
Image Matching and Visual Search
large scale methods and applications

Yannis Avrithis

National Technical University of Athens
Image, Video and Multimedia Systems Laboratory

Image and Video Analysis Team

Athens, April 2012

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

image matching

image matching

matching local feature points
[Scott and Longuet-Higgins, RSL 1991]

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to
Proceedings: Biological Sciences.

www.jstor.org
®

 on January 5, 2011rspb.royalsocietypublishing.orgDownloaded from

• given two sets of points ai, i = 1, . . . ,m and bj , j = 1, . . . , n on the
same plane, let dij be the distance between ai and bj

• following earlier theories of Ullman and Marr, the problem is to
associate points ai and bj in a one-to-one correspondence such that
the sum of squared distances between corresponding points is
minimized

a spectral approach

1 construct the m× n proximity matrix G with elements

gij = exp(−d2ij/2σ2)

2 perform singular value decomposition of G

G = USV T

where U, V are orthogonal matrices of dimension m,n and S is a
non-negative diagonal m× n matrix

3 replace each diagonal element sij of S by 1 and reconstruct

P = UEV T

4 finally, associate points ai and bj if element pij of P is the greatest
element in its row and its column

a spectral approach
 on January 5, 2011rspb.royalsocietypublishing.orgDownloaded from

 on January 5, 2011rspb.royalsocietypublishing.orgDownloaded from

scale, translation rotation

matching discriminative local features
[Lowe, ICCV 1999]Do these images match?

1

matching discriminative local features
[Lowe, ICCV 1999]Local features (interest regions, patches, ...)

features

1

matching discriminative local features
[Lowe, ICCV 1999]Local feature normalization

features

normalized features

1

forget about geometry: bag-of-words
[Sivic and Zisserman, ICCV 2003]

Forget about geometry: BoW

Object Bag of ‘words’

2

vector quantization → visual words
... back to image retrieval

15query

2

vector quantization → visual words
Feature correspondences with image #15

15query

2

vector quantization → visual words
Feature correspondences with image #19

19

15query

2

vector quantization → visual words
Matching in descriptor space

19

15query

2

vector quantization → visual words
Vector quantization → visual words

54

67

72

19

15query

2

vector quantization → visual words
Vocabulary

54

67

72

query

19

15

2

inverted file indexingIndex

54

67

72

54

67

72

12 13 14 15 16 17 18 19 20 21 22

images

query

3

inverted file indexingInverted file

54

67

72

1 1 1

54

67

72

12 13 14 15 16 17 18 19 20 21 22

images

query

3

inverted file indexingInverted file

54

67

72

1 2 2 1

54

67

72

12 13 14 15 16 17 18 19 20 21 22

images

query

3

inverted file indexingInverted file

54

67

72

1 3 1 2 1 1

54

67

72

12 13 14 15 16 17 18 19 20 21 22

images

query

3

inverted file indexingRanking

54

67

72

1 3 1 2 1 1

54

67

72

12 13 14 15 16 17 18 19 20 21 22

images

query

ranked
shortlist

3

back to geometry: re-ranking

original images

back to geometry: re-ranking

local features

back to geometry: re-ranking

tentative correspondences

back to geometry: re-ranking

RANSAC inliers

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

problem: fit line to data

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

least squares fit !!!

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

solution: choose 2 random points ...

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... fit line to them ...

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... classify remaining points to inliers ...

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... and outliers

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

repeat ...

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

... and repeat

4

RANSAC
[Fischler and Bolles, CACM 1981]

Robust estimation:
RANdom SAmple Consensus (RANSAC)

finally: maximum inliers

4

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

edge-based feature detection
[Rapantzikos and Avrithis, ECCVW 2010]

• blob-like regions starting from single-scale edges

• local maxima of Euclidean distance transform expected to lie in
region interior or close to ridges

• greedily merge maxima guided by edge strength, to reproduce the
effect of smoothing in scale-space evolution

• regions of arbitrary shape and scale, unaffected by spurious or
disconnected edges

original image

binary edge map

binary distance map

distance map + local maxima

Delaunay triangulation

convex hulls of selected regions

original image + features

weighted α-shapes
[Varytimidis et al., submitted to ECCV 2012]

input triangulation

α-detector MSER

medial features
[Avrithis and Rapantzikos, ICCV 2011]

• additively weighted distance map directly from image gradient,
computed exactly in linear time

Dd(f)(x) = min
y∈X
{d(x, y) + f(y)}, x ∈ X

• weighted medial capturing region structure and topology

• region/boundary duality and image partition

region/boundary duality

0 10 20 30 40

0

5

10

0 10 20 30 40

−10

−5

0

distance propagation negated distance & medial

0 10 20 30 40

0

5

10

0 10 20 30 40

−10

−5

0

partition backpropagation

original image

weighted distance map and medial

region/boundary duality

original image + features

fragmentation factor

binary input point labels image partition

φ(κ) =
1

a(κ)

∑
e∈E(κ)

w2(x(e))

• simple selection criterion: is a region well-enclosed by boundaries?

• arbitrary shape and scale, without explicit scale-space construction

the challenge of shape

the challenge of shape

the challenge of scale

the challenge of scale

the challenge of scale

viewpoint: graffiti scene

viewpoint: graffiti scene

viewpoint: graffiti scene

15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

100
graffiti

viewpoint angle

m
at

ch
in

g
sc

or
e

%

MFD
Hessian−Affine
Harris−Affine
MSER
IBR
EBR
Salient

scale + rotation: boat scene

scale + rotation: boat scene

scale + rotation: boat scene

1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100
boat

scale changes

m
at

ch
in

g
sc

or
e

%

MFD
Hessian−Affine
Harris−Affine
MSER
IBR
EBR
Salient

blur: bikes scene

blur: bikes scene

blur: bikes scene

2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100
bikes

increasing blur

m
at

ch
in

g
sc

or
e

%

MFD
Hessian−Affine
Harris−Affine
MSER
IBR
EBR
Salient

texture + blur: trees scene

texture + blur: trees scene

texture + blur: trees scene

2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100
trees

increasing blur

m
at

ch
in

g
sc

or
e

%

MFD
Hessian−Affine
Harris−Affine
MSER
IBR
EBR
Salient

viewpoint: wall scene

viewpoint: wall scene

viewpoint: wall scene

15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

100
wall

viewpoint angle

m
at

ch
in

g
sc

or
e

%

MFD
Hessian−Affine
Harris−Affine
MSER
IBR
EBR
Salient

application to segmentation
[Avrithis and Leonardos, unpublished 2012]

Figure 8.9: Hierarchical segmentation results on the BSDS500 produced by
using the boundary strength ultrametric dissimilarity. From left to right:
input image, ultrametric contour map and segmentations obtained by thresholding
at the optimal dataset scale (ODS) and optimal image scale (OIS).

