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Problem

e Given query point q, find its nearest neighbor with respect to
Euclidean distance within data set X in a d-dimensional space

 Focus on large scale: encode (compress) vectors, speed up distance
computations

e Fit underlying distribution with little space & time overhead



Applications in vision
Retrieval (image as point) [Jégou et al. '10][Perronnin et al. "10]
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Applications in vision
Retrieval (patch as point) [Tolias et al. "13][Qin et al. '13]




Applications in vision

Localization, pose estimation [Sattler et al. "12][Li et al. '12]




Applications in vision
Classification [Boiman et al. '08][McCann & Lowe '12]

KL(p,|p)=17.5¢4 KL(p,|p,)=18.20  KL(p,|p,)=14.56



Applications in vision
Quantization [Sivic et al. '03][Philbin et al. '07]




ions N vision

Applicat

Clustering [Philbin et al.

"07][Avrithis "13]




Overview (1)

Tree-based search
o k-d trees [Bentley '75]
e randomized k-d trees [Silpa-Anan & Hartley '02]
o hierarchical k-means tree [Fukunaga & Narendra '75]
e FLANN [Muja & Lowe '09]



Overview (1)

Tree-based search
k-d trees [Bentley '75]
randomized k-d trees [Silpa-Anan & Hartley '02]

hierarchical k-means tree [Fukunaga & Narendra '75]
FLANN [Muja & Lowe '09]

Binary codes

e locality sensitive hashing [Charikar '02]
e spectral hashing [Weiss et al. '08]

e iterative quantization [Gong and Lazebnik '11]



Overview (2)

Quantization
e vector quantization (VQ)
e product quantization (PQ) [Jégou et al. "11]

e optimized product quantization (OPQ) [Ge et al. '13]
Cartesian k-means [Norouzi & Fleet '13]

e locally optimized product quantization (LOPQ) [Kalantidis and
Avrithis '14]



Overview (2)

Quantization
e vector quantization (VQ)
e product quantization (PQ) [Jégou et al. "11]

e optimized product quantization (OPQ) [Ge et al. '13]
Cartesian k-means [Norouzi & Fleet '13]

e locally optimized product quantization (LOPQ) [Kalantidis and
Avrithis '14]

Non-exhaustive search
¢ non-exhaustive PQ [Jégou et al. '11]
e inverted multi-index [Babenko & Lempitsky '12]
o multi-LOPQ [Kalantidis and Avrithis "14]



Overview (3)

Clustering
e hierarchical k-means [Nister & Stewenius '06]
e approximate k-means [Philbin et al. '07]
o approximate Gaussian mixtures [Kalantidis & Avrithis '12]
« dimensionality-recursive vector quantization [Avrithis '13]

e ranked retrieval [Broder et al. '14]



. Tree-based search



k-d tree
[Bentley '75]

Construction
e choose the dimension of greatest variance
e split at medoid to make tree balanced

e recurse until both sides of splitting plane are empty



k-d tree
[Bentley '75]

Construction
e choose the dimension of greatest variance
e split at medoid to make tree balanced
e recurse until both sides of splitting plane are empty
Search (exact)
e at each node, choose child according to splitting dimension and value
e starting at root, descend recursively
e backtrack



k-d tree
[Bentley ’75]




k-d tree
[Bentley '75]
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Randomized k-d trees
[Silpa-Anan & Hartley '75]

Construction
e construct m different trees
e randomly rotate data points

e choose randomly among the dimensions of greatest variance

split at a random point near the medoid



Randomized k-d trees
[Silpa-Anan & Hartley '75]

Construction

construct m different trees
randomly rotate data points
choose randomly among the dimensions of greatest variance

split at a random point near the medoid

Search (approximate)

descend each tree once independently
insert nodes in a shared priority queue

keep descending until [ leaves are visited



Randomized £-d trees
[Silpa-Anan & Hartley '75]




Randomized £-d trees
[Silpa-Anan & Hartley '75]




