception & Psychophysics (2008) (cit. on p. 19).

[Bomba, 1983] Paul C Bomba and Einar R Siqueland. The nature and structure of infant
form categories. In: Journal of Experimental Child Psychology (1983) (cit. on
p. 123).

[Bommasani, 2021] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, et al. On the opportunities and risks of foundation models.
In: arXiv preprint arXiv:2108.07258 (2021) (cit. on p. 17).

[Boudiaf, 2020] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Ped-
ersoli, Pablo Piantanida, et al. A unifying mutual information view of metric
learning: cross-entropy vs. pairwise losses. In: ECCV. 2020.

[Bouthillier, 2015] Xavier Bouthillier, Kishore Konda, Pascal Vincent, and Roland Memisevic.
Dropout as data augmentation. In: arXiv preprint arXiv:1506.08700 (2015)
(cit. on p. 30).

154

[Caesar, 2018] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. COCO-Stuff: Thing and
stuff classes in context. In: CVPR. 2018.

[Cai, 2019] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: High quality object de-
tection and instance segmentation. In: IEEE TPAMI (2019) (cit. on pp. 136,
137).

[Campos, 1978] Joseph J Campos, Susan Hiatt, Douglas Ramsay, Charlotte Henderson, and
Marilyn Svejda. The emergence of fear on the visual cliff. In: The development
of affect (1978) (cit. on p. 123).

[Cao, 2021] Jie Cao, Luanxuan Hou, Ming-Hsuan Yang, Ran He, and Zhenan Sun. ReMix:
Towards Image-to-Image Translation with Limited Data. In: CVPR. 2021
(cit. on p. 60).

[Caron, 2018] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze.
Deep clustering for unsupervised learning of visual features. In: ECCV. 2018
(cit. on p. 71).

[Caron, 2020] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski,
and Armand Joulin. Unsupervised learning of visual features by contrasting
cluster assignments. In: NeurIPS. 2020 (cit. on pp. 41, 129, 133–135, 139).

[Caron, 2021] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal,
Piotr Bojanowski, et al. Emerging properties in self-supervised vision trans-
formers. In: ICCV. 2021 (cit. on pp. 121, 125, 130, 131, 133–135, 137–140,
143).

[Carratino, 2022] Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, and Jean-Philippe
Vert. On mixup regularization. In: JMLR (2022).

[Castellano,] Brandon Castellano. PySceneDetect. https://github.com/Breakthrough/
PySceneDetect (cit. on pp. 127, 143).

[Central,] World Movie Central. The Night We Met. https://www.youtube.com/
watch?v=joIzqAueexA (cit. on pp. 129, 141).

[Chadebec, 2022] Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, and Stéphanie Al-
lassonnière. Data augmentation in high dimensional low sample size setting
using a geometry-based variational autoencoder. In: IEEE TPAMI (2022).

[Chakraborty, 2017] Prabuddha Chakraborty and Vinay P. Namboodiri. Learning to Estimate
Pose by Watching Videos. In: arXiv preprint arXiv:1704.04081 (2017) (cit.
on p. 125).

[Chen, 2022] Jie-Neng Chen, Shuyang Sun, Ju He, Philip HS Torr, Alan Yuille, and Song
Bai. TransMix: Attend to mix for vision transformers. In: CVPR. 2022 (cit.
on pp. 96, 105, 107, 108).

155

https://github.com/Breakthrough/PySceneDetect
https://github.com/Breakthrough/PySceneDetect
https://www.youtube.com/watch?v=joIzqAueexA
https://www.youtube.com/watch?v=joIzqAueexA

[Chen, 2020a] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Gridmask data
augmentation. In: arXiv preprint arXiv:2001.04086 (2020) (cit. on p. 29).

[Chen, 2020b] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A
simple framework for contrastive learning of visual representations. In: ICML.
2020 (cit. on pp. 40, 70, 125, 129, 139).

[Chen, 2017] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. Beyond
triplet loss: a deep quadruplet network for person re-identification. In: CVPR.
2017 (cit. on pp. 73, 98).

[Chen, 2023] Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han Hu. SeqTrack:
Sequence to Sequence Learning for Visual Object Tracking. In: CVPR. 2023
(cit. on pp. 137, 138).

[Chen, 2020c] Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal
Mettes, Pengwan Yang, et al. PointMixup: Augmentation for Point Clouds.
In: ECCV (2020) (cit. on p. 51).

[Choe, 2020] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk Chun, Zeynep Akata,
and Hyunjung Shim. Evaluating weakly supervised object localization meth-
ods right. In: CVPR. 2020 (cit. on p. 66).

[Choe, 2019] Junsuk Choe and Hyunjung Shim. Attention-based dropout layer for weakly
supervised object localization. In: CVPR. 2019 (cit. on pp. 30, 66).

[Choi, 2018] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim,
and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In: CVPR. 2018.

[Choi, 2020] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2:
Diverse image synthesis for multiple domains. In: CVPR. 2020.

[Choy, 2016] Christopher B Choy, JunYoung Gwak, Silvio Savarese, and Manmohan Chan-
draker. Universal Correspondence Network. In: NeurIPS. 2016 (cit. on p. 51).

[Chuang, 2020] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and
Stefanie Jegelka. Debiased contrastive learning. In: NeurIPS. 2020 (cit. on
p. 36).

[Cinel, 2019] Caterina Cinel, Davide Valeriani, and Riccardo Poli. Neurotechnologies for
human cognitive augmentation: current state of the art and future prospects.
In: Frontiers in human neuroscience (2019) (cit. on p. 19).

[Costa, 2022] Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and
Elisa Ricci. solo-learn: A Library of Self-supervised Methods for Visual Rep-
resentation Learning. In: JMLR (2022) (cit. on p. 135).

[Croitoru, 2017] Ioana Croitoru, Simion-Vlad Bogolin, and Marius Leordeanu. Unsupervised
learning from video to detect foreground objects in single images. In: ICCV.
2017 (cit. on p. 125).

156

[Csurka, 2004] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and
Cédric Bray. Visual categorization with bags of keypoints. In: Workshop on
statistical learning in computer vision, ECCV. Prague. 2004 (cit. on pp. 14,
15).

[Cubuk, 2018] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc
V Le. AutoAugment: Learning augmentation policies from data. In: arXiv
preprint arXiv:1805.09501 (2018) (cit. on pp. 71, 105).

[Cubuk, 2019] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V
Le. AutoAugment: Learning augmentation strategies from data. In: CVPR.
2019 (cit. on p. 48).

[Cubuk, 2020] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. RandAug-
ment: Practical automated data augmentation with a reduced search space.
In: CVPRW. 2020 (cit. on p. 105).

[Cuturi, 2013] Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal trans-
port. In: NeurIPS. 2013 (cit. on pp. 50–52, 133).

[Dabouei, 2021a] Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, and Nasser M. Nasrabadi.
SuperMix: Supervising the Mixing Data Augmentation. In: CVPR. 2021 (cit.
on pp. 97, 107–109, 111, 114, 115).

[Dabouei, 2021b] Ali et al. Dabouei. Supermix: Supervising the mixing data augmentation. In:
CVPR. 2021 (cit. on p. 50).

[Dai, 2019] Zuozhuo Dai, Mingqiang Chen, Xiaodong Gu, Siyu Zhu, and Ping Tan. Batch
dropblock network for person re-identification and beyond. In: ICCV. 2019
(cit. on p. 30).

[Dalal, 2005] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In: CVPR. 2005 (cit. on pp. 14, 15).

[Damen, 2022] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari,
Jian Ma, Evangelos Kazakos, et al. Rescaling Egocentric Vision: Collection,
Pipeline and Challenges for EPIC-KITCHENS-100. In: IJCV (2022) (cit. on
pp. 126, 128, 141).

[DeGroot, 1983] Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation
of forecasters. In: Journal of the Royal Statistical Society: Series D (The
Statistician) (1983) (cit. on p. 65).

[Dehaene, 2011] Stanislas Dehaene. The number sense: How the mind creates mathematics.
OUP USA, 2011 (cit. on pp. 13, 180).

[Deng, 2009] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In: CVPR. 2009 (cit. on
p. 141).

157

[Deng, 2019] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Ad-
ditive angular margin loss for deep face recognition. In: CVPR. 2019.

[Devlin, 2019] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In: NAACL. 2019 (cit. on p. 17).

[DeVries, 2017a] Terrance DeVries and Graham W Taylor. Dataset augmentation in feature
space. In: arXiv preprint arXiv:1702.05538 (2017).

[DeVries, 2017b] Terrance DeVries and Graham W Taylor. Improved regularization of convo-
lutional neural networks with cutout. In: arXiv preprint arXiv:1708.04552
(2017) (cit. on pp. 28, 47, 50, 66, 73, 99).

[Doersch, 2020] Carl Doersch, Ankush Gupta, and Andrew Zisserman. CrossTransformers:
spatially-aware few-shot transfer. In: NeurIPS. 2020 (cit. on p. 51).