8.5 Evaluation

To provide a basis of comparison for the the merging techniques of our segmen-
tation framework, we make use of the state-of-art gPb-owt-ucm [3] algorithm along
with its baseline, the Canny-owt-ucm algorithm. In addition, we provide results as
presented in [3] for the region merging by Felzenszwalb and Huttenlocher [18] (Felz-
Hutt), Mean Shift [15], Multiscale Normalized Cuts [16] and for a fixed hierarchy of
regions such as the Quad-Tree with 8 levels.

82

application to segmentation
[Avrithis and Leonardos, unpublished 2012]

BSDS500
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.72 0.72 – 0.88 0.88 1.17 1.17
gPb-owt-ucm[3] 0.59 0.65 0.74 0.83 0.86 1.69 1.48
gPb-mad-ucmg 0.58 0.64 0.74 0.83 0.86 1.62 1.39
gPb-mad-esmc 0.55 0.62 0.71 0.82 0.86 1.83 1.51
Mean Shift [15] 0.54 0.58 0.66 0.79 0.81 1.85 1.64
Felz-Hutt [18] 0.52 0.57 0.69 0.80 0.82 2.21 1.87
gPb-mad-sfm 0.52 0.56 0.62 0.79 0.82 1.83 1.70
gPb-mad-esma 0.51 0.54 0.60 0.79 0.80 1.86 1.82
Canny-owt-ucm [3] 0.49 0.55 0.66 0.79 0.83 2.19 1.89
myCanny-mad-ucmg 0.48 0.55 0.65 0.79 0.83 2.10 1.77
gPb-mad-ucmφ 0.46 0.54 0.63 0.77 0.80 2.07 1.81
NCuts [16] 0.45 0.53 0.67 0.78 0.80 2.23 1.89
gCanny-mad-esmc 0.45 0.53 0.63 0.78 0.83 2.31 1.91
gCanny-mad-sfm 0.42 0.49 0.58 0.77 0.80 2.18 1.95
gCanny-mad-esma 0.40 0.47 0.53 0.76 0.77 2.41 2.27
gCanny-mad-ucmφ 0.35 0.42 0.50 0.74 0.77 2.43 2.29
Quad-Tree 0.32 0.37 0.46 0.73 0.74 2.46 2.32

Table 8.2: Region benchmarks on the BSDS500.

other hand, it can break up uniform regions.

Finally, we see that the use of a contour detector that does not take into account
texture information such as the implemented Canny detector, yields in quite poor
result not only for the techniques of our framework but for algorithms such the
owt-ucm. So, the choice of a contour detector is of high importance for the problem
at hand. Natural images are very complicated and usually textured and thus, a
sophisticated contour detector as the gPb is necessary. If the problem was to seg-
ment another type of images, e.g. textureless biomedical images, then probably our
baseline contour detector would be sufficient to produce good results and preferable
than the computationally costly gPb detector.

85

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

hierarchical k-means
[Nister and Stewenius, CVPR 2006]

• large scale clustering: n = 107 data points into k = 106 clusters, in
d = 102 dimensions!

• complexity of k-means per iteration is O(ndk): not practical!

• build a vocabulary tree by hierarchical k-means

• e.g. with a branching factor of b = 10, one needs only
l = logb k = 6 levels, of complexity O(ndb) each

• the same tree is used for nearest neighbor search and scoring

hierarchical k-means
[Nister and Stewenius, CVPR 2006]

which with the cited number of 2000 stable features per

frame amounts to about 50 training images in the database.

Lowe’s approach has been used on around 5000 objects

in a commercial application, but we are not aware of an

academic reference describing these results.

For the most part, the above approaches keep amounts

of data around in the database that is on the order of

magnitude as large as the image patches themselves, or

at least the region descriptors. However, the compactness

of the database is very important for query efficiency in

a large database. With our vocabulary tree approach, the

representation of an image patch is simply one or two

integers, which should be contrasted to the hundreds of

bytes or floats used for a descriptor vector.

Compactness is also the most important difference

between our approach and the hierarchical approach used

by Grauman and Darrell [5]. They use a pyramid of

histograms, at each level doubling the number of bins along

each axis without considering the distribution of data. By

using a vocabulary adapted to the likely distribution of

data, we can use a much smaller tree, resulting in better

resolution while maintaining a compact representation. We

also estimate that our approach is around a factor 1000

faster.

For feature extraction, we use our own implementation

of Maximally Stable Extremal Regions (MSERs) [10].

They have been found to perform well in thorough

performance evaluation [13, 4]. We warp an elliptical

patch around each MSER region into a circular patch.

The remaining portion of our feature extraction is then

implemented according to the SIFT feature extraction

pipeline by Lowe [9]. Canonical directions are found based

on an orientation histogram formed on the image gradients.

SIFT descriptors are then extracted relative to the canonical

directions. The SIFT descriptors have been found highly

distinctive in performance evaluation [12]. The normalized

SIFT descriptors are then quantized with the vocabulary

tree. Finally, a hierarchical scoring scheme is applied to

retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization

that is built by hierarchical k-means clustering. A large

set of representative descriptor vectors are used in the

unsupervised training of the tree.

