
Approximate nearest neighbor search:
binary codes and vector quantization

Yannis Avrithis

University of Athens

Athens, March 2015

Problem

• Given query point q, find its nearest neighbor with respect to
Euclidean distance within data set X in a d-dimensional space

• Focus on large scale: encode (compress) vectors, speed up distance
computations

• Fit underlying distribution with little space & time overhead

Applications in vision
Retrieval (image as point) [Jégou et al. ’10][Perronnin et al. ’10]

>

>

>

>

>

<

<

<

<

<

Figure 1. Images and corresponding VLAD descriptors, for k=16 centroids (D=16×128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

words k: we consider values ranging from k=16 to k=256.
Figure 1 depicts the VLAD representations associated

with a few images, when aggregating 128-dimensional
SIFT descriptors. The components of our descriptor map
to components of SIFT descriptors. Therefore we adopt the
usual 4× 4 spatial grid representation of oriented gradients
for each vi=1..k. We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip-
tors, a component may be positive or negative, due to the
difference in Equation 1.

One can observe that the descriptors are relatively sparse
(few values have a significant energy) and very structured:
most high descriptor values are located in the same cluster,
and the geometrical structure of SIFT descriptors is observ-
able. Intuitively and as shown later, a principal component
analysis is likely to capture this structure. For sufficiently
similar images, the closeness of the descriptors is obvious.

3. From vectors to codes
This section addresses the problem of coding an image

vector. Given a D-dimensional input vector, we want to
produce a code of B bits encoding the image representa-
tion, such that the nearest neighbors of a (non-encoded)
query vector can be efficiently searched in a set of n en-
coded database vectors.

We handle this problem in two steps, that must be opti-
mized jointly: 1) a projection that reduces the dimension-
ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent
approximate nearest neighbor search method of [7], which
is briefly described in the next section. We will show the
importance of the joint optimization by measuring the mean
squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,
15, 24, 27] are required to handle large databases in com-
puter vision applications [22]. One of the most popu-
lar techniques is Euclidean Locality-Sensitive Hashing [4],
which has been extended in [11] to arbitrary metrics. How-
ever, these approaches and the one of [15] are memory con-
suming, as several hash tables or trees are required. The
method of [27], which embeds the vector into a binary
space, better satisfies the memory constraint. It is, how-
ever, significantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
based approximate search method of [7]. In the following,
we use this method, as it offers better accuracy and because
the search algorithm provides an explicit approximation of
the indexed vectors. This allows us to compare the vector
approximations introduced by the dimensionality reduction
and the quantization. We use the asymmetric distance com-
putation (ADC) variant of this approach, which only en-
codes the vectors of the database, but not the query vector.
This method is summarized in the following.

Applications in vision
Retrieval (patch as point) [Tolias et al. ’13][Qin et al. ’13]

Speeded-up, relaxed spatial matching

Giorgos Tolias and Yannis Avrithis
National Technical University of Athens

{gtolias,iavr}@image.ntua.gr

Abstract

A wide range of properties and assumptions determine
the most appropriate spatial matching model for an ap-
plication, e.g. recognition, detection, registration, or large
scale image retrieval. Most notably, these include discrim-
inative power, geometric invariance, rigidity constraints,
mapping constraints, assumptions made on the underlying
features or descriptors and, of course, computational com-
plexity. Having image retrieval in mind, we present a very
simple model inspired by Hough voting in the transforma-
tion space, where votes arise from single feature correspon-
dences. A relaxed matching process allows for multiple
matching surfaces or non-rigid objects under one-to-one
mapping, yet is linear in the number of correspondences. We
apply it to geometry re-ranking in a search engine, yielding
superior performance with the same space requirements but
a dramatic speed-up compared to the state of the art.

1. Introduction
Discriminative local features have made sub-linear index-
ing of appearance possible, but geometry indexing still ap-
pears elusive if one targets invariance, global geometry ver-
ification, high precision and low space requirements. Large
scale image retrieval solutions typically consider geometry
in a second, re-ranking phase. The latter is linear in the
number of images to match, hence its speed is crucial.

Exploiting local shape of features (e.g. local scale, ori-
entation, or affine parameters) to extrapolate relative trans-
formations, it is either possible to construct RANSAC hy-
potheses by single correspondences [14], or to see corre-
spondences as Hough votes in a transformation space [12].
In the former case one still has to count inliers, so the pro-
cess is quadratic in the number of (tentative) correspon-
dences. In the latter, voting is linear but further verification
with inlier count seems unavoidable.

Flexible spatial models are more typical in recognition;
these are either not invariant to geometric transformations,
or use pairwise constraints to detect inliers without any
rigid motion model [11]. The latter are at least quadratic

Figure 1. Top: HPM matching of two images of Oxford dataset, in
0.6ms. All tentative correspondences are shown. The ones in cyan
have been erased. The rest are colored according to strength, with
red (yellow) being the strongest (weakest). Bottom: Inliers found
by 4-dof FSM and affine-model LO-RANSAC, in 7ms.

in the number of correspondences and their practical run-
ning time is still prohibitive if our target for re-ranking is
thousands of matches per second.

We develop a relaxed spatial matching model which ap-
plies the concept of pyramid match [8] to the transforma-
tion space. Using local feature shape to generate votes, it is
invariant to similarity transformations, free of inlier-count
verification and linear in the number of correspondences. It
imposes one-to-one mapping and is flexible, allowing non-
rigid motion and multiple matching surfaces or objects.

Fig. 1 compares our Hough pyramid matching (HPM)
to fast spatial matching (FSM) [14]. Both buildings are
matched by HPM, while inliers from one surface are only
found by FSM. But our major achievement is speed: in a
given query time, HPM can re-rank one order of magnitude
more images than the state of the art in geometry re-ranking.
We give a more detailed account of our contribution in sec-
tion 2 after discussing the most related prior work.

Applications in vision
Localization, pose estimation [Sattler et al. ’12][Li et al. ’12]

Fast Image-Based Localization using Direct 2D-to-3D Matching

Torsten Sattler, Bastian Leibe, Leif Kobbelt
RWTH Aachen University

{tsattler@cs, leibe@umic, kobbelt@cs}.rwth-aachen.de

Abstract
Recently developed Structure from Motion (SfM) recon-

struction approaches enable the creation of large scale 3D
models of urban scenes. These compact scene representa-
tions can then be used for accurate image-based localiza-
tion, creating the need for localization approaches that are
able to efficiently handle such large amounts of data. An
important bottleneck is the computation of 2D-to-3D cor-
respondences required for pose estimation. Current state-
of-the-art approaches use indirect matching techniques to
accelerate this search. In this paper we demonstrate that
direct 2D-to-3D matching methods have a considerable
potential for improving registration performance. We de-
rive a direct matching framework based on visual vocabu-
lary quantization and a prioritized correspondence search.
Through extensive experiments, we show that our frame-
work efficiently handles large datasets and outperforms cur-
rent state-of-the-art methods.

1. Introduction
Image-based localization is an important problem in

computer vision. Its applications include localization and
navigation for both pedestrians [22, 31, 13] and robots
[6, 5], Augmented Reality [1, 3], and the visualization of
photo collections [26]. Image-based localization is also an
important part in the pipeline of higher-level computer vi-
sion tasks such as semantic object annotation [9] and can
be used as an initial pose estimate to speed up large-scale
reconstructions from Internet photo collections [27].

Traditionally, large-scale image-based localization has
been treated as an image retrieval problem. After finding
those images in a database that are most similar to the query
image, the location of the query can be determined relative
to them [22, 31]. The huge progress achieved in the field
of image retrieval enables the use of an increasing num-
ber of images for the representation of real world scenes
[25, 19, 20]. However, the localization accuracy obtained
this way cannot be better than the precision of the GPS
positions available for the database images. To achieve a
higher localization accuracy, more detailed information is
needed which can be obtained from a 3D reconstruction
of the scene. Using these models additionally permits to

Figure 1: Our approach for image-based localization accu-
rately registers query images (bottom right) to a 3D scene
model of an entire city (top left, close-up view) using an
efficient 2D-to-3D matching framework.

estimate the orientation (and thus the complete pose) of
the camera and yields a much more structured representa-
tion of the scenes. Recent advances in SfM research [27]
now make it possible to construct models on a city-scale
level consisting of millions of points in only a few hours
[8, 29, 21], creating the need for image-based localization
methods that can handle such large datasets.

Essential for image-based localization using 3D models
is to establish correspondences between 2D local features in
the query image and 3D points in the model. The common
approach is to use the feature descriptors, e.g. SIFT [17],
for the 3D points computed during the reconstruction, for-
mulating the correspondence search as a descriptor match-
ing problem. Following the terminology from [16] we re-
fer to 2D image features and their descriptors as features
and to 3D points and their descriptors as points. We distin-
guish between direct and indirect 2D-to-3D matching. Di-
rect matching tries to find the 3D point corresponding to a
2D feature by searching for the nearest neighbors of that
feature’s descriptor in the space containing the 3D point de-
scriptors, while indirect methods use an intermediate con-
struct to represent points and their descriptors which does
not preserve the proximity in descriptor space. Classical di-
rect matching approaches such as approximative tree-based

2011 IEEE International Conference on Computer Vision
978-1-4577-1102-2/11/$26.00 c©2011 IEEE

667

Applications in vision
Classification [Boiman et al. ’08][McCann & Lowe ’12]

Figure 3. “Image-to-Image” vs. “Image-to-Class” distance. A
Ballet class with large variability and small number (three) of ‘la-
belled’ images (bottom row). Even though the “Query-to-Image”
distance is large to each individual ‘labelled’ image, the “Query-
to-Class” distance is small. Top right image: For each descrip-
tor at each point in Q we show (in color) the ‘labelled’ image
which gave it the highest descriptor likelihood. It is evident that
the new query configuration is more likely given the three images,
than each individual image seperately. (Images taken from [4].)

the entire class C (using all images I ∈ C), we would
get better generalization capabilities than by employing in-
dividual “Image-to-Image” measurements. Such a direct
“Image-to-Class” distance can be obtained by computing
the KL-distance between the descriptor distributions of Q
and C. As can be seen in Fig. 3, even though the “Query-
to-Image” KL-distance is large for all the ‘labelled’ images
in the Ballet class, the “Query-to-Class” KL-distance may
still be small, enabling correct classification. Inferring new
image configurations by “composing pieces” from a set of
other images was previously shown useful in [17, 4].
We prove (Sec. 3) that under the Naive-Bayes assump-

tion, the optimal distance to use in image classification is
the KL “Image-to-Class” distance, and not the commonly
used “Image-to-Image” distribution distances (KL, χ2, etc.)

3. Probabilistic Formulation
In this section we derive the optimal Naive-Bayes im-

age classifier, which is approximated by NBNN (Sec. 4).
Given a new query (test) image Q, we want to find its
class C. It is well known [7] that maximum-a-posteriori
(MAP) classifier minimizes the average classification er-
ror: Ĉ = argmaxC p(C|Q). When the class prior p(C)
is uniform, the MAP classifier reduces to the Maximum-
Likelihood (ML) classifier:

Ĉ = argmax
C

p(C|Q) = argmax
C

p(Q|C).

Let d1, ..., dn denote all the descriptors of the query im-
age Q. We assume the simplest (generative) probabilistic
model, which is the Naive-Bayes assumption (that the de-
scriptors d1, ..., dn ofQ are i.i.d. given its class C), namely:

p(Q|C) = p(d1, .., dn|C) =

n∏

i=1

p(di|C)

Taking the log probability of the ML decision rule we get:

Ĉ = argmax
C

log(p(C|Q)) = argmax
C

1

n

n∑

i=1

log p(di|C)

(1)
The simple classifier implied by Eq. (1) is the optimal clas-
sification algorithm under the Naive-Bayes assumption. In
Sec 4 we show how this simple classifier can be accurately
approximated using a non-parametric NN-based algorithm
(without descriptor quantization).

Naive-Bayes classifier ⇔ Minimum “Image-to-Class”
KL-Distance: In Sec. 2.2 we discussed the generalization
benefits of using an “Image-to-Class” distance. We next
show that the above MAP classifier of Eq. (1) is equivalent
to minimizing “Query-to-Class” KL-distances.
Eq. (1) can be rewritten as:

Ĉ = argmax
C

∑

d

p(d|Q) log p(d|C)

where we sum over all possible descriptors d. We can sub-
tract a constant term independent of C from the right hand
side of the above equation, without affecting Ĉ. By sub-
tracting

∑
d p(d|Q) log p(d|Q), we get:

Ĉ = argmax
C

(
∑

d∈D

p(d|Q) log
p(d|C)

p(d|Q)
)

= argmin
C

(KL(p(d|Q)‖p(d|C))) (2)

where KL(·‖·) is the KL-distance (divergence) between
two probability distributions. In other words, under the
Naive-Bayes assumption, the optimal MAP classifier mini-
mizes a “Query-to-Class” KL-distance between the descrip-
tor distributions of the queryQ and the class C.
A similar relation between Naive-Bayes classification

and KL-distance was used in [28] for texture classifica-
tion, yet between pairs of images (i.e., “Image-to-Image”
distances and not “Image-to-Class” distances). Distances
between descriptor distributions for the purpose of classifi-
cation have also been used by others [6, 16, 20, 27, 30], but
again – between pairs of images.

4. The Approximation Algorithm Using NN
In this section we present the “NBNN” classifier, which

accurately approximates the optimal MAP Naive-Bayes im-
age classifier of Sec. 3.

Non-Parametric Descriptor Density Estimation:
The optimal MAP Naive-Bayes image classifier of Eq. (1)
requires computing the probability density p(d|C) of de-
scriptor d in a classC. Because the number of local descrip-
tors in an image database is huge (on the order of the num-
ber of pixels in the database), a Parzen density estimation

Applications in vision
Quantization [Sivic et al. ’03][Philbin et al. ’07]

Vector quantization → visual words
Vocabulary

54

67

72

query

19

15

2

Applications in vision
Clustering [Philbin et al. ’07][Avrithis ’13]

Quantize and Conquer: A dimensionality-recursive solution
to clustering, vector quantization, and image retrieval

Yannis Avrithis
National Technical University of Athens

Abstract

Inspired by the close relation between nearest neighbor
search and clustering in high-dimensional spaces as well as
the success of one helping to solve the other, we introduce
a new paradigm where both problems are solved simultane-
ously. Our solution is recursive, not in the size of input data
but in the number of dimensions. One result is a cluster-
ing algorithm that is tuned to small codebooks but does not
need all data in memory at the same time and is practically
constant in the data size. As a by-product, a tree struc-
ture performs either exact or approximate quantization on
trained centroids, the latter being not very precise but ex-
tremely fast. A lesser contribution is a new indexing scheme
for image retrieval that exploits multiple small codebooks to
provide an arbitrarily fine partition of the descriptor space.
Large scale experiments on public datasets exhibit state of
the art performance and remarkable generalization.

1. Introduction
We often visualize a clustering process in two dimensions
as in Figure 1, where a number of centroids partition the
underlying space into Voronoi cells. Even with k-means,
which is arguably the fastest alternative at large scale, the
cost is dominated by the assignment of data points to the
nearest centroid. It is thus popular to solve this subproblem
by approximate search [20]. In the 2D discrete space of
Figure 1, one may envision solving first the inverse problem
of computing a distance map on the entire 2D grid, which
could then respond to assignment queries by lookup.