Hierarchical k-means tree
[Fukunaga & Narendra '75][Nister & Stewenius '06]




Hierarchical k-means tree
[Fukunaga & Narendra '75][Nister & Stewenius '06]




Speedup over linear search

FLANN (uniform data)

[Muja & Lowe ’09]
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Speedup over linear search

FLANN (real data)
[Muja & Lowe '09]

—A— 81% precision
—v— 85% precision
—+— 91% precision S
—6— 97% precision o

Dimensions



Tree-based methods

All methods so far

e assume all data points are represented exactly in memory
e compute exact distances to a subset of data points

e design a data structure for efficient search



Tree-based methods

All methods so far

e assume all data points are represented exactly in memory
e compute exact distances to a subset of data points

e design a data structure for efficient search
We rather focus on methods that

e only approximate data points

e use space partition not only to limit search but to approximate
distances

e design an efficient encoding



Il. Binary codes



Locality sensitive hashing

random projections [Charikar '02]

e Choose a random vector a from the d-dimensional Gaussian
distribution A/(0, 1).
o Define hash function hy : RY — {—1,1} with

1, ifa-x>0
ha(x)zsgn(a‘x)z{ -1, ifa-x<0.



Locality sensitive hashing

random projections [Charikar "02]

e Choose a random vector a from the d-dimensional Gaussian
distribution A/(0, 1).
o Define hash function hy : R — {—1,1} with

xS
ha(x)—sgn(a.x)—{1_’1 ifa-x>0

ifa-x <0.
e Then, given x,y € RY,
0(x,y
Plha(x) = ha(y)] = 1 - 202V

where 6(x,y) is the angle between x,y.



Binary codes and Hamming distance

« Given a set of n data points x; € R?, represented by matrix
X € R,

o Define k hash functions h; : R? — {—1,1}, and let
h(x) = (h1(x),..., hi(x)).



Binary codes and Hamming distance

Given a set of n data points x; € R, represented by matrix
X € R,
Define k hash functions h; : R? — {—1,1}, and let
h(x) = (hi(x), ..., hi(x)).
Encode each data point x by binary code y = h(x), and represent all
encoded points by matrix Y € {—1,1}F*",
o For instance, Y = sgn(A' X) for random projections, where A € R4*¥
represents the k random vectors.

Now, given a query q, encode it as h(q) and search in Y by Hamming
distance.



Spectral hashing

[Weiss et al. "08]

o Define similarity matrix S with S;; = exp(—||x; — x;{|?/t?).

e Require binary codes to be similarity preserving

minimize 3", Sijllyi — y;lI?
subject to y; € {—1,1}F



Spectral hashing

[Weiss et al. "08]

o Define similarity matrix S with S;; = exp(—||x; — x;{|?/t?).
e Require binary codes to be similarity preserving, balanced, and
uncorrelated: o )
minimize Y. Sij|lyi — vl
subject to y; € {—1,1}F
Zi yi=0

LS vyl =1



Spectral hashing

Relaxation

e Define Laplacian matrix L = D — S with D = diag(S1).
e Problem is relaxed as
minimize tr(YLY ")
subject to Y1 =0
YYT =1,



Spectral hashing

Relaxation

o Define Laplacian matrix L = D — S with D = diag(S1).
e Problem is relaxed as
minimize tr(YLY ")
subject to Y1 =0
YYT =1,

and solutions are the k eigenvectors of L with minimal eigenvalue,
excluding eigenvector 1 with eigenvalue 0.

e See also Laplacian eigenmaps [Belkin & Niyogi '01].



Spectral hashing

Out of sample extension

e Replace data points by probability distribution p; and Laplacian matrix
by Laplacian operator L,, acting on functions.

* Then, solutions are the k eigenfunctions f of L, (such that
L,f = Af) with minimal eigenvalue, excluding eigenfunction f(x) =1
with eigenvalue 0.



Spectral hashing

Out of sample extension

e Replace data points by probability distribution p; and Laplacian matrix
by Laplacian operator L,, acting on functions.

