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© local features and bag-of-words
© local feature detection

© visual vocabularies

Q spatial matching and re-ranking
e geometry indexing

@ feature selection

e clustering of photo collections

@ location and landmark recognition

© implementation: iv1 library
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© local features and bag-of-words



image matching




image matching




matching local feature points
[Scott and Longuet-Higgins, RSL 1991]
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e given two sets of points a;,% =1,...,m and bj,j =1,...,n on the
same plane, let d;; be the distance between a; and b;

e following earlier theories of Ullman and Marr, the problem is to
associate points a; and b; in a one-to-one correspondence such that
the sum of squared distances between corresponding points is
minimized



a spectral approach

construct the m x n proximity matrix G with elements
gij = exp(—d;;/207)
perform singular value decomposition of G
G=USV?T

where U, V' are orthogonal matrices of dimension m,n and S is a
non-negative diagonal m X n matrix

replace each diagonal element s;; of S by 1 and reconstruct
P=UEV"

finally, associate points a; and b; if element p;; of P is the greatest
element in its row and its column



a spectral approach
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matching discriminative local features
[Lowe, ICCV 1999]




matching discriminative local features
[Lowe, ICCV 1999]

features



matching discriminative local features
[Lowe, ICCV 1999]

features

normalized features



forget about geometry: bag-of-words
[Sivic and Zisserman, ICCV 2003]

Bag of ‘words’
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vector quantization — visual words




vector quantization — visual words




vector quantization — visual words




vector quantization — visual words




vector quantization — visual words




vector quantization — visual words




inverted file indexing
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inverted file indexing
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inverted file indexing
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inverted file indexing
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inverted file indexing
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back to geometry: re-ranking

original images



back to geometry: re-ranking

local features



back to geometry: re-ranking

tentative correspondences



back to geometry: re-ranking

RANSAC inliers
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RANSAC

[Fischler and Bolles, CACM 1981]

012345678910

problem: fit line to data

\/



RANSAC

[Fischler and Bolles, CACM 1981]

, leastsquares fit !!!




= DD W e Ut

RANSAC

[Fischler and Bolles, CACM 1981]

solution: choose 2 random points ...

01 2

345 6



= DD W e Ut

RANSAC

[Fischler and Bolles, CACM 1981]

012345678910

... fit line to them ...

\/



RANSAC

[Fischler and Bolles, CACM 1981]
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012345678910 =x

... classify remaining points to inliers ...



= DD W e Ut

RANSAC

[Fischler and Bolles, CACM 1981]

012345678910

... and outliers

\/



RANSAC

[Fischler and Bolles, CACM 1981]

\/




= DD W e Ut

RANSAC

[Fischler and Bolles, CACM 1981]

012345678910

... and repeat

\/
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RANSAC

[Fischler and Bolles, CACM 1981]

234567891

finally: maximum inliers
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© local feature detection



edge-based feature detection
[Rapantzikos and Avrithis, ECCVW 2010]

blob-like regions starting from single-scale edges

local maxima of Euclidean distance transform expected to lie in
region interior or close to ridges

greedily merge maxima guided by edge strength, to reproduce the
effect of smoothing in scale-space evolution

regions of arbitrary shape and scale, unaffected by spurious or
disconnected edges



original image




binary edge map




binary distance map




distance map + local maxima




Delaunay triangulation




convex hulls of selected regions




original image + features




weighted a-shapes
[Varytimidis et al., submitted to ECCV 2012]

a-detector MSER



medial features
[Avrithis and Rapantzikos, ICCV 2011]

e additively weighted distance map directly from image gradient,
computed exactly in linear time

Da(f)(x) = ggg{d(w,y) + W)} weX

e weighted medial capturing region structure and topology

e region/boundary duality and image partition



region/boundary duality
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original image




weighted distance map and medial




region/boundary duality




original image + features




fragmentation factor

binary input point labels image partition

e€E(k)

e simple selection criterion: is a region well-enclosed by boundaries?

e arbitrary shape and scale, without explicit scale-space construction






the challenge of shape




the challenge of scale




the challenge of scale




the challenge of scale




viewpoint: graffiti scene




viewpoint: graffiti scene




matching score %
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scale 4 rotation: boat scene




scale 4 rotation: boat scene




matching score %

scale 4 rotation: boat scene
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blur: bikes scene




blur: bikes scene




matching score %
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texture + blur: trees scene




texture + blur: trees scene




matching score %
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viewpoint: wall scene




viewpoint: wall scene




matching score %
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application to segmentation
[Avrithis and Leonardos, unpublished 2012]




application to segmentation
[Avrithis and Leonardos, unpublished 2012]