By analogy, one may envision image retrieval as a propa-
gation process on this grid, where query descriptors serve as
source points and a local distance map is generated around
these points. Indexed images have their descriptors dis-
tributed on the grid and only those at a specific range from
source points are retrieved. Weighting of points is possible
based on the distance to nearest query point, as specified by
the position on the grid where they are found.

But how about spaces of up to 128 dimensions as in
the case of SIFT descriptors? Unfortunately, the number

Figure 1. Clustering and space partitioning, visualized on 2D dis-
crete space. Coloring of Voronoi cells follows that of the corre-
sponding centroid; patch intensity follows the distance map.

of grid positions increases exponentially in the number of
dimensions, which prevents us from visiting or even repre-
senting the entire space. This is exactly our contribution in
this work: we use a 2D discrete grid not just as an anal-
ogy but to actually solve clustering or search problems in
higher-dimensional spaces. The key idea is that the grid
actually represents a 2d-dimensional space S. The two “di-
mensions” that we see in fact capture the discrete topology
of two subspaces SL, SR, each of d dimensions, that de-
compose S into a Cartesian product S = SL × SR.

In a clustering setting, and assuming that we see cen-
troids as point sources and do compute a distance map via
propagation from the sources to the entire grid, it is possible
to obtain a triangulation as a by-product, having the cluster
centroids as vertices as in Figure 1. The graph represent-
ing this triangulation captures exactly the discrete topology
of the space. Doing this for both SL and SR, we may ap-
ply the same idea to S, ending up with an algorithm that is
recursive in the number of dimensions.

In a retrieval setting, we do not even need a single code-
book for the entire descriptor space. We may start recur-
sion after decomposing e.g. into two or four subspaces,
of dimension 64 or 32 respectively for SIFT descriptors.

1

Overview (1)

Tree-based search

• k-d trees [Bentley ’75]

• randomized k-d trees [Silpa-Anan & Hartley ’02]

• hierarchical k-means tree [Fukunaga & Narendra ’75]

• FLANN [Muja & Lowe ’09]

Binary codes

• locality sensitive hashing [Charikar ’02]

• spectral hashing [Weiss et al. ’08]

• iterative quantization [Gong and Lazebnik ’11]

Overview (1)

Tree-based search

• k-d trees [Bentley ’75]

• randomized k-d trees [Silpa-Anan & Hartley ’02]

• hierarchical k-means tree [Fukunaga & Narendra ’75]

• FLANN [Muja & Lowe ’09]

Binary codes

• locality sensitive hashing [Charikar ’02]

• spectral hashing [Weiss et al. ’08]

• iterative quantization [Gong and Lazebnik ’11]

Overview (2)

Quantization

• vector quantization (VQ)

• product quantization (PQ) [Jégou et al. ’11]

• optimized product quantization (OPQ) [Ge et al. ’13]
Cartesian k-means [Norouzi & Fleet ’13]

• locally optimized product quantization (LOPQ) [Kalantidis and
Avrithis ’14]

Non-exhaustive search

• non-exhaustive PQ [Jégou et al. ’11]

• inverted multi-index [Babenko & Lempitsky ’12]

• multi-LOPQ [Kalantidis and Avrithis ’14]

Overview (2)

Quantization

• vector quantization (VQ)

• product quantization (PQ) [Jégou et al. ’11]

• optimized product quantization (OPQ) [Ge et al. ’13]
Cartesian k-means [Norouzi & Fleet ’13]

• locally optimized product quantization (LOPQ) [Kalantidis and
Avrithis ’14]

Non-exhaustive search

• non-exhaustive PQ [Jégou et al. ’11]

• inverted multi-index [Babenko & Lempitsky ’12]

• multi-LOPQ [Kalantidis and Avrithis ’14]

Overview (3)

Clustering

• hierarchical k-means [Nister & Stewenius ’06]

• approximate k-means [Philbin et al. ’07]

• approximate Gaussian mixtures [Kalantidis & Avrithis ’12]

• dimensionality-recursive vector quantization [Avrithis ’13]

• ranked retrieval [Broder et al. ’14]

I. Tree-based search

k-d tree
[Bentley ’75]

Construction

• choose the dimension of greatest variance

• split at medoid to make tree balanced

• recurse until both sides of splitting plane are empty

Search (exact)

• at each node, choose child according to splitting dimension and value

• starting at root, descend recursively

• backtrack

k-d tree
[Bentley ’75]

Construction

• choose the dimension of greatest variance

• split at medoid to make tree balanced

• recurse until both sides of splitting plane are empty

Search (exact)

• at each node, choose child according to splitting dimension and value

• starting at root, descend recursively

• backtrack

k-d tree
[Bentley ’75]

Figure ���

Generally during a nearest

neighbour search only a few

leaf nodes need to be in	

spected�

Figure ���

A bad distribution which

forces almost all nodes to

be inspected�

�	��

k-d tree
[Bentley ’75]

Figure ���

Generally during a nearest

neighbour search only a few

leaf nodes need to be in	

spected�

Figure ���

A bad distribution which

forces almost all nodes to

be inspected�

�	��

Randomized k-d trees
[Silpa-Anan & Hartley ’75]

Construction

• construct m different trees

• randomly rotate data points

• choose randomly among the dimensions of greatest variance

• split at a random point near the medoid

Search (approximate)

• descend each tree once independently

• insert nodes in a shared priority queue

• keep descending until l leaves are visited

Randomized k-d trees
[Silpa-Anan & Hartley ’75]

Construction

• construct m different trees

• randomly rotate data points

• choose randomly among the dimensions of greatest variance

• split at a random point near the medoid

Search (approximate)

• descend each tree once independently

• insert nodes in a shared priority queue

• keep descending until l leaves are visited

Randomized k-d trees
[Silpa-Anan & Hartley ’75]

probability on either side of the hyperplane and if it lies on
the opposite side of the splitting hyperplane, further explo-
ration of the tree is required before the cell containing it
will be visited. Using multiple random decompositions
increases the probability that in one of them the query point
and its nearest neighbor will be in the same cell.

3.2 The Priority Search K-Means Tree Algorithm

We have found the randomized k-d forest to be very
effective in many situations, however on other data sets a
different algorithm, the priority search k-means tree, has been
more effective at finding approximate nearest neighbors,
especially when a high precision is required. The priority
search k-means tree tries to better exploit the natural struc-
ture existing in the data, by clustering the data points using
the full distance across all dimensions, in contrast to the
(randomized) k-d tree algorithm which only partitions the
data based on one dimension at a time.

Nearest-neighbor algorithms that use hierarchical parti-
tioning schemes based on clustering the data points have
been previously proposed in the literature [18], [19], [24].
These algorithms differ in the way they construct the parti-
tioning tree (whether using k-means, agglomerative or
some other form of clustering) and especially in the strate-
gies used for exploring the hierarchical tree. We have devel-
oped an improved version that explores the k-means tree
using a best-bin-first strategy, by analogy to what has been
found to significantly improve the performance of the
approximate kd-tree searches.

3.2.1 Algorithm Description

The priority search k-means tree is constructed by partition-
ing the data points at each level into K distinct regions
using k-means clustering, and then applying the same
method recursively to the points in each region. The recur-
sion is stopped when the number of points in a region is
smaller thanK (see Algorithm 1).

Fig. 2. Example of randomized kd-trees. The nearest neighbor is across
a decision boundary from the query point in the first decomposition, how-
ever is in the same cell in the second decomposition.

Fig. 1. Speedup obtained by using multiple randomized kd-trees (100K
SIFT features data set).

2230 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014

Randomized k-d trees
[Silpa-Anan & Hartley ’75]

probability on either side of the hyperplane and if it lies on
the opposite side of the splitting hyperplane, further explo-
ration of the tree is required before the cell containing it
will be visited. Using multiple random decompositions
increases the probability that in one of them the query point
and its nearest neighbor will be in the same cell.

3.2 The Priority Search K-Means Tree Algorithm

We have found the randomized k-d forest to be very
effective in many situations, however on other data sets a
different algorithm, the priority search k-means tree, has been
more effective at finding approximate nearest neighbors,
especially when a high precision is required. The priority
search k-means tree tries to better exploit the natural struc-
ture existing in the data, by clustering the data points using
the full distance across all dimensions, in contrast to the
(randomized) k-d tree algorithm which only partitions the
data based on one dimension at a time.

Nearest-neighbor algorithms that use hierarchical parti-
tioning schemes based on clustering the data points have
been previously proposed in the literature [18], [19], [24].
These algorithms differ in the way they construct the parti-
tioning tree (whether using k-means, agglomerative or
some other form of clustering) and especially in the strate-
gies used for exploring the hierarchical tree. We have devel-
oped an improved version that explores the k-means tree
using a best-bin-first strategy, by analogy to what has been
found to significantly improve the performance of the
approximate kd-tree searches.

3.2.1 Algorithm Description

The priority search k-means tree is constructed by partition-
ing the data points at each level into K distinct regions
using k-means clustering, and then applying the same
method recursively to the points in each region. The recur-
sion is stopped when the number of points in a region is
smaller thanK (see Algorithm 1).

Fig. 2. Example of randomized kd-trees. The nearest neighbor is across
a decision boundary from the query point in the first decomposition, how-
ever is in the same cell in the second decomposition.

Fig. 1. Speedup obtained by using multiple randomized kd-trees (100K
SIFT features data set).

2230 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 11, NOVEMBER 2014

Hierarchical k-means tree
[Fukunaga & Narendra ’75][Nister & Stewenius ’06]

which with the cited number of 2000 stable features per

frame amounts to about 50 training images in the database.

Lowe’s approach has been used on around 5000 objects

in a commercial application, but we are not aware of an

academic reference describing these results.

For the most part, the above approaches keep amounts

of data around in the database that is on the order of

magnitude as large as the image patches themselves, or

at least the region descriptors. However, the compactness

of the database is very important for query efficiency in

a large database. With our vocabulary tree approach, the

representation of an image patch is simply one or two

integers, which should be contrasted to the hundreds of

bytes or floats used for a descriptor vector.

Compactness is also the most important difference

between our approach and the hierarchical approach used

by Grauman and Darrell [5]. They use a pyramid of

histograms, at each level doubling the number of bins along

each axis without considering the distribution of data. By

using a vocabulary adapted to the likely distribution of

data, we can use a much smaller tree, resulting in better

resolution while maintaining a compact representation. We

also estimate that our approach is around a factor 1000

faster.

For feature extraction, we use our own implementation

of Maximally Stable Extremal Regions (MSERs) [10].

They have been found to perform well in thorough

performance evaluation [13, 4]. We warp an elliptical

patch around each MSER region into a circular patch.

The remaining portion of our feature extraction is then

implemented according to the SIFT feature extraction

pipeline by Lowe [9]. Canonical directions are found based

on an orientation histogram formed on the image gradients.

SIFT descriptors are then extracted relative to the canonical

directions. The SIFT descriptors have been found highly

distinctive in performance evaluation [12]. The normalized

SIFT descriptors are then quantized with the vocabulary

tree. Finally, a hierarchical scoring scheme is applied to

retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization

that is built by hierarchical k-means clustering. A large

set of representative descriptor vectors are used in the

unsupervised training of the tree.

Instead of k defining the final number of clusters or

quantization cells, k defines the branch factor (number of

children of each node) of the tree. First, an initial k-

means process is run on the training data, defining k cluster

centers. The training data is then partitioned into k groups,

where each group consists of the descriptor vectors closest

to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary

tree. The hierarchical quantization is defined at each level by k
centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining

quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some

maximum number of levels L, and each division into k parts

is only defined by the distribution of the descriptor vectors

that belong to the parent quantization cell. The process is

illustrated in Figure 2.

In the online phase, each descriptor vector is simply

propagated down the tree by at each level comparing

the descriptor vector to the k candidate cluster centers

(represented by k children in the tree) and choosing the

closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot

products, which is very efficient if k is not too large. The

path down the tree can be encoded by a single integer and

is then available for use in scoring.

Note that the tree directly defines the visual vocabulary

and an efficient search procedure in an integrated

manner. This is different from for example defining a

visual vocabulary non-hierarchically, and then devising

an approximate nearest neighbor search in order to find

visual words efficiently. We find the seamless choice

more appealing, although the latter approach also defines

quantization cells in the original space if used consistently

and deterministically. The hierarchical approach also gives

more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of

the vocabulary in a non-hierarchical manner would be very

high, the computational cost in the hierarchical approach is

Hierarchical k-means tree
[Fukunaga & Narendra ’75][Nister & Stewenius ’06]

The tree is searched by initially traversing the tree
from the root to the closest leaf, following at each inner
node the branch with the closest cluster centre to the
query point, and adding all unexplored branches along
the path to a priority queue (see Algorithm 2). The prior-
ity queue is sorted in increasing distance from the query
point to the boundary of the branch being added to the
queue. After the initial tree traversal, the algorithm
resumes traversing the tree, always starting with the top
branch in the queue.

The number of clusters K to use when partitioning the
data at each node is a parameter of the algorithm, called the
branching factor and choosing K is important for obtaining

good search performance. In Section 3.4 we propose an
algorithm for finding the optimum algorithm parameters,
including the optimum branching factor. Fig. 3 contains a
visualisation of several hierarchical k-means decomposi-
tions with different branching factors.

Another parameter of the priority search k-means tree
is Imax, the maximum number of iterations to perform in the
k-means clustering loop. Performing fewer iterations can
substantially reduce the tree build time and results in a
slightly less than optimal clustering (if we consider the sum
of squared errors from the points to the cluster centres as
the measure of optimality). However, we have observed
that even when using a small number of iterations, the near-
est neighbor search performance is similar to that of the tree
constructed by running the clustering until convergence, as
illustrated by Fig. 4. It can be seen that using as few as seven
iterations we get more than 90 percent of the nearest-neigh-
bor performance of the tree constructed using full conver-
gence, but requiring less than 10 percent of the build time.

The algorithm to use when picking the initial centres in
the k-means clustering can be controlled by the Calg parame-
ter. In our experiments (and in the FLANN library) we have

Fig. 3. Projections of priority search k-means trees constructed using different branching factors: 4, 32, 128. The projections are constructed using
the same technique as in [26], gray values indicating the ratio between the distances to the nearest and the second-nearest cluster centre at each
tree level, so that the darkest values (ratio � 1) fall near the boundaries between k-means regions.

Fig. 4. The influence that the number of k-means iterations has on the
search speed of the k-means tree. Figure shows the relative search time
compared to the case of using full convergence.