[Donahue, 2014] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, et al. Decaf: A deep convolutional activation feature for generic visual
recognition. In: ICML. 2014 (cit. on p. 71).

[Dosovitskiy, 2021] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. In: ICLR. 2021 (cit. on pp. 17,
105, 131, 135, 139).

[Dosovitskiy, 2013] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Unsu-
pervised feature learning by augmenting single images. In: arXiv preprint
arXiv:1312.5242 (2013) (cit. on p. 48).

[Duan, 2018] Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and Jie Zhou. Deep
adversarial metric learning. In: CVPR. 2018 (cit. on p. 37).

[Dusenberry, 2020] Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek,
Katherine Heller, et al. Efficient and scalable bayesian neural nets with rank-1
factors. In: ICML. 2020.

[Elbattah, 2021] Mahmoud Elbattah, Colm Loughnane, Jean-Luc Guérin, Romuald Carette,
Federica Cilia, and Gilles Dequen. Variational autoencoder for image-based
augmentation of eye-tracking data. In: Journal of Imaging (2021).

[Engelbart, 1962] Douglas Engelbart. Augmenting human intellect: A conceptual framework.
Summary report. In: Stanford Research Institute, on Contract AF (1962).

[Everingham,] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
(cit. on pp. 136, 141).

158

[Everingham, 2010] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. In: IJCV
(2010) (cit. on p. 108).

[Faramarzi, 2022] Mojtaba Faramarzi, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas
Verma, and Sarath Chandar. PatchUp: A feature-space block-level regular-
ization technique for convolutional neural networks. In: AAAI. 2022.

[Fukushima, 1980] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position. In:
Biological cybernetics (1980) (cit. on p. 15).

[Gastaldi, 2017] Xavier Gastaldi. Shake-shake regularization. In: arXiv preprint arXiv:1705.07485
(2017).

[Gatys, 2016] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Trans-
fer Using Convolutional Neural Networks. In: CVPR. 2016.

[Gauthier, 1999] Isabel Gauthier, Michael J Tarr, Adam W Anderson, Pawel Skudlarski, and
John C Gore. Activation of the middle fusiform’face area’increases with ex-
pertise in recognizing novel objects. In: Nature neuroscience (1999).

[Genevay, 2018] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models
with sinkhorn divergences. In: AISTATS. 2018 (cit. on p. 51).

[Ghiasi, 2018] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization
method for convolutional networks. In: NeurIPS (2018) (cit. on p. 30).

[Gibson, 1957a] James J Gibson. Optical motions and transformations as stimuli for visual
perception. In: Psychological Review (1957) (cit. on p. 19).

[Gibson, 1957b] James J Gibson and Eleanor J Gibson. Continuous perspective transforma-
tions and the perception of rigid motion. In: Journal of Experimental Psy-
chology (1957) (cit. on p. 19).

[Gokaslan, 2018] Aaron Gokaslan, Vivek Ramanujan, Daniel Ritchie, Kwang In Kim, and
James Tompkin. Improving shape deformation in unsupervised image-to-
image translation. In: ECCV. 2018.

[Goldberger, 2005] Jacob Goldberger, Sam Roweis, Geoffrey Hinton, and Ruslan Salakhutdinov.
Neighbourhood Components Analysis. In: NIPS. 2005 (cit. on pp. 76, 77).

[Goodfellow, 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016 (cit. on pp. 14–16).

[Goodfellow, 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, et al. Generative adversarial nets. In: NeurIPS (2014).

[Goodfellow, 2013] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and
Yoshua Bengio. Maxout networks. In: ICML. 2013 (cit. on p. 30).

159

[Goodfellow, 2015] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In: ICLR (2015) (cit. on pp. 60, 107).

[Gordo, 2016] Albert Gordo, Jon Almazán, Jerome Revaud, and Diane Larlus. Deep image
retrieval: Learning global representations for image search. In: ECCV. 2016
(cit. on p. 71).

[Gordon, 2020] Daniel Gordon, Kiana Ehsani, Dieter Fox, and Ali Farhadi. In: arXiv (2020)
(cit. on pp. 123, 125–127).

[Grabner, 2018] Alexander Grabner, Peter M Roth, and Vincent Lepetit. 3d pose estimation
and 3d model retrieval for objects in the wild. In: CVPR. 2018.

[Graham, 2021] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Ar-
mand Joulin, Hervé Jégou, et al. LeViT: A Vision Transformer in ConvNet’s
Clothing for Faster Inference. In: ICCV. 2021.

[Grauman, 2022] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, An-
tonino Furnari, Rohit Girdhar, et al. Ego4d: Around the world in 3,000 hours
of egocentric video. In: CVPR. 2022 (cit. on pp. 126, 128).

[Gu, 2018] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru,
Yeqing Li, et al. Ava: A video dataset of spatio-temporally localized atomic
visual actions. In: CVPR. 2018 (cit. on pp. 126, 128).

[Gu, 2020] Geonmo Gu and Byungsoo Ko. Symmetrical Synthesis for Deep Metric Learn-
ing. In: AAAI. 2020 (cit. on pp. 74, 83, 99).

[Gu, 2021] Geonmo Gu, Byungsoo Ko, and Han-Gyu Kim. Proxy Synthesis: Learning
with Synthetic Classes for Deep Metric Learning. In: AAAI. 2021 (cit. on
pp. 38, 74, 83, 85, 87, 99).

[Gulrajani, 2018] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. Improved training of wasserstein gans. In: ICLR (2018) (cit.
on p. 56).

[Guo, 2019a] Changlu Guo, Márton Szemenyei, Yang Pei, Yugen Yi, and Wei Zhou. SD-
UNet: A structured dropout U-Net for retinal vessel segmentation. In: BIBE.
2019 (cit. on p. 30).

[Guo, 2017] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration
of modern neural networks. In: 2017 (cit. on p. 65).

[Guo, 2019b] Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as locally linear out-
of-manifold regularization. In: AAAI. 2019 (cit. on pp. 50, 113).

[Haan, 2001] Michelle de Haan, Mark H Johnson, Daphne Maurer, and David I Perrett.
Recognition of individual faces and average face prototypes by 1-and 3-
month-old infants. In: Cognitive development (2001) (cit. on p. 123).

160

[Hadsell, 2006] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. In: CVPR. 2006 (cit. on pp. 34, 73, 75, 77,
83, 86, 87, 98).

[Han, 2017] Kai Han, Rafael S Rezende, Bumsub Ham, Kwan-Yee K Wong, Minsu Cho,
Cordelia Schmid, et al. Scnet: Learning semantic correspondence. In: ICCV.
2017 (cit. on p. 51).

[Harris, 2020] Ethan Harris, Antonia Marcu, Matthew Painter, Mahesan Niranjan, and
Adam Prügel-Bennett Jonathon Hare. Fmix: Enhancing mixed sample data
augmentation. In: arXiv preprint arXiv:2002.12047 (2020) (cit. on pp. 47,
50).

[Havasi, 2020] Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper
Snoek, Balaji Lakshminarayanan, et al. Training independent subnetworks
for robust prediction. In: arXiv preprint arXiv:2010.06610 (2020).

[He, 2022] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross
Girshick. Masked autoencoders are scalable vision learners. In: CVPR. 2022
(cit. on p. 42).

[He, 2017] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-
CNN. In: ICCV. 2017 (cit. on p. 17).

[He, 2016a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In: CVPR. 2016.

[He, 2016b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In: CVPR. 2016 (cit. on pp. 16, 60, 65, 82,
105).

[He, 2018] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang Bai. Triplet-
center loss for multi-view 3d object retrieval. In: CVPR. 2018.

[Henaff, 2020] Olivier Henaff. Data-efficient image recognition with contrastive predictive
coding. In: ICML. 2020 (cit. on p. 40).

[Hendrycks, 2019a] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Ro-
bustness to Common Corruptions and Perturbations. In: ICLR (2019).

[Hendrycks, 2017] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. In: ICLR (2017) (cit. on
pp. 62, 63).

[Hendrycks, 2019b] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer,
and Balaji Lakshminarayanan. AugMix: A simple data processing method
to improve robustness and uncertainty. In: arXiv preprint arXiv:1912.02781
(2019) (cit. on pp. 73, 99, 107–109, 111).

161

[Hermans, 2017] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet
loss for person re-identification. In: arXiv preprint arXiv:1703.07737 (2017)
(cit. on pp. 73, 76, 77, 98).

[Hernández-García, 2018] Alex Hernández-García, Johannes Mehrer, Nikolaus Kriegeskorte, Peter König,
and Tim C Kietzmann. Deep neural networks trained with heavier data aug-
mentation learn features closer to representations in hit. In: CCCN. 2018.

[Hinton, 2015] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. In: arXiv preprint arXiv:1503.02531 (2015) (cit. on p. 71).

[Hinton, 2012] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. In: arXiv preprint arXiv:1207.0580 (2012) (cit. on p. 30).

[Hjelm, 2018] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal,
Phil Bachman, Adam Trischler, et al. Learning deep representations by mu-
tual information estimation and maximization. In: arXiv preprint arXiv:1808.06670
(2018) (cit. on p. 39).