BSDS500
Covering PRI VI

ODS | OIS | Best || ODS | OIS || ODS | OIS
Human 0.72 | 0.72 - 0.88 | 0.88 || 1.17 | 1.17
gPb-owt-ucm|3] 0.59 | 0.65 | 0.74 || 0.83 | 0.86 || 1.69 | 1.48
gPb-mad-ucm, 0.58 | 0.64 | 0.74 || 0.83 | 0.86 || 1.62 | 1.39
gPb-mad-esm, 0.55 | 0.62 | 0.71 || 0.82 | 0.86 || 1.83 | 1.51
Mean Shift [15] 0.54 | 0.58 | 0.66 || 0.79 | 0.81 || 1.85 | 1.64
Felz-Hutt [18] 0.52 | 0.57 | 0.69 || 0.80 | 0.82 || 2.21 | 1.87
gPb-mad-sfm 0.52 | 0.56 | 0.62 || 0.79 | 0.82 || 1.83 | 1.70
gPb-mad-esm, 0.51 | 0.54 | 0.60 || 0.79 | 0.80 || 1.86 | 1.82
Canny-owt-ucm [3] | 0.49 | 0.55 | 0.66 || 0.79 | 0.83 || 2.19 | 1.89
myCanny-mad-ucm, | 0.48 | 0.55 | 0.65 || 0.79 | 0.83 || 2.10 | 1.77
gPb-mad-ucm, 0.46 | 0.54 | 0.63 || 0.77 | 0.80 || 2.07 | 1.81
NCuts [16] 0.45 | 0.53 | 0.67 || 0.78 | 0.80 || 2.23 | 1.89
gCanny-mad-esm, 0.45 | 0.53 | 0.63 || 0.78 | 0.83 || 2.31 | 1.91
gCanny-mad-sfm 0.42 | 0.49 | 0.58 || 0.77 | 0.80 || 2.18 | 1.95
gCanny-mad-esm, 0.40 | 047 | 0.53 || 0.76 | 0.77 || 2.41 | 2.27
gCanny-mad-ucm,, 0.35 | 0.42 | 0.50 || 0.74 | 0.77 || 2.43 | 2.29
Quad-Tree 0.32 | 0.37 | 0.46 || 0.73 | 0.74 || 2.46 | 2.32
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© visual vocabularies



hierarchical k-means
[Nister and Stewenius, CVPR 2006]

large scale clustering: n = 107 data points into k = 10% clusters, in
d = 10? dimensions!

complexity of k-means per iteration is O(ndk): not practical!

build a vocabulary tree by hierarchical k-means

e.g. with a branching factor of b = 10, one needs only
[ =logy k = 6 levels, of complexity O(ndb) each

the same tree is used for nearest neighbor search and scoring



hierarchical k-means
[Nister and Stewenius, CVPR 2006]




approximate k-means
[Philbin et al., CVPR 2007]

in k-means, most computation is spent on searching for nearest
neighbors between points and cluster centers

replace exact search by an approximate nearest neighbor (ANN)
search, implemented by randomized k-d trees

now a single level of complexity O(ndt) is needed, where t is a fixed
number of tests, e.g. t = 100

more flexible than hierarchical k-means!



Average Top

3.2

approximate k-means
[Philbin et al., CVPR 2007]

[—AKM =3.45
---HKM = 3.29
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exact nearest neighbors: £-d tree
[Bentley, ACM 1975]

e
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exact nearest neighbors: k-d tree

[Bentley, ACM 1975]
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approximate NN: randomized k-d trees
[Silpa-Anan and Hartley, CVPR 2008]

indexing
e build m different k-d trees, each with a different structure

e use a random e.g. splitting plane, rotation, or projection for each
tree

search
o parallel search among all m trees, with a limit of ¢ nodes in total

e traverse all trees once, then use a shared priority queue



Speedup over linear search

Speedup over linear search

FLANN implementation
[Muja and Lowe, VISAPP 2009]