* Then, solutions are the k eigenfunctions f of L, (such that
L,f = Af) with minimal eigenvalue, excluding eigenfunction f(x) =1
with eigenvalue 0.

e If p is uniform, then eigenfunctions have outer product form, and for
1-dimensional distribution on [a, b],

¢j(r) = sin (721' + bjwaa:)

t2 [ jm )2

)\] = 1 — e_i(bfa




Spectral hashing

Example

e Red: outer-product eigenfunctions: excluded
o Better to cut long dimension first

o Lower spatial frequencies are better than higher ones



Spectral hashing

Example

e Red: outer-product eigenfunctions: excluded
o Better to cut long dimension first

e Lower spatial frequencies are better than higher ones

Boosting SSC Boosting SSC Boosting SSC

RBM (two hidden layers) Spectral hashing RBM (two hidden \ayers Spectral hashing RBM (two hidden layers) Spectral hashing

a) 3 bits b) 7 bits ) 15 bits

e Red: radius = 0; : radius = 1; blue: radius = 2



Spectral hashing

Algorithm

. Center and rotate data points by PCA.
. Evaluate k smallest eigenvalues for each PCA direction.

. Sort the kd eigenvalues, exclude outer-product ones, and select the k
smallest.

. Set hash function h;(x) = sgn(¢;(x)) for each of the corresponding k
eigenfunctions ¢,.



Proportion good neighbors for hamming distance < 2

Spectral hashing
—RBM
——Boosting SSC
—LSH

Spectral hashing

Result on LabelMe

Gist neighbors

10 ) E)

number of bits

Spectral hashing 10 bits

Boosting 10 bits
=1




Iterative quantization
[Gong and Lazebnik "11]

Quantize each data point to the closest vertex of the binary cube,
(£1, £1).

= -1 -1
-1 0 1 0 1 0 1
Average quantization error: 1.00 Average quantization error: 0.93 Average quantization error: 0.88

(a) PCA aligned. (b) Random Rotation. (c) Optimized Rotation.



Iterative quantization

Formulation

Assume data points to be zero centered, X1 = 0.
Assume hash functions y/ = h;(x) = sgn(a; - x), or Y = sgn(A" X).
Drop similarity preservation

Balance hj(x) - 1 = 0 is equivalent to variance of h;(x) being
maximized:

maximize var(sgn(ajTX))

subject to %YYT =1.



Iterative quantization

Relaxation

e Drop sgn.

e Relax correlation constraint by just requiring hyperplanes to be
orthogonal:
maximize tr(ATXXTA)
subject to ATA =1,



Iterative quantization

Relaxation

e Drop sgn.
e Relax correlation constraint by just requiring hyperplanes to be
orthogonal:
maximize tr(ATXXTA)
subject to ATA =1,
and a solution consists of the k eigenvectors of data covariance matrix
XX T with maximal eigenvalue.

e See also semi-supervised hashing [Wang et al. '10].



Iterative quantization

Refinement

e But, if A is an optimal solution, then so is AR for orthogonal
R € RF*k,

 So, if Z = AT X is the projected data, define loss

E(Y,R) =Y - RZ|%



Iterative quantization

Refinement

e But, if A is an optimal solution, then so is AR for orthogonal
R € RF*k,
 So, if Z = AT X is the projected data, define loss

E(Y,R) =Y - RZ|%

and repeat

e Fix R, update Y + sgn(RZ)
e Fix Y, update R+ UV where YZT =USV T (align by SVD)

e See also multiclass spectral clustering [Yu & Shi '03].