Instead of k defining the final number of clusters or

quantization cells, k defines the branch factor (number of

children of each node) of the tree. First, an initial k-

means process is run on the training data, defining k cluster

centers. The training data is then partitioned into k groups,

where each group consists of the descriptor vectors closest

to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary

tree. The hierarchical quantization is defined at each level by k
centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining

quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some

maximum number of levels L, and each division into k parts

is only defined by the distribution of the descriptor vectors

that belong to the parent quantization cell. The process is

illustrated in Figure 2.

In the online phase, each descriptor vector is simply

propagated down the tree by at each level comparing

the descriptor vector to the k candidate cluster centers

(represented by k children in the tree) and choosing the

closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot

products, which is very efficient if k is not too large. The

path down the tree can be encoded by a single integer and

is then available for use in scoring.

Note that the tree directly defines the visual vocabulary

and an efficient search procedure in an integrated

manner. This is different from for example defining a

visual vocabulary non-hierarchically, and then devising

an approximate nearest neighbor search in order to find

visual words efficiently. We find the seamless choice

more appealing, although the latter approach also defines

quantization cells in the original space if used consistently

and deterministically. The hierarchical approach also gives

more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of

the vocabulary in a non-hierarchical manner would be very

high, the computational cost in the hierarchical approach is

approximate k-means
[Philbin et al., CVPR 2007]

• in k-means, most computation is spent on searching for nearest
neighbors between points and cluster centers

• replace exact search by an approximate nearest neighbor (ANN)
search, implemented by randomized k-d trees

• now a single level of complexity O(ndt) is needed, where t is a fixed
number of tests, e.g. t = 100

• more flexible than hierarchical k-means!

approximate k-means
[Philbin et al., CVPR 2007]

Clustering parameters mAP
of descr. Voc. size k-means AKM

800K 10K 0.355 0.358
1M 20K 0.384 0.385
5M 50K 0.464 0.453

16.7M 1M 0.618
Table 2. Comparison of the performance of exact k-means to our
AKM method on the 5K dataset, using different numbers of train-
ing descriptors and clusters.

can additionally be assigned to some internal nodes which
their path from root to leaf passes through. This can help
mitigate the effects of quantization error, for cases when
the data point lies close to the Voronoi region boundary for
each cluster center.

It is important to note that traditional flat k-means mini-
mizes the total distortion between the data points and their
assigned, closest cluster centers, whereas the hierarchical
tree minimizes this distortion only locally at each node and
this does not in general result in a minimization of the total
distortion.

3.3. Results on comparing vocabularies
Our goal is to evaluate the retrieval performance of vi-

sual vocabularies built using the two clustering methods de-
scribed above. Here, we test only the filtering stage of the
retrieval system, i.e. retrieval is performed using only the
inverted file (including the tf-idf weighting), and no rank-
ing using the spatial configuration of regions is used. We
perform three main experiments. Firstly, we compare per-
formance using AKM to flat k-means. This is to establish
how much, if any, performance is lost by the approximation.
Secondly, we compare AKM to HKM. Thirdly, we investi-
gate how the performance using AKM degrades as we scale
up the number of images in the corpus.

k-means vs AKM. For the small 5K dataset, we compare
AKM to exact k-means, using varying amounts of sub-
sampled data and cluster centers with identical cluster ini-
tialization. These results are given in table 2, and show that
our approximate method gives very similar performance to
exact k-means, differing in mAP by less than 1% and out-
performing k-means in two cases. This justifies the use of
AKM as an effective proxy for exact k-means, but with a
fraction of the computational cost.

HKM vs AKM. We compare our method to HKM in two
ways. First, we compare performance on the Recognition
Benchmark introduced by [20]. This consists of 10,200 im-
ages split into four image groups of the same scene taken
from different viewpoints. A perfect result is to return,
given a query, the other three images from that query’s
group before images from other groups. This is expressed
as an average over the number of the top four correctly re-
turned, taken over all possible query images. We also dis-
play a graph, showing how the query performance changes

Method Scoring Average
Levels Top

HKM 1 3.16
HKM 2 3.07
HKM 3 3.29
HKM 4 3.29
AKM 3.45

0 2000 4000 6000 8000 10000
3.2

3.4

3.6

3.8

4

Subset Size

A
v
e
ra

g
e
 T

o
p

AKM = 3.45
HKM = 3.29

Table 3. A comparison of the AKM and HKM on the Recog-
nition Benchmark of [20] using the descriptors for training and
testing provided by the authors of [20]. “HKM” is the hierarchi-
cal k-means quantization, where the numbers are taken from [2].
“AKM” is the result of our approximate k-means clustering. Both
methods use a vocabulary of 1M visual words and an L1 distance.

Method Dataset mAP
Bag-of-words Spatial

(a) HKM-1 5K 0.439 0.469
(b) HKM-2 5K 0.418
(c) HKM-3 5K 0.372
(d) HKM-4 5K 0.353
(e) AKM 5K 0.618 0.647
(f) AKM 5K+100K 0.490 0.541
(g) AKM 5K+100K+1M 0.393 0.465

Table 4. Vocabulary comparison over the three datasets. For the
HKM method, the number of levels used for scoring is listed in
the method name. All methods use 1M cluster centers, generated
from all 16.7M descriptors in the 5K dataset. The “spatial” method
is described in section 4.

as increasingly large subsets of the data are searched over.
To train our clusters, we use identical training and testing
descriptors to [20] provided at [2], and an L1 distance to
compute the ranking. From table 3, we see that for the
same number of visual words, our method significantly out-
performs the hierarchical method.