—%— k-means tree - sift 100K
—%— rand. kd-trees - sift 100}
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Gaussian mixtures

each cluster j represented by component p; with
pi () = mN |y, 051),

modeling its population ;, position p; and scale o;

responsibility of component p; for data point x;

i)
AR SNED

maximum likelihood estimates of parameters 7;, pu;j, 0; obtained as
weighted averages over data, with responsibilities as weights

iteratively compute responsibilities and parameters by expectation
maximization (EM)



approximate Gaussian mixtures
[Avrithis and Kalantidis, submitted to ECCV 2012]

incremental search

o keep all t nearest neighbors found for each data point, not just the
best

e use them across iterations, limiting the effort spent in new search
o limit responsibilities to this approximate nearest neighbor set:
complexity is still O(ndt)
dynamic estimation of k
e start with all data points as components

e purge overlapping clusters and expand remaining ones at each
iteration



approximate Gaussian mixtures—2d example

iteration=0, clusters=50

08 O

0.6
0.4

0.2




approximate Gaussian mixtures—2d example

iteration=1, clusters=15
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approximate Gaussian mixtures—2d example

iteration=2, clusters=10




approximate Gaussian mixtures—2d example

iteration=3, clusters=8




mAP

approximate Gaussian mixtures—learning
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approximate Gaussian mixtures—distractors
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Q spatial matching and re-ranking



local patches

e each local feature is associated with an image patch L, which also
represents an affine transform

e the rectified patch Ry is transformed to the patch via L
e the patch is rectified back to R via L™}

Y

Ro




fast spatial matching (FSM)

[Philbin et al., CVPR 2007]

single patch correspondence L <> R

the transformation from one patch to the other is RL™!
each correspondence provides a transformation hypothesis
hypotheses are now O(n); we can try them all for inliers
overall complexity is O(n?)




relaxed spatial matching
[Tolias and Avrithis, ICCV 2011]

do not seek for inliers
rather, look for hypotheses that agree with each other

how? build a hierarchical partition of 4d transformation space and
count hypotheses that fall in the same bin

inspired by Hough voting—hence Hough pyramid matching (HPM)
for £ levels (e.g. £ = 5), complexity drops from O(n?) to O(nf)!



toy example—Hough pyramid
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toy example—correspondences, strengths

p q strength
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toy example—affinity matrix
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relaxed spatial matching ...

is invariant to similarity transformations

is flexible, allowing non-rigid motion and multiple matching surfaces
or objects

imposes one-to-one mapping



relaxed spatial matching—examples

fast spatial matching



relaxed spatial matching—examples

|

relaxed spatial matching



relaxed spatial matching—examples

fast spatial matching



relaxed spatial matching—examples

relaxed spatial matching



relaxed spatial matching—examples

fast spatial matching



relaxed spatial matching—examples

relaxed spatial matching



relaxed spatial matching—examples

fast spatial matching



relaxed spatial matching—examples

relaxed spatial matching



relaxed spatial matching—examples

fast spatial matching



relaxed spatial matching—examples

relaxed spatial matching



world cities dataset

e 927 annotated images
e 17 groups of photos, each from a landmark scene in Barcelona

e 5 queries from each group



world cities dataset

927 annotated images

17 groups of photos, each from a landmark scene in Barcelona
5 queries from each group

2,226,414 distractor images from 40 cities

most depict urban scenery like the ground-truth



http://image.ntua.gr/iva/datasets/wc/

mAP

relaxed spatial matching—distractors
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relaxed spatial matching ...

is non-iterative, and linear in the number of correspondences

in a given query time, can re-rank one order of magnitude more
images than the state of the art

needs less than one millisecond to match a pair of images, on
average



mAP

relaxed spatial matching—timing
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this work is becoming part of...

0

http://opencv.willowgarage.com/


http://opencv.willowgarage.com/
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© zeometry indexing



weak geometric consistency (WGC)
[Jegou et al., ECCV 2008]

when an image undergoes rotation or scaling, the orientation and
scale of local features is consistently modified

quantize orientation and scale differences between feature pairs
maintain several scores for each image, one for each difference bin

this is not enough to recover a full transformation, but does improve
ranking



weak geometric consistency (WGC)
[Jegou et al., ECCV 2008]

number of matches
5
T
.
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feature map hashing
[Avrithis et al., ACM-MM 2010]

estimate image alignment via single correspondence

for each feature, construct a feature map encoding normalized
positions and appearance of all remaining features

represent an image by a collection of such feature maps

RANSAC-like matching is reduced to a number of set intersections



feature maps—example

o well aligned feature sets are likely to have maps with a high degree
of overlap
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feature maps—example

o well aligned feature sets are likely to have maps with a high degree
of overlap




feature map similarity

Sp(P,Q) = m
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feature map similarity