Iterative quantization

(a) Euclidean ground truth

64
Number of bits

Result on CIFAR

-©-PCA-ITQ

~£-PCA-RR

—+ PCA-Nonorth
SKLSH

~<-sH

-P LsH

- - PCA-Direct
GIST L2 baseline

(b) Class label ground truth

Precision@500

0&6 32 128 256

64
Number of bits



11l. Quantization



Locality sensitive hashing

scalar quantization [Datar et al. '04]

e Choose a random vector a from the d-dimensional Gaussian
distribution f = N(0,1) and a real b uniformly in [0, 7].
» Define hash function hay : R? — Z with

haplo) = {a~x+bJ.

r



Locality sensitive hashing

scalar quantization [Datar et al. '04]

e Choose a random vector a from the d-dimensional Gaussian
distribution f = N(0,1) and a real b uniformly in [0, r].
 Define hash function ha : R? — Z with

hap(x) = r’”bJ :

r

o Then, given x,y € RY,

Plhas () = has(¥)] = [ 11 (1) (1 _ Z) i

is decreasing with ¢ = ||x — y]|.



Vector quantization
[Gray '84]

Construction
« given dataset X C R?
o construct finite codebook C ¢ R?
o map (quantize) each point x € X to ¢(x) = mineec [|[x — c||?

o discard dataset; represent each point by log k bits, where k = |C|



Vector quantization
[Gray '84]

Construction

« given dataset X C R?

o construct finite codebook C ¢ R?

o map (quantize) each point x € X to ¢(x) = mineec [|[x — c||?

o discard dataset; represent each point by log k bits, where k = |C|
Search (approximate, exhaustive)

e given query y

o for each ¢ € C, compute and store distance ||y — c||?

o for each x € X, approximate distance |y — x||? by ||y — ¢(x)||?,

which is looked up



Vector quantization
[Gray '84]

%
£
L3

minimize E(C) = Zmin”x —c|?
c

xe\é’( \

distortion dataset codebook



Vector quantization
[Gray '84]
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Vector quantization

[Gray '84]
S0% '?.80. .$A
Q % R ° \
b Sedge.
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¢ For small distortion — large k = |C|:

e hard to train

e too large to store
e too slow to search



Product quantization
[Jégou et al. '11]
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subject to C=C! x---xC™



o train: ¢ = (¢, ..

Product quantization
[Jégou et al. "11]
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,q™) where ¢!, ... ¢™ obtained by VQ

e store: |C| = k™ with |Cl| =-.-=|C" =k

e search: |ly — q(x

x)|I* = ley — ¢’ (x7)|* where ¢/ (x7) € ¢/



Optimized product quantization
[Ge et al. '13]

minimize Z min ||x — R'¢|?
xcX ce

subject to C=Clx---xC™
R'R=1



Optimized product quantization

Non-parametric solution

rotate: X < RX
update: ¢ <« PQ(X)

~

assign: Y « ¢(X)
align: R« UV where YXT =USVT



Optimized product quantization

Non-parametric solution

rotate: X < RX
update: ¢ < PQ(X) [one step|

assign: Y <+ ¢(X)
align: R« UV whereYXT =USV"T

e From PQ only one step of centroid update is needed, because update
of R does not alter assignment.

o Alignment minimizes ||Y — RX||%, as in ITQ.



Optimized product quantization

Parametric solution for x ~ N(0,Y)

e From rate-distortion theory, distortion satisfies
E > k72/dd|2’1/d

and practical distortion achievedAby k-means is typically within ~ 5%
of the bound. So after rotation > = RER',

d N o
EPQ > k—Qm/d_ § :‘Zu|m/d
m
i=1



Optimized product quantization

Parametric solution for x ~ AV(0,Y)

e From rate-distortion theory, distortion satisfies
E > k72/dd|2’1/d

and practical distortion achieved by k-means is typically within ~ 5%
of the bound. So after rotation ¥ = RYRT,

d o= ¢
—2m/d d
Epq > k=" EZ |8 ™
=1
e But, by arithmetic-geometric means and Fisher’s inequalities,

=3 2Tl = 2
m :

=1

with equality implying balanced variance and independence.