[Ho, 2020] Chih-Hui Ho and Nuno Nvasconcelos. Contrastive learning with adversarial
examples. In: NeurIPS. 2020 (cit. on p. 36).

[Hong, 2021] Minui Hong, Jinwoo Choi, and Gunhee Kim. StyleMix: Separating Content
and Style for Enhanced Data Augmentation. In: CVPR. 2021 (cit. on pp. 50,
59–65, 68, 107–109, 111, 115).

[Hsieh, 2016] Peng-Ju Hsieh, Yen-Liang Lin, Yu-Hsiu Chen, and Winston Hsu. Egocen-
tric activity recognition by leveraging multiple mid-level representations. In:
ICME. 2016.

[Huang, 2019] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity
benchmark for generic object tracking in the wild. In: IEEE TPAMI (2019)
(cit. on p. 137).

[Huang, 2021] Lianghua Huang, Xin Zhao, and Kaiqi Huang. GOT-10k: A Large High-
Diversity Benchmark for Generic Object Tracking in the Wild. In: IEEE
TPAMI (2021) (cit. on p. 138).

[Huang, 2017] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with
adaptive instance normalization. In: ICCV. 2017 (cit. on p. 50).

[Inoue, 2018] Hiroshi Inoue. Data augmentation by pairing samples for images classifica-
tion. In: arXiv preprint arXiv:1801.02929 (2018) (cit. on p. 50).

[Iscen, 2018] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum. Mining on
manifolds: Metric learning without labels. In: CVPR. 2018 (cit. on p. 36).

[Isola, 2017] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In: CVPR. 2017.

162

[Ivakhnenko, 1971] Alexey Grigorevich Ivakhnenko. Polynomial theory of complex systems. In:
IEEE transactions on Systems, Man, and Cybernetics (1971) (cit. on p. 14).

[Jayaraman, 2015] Dinesh Jayaraman and Kristen Grauman. Learning image representations
tied to ego-motion. In: ICCV. 2015 (cit. on p. 125).

[Jayaraman, 2016] Dinesh Jayaraman and Kristen Grauman. Look-ahead before you leap: end-
to-end active recognition by forecasting the effect of motion. In: ECCV. 2016
(cit. on p. 125).

[Jia, 2020] Bin-Bin Jia and Min-Ling Zhang. Multi-dimensional classification via kNN
feature augmentation. In: Pattern Recognition (2020) (cit. on p. 30).

[Kakogeorgiou, 2022] Ioannis Kakogeorgiou, Spyros Gidaris, Bill Psomas, Yannis Avrithis, Andrei
Bursuc, Konstantinos Karantzalos, et al. What to hide from your students:
Attention-guided masked image modeling. In: ECCV. 2022 (cit. on pp. 138,
139).

[Kalantidis, 2020] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel,
and Diane Larlus. Hard negative mixing for contrastive learning. In: NeurIPS
(2020) (cit. on pp. 38, 74, 83, 85, 87, 89, 99).

[Kay, 2017] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sud-
heendra Vijayanarasimhan, et al. The kinetics human action video dataset.
In: arXiv preprint arXiv:1705.06950 (2017) (cit. on pp. 126, 127, 141).

[Khan, 2020a] Abdullah Aman Khan, Jie Shao, Waqar Ali, and Saifullah Tumrani. Content-
aware summarization of broadcast sports videos: an audio–visual feature ex-
traction approach. In: Neural Processing Letters (2020) (cit. on p. 128).

[Khan, 2020b] Adil Khan and Khadija Fraz. Post-training iterative hierarchical data aug-
mentation for deep networks. In: NeurIPS (2020).

[Khosla, 2020] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, et al. Supervised contrastive learning. In: NeurIPS. 2020 (cit.
on p. 70).

[Kim, 2021a] Jae Myung Kim, Junsuk Choe, Zeynep Akata, and Seong Joon Oh. Keep
calm and improve visual feature attribution. In: ICCV. 2021 (cit. on p. 97).

[Kim, 2021b] Jang-Hyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh Song. Co-Mixup:
Saliency Guided Joint Mixup with Supermodular Diversity. In: ICLR. 2021
(cit. on pp. 47, 49, 50, 57, 59–65, 73, 96, 99, 107–111, 115).

[Kim, 2020a] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting
saliency and local statistics for optimal mixup. In: 2020 (cit. on pp. 22, 31,
33, 47, 49, 50, 52, 57, 59–65, 73, 96, 99, 106–111, 115, 181).

[Kim, 2020b] Sungnyun Kim, Gihun Lee, Sangmin Bae, and Se-Young Yun. MixCo: Mix-
up Contrastive Learning for Visual Representation. In: NeurIPS Workshop
on Self-Supervised Learning (2020) (cit. on pp. 74, 99).

163

[Kim, 2020c] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor
loss for deep metric learning. In: CVPR. 2020 (cit. on pp. 34, 35, 73, 75–77,
82, 83, 86, 87, 99).

[Kingma, 2013] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In:
arXiv preprint arXiv:1312.6114 (2013) (cit. on pp. 66, 68).

[Kipf, 2021] Thomas Kipf, Gamaleldin F Elsayed, Aravindh Mahendran, Austin Stone,
Sara Sabour, Georg Heigold, et al. Conditional object-centric learning from
video. In: arXiv preprint arXiv:2111.12594 (2021).

[Knight, 2008] Philip A Knight. The Sinkhorn-Knopp algorithm: convergence and applica-
tions. In: SIAM Journal on Matrix Analysis and Applications (2008) (cit. on
pp. 53, 54, 57).

[Ko, 2020] Byungsoo Ko and Geonmo Gu. Embedding expansion: Augmentation in em-
bedding space for deep metric learning. In: CVPR. 2020 (cit. on pp. 38, 71,
74, 83, 99).

[Kolesnikov, 2020] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica
Yung, Sylvain Gelly, et al. Big Transfer (BiT): General Visual Representation
Learning. In: ECCV. 2020 (cit. on p. 71).

[Konno, 2018] Tomohiko Konno and Michiaki Iwazume. Icing on the cake: An easy and
quick post-learnig method you can try after deep learning. In: arXiv preprint
arXiv:1807.06540 (2018).

[Krause, 2013] Jonathan Krause, Michael Stark, Jia Deng, and Fei-Fei Li. 3D Object Rep-
resentations for Fine-Grained Categorization. In: ICCVW (2013) (cit. on
p. 82).

[Krizhevsky, 2009] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. In: (2009) (cit. on pp. 14, 60, 105).

[Krizhevsky, 2012] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In: NIPS (2012) (cit. on
pp. 16, 48).

[Kulis, 2012] Brian Kulis et al. Metric learning: A survey. In: Foundations and trends in
machine learning (2012).

[Kumar, 2019] Varun Kumar, Hadrien Glaude, Cyprien de Lichy, and William Campbell. A
closer look at feature space data augmentation for few-shot intent classifica-
tion. In: arXiv preprint arXiv:1910.04176 (2019) (cit. on p. 30).

[Kuo, 2020] Chia-Wen Kuo, Chih-Yao Ma, Jia-Bin Huang, and Zsolt Kira. Featmatch:
Feature-based augmentation for semi-supervised learning. In: ECCV. 2020.

[Kuznetsova, 2020] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin,
Jordi Pont-Tuset, et al. The open images dataset v4. In: IJCV (2020).

164

[LeCun, 1989] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard
Howard, Wayne Hubbard, et al. Handwritten digit recognition with a back-
propagation network. In: Advances in neural information processing systems
(1989) (cit. on p. 15).

[Lee, 2021] Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak
Lee. I-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learn-
ing. In: ICLR. 2021 (cit. on pp. 74, 83, 85, 87, 89, 99).

[Lemley, 2017] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation
learning an optimal data augmentation strategy. In: Ieee Access (2017).

[Li, 2021a] Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, and Kilian Q Weinberger.
On feature normalization and data augmentation. In: CVPR. 2021.

[Li, 2020a] Hao Li, Xiaopeng Zhang, Qi Tian, and Hongkai Xiong. Attribute mix: Se-
mantic data augmentation for fine grained recognition. In: VCIP. 2020.

[Li, 2020b] Pu Li, Xiangyang Li, and Xiang Long. Fencemask: a data augmentation ap-
proach for pre-extracted image features. In: arXiv preprint arXiv:2006.07877
(2020) (cit. on p. 29).

[Li, 2022] Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, and Stan Z. Li. OpenMixup:
Open Mixup Toolbox and Benchmark for Visual Representation Learning.
In: arXiv preprint arXiv:2209.04851 (2022).

[Li, 2019a] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and Jiebo Luo. Revis-
iting Local Descriptor Based Image-To-Class Measure for Few-Shot Learning.
In: CVPR. 2019.

[Li, 2019b] Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang, Jan Kautz, and Ming-
Hsuan Yang. Joint-task self-supervised learning for temporal correspondence.
In: NeurIPS (2019) (cit. on p. 125).