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2231

FLANN (uniform data)
[Muja & Lowe ’09]

We define the cost as a combination of the search time,
tree build time, and tree memory overhead. Depending on
the application, each of these three factors can have a differ-
ent importance: in some cases we don’t care much about the
tree build time (if we will build the tree only once and use it
for a large number of queries), while in other cases both the
tree build time and search time must be small (if the tree is
built on-line and searched a small number of times). There
are also situations when we wish to limit the memory over-
head if we work in memory constrained environments. We
define the cost function as follows:

cðuÞ ¼ sðuÞ þ wbbðuÞ
minu2QðsðuÞ þ wbbðuÞÞ þ wmmðuÞ; (1)

where sðuÞ, bðuÞ and mðuÞ represent the search time, tree
build time and memory overhead for the tree(s) constructed
and queried with parameters u. The memory overhead is
measured as the ratio of the memory used by the tree(s) and
the memory used by the data:mðuÞ ¼ mtðuÞ=md.

The weights wb and wm are used to control the relative
importance of the build time and memory overhead in
the overall cost. The build-time weight (wb) controls the
importance of the tree build time relative to the search
time. Search time is defined as the time to search for the
same number of points as there are in the tree. The time
overhead is computed relative to the optimum time cost
minu2QðsðuÞ þ wbbðuÞÞ, which is defined as the optimal
search and build time if memory usage were not a factor.

We perform the above optimization in two steps: a global
exploration of the parameter space using grid search, fol-
lowed by a local optimization starting with the best solution
found in the first step. The grid search is a feasible and effec-
tive approach in the first step because the number of param-
eters is relatively low. In the second step we use the Nelder-
Mead downhill simplex method [43] to further locally
explore the parameter space and fine-tune the best solution
obtained in the first step. Although this does not guarantee
a global minimum, our experiments have shown that the
parameter values obtained are close to optimum in practice.

We use random sub-sampling cross-validation to gener-
ate the data and the query points when we run the optimiza-
tion. In FLANN the optimization can be run on the full data
set for the most accurate results or using just a fraction of the
data set to have a faster auto-tuning process. The parameter
selection needs to only be performed once for each type of
data set, and the optimum parameter values can be saved
and applied to all future data sets of the same type.

4 EXPERIMENTS

For the experiments presented in this section we used a
selection of data sets with a wide range of sizes and data
dimensionality. Among the data sets used are the Winder/
Brown patch data set [53], data sets of randomly sampled
data of different dimensionality, data sets of SIFT features
of different sizes obtained by sampling from the CD cover
data set of [24] as well as a data set of SIFT features
extracted from the overlapping images forming panoramas.

We measure the accuracy of an approximate nearest
neighbor algorithm using the search precision (or just preci-
sion), defined as the fraction of the neighbors returned by

the approximate algorithm which are exact nearest neigh-
bors. We measure the search performance of an algorithm
as the time required to perform a linear search divided by
the time required to perform the approximate search and
we refer to it as the search speedup or just speedup.

4.1 Fast Approximate Nearest Neighbor Search

We present several experiments we have conducted in
order to analyse the performance of the two algorithms
described in Section 3.

4.1.1 Data Dimensionality

Data dimensionality is one of the factors that has a great
impact on the nearest neighbor matching performance. The
top of Fig. 5 shows how the search performance degrades as
the dimensionality increases in the case of random vectors.
The data sets in this case each contain 105 vectors whose val-
ues are randomly sampled from the same uniform distribu-
tion. These random data sets are one of the most difficult
problems for nearest neighbor search, as no value gives any
predictive information about any other value.

Fig. 5. Search efficiency for data of varying dimensionality. We experi-
mented on both random vectors and image patches, with data sets of
size 100K. The random vectors (top figure) represent the hardest case
in which dimensions have no correlations, while most real-world prob-
lems behave more like the image patches (bottom figure).

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2233

FLANN (real data)
[Muja & Lowe ’09]

We define the cost as a combination of the search time,
tree build time, and tree memory overhead. Depending on
the application, each of these three factors can have a differ-
ent importance: in some cases we don’t care much about the
tree build time (if we will build the tree only once and use it
for a large number of queries), while in other cases both the
tree build time and search time must be small (if the tree is
built on-line and searched a small number of times). There
are also situations when we wish to limit the memory over-
head if we work in memory constrained environments. We
define the cost function as follows:

cðuÞ ¼ sðuÞ þ wbbðuÞ
minu2QðsðuÞ þ wbbðuÞÞ þ wmmðuÞ; (1)

where sðuÞ, bðuÞ and mðuÞ represent the search time, tree
build time and memory overhead for the tree(s) constructed
and queried with parameters u. The memory overhead is
measured as the ratio of the memory used by the tree(s) and
the memory used by the data:mðuÞ ¼ mtðuÞ=md.

The weights wb and wm are used to control the relative
importance of the build time and memory overhead in
the overall cost. The build-time weight (wb) controls the
importance of the tree build time relative to the search
time. Search time is defined as the time to search for the
same number of points as there are in the tree. The time
overhead is computed relative to the optimum time cost
minu2QðsðuÞ þ wbbðuÞÞ, which is defined as the optimal
search and build time if memory usage were not a factor.

We perform the above optimization in two steps: a global
exploration of the parameter space using grid search, fol-
lowed by a local optimization starting with the best solution
found in the first step. The grid search is a feasible and effec-
tive approach in the first step because the number of param-
eters is relatively low. In the second step we use the Nelder-
Mead downhill simplex method [43] to further locally
explore the parameter space and fine-tune the best solution
obtained in the first step. Although this does not guarantee
a global minimum, our experiments have shown that the
parameter values obtained are close to optimum in practice.

We use random sub-sampling cross-validation to gener-
ate the data and the query points when we run the optimiza-
tion. In FLANN the optimization can be run on the full data
set for the most accurate results or using just a fraction of the
data set to have a faster auto-tuning process. The parameter
selection needs to only be performed once for each type of
data set, and the optimum parameter values can be saved
and applied to all future data sets of the same type.

4 EXPERIMENTS

For the experiments presented in this section we used a
selection of data sets with a wide range of sizes and data
dimensionality. Among the data sets used are the Winder/
Brown patch data set [53], data sets of randomly sampled
data of different dimensionality, data sets of SIFT features
of different sizes obtained by sampling from the CD cover
data set of [24] as well as a data set of SIFT features
extracted from the overlapping images forming panoramas.

We measure the accuracy of an approximate nearest
neighbor algorithm using the search precision (or just preci-
sion), defined as the fraction of the neighbors returned by

the approximate algorithm which are exact nearest neigh-
bors. We measure the search performance of an algorithm
as the time required to perform a linear search divided by
the time required to perform the approximate search and
we refer to it as the search speedup or just speedup.

4.1 Fast Approximate Nearest Neighbor Search

We present several experiments we have conducted in
order to analyse the performance of the two algorithms
described in Section 3.

4.1.1 Data Dimensionality

Data dimensionality is one of the factors that has a great
impact on the nearest neighbor matching performance. The
top of Fig. 5 shows how the search performance degrades as
the dimensionality increases in the case of random vectors.
The data sets in this case each contain 105 vectors whose val-
ues are randomly sampled from the same uniform distribu-
tion. These random data sets are one of the most difficult
problems for nearest neighbor search, as no value gives any
predictive information about any other value.

Fig. 5. Search efficiency for data of varying dimensionality. We experi-
mented on both random vectors and image patches, with data sets of
size 100K. The random vectors (top figure) represent the hardest case
in which dimensions have no correlations, while most real-world prob-
lems behave more like the image patches (bottom figure).

MUJA AND LOWE: SCALABLE NEAREST NEIGHBOR ALGORITHMS FOR HIGH DIMENSIONAL DATA 2233

Tree-based methods

All methods so far

• assume all data points are represented exactly in memory

• compute exact distances to a subset of data points

• design a data structure for efficient search

We rather focus on methods that

• only approximate data points

• use space partition not only to limit search but to approximate
distances

• design an efficient encoding

Tree-based methods

All methods so far

• assume all data points are represented exactly in memory

• compute exact distances to a subset of data points

• design a data structure for efficient search

We rather focus on methods that

• only approximate data points

• use space partition not only to limit search but to approximate
distances

• design an efficient encoding

II. Binary codes

Locality sensitive hashing
random projections [Charikar ’02]

• Choose a random vector a from the d-dimensional Gaussian
distribution N (0, 1).

• Define hash function ha : Rd → {−1, 1} with

ha(x) = sgn(a · x) =

{
1, if a · x ≥ 0
−1, if a · x < 0.

• Then, given x,y ∈ Rd,

P[ha(x) = ha(y)] = 1− θ(x,y)

π

where θ(x,y) is the angle between x,y.

Locality sensitive hashing
random projections [Charikar ’02]

• Choose a random vector a from the d-dimensional Gaussian
distribution N (0, 1).

• Define hash function ha : Rd → {−1, 1} with

ha(x) = sgn(a · x) =

{
1, if a · x ≥ 0
−1, if a · x < 0.

• Then, given x,y ∈ Rd,

P[ha(x) = ha(y)] = 1− θ(x,y)

π

where θ(x,y) is the angle between x,y.

Binary codes and Hamming distance

• Given a set of n data points xi ∈ Rd, represented by matrix
X ∈ Rd×n.

• Define k hash functions hj : Rd → {−1, 1}, and let
h(x) = (h1(x), . . . , hk(x)).

• Encode each data point x by binary code y = h(x), and represent all
encoded points by matrix Y ∈ {−1, 1}k×n.
• For instance, Y = sgn(A>X) for random projections, where A ∈ Rd×k

represents the k random vectors.

• Now, given a query q, encode it as h(q) and search in Y by Hamming
distance.

Binary codes and Hamming distance

• Given a set of n data points xi ∈ Rd, represented by matrix
X ∈ Rd×n.

• Define k hash functions hj : Rd → {−1, 1}, and let
h(x) = (h1(x), . . . , hk(x)).

• Encode each data point x by binary code y = h(x), and represent all
encoded points by matrix Y ∈ {−1, 1}k×n.
• For instance, Y = sgn(A>X) for random projections, where A ∈ Rd×k

represents the k random vectors.

• Now, given a query q, encode it as h(q) and search in Y by Hamming
distance.

Spectral hashing
[Weiss et al. ’08]

• Define similarity matrix S with Sij = exp(−‖xi − xj‖2/t2).

• Require binary codes to be similarity preserving, balanced, and
uncorrelated:

minimize
∑

ij Sij‖yi − yj‖2
subject to yi ∈ {−1, 1}k∑

i yi = 0
1
n

∑
i yiy

>
i = I.

Spectral hashing
[Weiss et al. ’08]

• Define similarity matrix S with Sij = exp(−‖xi − xj‖2/t2).

• Require binary codes to be similarity preserving, balanced, and
uncorrelated:

minimize
∑

ij Sij‖yi − yj‖2
subject to yi ∈ {−1, 1}k∑

i yi = 0
1
n

∑
i yiy

>
i = I.

Spectral hashing
Relaxation

• Define Laplacian matrix L = D − S with D = diag(S1).

• Problem is relaxed as

minimize tr(Y LY >)
subject to Y 1 = 0

Y Y > = I,

and solutions are the k eigenvectors of L with minimal eigenvalue,
excluding eigenvector 1 with eigenvalue 0.

• See also Laplacian eigenmaps [Belkin & Niyogi ’01].

Spectral hashing
Relaxation

• Define Laplacian matrix L = D − S with D = diag(S1).

• Problem is relaxed as

minimize tr(Y LY >)
subject to Y 1 = 0

Y Y > = I,

and solutions are the k eigenvectors of L with minimal eigenvalue,
excluding eigenvector 1 with eigenvalue 0.

• See also Laplacian eigenmaps [Belkin & Niyogi ’01].

Spectral hashing
Out of sample extension

• Replace data points by probability distribution p; and Laplacian matrix
by Laplacian operator Lp acting on functions.

• Then, solutions are the k eigenfunctions f of Lp (such that
Lpf = λf) with minimal eigenvalue, excluding eigenfunction f(x) = 1
with eigenvalue 0.

• If p is uniform, then eigenfunctions have outer product form, and for
1-dimensional distribution on [a, b],

φj(x) = sin

(
π

2
+

jπ

b− ax
)

λj = 1− e− t
2

2 (jπ
b−a)

2

Spectral hashing
Out of sample extension

• Replace data points by probability distribution p; and Laplacian matrix
by Laplacian operator Lp acting on functions.

• Then, solutions are the k eigenfunctions f of Lp (such that
Lpf = λf) with minimal eigenvalue, excluding eigenfunction f(x) = 1
with eigenvalue 0.

• If p is uniform, then eigenfunctions have outer product form, and for
1-dimensional distribution on [a, b],

φj(x) = sin

(
π

2
+

jπ

b− ax
)

λj = 1− e− t
2

2 (jπ
b−a)

2

Spectral hashing
Example

Figure 2: Left: Eigenfunctions for a uniform rectangular distribution in 2D.Right: Thresh-
olded eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues de-
pend on the aspect ratio of the rectangle and the spatial frequency of the cut – it is better
to cut the long dimension first and lower spatial frequencies are better than higher ones.

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

a) 3 bits b) 7 bits c) 15 bits

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Figure 3: Comparison of neighborhood defined by hamming balls of different radii using
codes obtained with LSH, Boosting, RBM and spectral hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are
within a hamming distance of zero. Green corresponds to a hamming ball of radius 1, and
blue to radius 2.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

This simple algorithm has two obvious limitations. First, it assumes a multidimensional
uniform distribution generated the data. We have experimented with using multidimensional
Gaussians instead. Second, even though it avoids the trivial 3 way dependencies that arise
from outer-product eigenfunctions, other high-order dependencies between the bits may
exist. We have experimented with using only frequencies that are powers of two to avoid
these dependencies. Neither of these more complicated variants of spectral hashing gave a
significant improvement in performance in our experiments.

Figure 4a compares the performance of spectral hashing to LSH, RBMs and Boosting on a
2D rectangle and figure 3 visualizes the Hamming balls for the different methods. Despite
the simplicity of spectral hashing, it outperforms the other methods. Even when we apply
RBMs and Boosting to the output of spectral hashing the performance does not improve.
A similar pattern of results is shown in high dimensional synthetic data (figure 4b).

Some insight into the superior performance can be obtained by comparing the partitions
that each bit defines on the data (figures 2,1). Recall that we seek partitions that give low
cut value and are approximately independent. LSH which uses random linear partitions
may give very unbalanced partitions. RBMs and Boosting both find good partitions, but
the partitions can be highly dependent on each other.

3 Results

In addition to the synthetic results we applied the different algorithms to the image databases
discussed in [3]. Figure 5 shows retrieval results for spectral hashing, RBMs and boosting
on the “labelme” dataset. Note that even though the spectral hashing uses a terrible model
of the statistics of the database — it simply assumes a N dimensional rectangle, it performs
better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but

6

• Red: outer-product eigenfunctions: excluded

• Better to cut long dimension first

• Lower spatial frequencies are better than higher ones

Spectral hashing
Example

Figure 2: Left: Eigenfunctions for a uniform rectangular distribution in 2D.Right: Thresh-
olded eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues de-
pend on the aspect ratio of the rectangle and the spatial frequency of the cut – it is better
to cut the long dimension first and lower spatial frequencies are better than higher ones.