Optimized product quantization

Parametric solution for x ~ N (0,Y)
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o independence: PCA-align by diagonalizing ¥ as UAU "

e balanced variance: permute A by 7 such that [[, A; is constant in
each subspace; R <+ UP,]

o find C by PQ on rotated data X = RX



Locally optimized product quantization
[Kalantidis & Avrithis '14]

e compute residuals r(x) = x — Q(x) on coarse quantizer @
e collect residuals Z; = {r(x) : Q(x) = c;} per cell
e train (R;,q;) < OPQ(Z;) per cell



Locally optimized product quantization
[Kalantidis & Avrithis '14]

e residual distributions closer to Gaussian assumption
o better captures the support of data distribution, like local PCA

e multimodal (e.g. mixture) distributions
e distributions on nonlinear manifolds



Local principal component analysis
[Kambhatla & Leen ’97]

1

But, we are not doing dimensionality reduction!



IVV. Non-exhaustive search



Inverted index
IVFADC [Jégou et al. '11]

Construction
e train a coarse quantizer () of K centroids or cells
* quantize each point x € X to Q(x) and compute its residual vector
r(x) =x - Q(x)
e quantize residuals by a product quantizer ¢

e for each cell, maintain an inverted list of data points and PQ-encoded
residuals



Inverted index
IVFADC [Jégou et al. '11]

Construction
e train a coarse quantizer () of K centroids or cells
* quantize each point x € X to Q(x) and compute its residual vector
r(x) =x - Q(x)
e quantize residuals by a product quantizer ¢

e for each cell, maintain an inverted list of data points and PQ-encoded
residuals

Search
e quantize query y to w nearest cells

o exhaustively search by PQ only within the w inverted lists



Inverted index
IVFADC [Jégou et al. '11]

Inverted file structure

Database indexing

coarse
quantizer ge

pute
dual

r(y)

Q

0.0)

inverted list Li

append
to inverted list

product ar(r(y))
quantizer gp

Query processing

')

compute

ﬁ

compute

residual

9e(x)

coarse
quantizer

Q

d(r().ap(r(y)

select k
smallest distances

Search result




recall@R

0.8

Product quantization
Result on SIFT1IM

SIFT, 64-bit codes

_____________ _*
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ADC ------

IVFADC w=1 ---©---
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U HE w=1 ——a-—
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Product quantization
vs. FLANN on SIFT1M

o keep uncompressed vectors X' in memory
e find the R top-ranking points by IVFADC

e re-rank according to corresponding uncompressed vectors



search time (s)

Product quantization
vs. FLANN on SIFT1M

100 L T F|I_ANN T T T T T i
IVFADC, R=10 +
IVFADC, R=100 X ]
IVFADC, R=1000 * 16/128 |
*16/1024]
X16/128
10 X 16/1024
b X 41128
X 4/1024
I +4/1024
1 1 1 1 1 1 1 1
06 065 07 075 08 085 09 0.9 1

1-recall at 1
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Recall

Optimized product quantization
vs. binary codes on SIFT1M

(a) SIFT 64bits
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Inverted multi-index
[Babenko & Lempitsky '12]

.04 . 06
inverted index

e train codebook C from dataset {x,}

e this codebook provides a coarse partition of the space



Inverted multi-index
[Babenko & Lempitsky "12]
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inverted multi-index

decompose vectors as x = (x!,x?)

train codebooks C!,C? from datasets {x.}, {x2}

induced codebook C! x C? gives a finer partition

given query y, visit cells (c!,c?) € C! x C? in ascending order of
distance to y



Inverted multi-index

Multi-sequence algorithm

space subdivision via PQ qlvs. U q2 vs. V [ua) vag)l  (G3) @)+ s(5)
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0.9
0.8
0.7

Inverted multi-index
Result on SIFT1B: are NN in candidate lists?