[Li, 2017] Yao Li, Lingqiao Liu, Chunhua Shen, and Anton van den Hengel. Mining
mid-level visual patterns with deep CNN activations. In: IJCV (2017).

[Li, 2016] Yinan Li and Fang Liu. Whiteout: Gaussian adaptive noise regularization in
deep neural networks. In: arXiv preprint arXiv:1612.01490 (2016) (cit. on
p. 30).

[Li, 2021b] Zhaowen Li, Zhiyang Chen, Fan Yang, Wei Li, Yousong Zhu, Chaoyang Zhao,
et al. MST: Masked self-supervised transformer for visual representation. In:
NeurIPS. 2021.

[Lifchitz, 2019] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei Bursuc. Dense
Classification and Implanting for Few-Shot Learning. In: CVPR. 2019.

[Lin, 2014] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, et al. Microsoft COCO: Common objects in context. In:
ECCV. 2014 (cit. on pp. 17, 108, 137).

165

[Liu, 2022a] Jihao Liu, Boxiao Liu, Hang Zhou, Hongsheng Li, and Yu Liu. TokenMix:
Rethinking image mixing for data augmentation in vision transformers. In:
ECCV. 2022 (cit. on pp. 105, 107, 108).

[Liu, 2019] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko
Lehtinen, et al. Few-shot unsupervised image-to-image translation. In: ICCV.
2019.

[Liu, 2016a] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, et al. SSD: Single shot multibox detector. In: ECCV. 2016
(cit. on p. 108).

[Liu, 2022b] Wei Liu, Liyan Ma, and Mingyue Cui. Learning-based stereoscopic view syn-
thesis with cascaded deep neural networks. In: Journal of Advanced Compu-
tational Intelligence and Intelligent Informatics (2022).

[Liu, 2018a] Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao, Junliang Yan, Jun
Wang, et al. Data Augmentation via Latent Space Interpolation for Image
Classification. In: ICPR). 2018 (cit. on pp. 73, 99).

[Liu, 2018b] Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao, Junliang Yan, Jun
Wang, et al. Data augmentation via latent space interpolation for image
classification. In: ICPR. 2018 (cit. on p. 49).

[Liu, 2022c] Zicheng Liu, Siyuan Li, Di Wu, Zihan Liu, Zhiyuan Chen, Lirong Wu, et al.
AutoMix: Unveiling the power of mixup for stronger classifiers. In: ECCV.
2022.

[Liu, 2016b] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. DeepFash-
ion: Powering Robust Clothes Recognition and Retrieval with Rich Annota-
tions. In: CVPR. 2016 (cit. on p. 82).

[Logothetis, 1996] Nikos K Logothetis and David L Sheinberg. Visual object recognition. In:
Annual review of neuroscience (1996).

[Long, 2014] Jonathan Long, Ning Zhang, and Trevor Darrell. Do convnets learn corre-
spondence? In: NIPS. 2014 (cit. on p. 51).

[Loshchilov, 2019a] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.
In: ICLR. 2019 (cit. on p. 136).

[Loshchilov, 2019b] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
In: ICLR (2019) (cit. on p. 83).

[Lowe, 1995] David G Lowe. Similarity metric learning for a variable-kernel classifier. In:
Neural computation (1995).

[Lowe, 2004] David G Lowe. Distinctive image features from scale-invariant keypoints. In:
IJCV (2004) (cit. on pp. 14, 15).

166

[Madry, 2018] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial
attacks. In: ICLR. 2018 (cit. on pp. 60, 107).

[Mahendran, 2018] Aravindh Mahendran, James Thewlis, and Andrea Vedaldi. Cross Pixel Optical-
Flow Similarity for Self-supervised Learning. In: ACCV. 2018 (cit. on p. 125).

[Mangla, 2020] Puneet Mangla, Vedant Singh, Shreyas Jayant Havaldar, and Vineeth N Bal-
asubramanian. VarMixup: Exploiting the Latent Space for Robust Training
and Inference. In: arXiv preprint arXiv:2003.06566 (2020).

[Marr, 2010] David Marr. Vision: A computational investigation into the human represen-
tation and processing of visual information. MIT press, 2010 (cit. on p. 14).

[Martinez, 2017] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke, Alex Yablon-
ski, and Alain Kornhauser. Beyond grand theft auto V for training, test-
ing and enhancing deep learning in self driving cars. In: arXiv preprint
arXiv:1712.01397 (2017) (cit. on p. 150).

[McCulloch, 1944] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. Bulletin of mathematical biophysics. In: The Journal
of Symbolic Logic (1944) (cit. on p. 14).

[McInnes, 2018] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. UMAP:
Uniform Manifold Approximation and Projection. In: The Journal of Open
Source Software (2018) (cit. on p. 112).

[Miech, 2019] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi,
Ivan Laptev, and Josef Sivic. Howto100m: Learning a text-video embedding
by watching hundred million narrated video clips. In: ICCV. 2019 (cit. on
pp. 126, 127).

[Mirza, 2014] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
In: arXiv preprint arXiv:1411.1784 (2014).

[Misra, 2016] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn:
unsupervised learning using temporal order verification. In: ECCV. 2016 (cit.
on p. 125).

[Movshovitz-Attias, 2017] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe,
and Saurabh Singh. No fuss distance metric learning using proxies. In: ICCV.
2017 (cit. on pp. 34, 73, 75–77, 86, 99).

[Musgrave, 2020] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality
check. In: ECCV. 2020 (cit. on pp. 71, 73, 83, 98).

[Noh, 2015] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution
network for semantic segmentation. In: ICCV. 2015 (cit. on p. 97).

167

[O Pinheiro, 2020] Pedro O Pinheiro, Amjad Almahairi, Ryan Benmalek, Florian Golemo, and
Aaron Courville. Unsupervised learning of dense visual representations. In:
NeurIPS. 2020.

[Oh Song, 2016] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric
learning via lifted structured feature embedding. In: CVPR. 2016 (cit. on
pp. 34, 36, 71, 73, 75, 76, 82, 83, 86, 98).

[Oord, 2018] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learn-
ing with contrastive predictive coding. In: arXiv preprint arXiv:1807.03748
(2018) (cit. on pp. 36, 40).

[Oquab, 2023] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc
Szafraniec, Vasil Khalidov, et al. DINOv2: Learning Robust Visual Features
without Supervision. In: arXiv:2304.07193 (2023) (cit. on p. 133).

[Orhan, 2020] Emin Orhan, Vaibhav Gupta, and Brenden M Lake. Self-supervised learning
through the eyes of a child. In: NeurIPS (2020) (cit. on p. 125).

[Parkhi, 2012] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar.
Cats and Dogs. In: CVPR. 2012.

[Parthasarathy, 2023] Nikhil Parthasarathy, SM Eslami, João Carreira, and Olivier J Hénaff. Self-
supervised video pretraining yields strong image representations. In: NeurIPS.
2023 (cit. on pp. 123, 125–127, 138).

[Pathak, 2017] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath
Hariharan. Learning features by watching objects move. In: CVPR. 2017
(cit. on p. 125).

[Patrini, 2020] Giorgio Patrini, Rianne van den Berg, Patrick Forre, Marcello Carioni, Samarth
Bhargav, Max Welling, et al. Sinkhorn autoencoders. In: Uncertainty in Ar-
tificial Intelligence. 2020 (cit. on p. 51).

[Paulin, 2014] Mattis Paulin, Jérôme Revaud, Zaid Harchaoui, Florent Perronnin, and Cordelia
Schmid. Transformation pursuit for image classification. In: CVPR. 2014 (cit.
on p. 48).

[Perez, 2017] Luis Perez and Jason Wang. The effectiveness of data augmentation in im-
age classification using deep learning. In: arXiv preprint arXiv:1712.04621
(2017).

[Perronnin, 2007] Florent Perronnin and Christopher Dance. Fisher kernels on visual vocabu-
laries for image categorization. In: CVPR. IEEE. 2007 (cit. on p. 15).

[Pirk, 2020] Sören Pirk, Mohi Khansari, Yunfei Bai, Corey Lynch, and Pierre Sermanet.
Online learning of object representations by appearance space feature align-
ment. In: ICRA. 2020 (cit. on p. 125).

168

[Pont-Tuset, 2017] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-
Hornung, and Luc Van Gool. The 2017 davis challenge on video object seg-
mentation. In: arXiv preprint arXiv:1704.00675 (2017) (cit. on pp. 137, 138).

[Qian, 2019] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. Softtriple
loss: Deep metric learning without triplet sampling. In: ICCV. 2019 (cit. on
pp. 34, 73, 75, 86, 99).

[Qin, 2020] Jie Qin, Jiemin Fang, Qian Zhang, Wenyu Liu, Xingang Wang, and Xinggang
Wang. ResizeMix: Mixing Data with Preserved Object Information and True
Labels. In: arXiv preprint arXiv:2012.11101 (2020) (cit. on pp. 47, 50, 73,
99).