Second, we have also compared the performances of the
two methods on our own 5K dataset, shown in table 4, rows
(a)–(e), using our descriptors. Here, we have used our own
implementation of HKM which we have found gives almost
identical figures on the dataset from [2]. The AKM method
clearly outperforms the best HKM method, by 0.618 to
0.439 mAP. This might be attributed to quantization effects
of the vocabulary tree – data points may be suffering from
bad initial splits close to the root of the vocabulary tree. As
a result, descriptors arising from the same object/scene re-
gion in different images can be assigned (due to e.g. noise)
to different clusters. Hierarchical scoring might partially
overcome this problem, but we find that the hierarchical
scoring actually hurts the performance of the HKM method.
However, if we switch the vector scoring to use the L1 dis-
tance (instead of L2), we find that the hierarchical scoring
improves performance, but doesn’t produce as good a result
as in the L2 case (0.427 best L1 vs. 0.439 best L2). Clearly,
more work is needed to understand the HKM performance
here.

exact nearest neighbors: k-d tree
[Bentley, ACM 1975]

Figure ���

Generally during a nearest

neighbour search only a few

leaf nodes need to be in	

spected�

Figure ���

A bad distribution which

forces almost all nodes to

be inspected�

�	��

exact nearest neighbors: k-d tree
[Bentley, ACM 1975]

Figure ���

Generally during a nearest

neighbour search only a few

leaf nodes need to be in	

spected�

Figure ���

A bad distribution which

forces almost all nodes to

be inspected�

�	��

approximate NN: randomized k-d trees
[Silpa-Anan and Hartley, CVPR 2008]

indexing

• build m different k-d trees, each with a different structure

• use a random e.g. splitting plane, rotation, or projection for each
tree

search

• parallel search among all m trees, with a limit of t nodes in total

• traverse all trees once, then use a shared priority queue

FLANN implementation
[Muja and Lowe, VISAPP 2009]

50 60 70 80 90 100
10

0

10
1

10
2

10
3

Correct neighbors (%)

S
pe

ed
up

 o
ve

r
lin

ea
r

se
ar

ch

k−means tree − sift 100K
rand. kd−trees − sift 100K
ANN − sift 100K
LSH − sift 100K

(a)

50 60 70 80 90 100

10
0

10
2

10
4

10
6

Correct neighbors (%)

S
pe

ed
up

 o
ve

r
lin

ea
r

se
ar

ch

k−means tree − sift 31M
rand. kd−trees − sift 31M
k−means tree − sift 1M
rand. kd−trees − sift 1M
k−means tree − sift 100K
rand. kd−trees − sift 100K

(b)

50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

Correct neighbors (%)

S
pe

ed
up

 o
ve

r
lin

ea
r

se
ar

ch

k−means tree − sift 100K true matches
rand. kd−trees − sift 100K true matches
k−means tree − sift 100K false matches
rand. kd−trees − sift 100K false matches

(c)

80 85 90 95 100
10

1

10
2

10
3

Correct neighbors (%)

S
pe

ed
up

 o
ve

r
lin

ea
r

se
ar

ch

k−means tree
rand. kd−trees

(d)

Figure 6: Search efficiency. (a) Comparison of different algorithms. (b) Search speedup for different dataset sizes. (c) Search
speedup when the query points don’t have “true” matches in the dataset vs the case when they have. (d) Search speedup for
the Trevi Fountain patches dataset

rithms scale well with the increase in the dataset size,
having the speedup over linear search increase with
the dataset size.

Figure 6(c) compares the performance of near-
est neighbor matching when the dataset contains true
matches for each feature in the test set to the case
when it contains false matches. In this experiment we
used the two 100K SIFT features datasets described
above. The first is randomly sampled from a 5 million
SIFT features dataset and it contains false matches
for each feature in the test set. The second contains
SIFT features extracted from a set of images forming
a panorama. These features were extracted from the
overlapping regions of the images, and we use only
those that have a true match in the dataset. Our ex-
periments showed that the randomized kd-trees have
a significantly better performance for true matches,
when the query features are likely to be significantly

closer than other neighbors. Similar results were re-
ported in (Mikolajczyk and Matas, 2007).

Figure 6(d) shows the difference in performance
between the randomized kd-trees and the hierarchical
k-means tree for one of the Winder/Brown patches
dataset. In this case, the randomized kd-trees algo-
rithm clearly outperforms the hierarchical k-means al-
gorithm everywhere except for precisions very close
to 100%. It appears that the kd-tree works much better
in cases when the intrinsic dimensionality of the data
is much lower than the actual dimensionality, pre-
sumably because it can better exploit the correlations
among dimensions. However, Figure 6(b) shows that
the k-means tree can perform better for other datasets
(especially for high precisions). This shows the im-
portance of performing algorithm selection on each
dataset.

Gaussian mixtures

• each cluster j represented by component pj with

pj(·) = πjN (·|µj , σjI),

modeling its population πj , position µj and scale σj

• responsibility of component pj for data point xi

γij =
pj(xi)∑
` p`(xi)

• maximum likelihood estimates of parameters πj ,µj , σj obtained as
weighted averages over data, with responsibilities as weights

• iteratively compute responsibilities and parameters by expectation
maximization (EM)

approximate Gaussian mixtures
[Avrithis and Kalantidis, submitted to ECCV 2012]

incremental search

• keep all t nearest neighbors found for each data point, not just the
best

• use them across iterations, limiting the effort spent in new search

• limit responsibilities to this approximate nearest neighbor set:
complexity is still O(ndt)

dynamic estimation of k

• start with all data points as components

• purge overlapping clusters and expand remaining ones at each
iteration

approximate Gaussian mixtures—2d example

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=0, clusters=50

approximate Gaussian mixtures—2d example

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=1, clusters=15

approximate Gaussian mixtures—2d example

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=2, clusters=10

approximate Gaussian mixtures—2d example

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=3, clusters=8

approximate Gaussian mixtures—learning

0 1 2 3 4 5 6 7 8 9

0.88

0.89

0.9

vop / point (×103)

m
A

P

AGM-50

AKM-100

RAKM-100

AGM-100

AKM-200

RAKM-200

approximate Gaussian mixtures—distractors

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

distractors (×106)

m
A

P

AGM-1

AGM-3

AGM-5

RAKM-1

RAKM-3

RAKM-5

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

local patches

• each local feature is associated with an image patch L, which also
represents an affine transform

• the rectified patch R0 is transformed to the patch via L

• the patch is rectified back to R0 via L−1

x

y

R0

−1 1

−1

0

1

b

p
a

L

L−1

fast spatial matching (FSM)
[Philbin et al., CVPR 2007]

• single patch correspondence L↔ R

• the transformation from one patch to the other is RL−1

• each correspondence provides a transformation hypothesis

• hypotheses are now O(n); we can try them all for inliers

• overall complexity is O(n2)

relaxed spatial matching
[Tolias and Avrithis, ICCV 2011]