P.Q) = T (; m
Sr(P,Q) e e (@) fo(9)

9E€EHL(Q)
feature map of image P wrt origin &




feature map similarity
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feature map similarity

over all origins mapped to visual word v

So(P B f\TJA .
r(P,Q) = e e (@) fo(9)

9E€EHL(Q)
feature map of image P wrt origin &

feature map of image @ wrt origin ¢




feature map similarity

over all visual words that P, Q have in common

over all origins mapped to visual word v

So(P B f\TJA .
r(P,Q) = R (@) fo(9)

9EHL(Q)

feature map of image P wrt origin &

feature map of image @ wrt origin ¥
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feature map similarity—example

fast spatial matching (35 inliers)



feature map similarity—example

feature map similarity (32 inliers)



towards indexing
with min-wise independent permutations [Broder, CCS 2000]

FMS is a fast way of matching 2 images, but still not enough for
indexing

a feature map is an extremely sparse histogram; bin count typically
takes values in {0,1}

each feature map f is represented by a set f of non-empty bins

then, use min-wise independent permutations a.k.a. min-hashing as
an equivalent to random sampling



an example
[Chum et al. 2007]

a‘b‘c‘d‘e‘f {a,b,c}‘{b,c,d}‘{a,e,f}
permutations hash values
3162|541 2 2 1
1126354 1 2 1
31211|6|4|5 1 1 3
4135|1612 3 3 1




an example
[Chum et al. 2007]

alblcld|el|f] {abc}]|{bcd|{aef}
permutations hash values
31612541 2 2 1
112(6]3]5]4 1 2 1
31211]6|4]5 1 1 3
4135|1612 3 3 1




an example
[Chum et al. 2007]

alblcld|el|f] {abc}]|{bcd|{aef}
permutations hash values
3162|541 2 2 1
11263514 1 2 1
31211]6|4]5 1 1 3
4135|1612 3 3 1




an example
[Chum et al. 2007]

alblcld|el|f] {abc}]|{bcd|{aef}
permutations hash values
3162|541 2 2 1
112(6]3]5]4 1 2 1
312116415 1 1 3
4135|1612 3 3 1




an example
[Chum et al. 2007]

alblcld|el|f] {abc}]|{bcd|{aef}
permutations hash values
3162|541 2 2 1
112(6]3]5]4 1 2 1
31211]6|4]5 1 1 3
413151612 3 3 1




matching maps

multiple matching pairs of feature maps



matching maps

multiple matching pairs of feature maps



matching maps

multiple matching pairs of feature maps



matching maps

multiple matching pairs of feature maps



matching maps

multiple matching pairs of feature maps



matching maps

multiple matching pairs of feature maps



retrieval

indexing
e construct inverted file of triplets (9, w, ) (origin, hash value,
permutation)
e memory requirements 10x a typical baseline system
query
e retrieve images by triplets (0, w, ) of query image
e re-estimate transformation parameters using LO-RANSAC

e re-ranking is an order of magnitude faster than FastSM, because an
initial estimate is already available



European cities dataset 50K (EC50K)

e 778 annotated images
e 20 groups of photos

e 5 queries from each group

WM%%@ alk
g T I sl

publicly available: http://image.ntua.gr/iva/datasets/ec50k


http://image.ntua.gr/iva/datasets/ec50k

European cities dataset 50K (EC50K)

e 778 annotated images

e 20 groups of photos

e 5 queries from each group
e 50,000 distractor images

publicly available: http://image.ntua.gr/iva/datasets/ec50k


http://image.ntua.gr/iva/datasets/ec50k

feature map hashing—results EC50K
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@ feature selection



selecting useful features
[Turcot and Lowe, ICCV 2009]