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

a) 3 bits b) 7 bits c) 15 bits

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Figure 3: Comparison of neighborhood defined by hamming balls of different radii using
codes obtained with LSH, Boosting, RBM and spectral hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are
within a hamming distance of zero. Green corresponds to a hamming ball of radius 1, and
blue to radius 2.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

This simple algorithm has two obvious limitations. First, it assumes a multidimensional
uniform distribution generated the data. We have experimented with using multidimensional
Gaussians instead. Second, even though it avoids the trivial 3 way dependencies that arise
from outer-product eigenfunctions, other high-order dependencies between the bits may
exist. We have experimented with using only frequencies that are powers of two to avoid
these dependencies. Neither of these more complicated variants of spectral hashing gave a
significant improvement in performance in our experiments.

Figure 4a compares the performance of spectral hashing to LSH, RBMs and Boosting on a
2D rectangle and figure 3 visualizes the Hamming balls for the different methods. Despite
the simplicity of spectral hashing, it outperforms the other methods. Even when we apply
RBMs and Boosting to the output of spectral hashing the performance does not improve.
A similar pattern of results is shown in high dimensional synthetic data (figure 4b).

Some insight into the superior performance can be obtained by comparing the partitions
that each bit defines on the data (figures 2,1). Recall that we seek partitions that give low
cut value and are approximately independent. LSH which uses random linear partitions
may give very unbalanced partitions. RBMs and Boosting both find good partitions, but
the partitions can be highly dependent on each other.

3 Results

In addition to the synthetic results we applied the different algorithms to the image databases
discussed in [3]. Figure 5 shows retrieval results for spectral hashing, RBMs and boosting
on the “labelme” dataset. Note that even though the spectral hashing uses a terrible model
of the statistics of the database — it simply assumes a N dimensional rectangle, it performs
better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but

6

• Red: outer-product eigenfunctions: excluded

• Better to cut long dimension first

• Lower spatial frequencies are better than higher ones

Figure 2: Left: Eigenfunctions for a uniform rectangular distribution in 2D.Right: Thresh-
olded eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues de-
pend on the aspect ratio of the rectangle and the spatial frequency of the cut – it is better
to cut the long dimension first and lower spatial frequencies are better than higher ones.

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

a) 3 bits b) 7 bits c) 15 bits

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Boosting SSC

RBM (two hidden layers)

LSH

Spectral hashing

Figure 3: Comparison of neighborhood defined by hamming balls of different radii using
codes obtained with LSH, Boosting, RBM and spectral hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are
within a hamming distance of zero. Green corresponds to a hamming ball of radius 1, and
blue to radius 2.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

This simple algorithm has two obvious limitations. First, it assumes a multidimensional
uniform distribution generated the data. We have experimented with using multidimensional
Gaussians instead. Second, even though it avoids the trivial 3 way dependencies that arise
from outer-product eigenfunctions, other high-order dependencies between the bits may
exist. We have experimented with using only frequencies that are powers of two to avoid
these dependencies. Neither of these more complicated variants of spectral hashing gave a
significant improvement in performance in our experiments.

Figure 4a compares the performance of spectral hashing to LSH, RBMs and Boosting on a
2D rectangle and figure 3 visualizes the Hamming balls for the different methods. Despite
the simplicity of spectral hashing, it outperforms the other methods. Even when we apply
RBMs and Boosting to the output of spectral hashing the performance does not improve.
A similar pattern of results is shown in high dimensional synthetic data (figure 4b).

Some insight into the superior performance can be obtained by comparing the partitions
that each bit defines on the data (figures 2,1). Recall that we seek partitions that give low
cut value and are approximately independent. LSH which uses random linear partitions
may give very unbalanced partitions. RBMs and Boosting both find good partitions, but
the partitions can be highly dependent on each other.

3 Results

In addition to the synthetic results we applied the different algorithms to the image databases
discussed in [3]. Figure 5 shows retrieval results for spectral hashing, RBMs and boosting
on the “labelme” dataset. Note that even though the spectral hashing uses a terrible model
of the statistics of the database — it simply assumes a N dimensional rectangle, it performs
better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but

6

• Red: radius = 0; green: radius = 1; blue: radius = 2

Spectral hashing
Algorithm

1. Center and rotate data points by PCA.

2. Evaluate k smallest eigenvalues for each PCA direction.

3. Sort the kd eigenvalues, exclude outer-product ones, and select the k
smallest.

4. Set hash function hj(x) = sgn(φj(x)) for each of the corresponding k
eigenfunctions φj .

Spectral hashing
Result on LabelMe

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

LSH

stumps boosting SSC

RBM

P
ro

p
o

rt
io

n
 g

o
o

d
 n

e
ig

h
b

o
rs

 f
o

r
h

a
m

m
in

g
 d

is
ta

n
c
e

 <
 2

number of bits

Spectral hashing

Boosting +

spectral hashing

RBM+

spectral hashing

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

LSH

stumps boosting SSC

RBM

P
ro

p
o

rt
io

n
 g

o
o

d
 n

e
ig

h
b

o
rs

 f
o

r
h

a
m

m
in

g
 d

is
ta

n
c
e

 <
 2

number of bits

a) 2D uniform distribution
b) 10D uniform distribution

Spectral hashing

Figure 4: left: results on 2D rectangles with different methods. Even though spectral
hashing is the simplest, it gives the best performance. right: Similar pattern of results for
a 10 dimensional distribution.

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9

1

Gist neighbors Spectral hashing 10 bits Boosting 10 bitsInput

P
ro

p
o
rt

io
n
 g

o
o
d
 n

e
ig

h
b
o
rs

 f
o
r

h
a
m

m
in

g
 d

is
ta

n
c
e
 <

 2

number of bits

LSH

Boosting SSC

Spectral hashing

RBM

Figure 5: Performance of different binary codes on the LabelMe dataset described in [3]. The
data is certainly not uniformly distributed, and yet spectral hashing gives better retrieval
performance than boosting and LSH.

our visual inspection of the retrieved neighbors suggests that with a small number of bits,
the retrieved images are better using spectral hashing than with boosting.

Figure 6 shows retrieval results on a dataset of 80 million images. This dataset is obviously
more challenging and even using exhaustive search some of the retrieved neighbors are se-
mantically quite different. Still, the majority of retrieved neighbors seem to be semantically
relevant, and with 64 bits spectral hashing enables this peformance in fractions of a second.

4 Discussion

We have discussed the problem of learning a code for semantic hashing. We defined a hard
criterion for a good code that is related to graph partitioning and used a spectral relaxation
to obtain an eigenvector solution. We used recent results on convergence of graph Laplacian
eigenvectors to obtain analytic solutions for certain distributions and showed the importance
of avoiding redundant bits that arise from separable distributions.

The final algorithm we arrive at, spectral hashing, is extremely simple - one simply performs
PCA on the data and then fits a multidimensional rectangle. The aspect ratio of this mul-
tidimensional rectangle determines the code using a simple formula. Despite this simplicity,
the method is comparable, if not superior, to state-of-the-art methods.

7

Iterative quantization
[Gong and Lazebnik ’11]

Quantize each data point to the closest vertex of the binary cube,
(±1,±1).

−1 0 1
−1

0

1

Average quantization error: 1.00

(a) PCA aligned.

−1 0 1
−1

0

1

Average quantization error: 0.93

(b) Random Rotation.

−1 0 1
−1

0

1

Average quantization error: 0.88

(c) Optimized Rotation.

Figure 1. Toy illustration of the proposed ITQ method (see Section
2 for details). The basic binary encoding scheme is to quantize
each data point to the closest vertex of the binary cube, (±1,±1)
(this is equivalent to quantizing points according to their quad-
rant). (a) The x and y axes correspond to the PCA directions of
the data. Note that quantization assigns points in the same cluster
to different vertices. (b) Randomly rotated data – the variance is
more balanced and the quantization error is lower. (c) Optimized
rotation found by ITQ – quantization error is lowest, and the par-
titioning respects the cluster structure.

ternating minimization approach for refining the initial or-
thogonal transformation to reduce quantization error. This
approach, dubbed iterative quantization (ITQ) has con-
nections to the orthogonal Procrustes problem [15] and to
eigenvector discretization for multi-class spectral partition-
ing [22], and in our experiments it outperforms the methods
of [12, 19, 21]. Moreover, ITQ can be coupled not only with
PCA, but with any projection onto an orthogonal basis. In
particular, we show how to combine ITQ with canonical
correlation analysis (CCA) to incorporate information from
clean or noisy class labels in order to improve the semantic
consistency of the code.

The rest of this paper is organized as follows. The ITQ
method is described in Section 2. The experimental evalu-
ation presented in Section 3 shows results for the unsuper-
vised scenario, where ITQ is applied to PCA-projected data.
Section 4 describes the supervised version of our method
based on CCA.

2. Unsupervised Code Learning
In this section, we address the problem of learning bi-

nary codes without any supervisory information in the form
of class labels. We first apply linear dimensionality reduc-
tion to the data, and then perform binary quantization in the
resulting space. For the first step, discussed in Section 2.1,
we follow the maximum variance formulation of [19, 21],
which yields PCA projections. The major novelty of our
method is in the second step (Section 2.2), where we try to
preserve the locality structure of the projected data by ro-
tating it so as to minimize the discretization error. Figure 1
illustrates the idea behind our method.

Let us first introduce our notation. We have a set of n
data points {x1,x2, . . . ,xn}, xi ∈ Rd, that form the rows

of the data matrix X ∈ Rn×d. We assume that the points
are zero-centered, i.e.,

∑n
i=1 xi = 0. Our goal is to learn

a binary code matrix B ∈ {−1, 1}n×c, where c denotes the
code length.1 For each bit k = 1, . . . , c, the binary encoding
function is defined by hk(x) = sgn(xwk), where wk is a
column vector of hyperplane coefficients and sgn(v) = 1 if
v ≥ 0 and 0 otherwise. For a matrix or a vector, sgn(·) will
denote the result of element-wise application of the above
function. Thus, we can write the entire encoding process
as B = sgn(XW), where W ∈ Rd×c is the matrix with
columns wk.

2.1. Dimensionality Reduction

Following the formulation of [19, 21], we want to pro-
duce an efficient code in which the variance of each bit is
maximized and the bits are pairwise uncorrelated. We can
do this by maximizing the following objective function:

I(W) =
∑

k

var(hk(x)) =
∑

k

var(sgn(xwk)) ,

1

n
BTB = I .

As shown in [19], the variance is maximized by encod-
ing functions that produce exactly balanced bits, i.e., when
hk(x) = 1 for exactly half of the data points and−1 for the
other half. However, the requirement of exact balancedness
makes the above objective function intractable. Adopting
the same signed magnitude relaxation as in [19], we get the
following continuous objective function:

Ĩ(W) =
∑

k

E(‖xwk‖22) =
1

n

∑

k

wT
kX

TXwk

=
1

n
tr(WTXTXW) , WTW = I . (1)

The constraintWTW = I requires the hashing hyperplanes
to be orthogonal to each other, which is a relaxed version
of the requirement that code bits be pairwise decorrelated.
This objective function is exactly the same as that of Prin-
cipal Component Analysis (PCA). For a code of c bits, we
obtain W by taking the top c eigenvectors of the data co-
variance matrix XTX .

2.2. Binary Quantization

Let v ∈ Rc be a vector in the projected space. It is easy
to show (see below) that sgn(v) is the vertex of the hyper-
cube {−1, 1}c closest to v in terms of Euclidean distance.
The smaller the quantization loss ‖ sgn(v)−v‖2, the better
the resulting binary code will preserve the original locality
structure of the data. Now, going back to eq. (1), it is clear

1In our formulation, the entries of B take on values {−1, 1} instead
of {0, 1} because the proposed quantization-based scheme of Section 2.2
requires both the data and the binary cube to be zero-centered.

818

Iterative quantization
Formulation

• Assume data points to be zero centered, X1 = 0.

• Assume hash functions yj = hj(x) = sgn(aj · x), or Y = sgn(A>X).

• Drop similarity preservation

• Balance hj(x) · 1 = 0 is equivalent to variance of hj(x) being
maximized:

maximize
∑

j var(sgn(a>j X))

subject to 1
nY Y

> = I.

Iterative quantization
Relaxation

• Drop sgn.

• Relax correlation constraint by just requiring hyperplanes to be
orthogonal:

maximize tr(A>XX>A)
subject to A>A = I,

and a solution consists of the k eigenvectors of data covariance matrix
XX> with maximal eigenvalue.

• See also semi-supervised hashing [Wang et al. ’10].

Iterative quantization
Relaxation

• Drop sgn.

• Relax correlation constraint by just requiring hyperplanes to be
orthogonal:

maximize tr(A>XX>A)
subject to A>A = I,

and a solution consists of the k eigenvectors of data covariance matrix
XX> with maximal eigenvalue.

• See also semi-supervised hashing [Wang et al. ’10].

Iterative quantization
Refinement

• But, if A is an optimal solution, then so is AR> for orthogonal
R ∈ Rk×k.

• So, if Z = A>X is the projected data, define loss

E(Y,R) = ‖Y −RZ‖2F
and repeat
• Fix R, update Y ← sgn(RZ)
• Fix Y , update R← UV > where Y Z> = USV > (align by SVD)

• See also multiclass spectral clustering [Yu & Shi ’03].

Iterative quantization
Refinement

• But, if A is an optimal solution, then so is AR> for orthogonal
R ∈ Rk×k.

• So, if Z = A>X is the projected data, define loss

E(Y,R) = ‖Y −RZ‖2F
and repeat
• Fix R, update Y ← sgn(RZ)
• Fix Y , update R← UV > where Y Z> = USV > (align by SVD)

• See also multiclass spectral clustering [Yu & Shi ’03].

Iterative quantization
Result on CIFAR

(a) Euclidean ground truth (b) Class label ground truth

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

Number of bits

m
A

P

16 32 64 128256
0.10.150.20.25

Number of bits

PCA−ITQ
PCA−RR
PCA−Nonorth
SKLSH
SH
LSH
PCA−Direct
GIST L2 baseline

16 32 64 128 256
0.1

0.15

0.2

0.25

Number of bits

P
re

ci
si

on
@

50
0

Figure 3. Comparative evaluation on CIFAR dataset. (a) Performance is measured by mean average precision (mAP) for retrieval using top
50 Euclidean neighbors of each query point as true positives. Refer to Figure 4 for the complete recall-precision curves for the state-of-the-
art methods. (b) Performance is measured by the averaged precision of top p ranked images for each query where ground truth is defined
by semantic class labels. Refer to Figure 5 for the complete class label precision curves for the state-of-the-art methods.

the CIFAR images, which are included among the 580,000
images, all the other images lack manually supplied ground
truth labels, but they come associated with one of 388 In-
ternet search keywords. In this section, we use the CIFAR
ground-truth labels to evaluate the semantic consistency of
our codes, and in Section 4, we will use the “noisy” key-
word information associated with the remaining Tiny Im-
ages to train a supervised linear embedding.

The original Tiny Images are 32 × 32 pixels. We repre-
sent them with grayscale GIST descriptors [11] computed
at 8 orientations and 4 different scales, resulting in 320-
dimensional feature vectors. Because our method (as well
as many other state-of-the-art methods) cannot use more
bits than the original dimension of the data, we limit our-
selves to evaluating code sizes up to 256 bits.