• do not seek for inliers

• rather, look for hypotheses that agree with each other

• how? build a hierarchical partition of 4d transformation space and
count hypotheses that fall in the same bin

• inspired by Hough voting—hence Hough pyramid matching (HPM)

• for ` levels (e.g. ` = 5), complexity drops from O(n2) to O(n`)!

toy example—Hough pyramid

c1

c2c3

c4
c5

c6

c7

c8

c9

Level 0

c1

c2c3

c4
c5

c6

c7

c8

c9

Level 1

c1

c2c3

c4
c5

c6

c7

c8

c9

Level 2

toy example—correspondences, strengths

p q strength

c1 (2 + 1
2
2 + 1

4
2)w(c1)

c2 (2 + 1
2
2 + 1

4
2)w(c2)

c3 (2 + 1
2
2 + 1

4
2)w(c3)

c4 (1 + 1
2
3 + 1

4
2)w(c4)

c5 (1 + 1
2
3 + 1

4
2)w(c5)

c6 0

c7 0

c8
1
4
6w(c8)

c9
1
4
6w(c9)

toy example—affinity matrix

c1

c1

c2

c2

c3

c3

c4

c4

c5

c5

c8

c8

c9

c9

c6

c6

c7

c7

1

11
2

1
2

1
4

1
4

0

0

relaxed spatial matching . . .

• is invariant to similarity transformations

• is flexible, allowing non-rigid motion and multiple matching surfaces
or objects

• imposes one-to-one mapping

relaxed spatial matching—examples

fast spatial matching

relaxed spatial matching—examples

relaxed spatial matching

relaxed spatial matching—examples

fast spatial matching

relaxed spatial matching—examples

relaxed spatial matching

relaxed spatial matching—examples

fast spatial matching

relaxed spatial matching—examples

relaxed spatial matching

relaxed spatial matching—examples

fast spatial matching

relaxed spatial matching—examples

relaxed spatial matching

relaxed spatial matching—examples

fast spatial matching

relaxed spatial matching—examples

relaxed spatial matching

world cities dataset

• 927 annotated images

• 17 groups of photos, each from a landmark scene in Barcelona

• 5 queries from each group

• 2, 226, 414 distractor images from 40 cities

• most depict urban scenery like the ground-truth

world cities dataset

• 927 annotated images

• 17 groups of photos, each from a landmark scene in Barcelona

• 5 queries from each group

• 2, 226, 414 distractor images from 40 cities

• most depict urban scenery like the ground-truth

publicly available: http://image.ntua.gr/iva/datasets/wc/

http://image.ntua.gr/iva/datasets/wc/

relaxed spatial matching—distractors

103 104 105 106
0.3

0.4

0.5

0.6

0.7

0.8

database size

m
A

P HPM10K

WGC + HPM

BoW + HPM

WGC + FSM

BoW + FSM

WGC

BoW

relaxed spatial matching . . .

• is non-iterative, and linear in the number of correspondences

• in a given query time, can re-rank one order of magnitude more
images than the state of the art

• needs less than one millisecond to match a pair of images, on
average

relaxed spatial matching—timing

−2 0 2 4 6 8 10 12 14 16 18

0.3

0.4

0.5

0.6

0

0.1

0.5

1
2 5 10 20

0

0.1

0.5
1
2

5 10 20

0

0.1

0.5
1

2 3

0

0.1

0.5
1

2 3

average time to filter and rerank (s)

m
A

P

WGC + HPM

BoW + HPM

WGC + FSM

BoW + FSM

this work is becoming part of...

http://opencv.willowgarage.com/

http://opencv.willowgarage.com/

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

weak geometric consistency (WGC)
[Jegou et al., ECCV 2008]

• when an image undergoes rotation or scaling, the orientation and
scale of local features is consistently modified

• quantize orientation and scale differences between feature pairs

• maintain several scores for each image, one for each difference bin

• this is not enough to recover a full transformation, but does improve
ranking

weak geometric consistency (WGC)
[Jegou et al., ECCV 2008]

324 Int J Comput Vis (2010) 87: 316–336

the inverted file and can efficiently be applied to all images.
Our weak geometric consistency constraints refine the vot-
ing score and make the description more discriminant.

Note that the re-ranking step can still be applied on a
short-list to estimate the full geometric transformation. It is
complementary to the weak consistency constraints and fur-
ther improves the results (see Sect. 7.5).

4.1 Analysis of Weak Geometric Information

In order to obtain orientation and scale invariance, region
of interest detectors extract the dominant orientation of the
region (Lowe 2004) and its characteristic scale (Lindeberg
1998). This extraction is performed independently for each
interest point. When an image undergoes a rotation or scale
change, these quantities are consistently modified for all
points, see Fig. 7 for an illustration in the case of image
rotations. It shows the difference in dominant orientations
for pairs of matching regions. One can observe that only the
incorrect matches are not consistent with the global image
rotation.

Similarly, the characteristic scales of interest points are
consistently scaled between two images of the same scene
or object, as shown on Fig. 8.

4.2 Weak Geometrical Consistency

The key idea of our method is to verify the consistency
of the angle and scale differences of the matching descrip-
tors. We build upon and extend the BOF formalism of (1)
by using several scores sj per image. For a given image
j , the entity sj then represents the histogram of the angle
and scale differences, computed from the characteristic an-
gle and scale of the interest regions of corresponding de-
scriptors. Although these two parameters are not sufficient
to map the points from one image to another, they can be
used to improve the image ranking. The update step of (1) is
modified:

sj (δa, δs) := sj (δa, δs) + f (xi,j , yi′), (13)

Fig. 7 Orientation consistency. Top-left: Query image and its inter-
est points. Top-right: Two images of the same location viewed under
different image rotations. The slices on each matched interest point
show the difference in orientation between the interest point and the

matching point on the query image. Matches are obtained with our HE
method. Bottom-right: Histogram of the differences between the dom-
inant orientations of matching points. The peak clearly corresponds to
the global angle variation

feature map hashing
[Avrithis et al., ACM-MM 2010]