-&- Multi-index K=2
- Index+kd-tree K=2*
-®-ndex K=2*
-B-Multi-index K=2'2
-~ Index+kd-tree K=21?
-©-|ndex K=2%2

5 7 9 11 13 15 17 19 21 23
Iogz(list length T)



Locally optimized product quantization
Result on SIFT1B, 64-bit codes

Method TR=1]R=10] R=100 |
Ck-means [Norouzi & Fleet "13] - - 0.649
IVFADC [Jégou et al. '11] 0.106 | 0.379 0.748
IVFADC [Jégou et al. '11] 0.088 | 0.372 0.733
OPQ [Ge et al. '13] 0.114 | 0.399 0.777
Multi-D-ADC [Babenko & Lempitsky '12] || 0.165 | 0.517 0.860
LOR+PQ [Kalantidis & Avrithis '14] 0.183 | 0.565 0.889
LOPQ [Kalantidis & Auvrithis '14] 0.199 0.586 0.909

Most benefit comes from locally optimized rotation!



Multi-LOPQ

[Kalantidis & Avrithis '14]
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Multi-LOPQ

Result on SIFT1B, 128-bit codes

T Method |R=1] 10 | 100 |
20K IVFADC+R [Jégou et al. '11] 0.262 | 0.701 | 0.962
LOPQ+R [Kalantidis & Avrithis '14] 0.350 | 0.820 | 0.978
Multi-D-ADC [Babenko & Lempitsky '12] || 0.304 | 0.665 | 0.740
10K | OMulti-D-OADC [Ge et al. '13] 0.345 | 0.725 | 0.794
Multi-LOPQ [Kalantidis & Avrithis '14] 0.430 | 0.761 | 0.782
Multi-D-ADC [Babenko & Lempitsky '12] || 0.328 | 0.757 | 0.885
30K | OMulti-D-OADC [Ge et al. '13] 0.366 | 0.807 | 0.913
Multi-LOPQ [Kalantidis & Avrithis '14] 0.463 | 0.865 | 0.905
Multi-D-ADC [Babenko & Lempitsky '12] || 0.334 | 0.793 | 0.959
100K | OMulti-D-OADC [Ge et al. '13] 0.373 | 0.841 | 0.973
Multi-LOPQ [Kalantidis & Avrithis '14] 0.476 | 0.919 | 0.973




Application: image search



Deep learned image features
[Krizhevsky et al. '12]
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Deep learned image features

Classification

mite

o .
container ship

motor scooter

leopard

mite container ship motér ledpard
black widow lifeboat go-kart Jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car show leopard
starfish drilling platform golfcart Egyptian cat

= 3 7

¢/

-
. -
& X
) ZF

grille mushroom Madagascar cat
convertible agaric squirrel monkey
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Deep learned image features

Search




Deep learned image features

Layer 1 features




Deep learned image features

Layer 2 features




Multi-LOPQ

Image query on Flickr 100M (deep learned features, 4k — 128 dimensions)
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V. Clustering



Hierarchical k-means
[Nister & Stewenius "06]




Approximate k-means
[Philbin et al. '07]

centroids updated as in k-means
points assigned to centroids by approximate search

search by randomized k-d trees, even before the latter was published
or FLANN was available

index rebuilt in every k-means iteration



Approximate k-means

vs. Hierarchical k-means

Method Dataset mAP
Bag-of-words | Spatial

(a) HKM-1 5K 0.439 0.469

(b) HKM-2 5K 0.418

(c) HKM-3 5K 0.372

(d) HKM-4 5K 0.353

(e) AKM 5K 0.618 0.647

(f) AKM 5K+100K 0.490 0.541

(g) AKM 5K+100K+1M 0.393 0.465




Robust approximate k-means
[Li et al. "10]

e the nearest neighbor in one iteration is re-used in the next
o less effort spent for new neighbor search

o faster convergence at same quality



Approximate Gaussian mixtures
[Kalantidis & Avrithis '12]

iteration=0, clusters=50
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Approximate Gaussian mixtures
[Kalantidis & Avrithis '12]

iteration=1, clusters=15
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Approximate Gaussian mixtures
[Kalantidis & Avrithis '12]

iteration=2, clusters=10




Approximate Gaussian mixtures
[Kalantidis & Avrithis '12]