3.2. Protocols and Baseline Methods

We follow two evaluation protocols widely used in re-
cent papers [12, 19, 21]. The first one is to evaluate perfor-
mance of nearest neighbor search using Euclidean neigh-
bors as ground truth. As in [12], a nominal threshold of the
average distance to the 50th nearest neighbor is used to de-
termine whether a database point returned for a given query
is considered a true positive. Then, based on the Euclidean
ground truth, we compute the recall-precision curve and the
mean average precision (mAP), or the area under the re-
call precision curve. Second, we evaluate the semantic con-
sistency of codes produced by different methods by using
class labels as ground truth. For this case, we report the av-
eraged precision of top 500 ranked images for each query
as in [20]. For all experiments, we randomly select 1000
points to serve as test queries. The remaining images form
the training set on which the code parameters are learned,
as well as the database against which the queries are per-
formed. All the experiments reported in this paper are aver-
aged over 5 random training/test partitions.

We compare our ITQ method to three baseline methods

that follow the basic hashing scheme H(X) = sgn(XW̃),
where the projection matrix W̃ is defined in different ways:

1. LSH: W̃ is a Gaussian random matrix [1]. Note that in
theory, this scheme has locality preserving guarantees
only for unit-norm vectors. While we do not normalize
our data to unit norm, we have found that it still works
well as long as the data is zero centered.

2. PCA-Direct: W̃ is simply the matrix of top c PCA di-
rections. This baseline is included to show what hap-
pens when we do not rotate the PCA-projected data
prior to quantization.

3. PCA-RR: W̃ = WR, where W is the matrix of PCA
directions and R is a random orthogonal matrix. This
is the initialization of ITQ, as described in Section 2.2.

We also compare ITQ to three state-of-the-art methods us-
ing code provided by the authors:

1. SH [21]: Spectral Hashing. This method is based
on quantizing the values of analytical eigenfunctions
computed along PCA directions of the data.

2. SKLSH [12]: This method is based on the random fea-
tures mapping for approximating shift-invariant ker-
nels [13]. In [12], this method is reported to outper-
form SH for code sizes larger than 64 bits. We use a
Gaussian kernel with bandwidth set to the average dis-
tance to the 50th nearest neighbor as in [12].

3. PCA-Nonorth [19]: Non-orthogonal relaxation of
PCA. This method is reported in [19] to outperform
SH. Note that instead of using semi-supervised PCA as
in [19], the evaluation of this section uses standard un-
supervised PCA (a supervised embedding will be used
in Section 4).

Note that of all the six methods above, LSH and SKLSH are
the only ones that rely on randomized data-independent lin-
ear projections. All the other methods, including our PCA-

820

III. Quantization

Locality sensitive hashing
scalar quantization [Datar et al. ’04]

• Choose a random vector a from the d-dimensional Gaussian
distribution f = N (0, 1) and a real b uniformly in [0, r].

• Define hash function ha,b : Rd → Z with

ha,b(x) =

⌊
a · x + b

r

⌋
.

• Then, given x,y ∈ Rd,

P[ha,b(x) = ha,b(y)] =

∫ r

0

1

c
f

(
1

c

)(
1− t

c

)
dt

is decreasing with c = ‖x− y‖.

Locality sensitive hashing
scalar quantization [Datar et al. ’04]

• Choose a random vector a from the d-dimensional Gaussian
distribution f = N (0, 1) and a real b uniformly in [0, r].

• Define hash function ha,b : Rd → Z with

ha,b(x) =

⌊
a · x + b

r

⌋
.

• Then, given x,y ∈ Rd,

P[ha,b(x) = ha,b(y)] =

∫ r

0

1

c
f

(
1

c

)(
1− t

c

)
dt

is decreasing with c = ‖x− y‖.

Vector quantization
[Gray ’84]

Construction

• given dataset X ⊂ Rd

• construct finite codebook C ⊂ Rd

• map (quantize) each point x ∈ X to q(x) = minc∈C ‖x− c‖2
• discard dataset; represent each point by log k bits, where k = |C|

Search (approximate, exhaustive)

• given query y

• for each c ∈ C, compute and store distance ‖y − c‖2
• for each x ∈ X , approximate distance ‖y − x‖2 by ‖y − q(x)‖2,

which is looked up

Vector quantization
[Gray ’84]

Construction

• given dataset X ⊂ Rd

• construct finite codebook C ⊂ Rd

• map (quantize) each point x ∈ X to q(x) = minc∈C ‖x− c‖2
• discard dataset; represent each point by log k bits, where k = |C|

Search (approximate, exhaustive)

• given query y

• for each c ∈ C, compute and store distance ‖y − c‖2
• for each x ∈ X , approximate distance ‖y − x‖2 by ‖y − q(x)‖2,

which is looked up

Vector quantization
[Gray ’84]

minimize E(C) =
∑

x∈X
min
c∈C
‖x− c‖2 =

∑

x∈X
‖x− q(x)‖2

distortion dataset codebook quantizer

Vector quantization
[Gray ’84]

minimize E(C) =
∑

x∈X
min
c∈C
‖x− c‖2 =

∑

x∈X
‖x− q(x)‖2

distortion dataset codebook quantizer

Vector quantization
[Gray ’84]

• For small distortion → large k = |C|:
• hard to train
• too large to store
• too slow to search

Product quantization
[Jégou et al. ’11]

minimize
∑

x∈X
min
c∈C
‖x− c‖2

subject to C = C1 × · · · × Cm

Product quantization
[Jégou et al. ’11]

• train: q = (q1, . . . , qm) where q1, . . . , qm obtained by VQ

• store: |C| = km with |C1| = · · · = |Cm| = k

• search: ‖y − q(x)‖2 =

m∑

j=1

‖yj − qj(xj)‖2 where qj(xj) ∈ Cj

Optimized product quantization
[Ge et al. ’13]

minimize
∑

x∈X
min
ĉ∈Ĉ
‖x−R>ĉ‖2

subject to Ĉ = C1 × · · · × Cm
R>R = I

Optimized product quantization
Non-parametric solution

rotate: X̂ ← RX

update: q ← PQ(X̂) [one step]

assign: Y ← q(X̂)
align: R← UV > where Y X> = USV >

• From PQ only one step of centroid update is needed, because update
of R does not alter assignment.

• Alignment minimizes ‖Y −RX‖2F , as in ITQ.

Optimized product quantization
Non-parametric solution

rotate: X̂ ← RX

update: q ← PQ(X̂) [one step]

assign: Y ← q(X̂)
align: R← UV > where Y X> = USV >

• From PQ only one step of centroid update is needed, because update
of R does not alter assignment.

• Alignment minimizes ‖Y −RX‖2F , as in ITQ.

Optimized product quantization
Parametric solution for x ∼ N (0,Σ)

• From rate-distortion theory, distortion satisfies

E ≥ k−2/dd|Σ|1/d

and practical distortion achieved by k-means is typically within ∼ 5%
of the bound. So after rotation Σ̂ = RΣR>,

EPQ ≥ k−2m/d
d

m

m∑

i=1

|Σ̂ii|m/d

• But, by arithmetic-geometric means and Fisher’s inequalities,

1

m

m∑

i=1

|Σ̂ii|m/d≥
m∏

i=1

|Σ̂ii|1/d≥|Σ̂|1/d = |Σ|1/d

with equality implying balanced variance and independence.

Optimized product quantization
Parametric solution for x ∼ N (0,Σ)

• From rate-distortion theory, distortion satisfies

E ≥ k−2/dd|Σ|1/d

and practical distortion achieved by k-means is typically within ∼ 5%
of the bound. So after rotation Σ̂ = RΣR>,

EPQ ≥ k−2m/d
d

m

m∑

i=1

|Σ̂ii|m/d

• But, by arithmetic-geometric means and Fisher’s inequalities,

1

m

m∑

i=1

|Σ̂ii|m/d≥
m∏

i=1

|Σ̂ii|1/d≥|Σ̂|1/d = |Σ|1/d

with equality implying balanced variance and independence.

Optimized product quantization
Parametric solution for x ∼ N (0,Σ)

• independence: PCA-align by diagonalizing Σ as UΛU>

• balanced variance: permute Λ by π such that
∏
i λi is constant in

each subspace; R← UP>π
• find Ĉ by PQ on rotated data X̂ = RX

Locally optimized product quantization
[Kalantidis & Avrithis ’14]

• compute residuals r(x) = x−Q(x) on coarse quantizer Q

• collect residuals Zi = {r(x) : Q(x) = ci} per cell

• train (Ri, qi)← OPQ(Zi) per cell

Locally optimized product quantization
[Kalantidis & Avrithis ’14]

• residual distributions closer to Gaussian assumption

• better captures the support of data distribution, like local PCA
• multimodal (e.g. mixture) distributions
• distributions on nonlinear manifolds

Local principal component analysis
[Kambhatla & Leen ’97]

Copyright © 2001 All Rights Reserved

But, we are not doing dimensionality reduction!

IV. Non-exhaustive search

Inverted index
IVFADC [Jégou et al. ’11]

Construction

• train a coarse quantizer Q of K centroids or cells

• quantize each point x ∈ X to Q(x) and compute its residual vector
r(x) = x−Q(x)

• quantize residuals by a product quantizer q

• for each cell, maintain an inverted list of data points and PQ-encoded
residuals

Search

• quantize query y to w nearest cells

• exhaustively search by PQ only within the w inverted lists

Inverted index
IVFADC [Jégou et al. ’11]

Construction

• train a coarse quantizer Q of K centroids or cells

• quantize each point x ∈ X to Q(x) and compute its residual vector
r(x) = x−Q(x)

• quantize residuals by a product quantizer q

• for each cell, maintain an inverted list of data points and PQ-encoded
residuals

Search

• quantize query y to w nearest cells

• exhaustively search by PQ only within the w inverted lists

Inverted index
IVFADC [Jégou et al. ’11] 8

The product quantizer is learned on a set of residual
vectors collected from a learning set. Although the
vectors are quantized to different indexes by the coarse
quantizer, the resulting residual vectors are used to learn
a unique product quantizer. We assume that the same
product quantizer is accurate when the distribution of the
residual is marginalized over all the Voronoi cells. This
probably gives inferior results to the approach consisting
of learning and using a distinct product quantizer per
Voronoi cell. However, this would be computationally
expensive and would require storing k′ product quantizer
codebooks, i.e., k′×d×k∗ floating points values, which
would be memory-intractable for common values of k′.

B. Indexing structure

We use the coarse quantizer to implement an inverted
file structure as an array of lists L1 . . .Lk′ . If Y is the
vector dataset to index, the list Li associated with the
centroid ci of qc stores the set {y ∈ Y : qc(y) = ci}.

In inverted list Li, an entry corresponding to y
contains a vector identifier and the encoded residual
qp(r(y)):

field length (bits)
identifier 8–32
code mdlog2 k∗e

The identifier field is the overhead due to the inverted
file structure. Depending on the nature of the vectors
to be stored, the identifier is not necessarily unique.
For instance, to describe images by local descriptors,
image identifiers can replace vector identifiers, i.e., all
vectors of the same image have the same identifier.
Therefore, a 20-bit field is sufficient to identify an
image from a dataset of one million. This memory cost
can be reduced further using index compression [27],
[28], which may reduce the average cost of storing the
identifier to about 8 bits, depending on parameters2. Note
that some geometrical information can also be inserted
in this entry, as proposed in [20] and [27].

C. Search algorithm

The inverted file is the key to the non-exhaustive
version of our method. When searching the nearest
neighbors of a vector x, the inverted file provides a
subset of Y for which distances are estimated: only the
inverted list Li corresponding to qc(x) is scanned.

However, x and its nearest neighbor are often not
quantized to the same centroid, but to nearby ones. To

2An average cost of 11 bits is reported in [27] using delta encoding
and Huffman codes.

Fig. 5. Overview of the inverted file with asymmetric distance
computation (IVFADC) indexing system. Top: insertion of a vector.
Bottom: search.

address this problem, we use the multiple assignment
strategy of [29]. The query x is assigned to w indexes
instead of only one, which correspond to the w nearest
neighbors of x in the codebook of qc. All the correspond-
ing inverted lists are scanned. Multiple assignment is not
applied to database vectors, as this would increase the
memory usage.

Figure 5 gives an overview of how a database is
indexed and searched.

Indexing a vector y proceeds as follows:
1) quantize y to qc(y)

2) compute the residual r(y) = y − qc(y)

3) quantize r(y) to qp(r(y)), which, for the product
quantizer, amounts to assigning uj(y) to qj(uj(y)),
for j = 1 . . .m.

4) add a new entry to the inverted list corresponding
to qc(y). It contains the vector (or image) identi-
fier and the binary code (the product quantizer’s
indexes).

Searching the nearest neighbor(s) of a query x consists
of

1) quantize x to its w nearest neighbors in the code-
book qc;

For the sake of presentation, in the two next steps
we simply denote by r(x) the residuals associated

in
ria

-0
05

14
46

2,
 v

er
si

on
 1

 -
23

 M
ar

 2
01

1

Product quantization
Result on SIFT1M

11

measured by recall@100. The analysis is restricted to
the parameters k∗=256 and m ∈ {4, 8}.

Overall, the choice of the components appears to have
a significant impact of the results. Using a random order
instead of the natural order leads to poor results. This
is true even for GIST, for which the natural order is
somewhat arbitrary.

The “structured” order consists in grouping together
dimensions that are related. For the m = 4 SIFT quan-
tizer, this means that the 4×4 patch cells that make up the
descriptor [23] are grouped into 4 2× 2 blocks. For the
other two, it groups together dimensions that have have
the same index modulo 8. The orientation histograms of
SIFT and most of GIST’s have 8 bins, so this ordering
quantizes together bins corresponding to the same orien-
tation. On SIFT descriptors, this is a slightly less efficient
structure, probably because the natural order corresponds
to spatially related components. On GIST, this choice
significantly improves the performance. Therefore, we
use this ordering in the following experiments.

Discussion: A method that automatically groups the
components could further improve the results. This
seems particularly important if we have no prior knowl-
edge about the relationship between the components
as in the case of bag-of-features. A possible solution
is the minimum sum-squared residue co-clustering [30]
algorithm.

D. Comparison with the state of the art

Comparison with Hamming embedding methods: We
compare our approach to spectral hashing (SH) [19],
which maps vectors to binary signatures. The search
consists in comparing the Hamming distances between
the database signatures and the query vector signature.
This approach was shown to outperform the restricted
Boltzmann machine of [17]. We have used the publicly
available code. We also compare to the Hamming em-
bedding (HE) method of [20], which also maps vectors
to binary signatures. Similar to IVFADC, HE uses an
inverted file, which avoids comparing to all the database
elements.