¢ index space is now the bottleneck in going to large scale, not speed
o select features by matching across multiple views of the same object

or scene
o for each image in the database, find similar views, perform spatial
matching, and select features appearing as inliers



selecting useful features
[Turcot and Lowe, ICCV 2009]




large scale geometry indexing
[Tolias et al., submitted to CVIU, 2012]

feature map hashing implies random selection

instead, select robust features, again by matching across similar
views in dataset

individual selection criteria for origins and inlier features

dramatic reduction in index size



feature selection




results EC1M
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feature selection by symmetry
[Tolias et al., submitted to ACM-MM 2012]

feature selection so far relies on multiple views
how about unique views of an object or scene?
in fact, most images in a dataset are unique

exploit self-similarities, repeating patterns and symmetries



matching scheme
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direct matching
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flipped matching




selected features




mAP
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mAP
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@ clustering of photo collections



community photo collections

clustering / landmark recognition
e focus on popular subsets

e applications: browsing, 3D reconstruction

______
et

) L

[Crandall et al., ICCV 2009]



community photo collections

retrieval / location recognition

e include all images, has not yet scaled enough

e applications: automatic geo-tagging, camera pose estimation
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view clustering
[Avrithis et al., ACM-MM 2010]

o identify images that potentially depict views of the same scene
e geo clustering: according to location

e visual clustering: according to visual similarity

e use sub-linear indexing in the clustering process



kernel vector quantization (KVQ)
[Tipping and Schalkopf, AIS 2001]

properties

e codebook vectors are points of R=0.25 m=8

the original dataset: il

Q(D) € D J

e distortion upper bounded by r:
for all z € Q(D)

0.8r
0.6
max d(x,y) <r
yeC(x) ( y) 0.4f

e the cluster collection 02l

C(D)={C(z):xQD)}

iS a cover for D 0.2 0 02 04 06 08 1

e clusters are overlapping



geo-clustering—example
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visual clustering

visual similarity measure

e I(F,, Fy): number of inliers between visual feature sets F),, F, of
photos p, g respectively




visual clustering—example

1,146 geo-tagged Flickr images of Pantheon, Rome
e 258 resulting visual clusters
e 30 images at each visual cluster on average

e an image belongs to 4 visual clusters on average




visual clustering—example
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scene maps
[Avrithis et al., ACM-MM 2010]

the image associated to the center of a view cluster shares at least
one rigid object with all other images in the cluster

treat this image as a reference for the cluster and align all other
images to it

initial estimates available from the view clustering stage—only local
optimization needed

construct a 2D scene map by grouping similar local features

extend index, retrieval, and spatial matching for scene maps



view cluster alighment—example

Palau Nacional, Montjuic, Barcelona—input images
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view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images
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view cluster alighment—example

Palau Nacional, Montjuic, Barcelona—input images




view cluster alighment—example

Palau Nacional, Montjuic, Barcelona—input images




view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images
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Palau Nacional, Montjuic, Barcelona—aligned images
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Palau Nacional, Montjuic, Barcelona—aligned images
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view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images




view cluster alighment—example

Palau Nacional, Montjuic, Barcelona—aligned images




view cluster alighment—example

Palau Nacional, Montjuic, Barcelona—aligned images




scene map construction—example

visual cluster containing 30 images of Palau Nacional, Montjuic
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scene map construction—example
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scene map indexing

index construction

e scene maps and images have the same representation—sets of
features

e index all scene maps by visual word in an inverted file
query

e re-rank using the single correspondence assumption [Philbin et al.
2007]

e whenever a scene map S(p) is found relevant, all images ¢ € C(p)
are retrieved as well



European cities 1M dataset (EC1M)

e 1,081 images in Barcelona, annotated into 35 groups
e 5 queries from each group

e all geo-tagged Flickr images

17 landmark groups 18 non-landmark groups

publicly available: http://image.ntua.gr/iva/datasets/eclim/


http://image.ntua.gr/iva/datasets/ec1m/

European cities 1M dataset (EC1M)

e 908, 859 distractor images from 21 European cities, excluding
Barcelona

e most depict urban scenery like the ground-truth

publicly available: http://image.ntua.gr/iva/datasets/eclim/


http://image.ntua.gr/iva/datasets/ec1m/

mining statistics—scene maps

e 1M images, 58 hours, single machine (8GB RAM), landmarks and
non-landmarks




mining statistics—related work

[Chum et al., PAMI 2010] web-scale clustering: 5M images, 28
hours, single machine (64GB RAM), popular subsets only
[Agarwal et al., ICCV 2009] building Rome in a day: 150K images,
24 hours, 500 cores