• estimate image alignment via single correspondence

• for each feature, construct a feature map encoding normalized
positions and appearance of all remaining features

• represent an image by a collection of such feature maps

• RANSAC-like matching is reduced to a number of set intersections

feature maps—example

• well aligned feature sets are likely to have maps with a high degree
of overlap

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

feature maps—example

• well aligned feature sets are likely to have maps with a high degree
of overlap

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

feature map similarity

over all visual words that P,Q have in common

over all origins mapped to visual word v

SF (P,Q) = max
v∈V (P,Q)

max
x̂∈Hv(P)
ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)

feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

feature map similarity

over all visual words that P,Q have in common

over all origins mapped to visual word v

SF (P,Q) = max
v∈V (P,Q)

max
x̂∈Hv(P)
ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)

feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

feature map similarity

over all visual words that P,Q have in common

over all origins mapped to visual word v

SF (P,Q) = max
v∈V (P,Q)

max
x̂∈Hv(P)
ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)

feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

feature map similarity

over all visual words that P,Q have in common

over all origins mapped to visual word v

SF (P,Q) = max
v∈V (P,Q)

max
x̂∈Hv(P)
ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)

feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

feature map similarity
over all visual words that P,Q have in common

over all origins mapped to visual word v

SF (P,Q) = max
v∈V (P,Q)

max
x̂∈Hv(P)
ŷ∈Hv(Q)

fTP (x̂) fQ(ŷ)

feature map of image P wrt origin x̂

feature map of image Q wrt origin ŷ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

feature map similarity—example

fast spatial matching (35 inliers)

feature map similarity—example

feature map similarity (32 inliers)

towards indexing
with min-wise independent permutations [Broder, CCS 2000]

• FMS is a fast way of matching 2 images, but still not enough for
indexing

• a feature map is an extremely sparse histogram; bin count typically
takes values in {0, 1}

• each feature map f is represented by a set f̄ of non-empty bins

• then, use min-wise independent permutations a.k.a. min-hashing as
an equivalent to random sampling

an example
[Chum et al. 2007]

a b c d e f {a, b, c} {b, c, d} {a, e, f}
permutations hash values

3 6 2 5 4 1 2 2 1

1 2 6 3 5 4 1 2 1

3 2 1 6 4 5 1 1 3

4 3 5 6 1 2 3 3 1

an example
[Chum et al. 2007]

a b c d e f {a, b, c} {b, c, d} {a, e, f}
permutations hash values

3 6 2 5 4 1 2 2 1

1 2 6 3 5 4 1 2 1

3 2 1 6 4 5 1 1 3

4 3 5 6 1 2 3 3 1

an example
[Chum et al. 2007]

a b c d e f {a, b, c} {b, c, d} {a, e, f}
permutations hash values

3 6 2 5 4 1 2 2 1

1 2 6 3 5 4 1 2 1

3 2 1 6 4 5 1 1 3

4 3 5 6 1 2 3 3 1

an example
[Chum et al. 2007]

a b c d e f {a, b, c} {b, c, d} {a, e, f}
permutations hash values

3 6 2 5 4 1 2 2 1

1 2 6 3 5 4 1 2 1

3 2 1 6 4 5 1 1 3

4 3 5 6 1 2 3 3 1

an example
[Chum et al. 2007]

a b c d e f {a, b, c} {b, c, d} {a, e, f}
permutations hash values

3 6 2 5 4 1 2 2 1

1 2 6 3 5 4 1 2 1

3 2 1 6 4 5 1 1 3

4 3 5 6 1 2 3 3 1

matching maps

multiple matching pairs of feature maps

matching maps

multiple matching pairs of feature maps

matching maps

multiple matching pairs of feature maps

matching maps

multiple matching pairs of feature maps

matching maps

multiple matching pairs of feature maps

matching maps

multiple matching pairs of feature maps

retrieval

indexing

• construct inverted file of triplets (v̂, w, π) (origin, hash value,
permutation)

• memory requirements 10× a typical baseline system

query

• retrieve images by triplets (v̂, w, π) of query image

• re-estimate transformation parameters using LO-RANSAC

• re-ranking is an order of magnitude faster than FastSM, because an
initial estimate is already available

European cities dataset 50K (EC50K)

• 778 annotated images

• 20 groups of photos

• 5 queries from each group

• 50, 000 distractor images

publicly available: http://image.ntua.gr/iva/datasets/ec50k

http://image.ntua.gr/iva/datasets/ec50k

European cities dataset 50K (EC50K)

• 778 annotated images

• 20 groups of photos

• 5 queries from each group

• 50, 000 distractor images

publicly available: http://image.ntua.gr/iva/datasets/ec50k

http://image.ntua.gr/iva/datasets/ec50k

feature map hashing—results EC50K

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Database Size

m
A

P

FMH

FMH+LO

FMH+LO(1000)

BOW

BOW+FastSM

WGC

WGC+FastSM

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

selecting useful features
[Turcot and Lowe, ICCV 2009]

• index space is now the bottleneck in going to large scale, not speed

• select features by matching across multiple views of the same object
or scene

• for each image in the database, find similar views, perform spatial
matching, and select features appearing as inliers

selecting useful features
[Turcot and Lowe, ICCV 2009]

large scale geometry indexing
[Tolias et al., submitted to CVIU, 2012]

• feature map hashing implies random selection

• instead, select robust features, again by matching across similar
views in dataset

• individual selection criteria for origins and inlier features

• dramatic reduction in index size

feature selection

results EC1M

10
3

10
4

10
5

10
60.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

database size

m
A

P

FMS
BoW
BoW+FastSM
WGC
WGC+FastSM
UF

feature selection by symmetry
[Tolias et al., submitted to ACM-MM 2012]

• feature selection so far relies on multiple views

• how about unique views of an object or scene?