Figures 8 and 9 show, respectively for the SIFT and
the GIST datasets, the rank repartition of the nearest
neighbors when using a signature of size 64 bits. For our
product quantizer we have used m = 8 and k∗ = 256,
which give similar results in terms of run time. All our
approaches significantly outperform spectral hashing4 on

4In defense of [17], [19], which can be learned for arbitrary
distance measures, our approach is adapted to the Euclidean distance
only.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1k 10k 100k 1M

re
ca

ll@
R

R

SIFT, 64-bit codes

SDC
ADC

IVFADC w=1
IVFADC w=16

HE w=1
HE w=16

spectral hashing

Fig. 8. SIFT dataset: recall@R for varying values of R. Com-
parison of the different approaches SDC, ADC, IVFADC, spectral
hashing [19] and HE [20]. We have used m=8, k∗=256 for SDC/ADC
and k′=1024 for HE [20] and IVFADC.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1k 10k 100k 1M

re
ca

ll@
R

R

GIST, 64-bit codes

SDC
ADC

IVFADC w=1
IVFADC w=8

IVFADC w=64
spectral hashing

Fig. 9. GIST dataset: recall@R for varying values of R. Comparison
of the different approaches SDC, ADC, IVFADC and spectral hash-
ing [19]. We have used m=8, k∗=256 for SDC/ADC and k′ = 1024
for IVFADC.

the two datasets. To achieve the same recall as spectral
hashing, ADC returns an order of magnitude less vectors.

The best results are obtained by IVFADC, which for
low ranks provides an improvement over ADC, and
significantly outperforms spectral hashing. This strategy
avoids the exhaustive search and is therefore much
faster, as discussed in the next subsection. This partial
scan explains why the IVFADC and HE curves stop at
some point, as only a fraction of the database vectors
are ranked. Comparing these two approaches, HE is
significantly outperformed by IVFADC. The results of
HE are similar to spectral hashing, but HE is more
efficient.

in
ria

-0
05

14
46

2,
 v

er
si

on
 1

 -
23

 M
ar

 2
01

1

Product quantization
vs. FLANN on SIFT1M

• keep uncompressed vectors X in memory

• find the R top-ranking points by IVFADC

• re-rank according to corresponding uncompressed vectors

Product quantization
vs. FLANN on SIFT1M

12

Comparison with FLANN: The approximate nearest-
neighbor search technique of Muja & Lowe [9] is based
on hierarchical structures (KD-trees and hierarchical k-
means trees). The software package FLANN automat-
ically selects the best algorithm and parameters for a
given dataset. In contrast with our method and spectral
hashing, all vectors need to remain in RAM as the
method includes a re-ranking stage that computes the
real distances for the candidate nearest neighbors.

The evaluation is performed on the SIFT dataset by
measuring the 1-recall@1, that is, the average proportion
of true NNs ranked first in the returned vectors. This
measure is referred to as precision in [9].

For the sake of comparison with FLANN, we added
a verification stage to our IVFADC method: IVFADC
queries return a shortlist of R candidate nearest neigh-
bors using the distance estimation. The vectors in the
shortlist are re-ordered using the real distance, as done
in [7], [9], and the closest one is returned. Note that, in
this experimental setup, all the vectors are stored in main
memory. This requirement seriously limits the scale on
which re-ordering can be used.

The IVFADC and FLANN methods are both evaluated
at different operating points with respect to precision and
search time. For FLANN, the different operating points
are obtained with parameters generated automatically for
various target precisions. For IVFADC, they are obtained
by varying the number k′ of coarse centroids, the number
w of assignments and the short-list size R. The product
quantizer is generated using k∗=256 and m=8, i.e., 64-
bit codes. This choice is probably not optimal for all
operating points.

Figure 10 shows that the results obtained by IVFADC
are better than those of FLANN for a large range of
operating points. Moreover, our method has a much
smaller memory footprint than FLANN: the indexing
structure occupies less than 25 MB, while FLANN
requires more than 250 MB of RAM. Note, however, that
both are negligible compared to the memory occupied
by the vectors in the case of large datasets. On such
a scale, the re-ranking stage is not feasible and only
memory-aware approaches (HE, SH and our methods)
can be used.

E. Complexity and speed

Table V reports the search time of our methods.
For reference, we report the results obtained with the
spectral hashing algorithm of [19] on the same dataset
and machine (using only one core). Since we use a
separate learning set, we use the out-of-sample evalu-
ation of this algorithm. Note that for SH we have re-
implemented the Hamming distance computation in C

 1

 10

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

se
ar

ch
 ti

m
e

(s
)

1-recall at 1

FLANN
IVFADC, R=10

IVFADC, R=100
IVFADC, R=1000

4/1024

4/1024

4/128

16/1024

16/128
16/1024

16/128

Fig. 10. IVFADC vs FLANN: trade-offs between search quality
(1-recall@1) and search time. The IVFADC method is parametrized
by the shortlist size R used for re-ranking the vector with the L2
distance, and the two parameters w and k′ of the inverted file, which
correspond to the number of assignments and to the number of coarse
centroids.

in order to have the approaches similarly optimized.
The algorithms SDC, ADC and SH have similar run
times. IVFADC significantly improves the performance
by avoiding an exhaustive search. Higher values of k′

yield higher search efficiencies for large datasets, as the
search benefits from parsing a smaller fraction of the
memory. However, for small datasets, the complexity of
the coarse quantizer may be the bottleneck if k′ ×D >
n/k′ when using a exhaustive assignment for qc. In
that case the ADC variant may be preferred. For large
datasets and using an efficient assignment strategy for
the coarse quantizer, higher values of k′ generally lead
to better efficiency, as first shown in [15]. In this work,
the authors propose a hierarchical quantizer to efficiently
assign descriptors to one million centroids.

F. Large-scale experiments

To evaluate the search efficiency of the product quan-
tizer method on larger datasets we extracted about 2
billion SIFT descriptors from one million images. Search
is performed with 30 000 query descriptors from ten
images. We compared the IVFADC and HE methods
with similar parameters. In particular, the amount of
memory that is scanned for each method and the cost
of the coarse quantization are the same.

The query times per descriptor are shown on Fig-
ure 11. The cost of the extra quantization step required
by IVFADC appears clearly for small database sizes.
For larger scales, the distance computation with the
database vectors become preponderant. The processing
that is applied to each element of the inverted lists is

in
ria

-0
05

14
46

2,
 v

er
si

on
 1

 -
23

 M
ar

 2
01

1

Optimized product quantization
Result on SIFT1M

Notice that in these settings we have assumed there is no
prior knowledge available. Later we will study the case
with prior knowledge.

Given the code-length B, all the PQ-based methods
(OPQNP, OPQP, PQRO, PQRR) assign 8 bits to each subspace
(k ¼ 256). The subspace number M is B=8.

Results in the synthetic data set. Fig. 3 shows the perfor-
mance on the synthetic Gaussian data. Here we evaluate by
the recall versus N , i.e., the proportion of the true nearest
neighbors ranked in the top N positions. We can see that
OPQNP and OPQP perform almost the same. We verify that
OPQP have achieved the theoretical minimum in (14)
(6:314� 10�3). This implies that, under a Gaussian distribu-
tion, our parametric solution is optimal.

On the contrary, PQRO and PQRR perform substantially
worse. In the Gaussian data, the PQRR performs worse than
ITQ. This indicates that the subspace decomposition can be
very important to the performance of PQ, even under a sim-
ple Gaussian distribution. Besides, we find PQRO performs
better than PQRR. This is because in the independent Gauss-
ian distribution, PQRO automatically satisfies the
“independence” criterion, and the random order can some-
what “balance” the variances of the subspaces.

Results in real data sets without prior knowledge. Next we
evaluate the performance on real data sets and assume
the prior knowledge is not available. We are particularly
interested in the lack of prior knowledge, because we
expect the methods to work well in general data that are
unstructured, such as raw pixels or compressed repre-
sentations (by PCA, sparse coding, etc.). Many previous
works focus on the highly structured SIFT/GIST vectors
and harness these structures. But this limits the investi-
gation on general data.

All the above methods can be considered as somewhat
blind to the prior knowledge. This is because the effects of
the structures are weakened if the vectors undergo some
PCA, random ordering, or random rotation.

In Figs. 4, 5, and 6 we compare the results on SIFT1M,
GIST1M, and MNIST. We show the recall versus N with
B ¼ 64 bits using SDC/ADC ((a) and (b) of Figs. 4, 5, and 6),
and the mAP versus code length B using SDC ((c) of Figs. 4,
5, and 6). We can also evaluate their quantization distortion
versus code length B ((d) of Figs. 4, 5, and 6). More compari-
sons evaluated by different metrics are given in the supple-
mentary materials, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2013.240.

We find our both solutions substantially outperform
the existing methods. The superiority of our methods
present on both SDC and ADC. In all cases even our sim-
ple parametric method OPQP has shown prominent
improvement over PQRO and PQRR. This again indicates
that PQ-based methods strongly depend on the space
decomposition. We also notice the performance of PQRR

is disappointing. Although this method (and the House-
holder transform in [3]) can balance the variance using a
random rotation, the independence between subspaces is
lost in the random rotation.

Our non-parametric solution OPQNP further improves
the results of the parametric solution OPQP in the SIFT1M
and MNIST data sets. This is because these two data sets
exhibit non-Gaussian distributions: the SIFT1M set has two
distinct clusters (this can be visualized by plotting the first
two principal components of SIFT), and MNIST can be
expected to have 10 clusters. In these very non-Gaussian

Fig. 3. Comparison on Gaussian synthetic data using symmetric dis-
tance computation and 32-bit codes.

Fig. 4. Comparisons on SIFT1M. (a) and (b) Recall at the N top ranked
samples, using SDC/ADC and 64-bit codes. (c) Mean Average Precision
versus code-length using SDC. (d) Distortion versus code-length.

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. X, XXXXX 2014

Optimized product quantization
vs. binary codes on SIFT1M

than the other three. This indicates our non-parametric
solution (also Cartesian k-means) relies on the initializa-
tions. Our Eigenvalue Allocation provides a better initiali-
zation in the GIST data set.

4.1.2 Comparisons with Binary Embedding Methods

Binary embedding is a popular way of encoding vectors [9],
[15], [16], [17], [18], [19], [27]. For nearest neighbor search,
one can rank the encoded data vectors by their Hamming
distance to the encoded query. Not all binary embedding
methods (except ITQ or orthogonal ones) can be formulated
as vector quantization (encoding/decoding) in Section 2.1,
because these binary methods only have partition bound-
aries but no codeword.

We compare with the following binary embedding meth-
ods: locality sensitive hashing (LSH) [15], spectral hashing
[16], binary reconstructive embedding (BRE) [17], minimal
loss hashing (MLH) [18], and kernel-based supervised hash-
ing (KSH) [19]. We also compare with multidimensional
spectral hashing (MDSH) [34], which uses weighted Ham-
ming distances.

Fig. 8 shows the comparisons on SIFT1M/GIST1M using
64 bits. For fair comparisons, our methods use SDC here.
We see our OPQNP and OPQP substantially outperform
these binary embedding methods.

4.2 Building Inverted Multi-Index for
Non-Exhaustive Search

The inverted multi-index method [2] uses a product
quantizer for inverted indexing. Our optimized product
quantizer can improve the performance of the resulted
inverted indexing.

We briefly introduce the method of [2] as follows. To
generate a fine codebook with kM codewords, this method
applies a product quantizer using M subspaces with k
sub-codeword in each. Unlike [1] that uses this codebook
to encode the data, this method uses it to build inverted
indexing. Offline, each codeword has been assigned a
short list that contains all the data vectors belonging to
this codeword (i.e., nearest to it). Online, a query will

Fig. 8. Comparisons with binary embedding methods using 64 bits.
(a) SIFT1M. (b) GIST1M.

TABLE 4
mAP on GIST1M (64 bits, ADC)

Fig. 7. Comparisons using prior knowledge. (a): SIFT1M. (b): GIST1M.
Here the results are with 64 bits and SDC.

Fig. 9. OPQ for inverted multi-index [2]. Here the original inverted multi-
index [2] is termed as “Multi”, and our optimized PQ for inverted multi-
index is termed as “OMulti”. This figure corresponds to [2, Fig. 3 (left)].

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. X, XXXXX 2014

Inverted multi-index
[Babenko & Lempitsky ’12]

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

inverted index inverted multi-index
Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• train codebook C from dataset {xn}
• this codebook provides a coarse partition of the space

Inverted multi-index
[Babenko & Lempitsky ’12]

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

inverted index inverted multi-index
Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• decompose vectors as x = (x1,x2)

• train codebooks C1, C2 from datasets {x1
n}, {x2

n}
• induced codebook C1 × C2 gives a finer partition

• given query y, visit cells (c1, c2) ∈ C1 × C2 in ascending order of
distance to y

Inverted multi-index
Multi-sequence algorithm

0.6 0.8 4.1 6.1 8.1 9.1

2.5 2.7 6 8 10 11

3.5 3.7 7 9 11 12

6.5 6.7 10 12 14 15

7.5 7.7 11 13 15 16

11.5 11.7 15 17 19 20

0.6 0.8 4.1 6.1 8.1 9.1

2.5 2.7 6 8 10 11

3.5 3.7 7 9 11 12

6.5 6.7 10 12 14 15

7.5 7.7 11 13 15 16

11.5 11.7 15 17 19 20

0.6 0.8 4.1 6.1 8.1 9.1

2.5 2.7 6 8 10 11

3.5 3.7 7 9 11 12

6.5 6.7 10 12 14 15

7.5 7.7 11 13 15 16

11.5 11.7 15 17 19 20

0.6 0.8 4.1 6.1 8.1 9.1

2.5 2.7 6 8 10 11

3.5 3.7 7 9 11 12

6.5 6.7 10 12 14 15

7.5 7.7 11 13 15 16

11.5 11.7 15 17 19 20

0.6 0.8 4.1 6.1 8.1 9.1

2.5 2.7 6 8 10 11

3.5 3.7 7 9 11 12

6.5 6.7 10 12 14 15

7.5 7.7 11 13 15 16

11.5 11.7 15 17 19 20

0.6 0.8 4.1 6.1 8.1 9.1

2.5 2.7 6 8 10 11

3.5 3.7 7 9 11 12

6.5 6.7 10 12 14 15

7.5 7.7 11 13 15 16

11.5 11.7 15 17 19 20

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1

2

3

4

5

6

Figure 2. Top – The overview of the query process within the inverted multi-index. First, the two halves of the query q1 and q2 are
matched w.r.t. sub-codebooks U and V to produce the two sequences of codewords ordered by the distance (denoted r and s) from the
respective query half. Then, those sequences are traversed with the multi-sequence algorithm that outputs the pairs of codewords ordered
by the distance from the query. The lists associated with those pairs are concatenated to produce the answer to the query. Bottom – The
first iterations of the multi-sequence algorithm in this example. Red denotes pairs in the priority queue, blue indicates traversed pairs (the
pair traversed at the current iteration is emphasized). Green numbers correspond to pair indices (i and j), while black symbols give original
codewords (uα(i) and vβ(j)). The numbers in entries are the distances r(i)+s(j) = d

(
q, [uα(i) vβ(j)]

)
.

{(r(i), s(j)) | i = 1 . . . L, j = 1 . . . L} in the or-
der of the increasing sum r(i) + s(j) (which equals
d(q, [uα(i) vβ(j)])). In this way, the centroids [uα(i) vβ(j)]
are visited in the order of increasing distance from q. The
traversal starts from the pair (1, 1) naturally corresponding
to the cell around the centroid [uα(1) vβ(1)], which the
query falls into. During the traversal, the lists Wα(i) β(j)

are concatenated, until the length of the answer exceeds the
predefined length T , at which point the traversal stops.