[Quinn, 1993] Paul C Quinn, Peter D Eimas, and Stacey L Rosenkrantz. Evidence for rep-
resentations of perceptually similar natural categories by 3-month-old and
4-month-old infants. In: Perception (1993) (cit. on p. 123).

[Radford, 2021] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, et al. Learning transferable visual models from natural
language supervision. In: ICML. 2021 (cit. on p. 152).

[Radosavovic, 2018] Ilija Radosavovic, Piotr Dollar, Ross Girshick, Georgia Gkioxari, and Kaim-
ing He. Data Distillation: Towards Omni-Supervised Learning. In: CVPR.
2018.

[Ragusa, 2023] Francesco Ragusa, Antonino Furnari, and Giovanni Maria Farinella. MEC-
CANO: A Multimodal Egocentric Dataset for Humans Behavior Understand-
ing in the Industrial-like Domain. In: CVIU (2023) (cit. on p. 126).

[Ramesh, 2021] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, et al. Zero-shot text-to-image generation. In: ICML. 2021 (cit. on
p. 152).

[Reimers, 2019] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings
Using Siamese BERT-Networks. In: EMNLP. 2019 (cit. on p. 71).

[Ren, 2015] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards real-time object detection with region proposal networks. In: NIPS.
2015 (cit. on pp. 17, 108).

[Richter, 2016] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for data: Ground truth from computer games. In: ECCV. 2016 (cit. on p. 150).

[Robinson, 2021] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Con-
trastive learning with hard negative samples. In: ICLR (2021) (cit. on p. 71).

[Rocco, 2018] Ignacio Rocco, Relja Arandjelović, and Josef Sivic. End-to-end weakly-supervised
semantic alignment. In: CVPR. 2018 (cit. on p. 51).

169

[Rohrbach, 2017] Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket Tandon, Christo-
pher Pal, Hugo Larochelle, et al. Movie description. In: IJCV (2017).

[Ronneberger, 2015] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In: MICCAI. 2015 (cit. on
p. 30).

[Rosenblatt, 1958] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-
age and organization in the brain. In: Psychological review (1958) (cit. on
p. 14).

[Rubner, 2000] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s dis-
tance as a metric for image retrieval. In: IJCV (2000) (cit. on p. 51).

[Rumelhart, 1986] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. In: nature (1986) (cit. on p. 15).

[Russakovsky, 2015] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, et al. Imagenet large scale visual recognition challenge. In: IJCV
(2015) (cit. on pp. 16, 40, 60, 65, 82, 105).

[Ryan, 1986] Patrick J Ryan. Euclidean and non-Euclidean geometry: an analytic ap-
proach. Cambridge university press, 1986 (cit. on p. 27).

[Saito, 2020] Kuniaki Saito, Kate Saenko, and Ming-Yu Liu. Coco-funit: Few-shot un-
supervised image translation with a content conditioned style encoder. In:
arXiv preprint arXiv:2007.07431 (2020).

[Salehi, 2023] Mohammadreza Salehi, Efstratios Gavves, Cees G. M. Snoek, and Yuki M.
Asano. Time Does Tell: Self-Supervised Time-Tuning of Dense Image Rep-
resentations. In: ICCV (2023) (cit. on pp. 125, 130).

[Sanakoyeu, 2019] Artsiom Sanakoyeu, Vadim Tschernezki, Uta Buchler, and Bjorn Ommer.
Divide and conquer the embedding space for metric learning. In: CVPR.
2019 (cit. on p. 86).

[Schroff, 2015] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified
embedding for face recognition and clustering. In: CVPR. 2015 (cit. on pp. 71,
73, 98, 99).

[Sener, 2022] F. Sener, D. Chatterjee, D. Shelepov, K. He, D. Singhania, R. Wang, et al.
Assembly101: A Large-Scale Multi-View Video Dataset for Understanding
Procedural Activities. In: CVPR (2022) (cit. on pp. 126, 128).

[Sermanet, 2018] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang,
Stefan Schaal, et al. Time-contrastive networks: Self-supervised learning from
video. In: ICRA. 2018 (cit. on p. 125).

[Sharif Razavian, 2014] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carls-
son. CNN features off-the-shelf: an astounding baseline for recognition. In:
CVPR. 2014 (cit. on p. 15).

170

[Shen, 2016] Xu Shen, Xinmei Tian, Anfeng He, Shaoyan Sun, and Dacheng Tao. Transform-
invariant convolutional neural networks for image classification and search.
In: ACMM. 2016 (cit. on p. 30).

[Shorten, 2019] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data aug-
mentation for deep learning. In: Journal of big data (2019).

[Shu, 2021] Yang Shu, Zhangjie Cao, Chenyu Wang, Jianmin Wang, and Mingsheng
Long. Open domain generalization with domain-augmented meta-learning.
In: CVPR. 2021 (cit. on p. 112).

[Simard, 1998] Patrice Y Simard, Yann A LeCun, John S Denker, and Bernard Victorri.
Transformation invariance in pattern recognition—tangent distance and tan-
gent propagation. In: Neural networks: tricks of the trade. 1998 (cit. on p. 48).

[Siméoni, 2019] Oriane Siméoni, Yannis Avrithis, and Ondrej Chum. Local features and visual
words emerge in activations. In: CVPR. 2019 (cit. on p. 51).

[Siméoni, 2021] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, An-
drei Bursuc, et al. Localizing objects with self-supervised transformers and
no labels. In: BMVC. 2021 (cit. on pp. 136, 141).

[Simonyan, 2015] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In: ICLR. 2015 (cit. on pp. 14, 16, 65).

[Singh, 2017] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek: Forcing a network
to be meticulous for weakly-supervised object and action localization. In:
ICCV. 2017.

[Singh, 2018] Krishna Kumar Singh, Hao Yu, Aron Sarmasi, Gautam Pradeep, and Yong
Jae Lee. Hide-and-seek: A data augmentation technique for weakly-supervised
localization and beyond. In: arXiv preprint arXiv:1811.02545 (2018) (cit. on
p. 29).

[Skiptrace,] Skiptrace. Skiptrace. https://www.youtube.com/watch?v=LbRNBQaO5a0
(cit. on p. 129).

[Sohn, 2016] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss
objective. In: NIPS. 2016 (cit. on pp. 36, 73, 98).

[Sohn, 2020] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Car-
lini, Ekin D Cubuk, et al. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. In: arXiv preprint arXiv:2001.07685 (2020)
(cit. on p. 71).

[Sokol, 1978] Samuel Sokol. Measurement of infant visual acuity from pattern reversal
evoked potentials. In: Vision research (1978) (cit. on p. 123).

[Spelke, 2007] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. In: Develop-
mental science (2007) (cit. on p. 123).

171

https://www.youtube.com/watch?v=LbRNBQaO5a0

[Srivastava, 2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. In: JMLR (2014) (cit. on p. 30).

[Stamey, 1989] Thomas A Stamey, John N Kabalin, John E McNeal, Iain M Johnstone,
Fuad Freiha, Elise A Redwine, et al. Prostate specific antigen in the diagnosis
and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy
treated patients. In: The Journal of urology (1989) (cit. on pp. 13, 180).

[Summers, 2019] Cecilia Summers and Michael J Dinneen. Improved mixed-example data aug-
mentation. In: WACV. 2019 (cit. on pp. 47, 50).

[Szegedy, 2014] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, et al. Intriguing properties of neural networks. In:
ICLR. 2014 (cit. on p. 48).

[Takahashi, 2018] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Ricap: Random
Image Cropping and Patching Data Augmentation for Deep Cnns. In: ACML.
2018 (cit. on pp. 47, 50).

[Teh, 2020] Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Proxynca++: Re-
visiting and revitalizing proxy neighborhood component analysis. In: ECCV.
2020 (cit. on pp. 34, 73, 75, 77, 83, 86, 99).

[Thulasidasan, 2019] Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya,
and Sarah Michalak. On mixup training: Improved calibration and predictive
uncertainty for deep neural networks. In: NeurIPS (2019) (cit. on p. 65).

[Tian, 2024a] Yonglong Tian, Lijie Fan, Kaifeng Chen, Dina Katabi, Dilip Krishnan, and
Phillip Isola. Learning vision from models rivals learning vision from data.
In: CVPR (2024) (cit. on p. 151).

[Tian, 2024b] Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan.
Stablerep: Synthetic images from text-to-image models make strong visual
representation learners. In: Advances in Neural Information Processing Sys-
tems (2024) (cit. on p. 151).

[Tokozume, 2018] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Learning from between-
class examples for deep sound recognition. In: ICLR. 2018 (cit. on p. 50).

[Treneska, 2022] Sandra Treneska, Eftim Zdravevski, Ivan Miguel Pires, Petre Lameski, and
Sonja Gievska. Gan-based image colorization for self-supervised visual fea-
ture learning. In: Sensors (2022).

[Tschannen, 2020] Michael Tschannen, Josip Djolonga, Marvin Ritter, Aravindh Mahendran,
Neil Houlsby, Sylvain Gelly, et al. Self-supervised learning of video-induced
visual invariances. In: cvpr. 2020 (cit. on p. 125).