[Frahm et al., ECCV 2010] building Rome in a cloudless day: 3M
images, 24 hours, GPU

[Heath et al., CVPR 2010] image webs: 200K images, 4,5 hours,
500 cores



retrieval comparisons

e baseline: bag-of-words with fast spatial matching [Philbin et al.
2007]

e QEL: iterative query expansion, re-query using the retrieved images
and merge results, 3 times iteratively

o QE2: create a scene map using the initial query’s result and
re-query once

¢ both QE schemes similar to total recall [Chum et al., 2007]

query timing
] Method \ time \ mAP \
Baseline Bow | 1.03s | 0.642
QE1 20.30s | 0.813
QE2 2.51s | 0.686
Scene maps 1.29s | 0.824




mAP
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location and landmark recognition
[Y. Kalantidis et al., MTAP 2011]

assume that a subset of similar photos are correctly geo-tagged, and
not too far apart

recognize the location where the query photo is taken, as the
centroid of the most populated spatial (geo) cluster

cross-validate locations and text (title, tags) of similar images with
Geonames entries and geo-referenced Wikipedia articles

link to known landmarks or points of interest



location recognition—examples




landmark recognition—examples

Suggested tags:

Suggested tags: eloneta, ) !
Stiell, Barcelona Frequent user tags: Sant Pere, Santa

N Caterina i La Ribera, macba, Passeig de
Liuis Companys, lluis companys, Sant
Beltra

Frequent user tags: Best of, me, Palau Frequent user tags: honeymoon,
Guell wedding, stralle

Suggested tags: e eurm, - Suggested tags: \ ) e Suggested tags: Famil
T , E Inya, B | 1 )} ilia, B
Frequent user tags: champions league,  Frequent user tags: Montjuic, castellers, Frequent user tags: gaudi, Sagrada

vib, vib stuttgart, Z?\[‘) de Barcelona, Camp Travelling Pooh, architecture, mnac Familia, sagrada, familia, expiatorio
ou ! N N N
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suggested tags

Suggested tags:
Frequent user tags: Victoria Tower Gardens, Buxton Memorial Fountain, \Nlnchester Palace,
Architecture, Victorian gothic
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Buxton Memorial Fountain

From Wikipsdia, the fres encyclopedia

The Buxton Memorial Fountain is a memorial and drinking fauntain in Landon, the United Kingdom, that commemorates the
ernancipation of slaves in the British Empire in 1834

It was commissioned by Charles Buxton MP, and was dedicated to his father Thomas Fowell Buxton alang with Willam Wilberforce,
Thomas Clarkson, Thomnas Babington Macaulay, Henry Brougham and Stephen Lushington, all of whom were involved in the abolition. It
was designed by Gothic architect Samuel Sanders Teulon (1812-1873) in 1865 caincidently with the passing of the Thirteenth
Amendment to the United States Canstitution, which effectively ended the westem slave-trade. '

It was originally constructed in Parliament Square, erected at a cost of £1200. As part of the postwar redesign of the square it was
removed in 1949 and not reinstated in its present position in “ictoria Tower Gardens until 1957.2) There were eight decarative figures of
British rulers on it, but four were stolen in 1960 and four in 1971, They were replaced by fibreglass figures in 1980, By 2005 these were
missing, and the fountain was no longer working. Between autumn 2005 and February 2007 restoration werks were carried out. The
vestored fountain was unveiled on 27 March 2007 as part of the commemaration of the 200th anniversary of the act to abolish the slave
trade Bl

A memorial plague cammemorating the 150th anniversary of the Anti-Slavery Society was added in 1989,
Description [edit]

The base is octaganal, about twelve feet in diameter, having pen arches on the sight sides, supparted on clustered shatts of polished
Devanshire marble around a large ceniral shaft, with four massive granite basins. Surmounting the pinnacles at the angles of the octagan

are eight figures of branze, representing the difierent rulers of England; the Britons represented by Caractacus, the Romans by The Budan Memrial Fourtain, designed by &)
Constantine, the Danes by Canute, the Saxans by Alfied, the Normans by William the Congueror, and so on, ending with Queen Victoria,  Samusl Sanders Teulon, celebrating the
‘The fountain bears an inscription to the effect that it is *intended as a memorial of those members of Parliament who, with Mr. emancipaion of slaves in the Ertish Empire in