We propose an algorithm to perform such a traver-
sal (Figure 2-bottom). This multi-sequence algorithm is
based around a priority queue of index pairs (i, j), where
the priority of each pair is defined as − (r(i) + s(j)) =
−d

(
q, [uα(i) vβ(j)]

)
. The queue is initialized with a sin-

gle pair (1, 1). At each subsequent step t, the pair (it, jt)
with top priority (lowest distance from q) is popped from
the queue and considered traversed (the associated list
Wα(i) β(j) is added to the output list). The pairs (it + 1, jt)
and (it, jt+1) are then considered for the insertion into the
priority queue. The pair (it+1, jt) is inserted into the queue
if its other preceding pair (it + 1, jt − 1) has also been tra-
versed (or if jt=1). Similarly, the pair (it, jt+1) is inserted
into the queue if its other preceding pair (it− 1, jt+1) has
also been traversed (or if it=1). The idea is that each pair
is inserted only once when both of its preceding pairs are
traversed.

The multi-sequence algorithm produces a sequence of

pairs (i, j), whose lists Wi,j are accumulated into the query
response. One can prove the correctness of the algorithm:

Corollary 1 (correctness): the multi-sequence algo-
rithm produces the sequence of pairs in the order of in-
creasing r(i) + s(i) and will eventually visit every pair in
{1 . . . L} ⊗ {1 . . . L}.

Regarding the efficiency of the algorithm, one can prove
that the queue within the algorithm grows slow enough:

Corollary 2: at the tth step of the algorithm, when t
pairs have been output, the priority queue is no longer than
0.5 +

√
2t+ 0.25.

The proof of both corollaries and the pseudocode of the
multi-sequence algorithm are given in the supplementary
material.

Inverted index vs. inverted multi-index. Let us now
discuss the relative efficiency of the two indexing structures,
given the same codebook size K. In this situation, the in-
duced subdivision of the space is very different for the stan-
dard inverted index and for the inverted multi-index (Fig-
ure 1). In particular, the standard index maintains K lists
that correspond to the space subdivision into K cells, while
the multi-index maintains K2 lists corresponding to a much
finer subdivision of the space. While the lengths of the cell
lists within the inverted index tend to be balanced (due to
the nature of the k-means algorithm), the distribution of list
lengths within the multi-index is highly non-uniform. In
particular, there are lots of empty lists that correspond to ui

Inverted multi-index
Result on SIFT1B: are NN in candidate lists?

3 5 7 9 11 13 15 17 19 21 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2
(list length T)

R
ec

al
l

Multi−index K=214

Index+kd−tree K=214

Index K=214

Multi−index K=212

Index+kd−tree K=212

Index K=212

1 3 5 7 9 11 13 15 17 19 21 23
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

log
2
(list length T)

Multi−index
Index+kd−tree
Index

1 billion SIFTs, K = 214 (solid), K = 212 (dashed) 80 million GISTs, K = 214

Figure 3. Recall as a function of the candidate list length. For the same codebook size K, we compare three systems with similar retrieval
and construction complexities: an inverted index with K codewords, an inverted index with larger codebook (218 codewords) sped up by a
kd-tree search with a maximum of K comparisons, an inverted multi-index with codebooks having K codewords. In all three experiments,
multi-indices returned shorter lists with higher recall.

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.1

0.2

0.4

1

2

4

8

16

32

64

128

log
2
(list length T)

T
im

e
(m

ill
is

ec
on

ds
)

Multi−index K=214

Index K=214

Multi−index K=212

Index K = 212

Multi−index−4 K=27

Figure 4. Time (in milliseconds) required to retrieve a list of a
particular length from the inverted multi-index and index on the
BIGANN dataset.

is needed. Overall, the recall@T of both baselines was
uniformly worse than the recall@T of the inverted multi-
indices in our experiments. Both, kd-trees and multi-indices
incur some computational overhead over inverted indices
(tree search and multi-sequence algorithm, respectively)
and we now address the question how big this overhead is
for the inverted multi-indices.

How fast is querying an inverted multi-index? To
answer this question, we give the timings for the inverted
multi-indices (K = 212,K = 214) on the BIGANN dataset
as a function of the requested list length in Figure 4. The
multi-index retrieval time essentially remains flat until the
list length grows into many thousands, which means that
the computational cost of the multi-sequence algorithm re-
mains small compared to the quantization. We also give the
timing curves for inverted indices with K = 212, 214. Their
approximately two-fold speed advantage over the second-
order indices (for the same K) stems most likely from the
particular efficiency of vector instructions (BLAS library)

0 2 4 6 8 10 12 14 16 18 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

log
2
(list length T)

R
ec

al
l

Recall@T*=10000

Recall@T*=1000

Recall@T*=100

Recall@T*=10

Recall@T*=1

Figure 5. Recall@T ∗ (T ∗ = 1 to 10000) of the Multi-ADC sys-
tem (storing m = 8 extra bytes per vector for reranking) for the
BIGANN dataset. The curves correspond to the Multi-ADC sys-
tem that reranks a candidate list of a certain length T (x-axis)
returned by the second-order multi-index (K = 214), while the
flat dashed lines corresponds to the system that reranks the en-
tire dataset. After reranking a tiny part of the billion-size dataset,
Multi-ADC is able to match the performance of the exhaustive
search-based system.

on our CPU. This efficiency makes matching against code-
books faster in the inverted index case despite the same
number of scalar operations.

Put together, Figure 3 and Figure 4 demonstrate the ad-
vantage of the second-order inverted multi-index over the
standard inverted index. Thus, the multi-index with K =
212 provides much higher recall and is faster to query than
the inverted index with K = 214. In Figure 4, we also
provide timings for the fourth-order index and small K.
Here, querying for short list lengths is much faster, however
the overhead from the multi-sequence algorithm kicks in at
shorter lengths (hundreds) exhibiting the main weakness of
higher-order inverted multi-indices.

Nearest neighbor search with reranking. The goal of

Locally optimized product quantization
Result on SIFT1B, 64-bit codes

Method R = 1 R = 10 R = 100

Ck-means [Norouzi & Fleet ’13] – – 0.649
IVFADC [Jégou et al. ’11] 0.106 0.379 0.748
IVFADC [Jégou et al. ’11] 0.088 0.372 0.733
OPQ [Ge et al. ’13] 0.114 0.399 0.777
Multi-D-ADC [Babenko & Lempitsky ’12] 0.165 0.517 0.860

LOR+PQ [Kalantidis & Avrithis ’14] 0.183 0.565 0.889
LOPQ [Kalantidis & Avrithis ’14] 0.199 0.586 0.909

Most benefit comes from locally optimized rotation!

Multi-LOPQ
[Kalantidis & Avrithis ’14]

x = (x1 , x2)

q2

q1 ...

..
.

Multi-LOPQ
Result on SIFT1B, 128-bit codes

T Method R = 1 10 100

20K
IVFADC+R [Jégou et al. ’11] 0.262 0.701 0.962
LOPQ+R [Kalantidis & Avrithis ’14] 0.350 0.820 0.978

10K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.304 0.665 0.740
OMulti-D-OADC [Ge et al. ’13] 0.345 0.725 0.794
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.430 0.761 0.782

30K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.328 0.757 0.885
OMulti-D-OADC [Ge et al. ’13] 0.366 0.807 0.913
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.463 0.865 0.905

100K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.334 0.793 0.959
OMulti-D-OADC [Ge et al. ’13] 0.373 0.841 0.973
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.476 0.919 0.973

Application: image search

Deep learned image features
[Krizhevsky et al. ’12]

2 A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky

trained to recognize Image-Net [1] classes. We measure such performance on
four standard benchmark datasets: INRIA Holidays [8], Oxford Buildings, Ox-
ford Building 105K [19], and the University of Kentucky benchmark (UKB) [16].
Perhaps unsurprisingly, these deep features perform well, although not better
than other state-of-the-art holistic features (e.g. Fisher vectors). Interestingly,
the relative performance of different layers of the CNN varies in different re-
trieval setups, and the best performance on the standard retrieval datasets is
achieved by the features in the middle of the fully-connected layers hierarchy.

Fig. 1. The convolutional neural network architecture used on our experiments. Purple
nodes correspond to input (an RGB image of size 224 × 224) and output (1000 class
labels). Green units correspond to outputs of convolutions, red units correspond to the
outputs of max pooling, and blue units correspond to the outputs of rectified linear
(ReLU) transform. Layers 6, 7, and 8 (the output) are fully connected to the preceding
layers. The units that correspond to the neural codes used in our experiments are
shown with red arrows. Stride=4 are used in the first convolutional layer, and stride=1
in the rest.

The good performance of neural codes demonstrate their universality, since
the task the network was trained for (i.e. classifying Image-Net classes) is quite
different from the retrieval task we consider. Despite the evidence of such univer-
sality, there is an obvious possibility to improve the performance of deep features
by adapting them to the task, and such adaptation is the subject of the second
part of the paper. Towards this end, we assemble a large-scale image dataset,
where the classes correspond to landmarks (similar to [14]), and retrain the CNN
on this collection using the original image-net network parameters as initializa-
tion. After such training, we observe a considerable improvement of the retrieval
performance on the datasets with similar image statistics, such as INRIA Holi-
days and Oxford Buildings, while the performance on the unrelated UKB dataset
degrades. In the second experiment of this kind, we retrain the initial network
on the Multi-view RGB-D dataset [12] of turntable views of different objects. As
expected, we observe the improvement on the more related UKB dataset, while
the performance on other datasets degrades or stays the same.

Finally, we focus our evaluation on the performance of the compact ver-
sions of the neural codes. We evaluate the performance of the PCA compression

Deep learned image features
Classification

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Deep learned image features
Search

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Deep learned image features
Layer 1 features

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][α1λ1, α2λ2, α3λ3]
T

where pi and λi are ith eigenvector and eigenvalue of the 3 × 3 covariance matrix of RGB pixel
values, respectively, and αi is the aforementioned random variable. Each αi is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11×11×3 learned by the first convolutional
layer on the 224×224×3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε ·
〈
∂L

∂w

∣∣
wi

〉

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ε is the learning rate, and
〈
∂L
∂w

∣∣
wi

〉
Di

is

the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

Deep learned image features
Layer 2 features

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

(a) Input Image (b) Layer 5, strongest feature map
(c) Layer 5, strongest
feature map projections

(d) Classi�er, probability
of correct class

(e) Classi�er, most
probable class

True Label: Car Wheel

True Label: Afghan Hound

Figure 7. Three test examples where we systematically cover up different portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

Multi-LOPQ
Image query on Flickr 100M (deep learned features, 4k → 128 dimensions)

V. Clustering

Hierarchical k-means
[Nister & Stewenius ’06]

Scalable Recognition with a Vocabulary Tree

David Nistér and Henrik Stewénius

Center for Visualization and Virtual Environments

Department of Computer Science, University of Kentucky

http://www.vis.uky.edu/∼dnister/ http://www.vis.uky.edu/∼stewe/

Abstract

A recognition scheme that scales efficiently to a large

number of objects is presented. The efficiency and quality is

exhibited in a live demonstration that recognizes CD-covers

from a database of 40000 images of popular music CD’s.

The scheme builds upon popular techniques of indexing

descriptors extracted from local regions, and is robust

to background clutter and occlusion. The local region

descriptors are hierarchically quantized in a vocabulary

tree. The vocabulary tree allows a larger and more

discriminatory vocabulary to be used efficiently, which we

show experimentally leads to a dramatic improvement in

retrieval quality. The most significant property of the

scheme is that the tree directly defines the quantization. The

quantization and the indexing are therefore fully integrated,

essentially being one and the same.

The recognition quality is evaluated through retrieval

on a database with ground truth, showing the power of

the vocabulary tree approach, going as high as 1 million

images.

1. Introduction

Object recognition is one of the core problems in

computer vision, and it is a very extensively investigated

topic. Due to appearance variabilities caused for

example by non-rigidity, background clutter, differences in

viewpoint, orientation, scale or lighting conditions, it is a

hard problem.

One of the important challenges is to construct methods

that scale well with the size of the database, and can select

one out of a large number of objects in acceptable time. In

this paper, a method handling a large number of objects is

presented. The approach belongs to a currently very popular

class of algorithms that work with local image regions and

This work was supported in part by the National Science Foundation

under award number IIS-0545920, Faculty Early Career Development

(CAREER) Program.

Figure 1. A vocabulary tree with branch factor three and only

two levels for illustration purposes. A large number of elliptical

regions are extracted from the image and warped to canonical

positions. A descriptor vector is computed for each region.

The descriptor vector is then hierarchically quantized by the

vocabulary tree. In the first quantization layer, the descriptor is

assigned to the closest of the three green centers. In the second

layer, it is assigned to the closest of the three blue descendants to

the green center. With each node in the vocabulary tree there is an

associated inverted file with references to the images containing

an instance of that node. The images in the database are scored

hierarchically using the inverted files at multiple levels of the

vocabulary tree.

Approximate k-means
[Philbin et al. ’07]

• centroids updated as in k-means

• points assigned to centroids by approximate search

• search by randomized k-d trees, even before the latter was published
or FLANN was available

• index rebuilt in every k-means iteration

Approximate k-means
vs. Hierarchical k-means

Clustering parameters mAP
of descr. Voc. size k-means AKM

800K 10K 0.355 0.358
1M 20K 0.384 0.385
5M 50K 0.464 0.453

16.7M 1M 0.618
Table 2. Comparison of the performance of exact k-means to our
AKM method on the 5K dataset, using different numbers of train-
ing descriptors and clusters.

can additionally be assigned to some internal nodes which
their path from root to leaf passes through. This can help
mitigate the effects of quantization error, for cases when
the data point lies close to the Voronoi region boundary for
each cluster center.

It is important to note that traditional flat k-means mini-
mizes the total distortion between the data points and their
assigned, closest cluster centers, whereas the hierarchical
tree minimizes this distortion only locally at each node and
this does not in general result in a minimization of the total
distortion.

3.3. Results on comparing vocabularies
Our goal is to evaluate the retrieval performance of vi-

sual vocabularies built using the two clustering methods de-
scribed above. Here, we test only the filtering stage of the
retrieval system, i.e. retrieval is performed using only the
inverted file (including the tf-idf weighting), and no rank-
ing using the spatial configuration of regions is used. We
perform three main experiments. Firstly, we compare per-
formance using AKM to flat k-means. This is to establish
how much, if any, performance is lost by the approximation.
Secondly, we compare AKM to HKM. Thirdly, we investi-
gate how the performance using AKM degrades as we scale
up the number of images in the corpus.

k-means vs AKM. For the small 5K dataset, we compare
AKM to exact k-means, using varying amounts of sub-
sampled data and cluster centers with identical cluster ini-
tialization. These results are given in table 2, and show that
our approximate method gives very similar performance to
exact k-means, differing in mAP by less than 1% and out-
performing k-means in two cases. This justifies the use of
AKM as an effective proxy for exact k-means, but with a
fraction of the computational cost.