172

[Uddin, 2021] A F M Uddin, Mst. Monira, Wheemyung Shin, TaeChoong Chung, and Sung-
Ho Bae. SaliencyMix: A Saliency Guided Data Augmentation Strategy for
Better Regularization. In: 2021 (cit. on pp. 47, 49, 50, 59–65, 73, 96, 99,
107–109, 111, 115).

[Vapnik, 1999] VN Vapnik. An Overview of Statistical Learning Theory. In: IEEE Transac-
tions on Neural Networks (1999) (cit. on p. 96).

[Vasudeva, 2021] Bhavya Vasudeva, Puneesh Deora, Saumik Bhattacharya, Umapada Pal, and
Sukalpa Chanda. Loop: Looking for optimal hard negative embeddings for
deep metric learning. In: CVR. 2021 (cit. on p. 36).

[Vaswani, 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, et al. Attention Is All You Need. In: NeurIPS. 2017.

[Venkataramanan, 2021] Shashanka Venkataramanan, Yannis Avrithis, Ewa Kijak, and Laurent Am-
saleg. AlignMix: Improving representation by interpolating aligned features.
In: arXiv preprint arXiv:2103.15375 (2021) (cit. on pp. 25, 73, 77, 99, 106–
113, 115, 116).

[Venkataramanan, 2024a] Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli,
and Amirhossein Habibian. Skip-attention: Improving vision transformers by
paying less attention. In: ICLR. 2024 (cit. on p. 25).

[Venkataramanan, 2023] Shashanka Venkataramanan, Ewa Kijak, Yannis Avrithis, et al. Embedding
space interpolation beyond mini-batch, beyond pairs and beyond examples.
In: NeurIPS. 2023 (cit. on p. 25).

[Venkataramanan, 2022] Shashanka Venkataramanan, Bill Psomas, Ewa Kijak, Laurent Amsaleg,
Konstantinos Karantzalos, and Yannis Avrithis. It takes two to tango: Mixup
for deep metric learning. In: ICLR. 2022 (cit. on p. 25).

[Venkataramanan, 2024b] Shashanka Venkataramanan, Mamshad Nayeem Rizve, João Carreira, Yuki
M Asano, and Yannis Avrithis. Is ImageNet worth 1 video? Learning strong
image encoders from 1 long unlabelled video. In: ICLR. 2024 (cit. on p. 25).

[Venkateswara, 2017] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman
Panchanathan. Deep hashing network for unsupervised domain adaptation.
In: CVPR. 2017 (cit. on p. 112).

[Verma, 2019] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, et al. Manifold mixup: Better representations by interpo-
lating hidden states. In: ICML. 2019 (cit. on pp. 22, 32, 47, 48, 50–52, 56,
58–65, 68, 71, 73, 76, 77, 84, 96, 97, 99, 101, 105, 107–111, 115, 117, 120, 147,
181).

[Villani, 2008] Cédric Villani. Optimal transport: old and new. 2008 (cit. on pp. 51, 52).

173

[Vinyals, 2016] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and
Daan Wierstra. Matching networks for one shot learning. In: arXiv preprint
arXiv:1606.04080 (2016) (cit. on p. 71).

[Wah, 2011a] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge
Belongie. The Caltech-UCSD Birds-200-2011 Dataset. Tech. rep. CNS-TR-
2011-001. California Institute of Technology, 2011 (cit. on p. 82).

[Wah, 2011b] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge
Belongie. The caltech-ucsd birds-200-2011 dataset. Tech. rep. CNS-TR-2011-
001. California Institute of Technology, 2011 (cit. on p. 66).

[Wang, 2014] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang,
James Philbin, et al. Learning Fine-Grained Image Similarity with Deep
Ranking. In: CVPR. 2014 (cit. on pp. 34, 73, 75, 76, 98).

[Wang, 2020] Tongzhou Wang and Phillip Isola. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In: ICML.
2020 (cit. on pp. 72, 89, 113).

[Wang, 2015] Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual repre-
sentations using videos. In: ICCV. 2015 (cit. on p. 125).

[Wang, 2019a] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning correspondence
from the cycle-consistency of time. In: CVPR. 2019 (cit. on p. 125).

[Wang, 2021] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense
Contrastive Learning for Self-Supervised Visual Pre-Training. In: CVPR.
2021.

[Wang, 2019b] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R
Scott. Multi-similarity loss with general pair weighting for deep metric learn-
ing. In: CVPR. 2019 (cit. on pp. 34, 36, 71, 73–77, 83, 86, 94, 98, 100).

[Wang, 2019c] Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao Huang, and Cheng
Wu. Implicit semantic data augmentation for deep networks. In: NeurIPS
(2019).

[Wei, 2022] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph
Feichtenhofer. Masked feature prediction for self-supervised visual pre-training.
In: CVPR. 2022 (cit. on p. 43).

[Weinberger, 2009] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large
margin nearest neighbor classification. In: JMLR (2009) (cit. on pp. 73, 86,
98).

[Weinzaepfel, 2013] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and Cordelia Schmid.
DeepFlow: Large displacement optical flow with deep matching. In: ICCV.
2013 (cit. on p. 51).

174

[Wen, 2016] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative
feature learning approach for deep face recognition. In: ECCV. 2016.

[Wen, 2020] Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: an alterna-
tive approach to efficient ensemble and lifelong learning. In: arXiv preprint
arXiv:2002.06715 (2020).

[Werbos, 1974] Paul Werbos. New tools for prediction and analysis in the behavioral science.
In: Ph. D. dissertation, Harvard University (1974) (cit. on p. 15).

[Wiles, 2022] Olivia Wiles, Joao Carreira, Iain Barr, Andrew Zisserman, and Mateusz Mali-
nowski. Compressed vision for efficient video understanding. In: ACCV. 2022
(cit. on pp. 121, 123, 128).

[Wiskott, 2002] Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsuper-
vised learning of invariances. In: Neural computation (2002) (cit. on p. 125).

[Wohlhart, 2015] Paul Wohlhart and Vincent Lepetit. Learning descriptors for object recogni-
tion and 3d pose estimation. In: CVPR. 2015.

[Wong, 2016] Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDon-
nell. Understanding data augmentation for classification: when to warp? In:
DICTA. 2016 (cit. on p. 27).

[Wu, 2017] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and Philipp Krähenbühl.
Sampling Matters in Deep Embedding Learning. In: ICCV. 2017 (cit. on
pp. 71, 73, 86, 98, 99).

[Wu, 2020] Mike Wu, Chengxu Zhuang, Milan Mosse, Daniel Yamins, and Noah Good-
man. On mutual information in contrastive learning for visual representa-
tions. In: arXiv preprint arXiv:2005.13149 (2020) (cit. on p. 36).

[Xiao, 2010] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio
Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In:
CVPR. 2010 (cit. on pp. 63, 111).

[Xiao, 2018] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified
perceptual parsing for scene understanding. In: ECCV. 2018 (cit. on pp. 136,
137).

[Xie, 2020] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training
with noisy student improves imagenet classification. In: CVPR. 2020.

[Xie, 2017] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks. In: CVPR.
2017.

[Xie, 2021a] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu.
Propagate yourself: Exploring pixel-level consistency for unsupervised visual
representation learning. In: CVPR. 2021.

175

[Xie, 2021b] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao,
et al. Simmim: A simple framework for masked image modeling. In: arXiv
preprint arXiv:2111.09886 (2021).

[Xie, 2022] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao,
et al. Simmim: A simple framework for masked image modeling. In: CVPR.
2022 (cit. on p. 43).

[Xing, 2003a] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance
Metric Learning with Application to Clustering with Side-Information. In:
NeurIPS. 2003.

[Xing, 2003b] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance
Metric Learning with Application to Clustering with Side-Information. In:
NIPS. 2003 (cit. on pp. 71, 73, 98).

[Xiong, 2021] Yuwen Xiong, Mengye Ren, Wenyuan Zeng, and Raquel Urtasun. Self-supervised
representation learning from flow equivariance. In: ICCV. 2021 (cit. on p. 125).

[Xu, 2016a] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description
dataset for bridging video and language. In: CVPR. 2016.

[Xu, 2016b] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, et al.
Improved relation classification by deep recurrent neural networks with data
augmentation. In: arXiv preprint arXiv:1601.03651 (2016) (cit. on p. 27).

[Xuan, 2020] Hong Xuan, Abby Stylianou, and Robert Pless. Improved embeddings with
easy positive triplet mining. In: WACV. 2020 (cit. on p. 86).

[Yamada, 2019] Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise. Shakedrop regular-
ization. In: (2019) (cit. on p. 30).

[Yang, 2022] Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao,
and Furao Shen. Image data augmentation for deep learning: A survey. In:
arXiv preprint arXiv:2204.08610 (2022) (cit. on p. 18).

[Yao, 2015] Leon Yao and John Miller. Tiny imagenet classification with convolutional
neural networks. In: 2015 (cit. on pp. 60, 105).