iteration=3, clusters=8




Approximate Gaussian mixtures
Image search—mAP on Oxford 5k

Method RAKM AKM | AGM

k 350k 500k 550k 600k 700k | 550k | 857k

ok 0.471 0.479 0.486 0.485 0.476 | 0.485 | 0.492

5k + 20k | 0.439 0.440 0.448 0.441 0.437 | 0.447 | 0.459

5k + 1M - - 0.250 - - - 0.280




ANN search - clustering connection

hierarchical k-means: use k-means tree for ANN search
approximate k-means: use ANN search to accelerate assignment step

product quantization: use k-means on subspaces to accelerate ANN
search

inverted multi-index: exhaustively search on subspaces before
searching on entire space



ANN search - clustering connection

e hierarchical k-means: use k-means tree for ANN search
o approximate k-means: use ANN search to accelerate assignment step

e product quantization: use k-means on subspaces to accelerate ANN
search

e inverted multi-index: exhaustively search on subspaces before
searching on entire space

What is the actual connection? Can we use recursion to solve both
problems at the same time?
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Dimensionality-recursive vector quantization
[Avrithis "13]
Problem

e given n points in d dimensions, quantize to k centroids under minimal
distortion, with n > 10%,d > 102,k > 103,

Bottleneck: k-means assignment
o exhaustive search: O(nk) time

o approximate search: e.g., O(nlogk).



Dimensionality-recursive vector quantization
[Avrithis "13]
Problem

e given n points in d dimensions, quantize to k centroids under minimal
distortion, with n > 10%,d > 102,k > 103,

Bottleneck: k-means assignment
o exhaustive search: O(nk) time
o approximate search: e.g., O(nlogk).
Lookup?
e n queries over the same centroids
e why not lookup on precomputed distance maps?
e O(n) time, but O(2%) space: fine e.g. for d = 2.



Dimensionality-recursive vector quantization
[Avrithis "13]
Problem

e given n points in d dimensions, quantize to k centroids under minimal
distortion, with n > 10%,d > 10%, k > 103,

Bottleneck: k-means assignment
o exhaustive search: O(nk) time
e approximate search: e.g. , O(nlogk).
Lookup?
e n queries over the same centroids
e why not lookup on precomputed distance maps?
e O(n) time, but O(2%) space: fine e.g. for d = 2.
Curse of dimensionality
e what if d > 107 is then lookup possible?
e O(k?logk) pre-processing, (O)(n) time to assign, at O(/k”) space.



DRVQ base case: d =1




DRVQ recursion: d — 2d




DRVQ: vector quantization

| k | 16k 8k 4k 2k 1k 512
Approximate (us) | 0.95 0.83 0.80 0.73 0.80 0.90
Exact (ms) 119 079 051 026 021 0.11

averaged over the n = 75k SIFT descriptors of the 55 cropped query
images of Oxford 5k



DRVQ: clustering

log kp (d = 29 .
i 2g4p(8 16) 37 time (m)
Tk |6 7 8 0 11 14| 12996
g8k|6 7 8 9 11 13| 119.43
4|6 7 8 9 10 12| 2007
%[5 6 7 8 9 11| 2792
k|5 6 7 8 9 10| 2608
5124 5 6 7 8 9| 0866

] 4k | Approximate k-means 504.2

4 codebooks at d = 32 dimensions each on n = 12.5M 128-dimensional
SIFT descriptors of Oxford 5k



Approximate k-means
[Philbin et al. '07]

e centroids updated as in k-means
e points assigned to centroid by approximate search

e index rebuilt in every k-means iteration



Ranked retrieval
[Broder et al. '14]

centroids updated as in k-means
points assigned by inverse search from centroids to points
points may remain unassigned

index built only once



Inverted-quantized k-means
[unpublished '15]

AGM IQ-means
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Inverted-quantized k-means

[unpublished '15]
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http://image.ntua.gr/iva/research/

Thank you!


http://image.ntua.gr/iva/research/