• in fact, most images in a dataset are unique

• exploit self-similarities, repeating patterns and symmetries

matching scheme

original original

original flipped

direct matching

flipped matching

selected features

precision vs distractors

103 104 105 106

0.4

0.6

0.8

distractors

m
A

P

HPSM

Stregth

Scale

Random

Full

precision vs memory

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

memory ratio

m
A

P

HPSM

Strength

Scale

Random

Full

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

community photo collections

clustering / landmark recognition

• focus on popular subsets

• applications: browsing, 3D reconstruction

� � � � � � � � � � �
� � � � � �

� � 	 �
 � � 	 � � �
� � � � � � � � � � � �

	 � � � � �
 �
� � � �
 � � �

 � � � � � � � �

 � �
 � � �

�
 � � � � �
 � � �
 � � �
� � � � � � � � � � �

� � � � �
 �
 � � � � � � �
� � � � �

�
 � � � � � � � � � � � � �
� � �
 � � � �

� � �
 � � � � � � �
� � � � � �

 � � � � � � �

� � � �
 � �
 � �
 �

� � � � �
 � � 	 � � � � � �
 � � �
� � � � �
 � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � �

 � � � � �
� � � � � � � �
 � �

 � � � � � �
� � � � � �

� � � � � � � � � �
� � � � � � � � � �

	 � � 	 � � � �
 �
� � � � � � � �

� � � �
 � � � � � �
� � � � � � � � �

� � � � � � � �
 �
	 � � � � �

� � �
 � � � � � � �
 � � �
� � � � � � �

� �
 � �
� � � � � � � �

� � � � � �
 � � � �
 �
� �
 � � � � �

Figure 2: Representative images for the top landmark in each of the top 20 North American cities. All parts of the figure, including

the representative images, textual labels, and even the map itself were produced automatically from our corpus of geo-tagged photos.

about 110,000 photos, again making it difficult to generalize their

results. Their method also does not scale well to a global image

collection, as we discussed in Section 3. There is a considerable

earlier history of work in the Web and digital libraries community

on organizing photo collections; however those papers in general

make little or no use of image content (e.g., [1]) and again do not

provide large-scale quantitative results.

8. CONCLUSIONS
In this paper we introduce techniques for analyzing a global col-

lection of geo-referenced photographs, and evaluate them on nearly

35 million images from Flickr. We present techniques to automat-

ically identify places that people find interesting to photograph,

showing results for thousands of locations at both city and land-

mark scales. We develop classification methods for predicting these

locations from visual, textual and temporal features. These meth-

ods reveal that both visual and temporal features improve the ability

to estimate the location of a photo compared to using just textual

tags. Finally we demonstrate that representative photos can be se-

lected automatically despite the large fraction of photos at a given

location that are unrelated to any particular landmark.

The techniques developed in this paper could be quite useful in

photo management and organization applications. For example, the

geo-classification method we propose could allow photo manage-

ment systems like Flickr to automatically suggest geotags, signif-

icantly reducing the labor involved in adding geolocation annota-

tions. Our technique for finding representative images is a practical

way of summarizing large collections of images. The scalability of

our methods allows for automatically mining the information latent

in very large sets of images; for instance, Figures 2 and 3 raise the

intriguing possibility of an online travel guidebook that could au-

tomatically identify the best sites to visit on your next vacation, as

judged by the collective wisdom of the world’s photographers.

In this paper we have focused on using geospatial data as a form

of relational structure, and combining that with content from tags

and image features. An interesting future direction is to relate this

back to the explicit relational structure in the social ties between

photographers. Preliminary investigation suggests that these can

be quite strongly correlated — for example, we observe that if two

users have taken a photo within 24 hours and 100 km of each other,

on at least five occasions and at five distinct geographic locations,

there is a 59.8% chance that they are Flickr contacts.

9. REFERENCES

[1] S. Ahern, M. Naaman, R. Nair, J. Yang. World explorer:

visualizing aggregate data from unstructured text in

geo-referenced collections, JCDL 2007.

[2] D. Comaniciu, P. Meer. Mean shift: a robust approach toward

feature space analysis, PAMI, 24(5), 2002.

[3] G. Csurka, C. Dance, L. Fan, J. Willamowski, C. Bray.

Visual categorization with bags of keypoints. Statistical

Learning in Computer Vision, ECCV, 2004.

[Crandall et al., ICCV 2009]

community photo collections

retrieval / location recognition

• include all images, has not yet scaled enough

• applications: automatic geo-tagging, camera pose estimation

view clustering
[Avrithis et al., ACM-MM 2010]

• identify images that potentially depict views of the same scene

• geo clustering: according to location

• visual clustering: according to visual similarity

• use sub-linear indexing in the clustering process

kernel vector quantization (KVQ)
[Tipping and Schölkopf, AIS 2001]

properties

• codebook vectors are points of
the original dataset:
Q(D) ⊆ D

• distortion upper bounded by r:
for all x ∈ Q(D)

max
y∈C(x)

d(x, y) < r

• the cluster collection

C(D) = {C(x) : x ∈ Q(D)}

is a cover for D

• clusters are overlapping

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
R=0.25 m=8

geo-clustering—example

geo-clustering—example

geo-clustering—example

geo-clustering—example

visual clustering
visual similarity measure

• I(Fp, Fq): number of inliers between visual feature sets Fp, Fq of
photos p, q respectively

visual clustering—example

1, 146 geo-tagged Flickr images of Pantheon, Rome

• 258 resulting visual clusters

• 30 images at each visual cluster on average

• an image belongs to 4 visual clusters on average

visual clustering—example

scene maps
[Avrithis et al., ACM-MM 2010]

• the image associated to the center of a view cluster shares at least
one rigid object with all other images in the cluster

• treat this image as a reference for the cluster and align all other
images to it

• initial estimates available from the view clustering stage—only local
optimization needed

• construct a 2D scene map by grouping similar local features

• extend index, retrieval, and spatial matching for scene maps

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

view cluster alignment—example

Palau Nacional, Montjuic, Barcelona—aligned images

scene map construction—example

visual cluster containing 30 images of Palau Nacional, Montjuic

scene map construction—example

before vector quantization

scene map construction—example

after vector quantization

scene map indexing

index construction

• scene maps and images have the same representation—sets of
features

• index all scene maps by visual word in an inverted file

query

• re-rank using the single correspondence assumption [Philbin et al.
2007]

• whenever a scene map S(p) is found relevant, all images q ∈ Cv(p)
are retrieved as well