[Yi, 2014] Dong Yi, Zhen Lei, and Stan Z. Li. Deep Metric Learning for Practical Person
Re-Identification. In: arXiv preprint arXiv:1703.07737 (2014) (cit. on pp. 76,
77).

[Yu, 2015] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and
Jianxiong Xiao. LSUN: Construction of a large-scale image dataset using
deep learning with humans in the loop. In: arXiv preprint arXiv:1506.03365
(2015) (cit. on pp. 63, 111).

[Yu, 2018] Rui Yu, Zhiyong Dou, Song Bai, Zhaoxiang Zhang, Yongchao Xu, and Xi-
ang Bai. Hard-aware point-to-set deep metric for person re-identification. In:
ECCV. 2018.

176

[Yun, 2019] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk
Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong
classifiers with localizable features. In: ICCV. 2019 (cit. on pp. 32, 47, 48,
50, 59–66, 73, 96, 99, 105, 107–111, 115).

[Zagoruyko, 2016a] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In: BMVC.
2016.

[Zagoruyko, 2016b] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In: BMVC.
2016 (cit. on pp. 60, 105).

[Zeiler, 2014] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In: ECCV. 2014 (cit. on p. 120).

[Zhai, 2018] Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep
metric learning. In: arXiv preprint arXiv:1811.12649 (2018) (cit. on p. 83).

[Zhang, 2020] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. DeepEMD: Few-
Shot Image Classification With Differentiable Earth Mover’s Distance and
Structured Classifiers. In: CVPR. 2020 (cit. on p. 51).

[Zhang, 2017] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. In:
ICLR. 2017 (cit. on p. 48).

[Zhang, 2018a] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz.
mixup: Beyond empirical risk minimization. In: ICLR. 2018 (cit. on pp. 23,
31, 48, 50–52, 58–66, 71, 73, 76, 95–97, 99, 101, 107–111, 114, 115, 117, 119,
120, 183).

[Zhang, 2022a] Lei Zhang, Na Jiang, Qishuai Diao, Zhong Zhou, and Wei Wu. Person Re-
identification with pose variation aware data augmentation. In: Neural com-
puting and applications (2022).

[Zhang, 2022b] Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang,
Xiaokang Yang, et al. M-Mix: Generating Hard Negatives via Multi-sample
Mixing for Contrastive Learning. In: SIGKDD. 2022.

[Zhang, 2018b] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and Thomas S Huang.
Adversarial complementary learning for weakly supervised object localiza-
tion. In: CVPR. 2018 (cit. on p. 66).

[Zhang, 2018c] Xiaolin Zhang, Yunchao Wei, Guoliang Kang, Yi Yang, and Thomas Huang.
Self-produced guidance for weakly-supervised object localization. In: ECCV.
2018.

[Zhao, 2018] Yiru Zhao, Zhongming Jin, Guo-jun Qi, Hongtao Lu, and Xian-sheng Hua.
An adversarial approach to hard triplet generation. In: ECCV. 2018 (cit. on
p. 37).

177

[Zheng, 2019] Wenzhao Zheng, Zhaodong Chen, Jiwen Lu, and Jie Zhou. Hardness-aware
deep metric learning. In: CVPR. 2019 (cit. on pp. 37, 74, 99).

[Zhong, 2020] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random
erasing data augmentation. In: AAAI. 2020 (cit. on pp. 29, 105).

[Zhou, 2016] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In: CVPR. 2016
(cit. on pp. 59, 65, 66, 103, 117, 118).

[Zhou, 2017] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and An-
tonio Torralba. Scene parsing through ade20k dataset. In: CVPR. 2017 (cit.
on pp. 136, 137).

[Zhou, 2022a] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille,
et al. iBOT: Image bert pre-training with online tokenizer. In: ICLR. 2022
(cit. on pp. 43, 129, 134, 136, 138–140, 142, 143).

[Zhou, 2022b] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan
Misra. Detecting Twenty-thousand Classes using Image-level Supervision. In:
ECCV. 2022 (cit. on pp. 127–129).

[Zhou, 2018] Yanzhao Zhou, Yi Zhu, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Weakly
Supervised Instance Segmentation Using Class Peak Response. In: CVPR.
2018 (cit. on p. 98).

[Zhu, 2020a] Jianchao Zhu, Liangliang Shi, Junchi Yan, and Hongyuan Zha. AutoMix:
Mixup Networks for Sample Interpolation via Cooperative Barycenter Learn-
ing. In: ECCV. 2020 (cit. on pp. 50, 51, 60, 73, 74, 99).

[Zhu, 2017] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In:
ICCV. 2017.

[Zhu, 2020b] Yuehua Zhu, Muli Yang, Cheng Deng, and Wei Liu. Fewer is More: A Deep
Graph Metric Learning Perspective Using Fewer Proxies. In: NeurIPS (2020)
(cit. on pp. 73, 99).

178

Abstract: The primary goal in computer vision is to enable machines to extract meaningful
information from visual data, such as images and videos, and leverage this information to
perform a wide range of tasks. To this end, substantial research has focused on developing
deep learning models capable of encoding comprehensive and robust visual representations.
A prominent strategy in this context involves pretraining models on large-scale datasets, such
as ImageNet, to learn representations that can exhibit cross-task applicability and facilitate the
successful handling of diverse downstream tasks with minimal effort.

To facilitate learning on these large-scale datasets and encode good representations, com-
plex data augmentation strategies have been used. However, these augmentations can be
limited in their scope, either being hand-crafted and lacking diversity, or generating images that
appear unnatural. Moreover, the focus of these augmentation techniques has primarily been on
the ImageNet dataset and its downstream tasks, limiting their applicability to a broader range
of computer vision problems.

In this thesis, we aim to tackle these limitations by exploring different approaches to en-
hance the efficiency and effectiveness in representation learning. The common thread across
the works presented is the use of interpolation-based techniques, such as mixup, to generate
diverse and informative training examples beyond the original dataset. In the first work, we
are motivated by the idea of deformation as a natural way of interpolating images rather than
using a convex combination. We show that geometrically aligning the two images in the fea-
ture space, allows for more natural interpolation that retains the geometry of one image and
the texture of the other, connecting it to style transfer. Drawing from these observations, we
explore the combination of mixup and deep metric learning. We develop a generalized formu-
lation that accommodates mixup in metric learning, leading to improved representations that
explore areas of the embedding space beyond the training classes. Building on these insights,
we revisit the original motivation of mixup and generate a larger number of interpolated ex-
amples beyond the mini-batch size by interpolating in the embedding space. This approach
allows us to sample on the entire convex hull of the mini-batch, rather than just along lin-
ear segments between pairs of examples. Finally, we investigate the potential of using natural
augmentations of objects from videos. We introduce a "Walking Tours" dataset of first-person
egocentric videos, which capture a diverse range of objects and actions in natural scene transi-
tions. We then propose a novel self-supervised pretraining method called DoRA, which detects
and tracks objects in video frames, deriving multiple views from the tracks and using them in a
self-supervised manner.

Keywords: Representation learning, mixup, deep metric learning, self-supervised learning

RÉSUMÉ

La conception de représentations efficaces est un élément central de nombreux
systèmes d’Intelligence Artificielle (IA), et elle a considérablement évolué au cours des
dernières décennies. La performance d’un système d’IA dépend fortement de la qualité
de la représentation des données d’entrée. Tout comme les humains trouvent les cal-
culs arithmétiques plus intuitifs en utilisant des chiffres plutôt que des binaires ou des
chiffres romains [Dehaene, 2011], la représentation des entrées joue un rôle crucial
dans la performance des systèmes d’apprentissage automatique (AA). Par exemple,
dans un système simple d’AA chargé d’identifier le risque de cancer de la prostate,
le système n’interagit pas directement avec le patient, mais plutôt avec un ensemble
de variables, telles que les conditions cliniques et démographiques, recueillies par un
spécialiste [Stamey, 1989]. Cet ensemble de variables constitue la représentation du
patient vue par l’algorithme d’AA, qui apprend ensuite comment ces différentes vari-
ables interagissent pour faire des prédictions.

Au-delà des représentations textuelles et numériques couramment utilisées, les
systèmes d’IA modernes se sont étendus pour englober une large gamme de modal-
ités de données. La vision par ordinateur est l’une de ces modalités, qui traite la com-
préhension des données visuelles telles que les images et les vidéos. Les algorithmes
de vision exploitent les représentations pour extraire des informations significatives
des entrées visuelles, permettant aux systèmes d’IA de percevoir, d’interpréter et de
prendre des décisions basées sur des indices visuels, tout comme les humains le font.
Dans le domaine de la vision par ordinateur, la capacité à comprendre le contenu sé-
mantique d’une image est cruciale pour une large gamme de tâches, telles que la
classification, la recherche, la détection et la segmentation. De plus, les systèmes de
vision par ordinateur peuvent tirer parti de données multimodales, où les images ou
les vidéos sont associées à des informations textuelles, pour relever des défis tels que
la légende d’images/vidéos et la réponse à des questions visuelles. Ces tâches im-
pliquent souvent deux composants clés : un mécanisme pour extraire des informations
de l’image et un mécanisme secondaire pour accomplir la tâche spécifique basée sur
les informations extraites.