‘Wilberfarce, advocated the aboltion of the British slave-trade, achieved in 1807; and of those members of Parliament who, with Sir T. T B A7 CaE T T
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Victoria Tower Gardens

From Wikinedia, the free encyclopedia Coorcinates: () 512989 0°N 0°7 300

Victoria Tower Gardens is a public park aleng the north bank of the River Thames in Londan. As its name suggests, it is adjacent to
the Victoria Tower, the south-westem comer of the Palace of Westrinster. The park, which extends southwards from the Palace to
Lambeth Bricge, sandwiched between Willoank and the river, also forms part of the Thames Embankrment

Contents [rie]
1 Features

2 Transport
3History

4 Extemallinks
5References

‘ictoris Tower Gardens, 2005, with the Buxton &)
Features {odlit]  Memoriel Funtain st the frort and the Paiace of
Westminsierinthe backgreund

The park features:

« A reproduction of the sculpture The Burghers of Calais by Auguste Radin, purchased by the British Goverment in 1911 and positiened in the Gardens in 1915

o A 1930 statue of the sufiagette Emmeline Pankhurst, by A.G. Walker.

« The Buxton Memorial Fauntain — ariginally canstructed in Parliament Square, this was removed in 1940 and placed in ts present pasition in 1957. It was commissioned by Charles
Buxdon MP to commemorate the emancipation of slaves in 1834, dedicated ta his father Thormas Fawell Buxton, and designed by Gothic architect Samusl Sanders Teulon
(1812-1873) in 1885.

« A stone wall with two modem-style goats with kids — situated at the sauthem end of the Gardens.

Transport [edit]
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recall feature point matching

construct the m x n proximity matrix G with elements
gij = exp(—d;;/207)
perform singular value decomposition of G
G=USV?T

where U, V' are orthogonal matrices of dimension m,n and S is a
non-negative diagonal m X n matrix

replace each diagonal element s;; of S by 1 and reconstruct
P=UEV"

finally, associate points a; and b; if element p;; of P is the greatest
element in its row and its column



function [m1,

Matlab code

x1, yi,
x2, y2, F s)

= meshgrid (x1, x2);
meshgrid (y1, y2);

sqrt ((Ax1l - Ax2) .~ 2 + (Ayl - Ay2)

exp(-D .~ 2 ./ (2 * s T 2));
G);
0;
* E P ;
(P, [0, 2);
, [0, 1
r(c) == (1 : length(c) )

find (match);

c(match) ’;



ivl C++ code

template<class F> ret<array<F>, array<F> >
match(const array<F>& x1, const array<F>& yi,
const array<F>& x2, const array<F>& y2, F s)
{
array_2d<F> Ax1, Ax2, Ayl, Ay2, U, S, V, tmp;
_(Ax1, Ax2) = meshgrid++(xl, x2);
_(Ay1l, Ay2) = meshgrid++(yl, y2);

array_2d<F> D = sqrt ((Axl - Ax2) ->x 2 + (Ayl - Ay2) ->* 2);
array_2d<F> G exp(-D ->*x 2 / (2 x _[s] ->x 2));

_(U, S, V) = svd++(G);
array_2d<F> E = S > 0;
array_2d<F> P = U Ox*x E Ox*x V(!_);

array<int> c, r;

_(tmp, c) = max++(P, _ , 2);
_(tmp, r) = max++(P, _ , 1);
array<bool> match = rl[cl] == rng(0, c.length() - 1);
return _(find(match),
c[matchl);



ivl library

[Kontosis and Avrithis, expected 2012]

C++ template library, compatible to STL

supports most types, syntax and built-in operations of Matlab
language

fully optimized: minimal overhead/temporaries/copying; all array
expressions boil down to a single for loop

uses multiple CPU cores
integrated with basic image functionalities of OpenCV

integrated with most common LAPACK routines

plans

integration with QT to support visualization

CUDA massively parallel implementation on GPU



Credits

Spyros Leonardos Yannis Kalantidis

Kimon Kontosis Marios Phinikettos = Kostas Rapantzikos Yannis Avrithis



project pages
http://image.ntua.gr/iva/research

VIRaL
http://viral.image.ntua.gr

datasets
http://image.ntua.gr/iva/datasets

thank you!


http://image.ntua.gr/iva/research
http://viral.image.ntua.gr
http://image.ntua.gr/iva/datasets
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