European cities 1M dataset (EC1M)

• 1, 081 images in Barcelona, annotated into 35 groups

• 5 queries from each group

• all geo-tagged Flickr images

17 landmark groups 18 non-landmark groups

publicly available: http://image.ntua.gr/iva/datasets/ec1m/

http://image.ntua.gr/iva/datasets/ec1m/

European cities 1M dataset (EC1M)

• 908, 859 distractor images from 21 European cities, excluding
Barcelona

• most depict urban scenery like the ground-truth

publicly available: http://image.ntua.gr/iva/datasets/ec1m/

http://image.ntua.gr/iva/datasets/ec1m/

mining statistics—scene maps

• 1M images, 58 hours, single machine (8GB RAM), landmarks and
non-landmarks

mining statistics—related work

• [Chum et al., PAMI 2010] web-scale clustering: 5M images, 28
hours, single machine (64GB RAM), popular subsets only

• [Agarwal et al., ICCV 2009] building Rome in a day: 150K images,
24 hours, 500 cores

• [Frahm et al., ECCV 2010] building Rome in a cloudless day: 3M
images, 24 hours, GPU

• [Heath et al., CVPR 2010] image webs: 200K images, 4,5 hours,
500 cores

retrieval comparisons

• baseline: bag-of-words with fast spatial matching [Philbin et al.
2007]

• QE1: iterative query expansion, re-query using the retrieved images
and merge results, 3 times iteratively

• QE2: create a scene map using the initial query’s result and
re-query once

• both QE schemes similar to total recall [Chum et al., 2007]

query timing

Method time mAP

Baseline BoW 1.03s 0.642
QE1 20.30s 0.813
QE2 2.51s 0.686
Scene maps 1.29s 0.824

retrieval statistics

0 1 2 3 4 5 6 7 8 9
x 105

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of distractor images

m
A

P

baseline
QE1
scene maps
QE2

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

location and landmark recognition
[Y. Kalantidis et al., MTAP 2011]

• assume that a subset of similar photos are correctly geo-tagged, and
not too far apart

• recognize the location where the query photo is taken, as the
centroid of the most populated spatial (geo) cluster

• cross-validate locations and text (title, tags) of similar images with
Geonames entries and geo-referenced Wikipedia articles

• link to known landmarks or points of interest

location recognition—examples

landmark recognition—examples

http://viral.image.ntua.gr

http://viral.image.ntua.gr

query

results

similar of similar

similar of similar

similar of similar

suggested tags

related wikipedia articles

related wikipedia articles

VIRaL explore

VIRaL explore

VIRaL routes

outline

1 local features and bag-of-words

2 local feature detection

3 visual vocabularies

4 spatial matching and re-ranking

5 geometry indexing

6 feature selection

7 clustering of photo collections

8 location and landmark recognition

9 implementation: ivl library

recall feature point matching

1 construct the m× n proximity matrix G with elements

gij = exp(−d2ij/2σ2)

2 perform singular value decomposition of G

G = USV T

where U, V are orthogonal matrices of dimension m,n and S is a
non-negative diagonal m× n matrix

3 replace each diagonal element sij of S by 1 and reconstruct

P = UEV T

4 finally, associate points ai and bj if element pij of P is the greatest
element in its row and its column

Matlab code

function [m1 , m2] =

match(x1, y1,

x2, y2 , F s)

[Ax1 , Ax2] = meshgrid (x1, x2);

[Ay1 , Ay2] = meshgrid (y1, y2);

D = sqrt((Ax1 - Ax2) .^ 2 + (Ay1 - Ay2) .^ 2);

G = exp(-D .^ 2 ./ (2 * s ^ 2));

[U, S, V] = svd (G);

E = S > 0;

P = U * E * V’ ;

[tmp , c] = max (P, [], 2);

[tmp , r] = max (P, [], 1);

match = r(c) == (1 : length(c));

m1 = find(match);

m2 = c(match)’;

ivl C++ code

template <class F> ret <array <F>, array <F> >

match(const array <F>& x1, const array <F>& y1,

const array <F>& x2, const array <F>& y2, F s)

{

array_2d <F> Ax1 , Ax2 , Ay1 , Ay2 , U, S, V, tmp;

_(Ax1 , Ax2) = meshgrid ++(x1 , x2);

_(Ay1 , Ay2) = meshgrid ++(y1 , y2);

array_2d <F> D = sqrt((Ax1 - Ax2) ->* 2 + (Ay1 - Ay2) ->* 2);

array_2d <F> G = exp(-D ->* 2 / (2 * _[s] ->* 2));

_(U, S, V) = svd++(G);

array_2d <F> E = S > 0;

array_2d <F> P = U ()* E ()* V(!_);

array <int > c, r;

_(tmp , c) = max ++(P, _ , 2);

_(tmp , r) = max ++(P, _ , 1);

array <bool > match = r[c] == rng(0, c.length () - 1);

return _(find(match),

c[match]);

}

ivl library
[Kontosis and Avrithis, expected 2012]

• C++ template library, compatible to STL

• supports most types, syntax and built-in operations of Matlab
language

• fully optimized: minimal overhead/temporaries/copying; all array
expressions boil down to a single for loop

• uses multiple CPU cores

• integrated with basic image functionalities of OpenCV

• integrated with most common LAPACK routines

plans

• integration with QT to support visualization

• CUDA massively parallel implementation on GPU

Credits

Spyros Leonardos Yannis Kalantidis Giorgos Tolias Christos Varitimidis

Kimon Kontosis Marios Phinikettos Kostas Rapantzikos Yannis Avrithis

project pages
http://image.ntua.gr/iva/research

VIRaL
http://viral.image.ntua.gr

datasets
http://image.ntua.gr/iva/datasets

thank you!

http://image.ntua.gr/iva/research
http://viral.image.ntua.gr
http://image.ntua.gr/iva/datasets

	local features and bag-of-words
	local feature detection
	visual vocabularies
	spatial matching and re-ranking
	geometry indexing
	feature selection
	clustering of photo collections
	location and landmark recognition
	implementation: ivl library