180

Nous proposons différentes approches visant à améliorer la performance et la ro-
bustesse des encodeurs d’images. Après un aperçu détaillé des différentes méthodes
d’augmentation de données en classification d’images, apprentissage métrique et ap-
prentissage auto-supervisé dans le ??, nous présentons les différentes contributions
réalisées au cours de ce programme de doctorat dans ces différents contextes.

7.2.1 AlignMixup : une méthode naturelle d’interpolation

L’augmentation de données basée sur l’interpolation, comme le mixup, a montré
qu’elle améliore la robustesse et la calibration des modèles [Verma, 2019]. Cependant,
comme montré dans [Kim, 2020a], les images d’entrée mixtes ont tendance à paraître
non naturelles et la sélection aléatoire des patches et le mélange de leurs étiquettes
peuvent amener le classificateur à apprendre des caractéristiques non informatives.
Cette limitation suggère que l’exploration de l’interpolation dans l’espace des carac-
téristiques, plutôt que dans l’espace d’entrée, pourrait être une direction intéressante
à poursuivre.

[Bengio, 2013] montrent que traverser le long du manifold des représentations
obtenues à partir des couches plus profondes du réseau entraîne plus probablement la
découverte d’exemples réalistes. Ils émettent l’hypothèse que les représentations plus
profondes apprises par les réseaux neuronaux ont tendance à mieux désentrelacer les
facteurs sous-jacents de variation. Ces représentations désentrelacées peuvent être
exploitées pour produire des chaînes de Markov à mélange plus rapide, ce qui signifie
que les représentations plus profondes permettent en effet un meilleur mélange et
génèrent des interpolations plus réalistes entre les points de données.

Motivés par cette observation, nous proposons d’interpoler les images dans l’espace
des caractéristiques plutôt que dans l’espace image. Dans le chapter 3, nous montrons
que l’idée de déformation est une manière naturelle d’interpoler les images, où une im-
age peut se déformer en une autre, de manière continue. Pour ce faire, nous étudions
l’alignement géométrique pour le mixup, basé sur des correspondances sémantiques
explicites dans l’espace des caractéristiques. En particulier, nous alignons les tenseurs
de caractéristiques de deux images, résultant en des correspondances douces. Nous
établissons un nouvel état de l’art en classification d’images, robustesse aux attaques
adversariales, calibration, localisation faiblement supervisée et détection des anoma-
lies, surpassant des opérations de mixup plus sophistiquées sur plusieurs réseaux et

181

ensembles de données.

7.2.2 Extension du mixup à l’apprentissage métrique

Nous avons discuté d’AlignMixup, une technique qui interpole entre des caractéris-
tiques alignées et améliore la performance sur les tâches de classification d’images.
Cependant, ces méthodes de mixup ne se généralisent pas à différentes tâches telles
que la recherche d’instance et l’apprentissage métrique. Sur cette base, nous ex-
plorons maintenant l’idée d’appliquer systématiquement le mixup dans le domaine de
l’apprentissage métrique profond.

Il existe une similitude frappante entre l’utilisation de la similarité par paires en
apprentissage métrique et l’utilisation de paires d’exemples en mixup pour les tâches
de classification. Cette observation nous a conduit à explorer la possibilité d’interpoler
entre les paires en apprentissage métrique en utilisant le mixup, de manière similaire
à son fonctionnement en classification. Dans le chapter 4, nous introduisons le mixup
dans le contexte de l’apprentissage métrique. Cependant, l’interpolation directe des
paires d’embeddings présente un défi unique. Contrairement à la classification, les
fonctions de perte en apprentissage métrique ne sont pas additives sur les exemples,
ce qui rend l’interpolation directe des étiquettes cibles non triviale en utilisant le mixup
traditionnel.

Pour relever ce défi, nous développons d’abord une formulation généralisée qui en-
globe les fonctions de perte d’apprentissage métrique existantes et la modifions pour
accueillir le mixup. Cela contribue à une manière systématique d’interpoler les éti-
quettes, de sorte que le facteur d’interpolation affecte le poids relatif des positifs et des
négatifs. Étant donné que l’interpolation entre toutes les paires possibles peut être coû-
teuse en termes de calcul, nous utilisons une stratégie d’interpolation linéaire efficace,
la rendant significativement plus rapide que les méthodes d’interpolation non linéaires
complexes. En introduisant le mixup dans l’apprentissage métrique et en développant
une formulation généralisée avec une interpolation efficace, nous visons à améliorer
la performance des tâches d’apprentissage métrique profond, en nous appuyant sur
le succès du mixup en classification d’images et sur les insights obtenus d’AlignMixup
dans le ??.

182

7.2.3 Interpolation au-delà du mini-lot, au-delà des paires et
au-delà des exemples

Le chapitre précédent a exploré l’efficacité du mixup dans l’apprentissage métrique
profond, où augmenter le nombre de termes de perte en interpolant entre toutes les
paires d’embeddings a amélioré la performance sans surcharge computationnelle sig-
nificative. Cela nous motive à explorer le potentiel d’étendre le mixup davantage dans
les tâches de classification en générant plus d’exemples interpolés pendant l’entraînement.
La motivation initiale du mixup [Zhang, 2018a], vise à augmenter les données d’entraînement
en générant de nouveaux exemples par interpolation. Cependant, elle est limitée à
l’interpolation entre paires d’exemples dans l’espace d’entrée, car la combinaison con-
vexe de trois ou plus d’exemples n’apportait pas de gains supplémentaires.

Dans le chapter 5, nous revisitons la motivation initiale du mixup et augmentons le
nombre d’exemples augmentés par interpolation dans l’espace d’embeddings. Au lieu
d’interpoler dans l’espace d’entrée, nous générons un nombre arbitrairement grand
d’exemples interpolés au-delà de la taille du mini-lot en interpolant l’ensemble du mini-
lot dans l’espace d’embeddings. Géométriquement, cela se traduit par une interpola-
tion entre tous les points, échantillonnant essentiellement des points sur l’enveloppe
convexe du mini-lot. En augmentant le nombre de termes de perte par mini-lot de
plusieurs ordres de grandeur à peu de coût supplémentaire, rendu possible par l’interpolation
dans l’espace d’embeddings, nous montrons empiriquement des améliorations signi-
ficatives par rapport aux méthodes de mixup de pointe sur quatre benchmarks dif-
férents, malgré l’interpolation étant uniquement linéaire.

183

184

	Introduction
	Visual Representations
	Data Augmentation
	Challenges of Data Augmentation

	Outline and Contributions
	AlignMixup: a natural way of interpolation
	Extending mixup to metric learning
	Interpolation beyond mini-batch, beyond pairs and beyond examples
	Learning strong image encoders from videos
	Publications

	Background
	What is data augmentation?
	Image space augmentation techniques
	Augmentations in the feature space
	Interpolation based data augmentation

	Deep Metric Learning
	Metric learning loss functions
	Hard negative mining
	Interpolation for pairwise loss functions

	Self-supervised learning
	Contrastive Representation Learning
	Non-contrastive and Masked Image Modelling

	Positioning the contributions

	Interpolating Aligned Features
	Introduction
	Related Work
	AlignMixup
	Preliminaries
	Interpolation of aligned feature tensors
	Visualization and discussion

	Experiments
	Implementation details
	Algorithm
	Image classification and robustness
	Overconfidence
	Weakly-supervised object localization (WSOL)
	Ablation study

	Discussions

	Mixup for Deep Metric Learning
	Introduction
	Related Work
	Mixup for metric learning
	Preliminaries
	Generic loss formulation
	Improving representations using mixup
	Label representation
	Mixed loss function
	Analysis: Mixed embeddings and positivity

	Experiments
	Setup
	Mixup settings
	Results
	How does mixup improve representations?
	Ablations

	Conclusion

	Interpolating Beyond Mini-Batch, Beyond Pairs and Beyond Examples
	Introduction
	Related Work
	Method
	Preliminaries and background
	MultiMix
	Dense MultiMix

	Experiments
	Setup
	Results: Image classification and robustness
	Results: Transfer learning to object detection
	Reducing overconfidence
	Generalizing to unseen domains
	Analysis of the embedding space
	Manifold intrusion
	Ablations

	Discussion

	Learning Strong Image Encoders from Videos
	Introduction
	Related Work
	Walking Tours Dataset
	Dataset collection and properties
	Comparison with other video datasets
	Dataset analysis

	Attention-based multi-object tracking
	Experiments
	Tasks and methods
	Implementation details
	Hyperparameters
	Comparison with State-of-the-art
	Ablations

	More visualizations
	Conclusion

	Conclusion
	Conclusions
	What comes next?

	Bibliography
	AlignMixup : une méthode naturelle d'interpolation
	Extension du mixup à l'apprentissage métrique
	Interpolation au-delà du mini-lot, au-delà des paires et au-delà des exemples