HKM vs AKM. We compare our method to HKM in two
ways. First, we compare performance on the Recognition
Benchmark introduced by [20]. This consists of 10,200 im-
ages split into four image groups of the same scene taken
from different viewpoints. A perfect result is to return,
given a query, the other three images from that query’s
group before images from other groups. This is expressed
as an average over the number of the top four correctly re-
turned, taken over all possible query images. We also dis-
play a graph, showing how the query performance changes

Method Scoring Average
Levels Top

HKM 1 3.16
HKM 2 3.07
HKM 3 3.29
HKM 4 3.29
AKM 3.45

0 2000 4000 6000 8000 10000
3.2

3.4

3.6

3.8

4

Subset Size

A
v
e

ra
g

e
 T

o
p

AKM = 3.45
HKM = 3.29

Table 3. A comparison of the AKM and HKM on the Recog-
nition Benchmark of [20] using the descriptors for training and
testing provided by the authors of [20]. “HKM” is the hierarchi-
cal k-means quantization, where the numbers are taken from [2].
“AKM” is the result of our approximate k-means clustering. Both
methods use a vocabulary of 1M visual words and an L1 distance.

Method Dataset mAP
Bag-of-words Spatial

(a) HKM-1 5K 0.439 0.469
(b) HKM-2 5K 0.418
(c) HKM-3 5K 0.372
(d) HKM-4 5K 0.353
(e) AKM 5K 0.618 0.647
(f) AKM 5K+100K 0.490 0.541
(g) AKM 5K+100K+1M 0.393 0.465

Table 4. Vocabulary comparison over the three datasets. For the
HKM method, the number of levels used for scoring is listed in
the method name. All methods use 1M cluster centers, generated
from all 16.7M descriptors in the 5K dataset. The “spatial” method
is described in section 4.

as increasingly large subsets of the data are searched over.
To train our clusters, we use identical training and testing
descriptors to [20] provided at [2], and an L1 distance to
compute the ranking. From table 3, we see that for the
same number of visual words, our method significantly out-
performs the hierarchical method.

Second, we have also compared the performances of the
two methods on our own 5K dataset, shown in table 4, rows
(a)–(e), using our descriptors. Here, we have used our own
implementation of HKM which we have found gives almost
identical figures on the dataset from [2]. The AKM method
clearly outperforms the best HKM method, by 0.618 to
0.439 mAP. This might be attributed to quantization effects
of the vocabulary tree – data points may be suffering from
bad initial splits close to the root of the vocabulary tree. As
a result, descriptors arising from the same object/scene re-
gion in different images can be assigned (due to e.g. noise)
to different clusters. Hierarchical scoring might partially
overcome this problem, but we find that the hierarchical
scoring actually hurts the performance of the HKM method.
However, if we switch the vector scoring to use the L1 dis-
tance (instead of L2), we find that the hierarchical scoring
improves performance, but doesn’t produce as good a result
as in the L2 case (0.427 best L1 vs. 0.439 best L2). Clearly,
more work is needed to understand the HKM performance
here.

Robust approximate k-means
[Li et al. ’10]

• the nearest neighbor in one iteration is re-used in the next

• less effort spent for new neighbor search

• faster convergence at same quality

Approximate Gaussian mixtures
[Kalantidis & Avrithis ’12]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=0, clusters=50

Approximate Gaussian mixtures
[Kalantidis & Avrithis ’12]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=1, clusters=15

Approximate Gaussian mixtures
[Kalantidis & Avrithis ’12]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=2, clusters=10

Approximate Gaussian mixtures
[Kalantidis & Avrithis ’12]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=3, clusters=8

Approximate Gaussian mixtures
Image search—mAP on Oxford 5k

Method RAKM AKM AGM

k 350k 500k 550k 600k 700k 550k 857k

5k 0.471 0.479 0.486 0.485 0.476 0.485 0.492

5k + 20k 0.439 0.440 0.448 0.441 0.437 0.447 0.459

5k + 1M – – 0.250 – – – 0.280

ANN search - clustering connection

• hierarchical k-means: use k-means tree for ANN search

• approximate k-means: use ANN search to accelerate assignment step

• product quantization: use k-means on subspaces to accelerate ANN
search

• inverted multi-index: exhaustively search on subspaces before
searching on entire space

What is the actual connection? Can we use recursion to solve both
problems at the same time?

ANN search - clustering connection

• hierarchical k-means: use k-means tree for ANN search

• approximate k-means: use ANN search to accelerate assignment step

• product quantization: use k-means on subspaces to accelerate ANN
search

• inverted multi-index: exhaustively search on subspaces before
searching on entire space

What is the actual connection? Can we use recursion to solve both
problems at the same time?

Dimensionality-recursive vector quantization
[Avrithis ’13]

Quantize and Conquer: A dimensionality-recursive solution
to clustering, vector quantization, and image retrieval

Yannis Avrithis
National Technical University of Athens

Abstract

Inspired by the close relation between nearest neighbor
search and clustering in high-dimensional spaces as well as
the success of one helping to solve the other, we introduce
a new paradigm where both problems are solved simultane-
ously. Our solution is recursive, not in the size of input data
but in the number of dimensions. One result is a cluster-
ing algorithm that is tuned to small codebooks but does not
need all data in memory at the same time and is practically
constant in the data size. As a by-product, a tree struc-
ture performs either exact or approximate quantization on
trained centroids, the latter being not very precise but ex-
tremely fast. A lesser contribution is a new indexing scheme
for image retrieval that exploits multiple small codebooks to
provide an arbitrarily fine partition of the descriptor space.
Large scale experiments on public datasets exhibit state of
the art performance and remarkable generalization.

1. Introduction
We often visualize a clustering process in two dimensions
as in Figure 1, where a number of centroids partition the
underlying space into Voronoi cells. Even with k-means,
which is arguably the fastest alternative at large scale, the
cost is dominated by the assignment of data points to the
nearest centroid. It is thus popular to solve this subproblem
by approximate search [20]. In the 2D discrete space of
Figure 1, one may envision solving first the inverse problem
of computing a distance map on the entire 2D grid, which
could then respond to assignment queries by lookup.

By analogy, one may envision image retrieval as a propa-
gation process on this grid, where query descriptors serve as
source points and a local distance map is generated around
these points. Indexed images have their descriptors dis-
tributed on the grid and only those at a specific range from
source points are retrieved. Weighting of points is possible
based on the distance to nearest query point, as specified by
the position on the grid where they are found.

But how about spaces of up to 128 dimensions as in
the case of SIFT descriptors? Unfortunately, the number

Figure 1. Clustering and space partitioning, visualized on 2D dis-
crete space. Coloring of Voronoi cells follows that of the corre-
sponding centroid; patch intensity follows the distance map.

of grid positions increases exponentially in the number of
dimensions, which prevents us from visiting or even repre-
senting the entire space. This is exactly our contribution in
this work: we use a 2D discrete grid not just as an anal-
ogy but to actually solve clustering or search problems in
higher-dimensional spaces. The key idea is that the grid
actually represents a 2d-dimensional space S. The two “di-
mensions” that we see in fact capture the discrete topology
of two subspaces SL, SR, each of d dimensions, that de-
compose S into a Cartesian product S = SL × SR.

In a clustering setting, and assuming that we see cen-
troids as point sources and do compute a distance map via
propagation from the sources to the entire grid, it is possible
to obtain a triangulation as a by-product, having the cluster
centroids as vertices as in Figure 1. The graph represent-
ing this triangulation captures exactly the discrete topology
of the space. Doing this for both SL and SR, we may ap-
ply the same idea to S, ending up with an algorithm that is
recursive in the number of dimensions.

In a retrieval setting, we do not even need a single code-
book for the entire descriptor space. We may start recur-
sion after decomposing e.g. into two or four subspaces,
of dimension 64 or 32 respectively for SIFT descriptors.

1

Dimensionality-recursive vector quantization
[Avrithis ’13]

Problem

• given n points in d dimensions, quantize to k centroids under minimal
distortion, with n > 106, d > 102, k > 103.

Bottleneck: k-means assignment

• exhaustive search: O(nk) time

• approximate search: e.g. , O(n log k).

Lookup?

• n queries over the same centroids

• why not lookup on precomputed distance maps?

• O(n) time, but O(2d) space: fine e.g. for d = 2.

Curse of dimensionality

• what if d > 10? is then lookup possible?

• O(k2 log k) pre-processing, O(n) time to assign, at O(k2) space.

Dimensionality-recursive vector quantization
[Avrithis ’13]

Problem

• given n points in d dimensions, quantize to k centroids under minimal
distortion, with n > 106, d > 102, k > 103.

Bottleneck: k-means assignment

• exhaustive search: O(nk) time

• approximate search: e.g. , O(n log k).

Lookup?

• n queries over the same centroids

• why not lookup on precomputed distance maps?

• O(n) time, but O(2d) space: fine e.g. for d = 2.

Curse of dimensionality

• what if d > 10? is then lookup possible?

• O(k2 log k) pre-processing, O(n) time to assign, at O(k2) space.

Dimensionality-recursive vector quantization
[Avrithis ’13]

Problem

• given n points in d dimensions, quantize to k centroids under minimal
distortion, with n > 106, d > 102, k > 103.

Bottleneck: k-means assignment

• exhaustive search: O(nk) time

• approximate search: e.g. , O(n log k).

Lookup?

• n queries over the same centroids

• why not lookup on precomputed distance maps?

• O(n) time, but O(2d) space: fine e.g. for d = 2.

Curse of dimensionality

• what if d > 10? is then lookup possible?

• O(k2 log k) pre-processing, O(n) time to assign, at O(k2) space.

DRVQ base case: d = 1

fi

zi
z0 z2 z4 z6 z8 . . . zB−1

x
a bm1 m2 m3

DRVQ recursion: d→ 2d

Quantize and Conquer: A dimensionality-recursive solution
to clustering, vector quantization, and image retrieval

Yannis Avrithis, NTUA

Motivation

I Connection between clustering and approximate nearest neighbor (ANN) search
I approximate k-means (AKM) [1]: use ANN search to accelerate assignment step
I product quantization (PQ) [2]: use k-means on subspaces to accelerate ANN search
I inverted multi-index [3]: exhaustively search on subspaces before searching on entire space

I What is the actual connection under subspace decomposition? Is there something missing?

I Can we use recursion to solve both problems at the same time?

Problem

I Given n points in d dimensions, quantize to k centroids under
minimal distortion, with n > 106, d > 102, k > 103

I k-means assignment step is the bottleneck
I exhaustive search: O(nk) time; ANN search (AKM): e.g., O(n log k)
I n nearest neighbor queries over the same set of k centroids
I so why not lookup on precomputed distance maps and Voronoi cells?
I O(n) time, but O(2d) space: fine e.g. for d = 2

I But what if d > 10? Is then a lookup-based solution possible?

I Our dimensionality-recursive clustering (DRC) takes O(k3) time
to pre-process and O(n) time to assign, at O(k2) space

DRC Base case: one dimension

Given

I set X of N data points on interval I = [a, b) of R
I target number K > 1 of centroids

Representation

I partition I into B � K subintervals (bins) of length ` = (b− a)/B
I let Z = {z0, . . . , zB−1} be the midpoints of subintervals

I allocate x ∈ X to bin r(x) = b(x− a)/`c ∈ {0, . . . , B − 1}
I quantize points via h : I → Z with x 7→ h(x) = zr(x) = a + `r(x) + `/2

Initialization

I let Xi = {x ∈ X : r(x) = i} be the set of points allocated to bin i

I measure discrete distribution f by normalized histogram frequency fi = |Xi|/N
I centroids C = {c0, . . . , cK−1}: K samples out of Z with replacement, according to f

fi

zi
z0 z2 z4 z6 z8 . . . zB−1

x
a bm1 m2 m3

c0 c1 c2 c3

Quantizer

I ideal: q : I → C with x 7→ q(x) = argminc∈C ‖x− c‖
I approximation: restriction q∗ : Z → C, i.e., compute q(z) and store as q∗[z] for all z ∈ Z.

Assignment step

I let mk be the midpoint of [ck−1, ck) for k = 1, . . . , K − 1; m0 = a, mK = b

I then Voronoi cell Vk = {z ∈ Z : q(z) = ck} found as Z ∩ [mk,mk+1) for all ck ∈ C
I assign q∗[z]← ck for all z ∈ Vk
Update step

I weighted averaging over Voronoi cells: ck ←
∑
i:zi∈Vk fizi for all ck ∈ C

At termination

I approximate q(x) ' q∗[h(x)] ∈ C for all x ∈ X
I construct graph G = {C,E} with edges E = {(ck−1, ck) : k = 1, . . . , K − 1} between successive

centroids as a neighborhood system over I

DRC Recursion: from d to 2d dimensions
(or: learning a joint distribution from two marginal ones)

Subspace decomposition

I decompose 2d-dimensional space S into product SL × SR of d-dimensional subspaces SL, SR

I write x ∈ S as x = (xL, xR) with projections xL ∈ SL, xR ∈ SR
Given

I set X of N data points on interval I = IL × IR of S

I target number K > 1 of centroids

I sets of projections XL, XR clustered into CL, CR, each of J centroids

I each projection xL (xR) quantized to qL(xL) ∈ CL (qR(xR) ∈ CR)

I graphs GL = {CL, EL}, GR = {CR, ER} representing neighborhood systems over IL, IR

Representation

I let Z = CL × CR be a grid of B = J × J points in S

I write Z = {z0, . . . , zB−1}: again, a discrete representation of I

I quantize points via h : I → Z with x 7→ h(x) = (qL(xL), qR(xR))

Initialization

I let Xi = {x ∈ X : h(x) = zi} be the set of points allocated to bin i

I measure f with fi = |Xi|/N and sample C = {c0, . . . , cK−1} as in one dimension

x = (x1 , x2)

S2
q2(x2)

G2

S1 G1 S

q1(x1)

h(x)

E1

E2

?

q1

q2

h

h

q∗

q∗

Clustering

I assignment: compute q(z) and store as q∗[z] for all z ∈ Z: product propagation, O(K3)

I update: exactly as in one dimension

At termination

I quantize centroids to nearest points on grid Z as ck ← h(ck) for ck ∈ C
I approximate q(x) ' q∗[h(x)] ∈ C for all x ∈ X
I compute graph G = {C,E} once at final assignment step, as by-product of propagation

References

[1] J. Philbin et al. Object retrieval with large vocabularies and fast spatial matching. In CVPR,
2007.
[2] H. Jégou et al. Product quantization for nearest neighbor search. PAMI 33(1), 2011.
[3] A. Babenko and V. Lempitsky. The inverted multi-index. In CVPR, 2012.

Dim.-recursive quantization (DRQ)

Approximate quantization

I recursively compute q(x) by delegating qL(x), qR(x) if
d > 1:

q(x) '
{
q∗[a + `r(x) + `/2], d = 1

q∗[qL(xL), qR(xR)], d > 1

I time complexity when D = 2P : O(D)
I tree structure with D leaves and D − 1 internal nodes
I hence, D scalar quantizations and D − 1 lookups

I not precise enough for NN search, but fine for k-means
assignment

Exact quantization

I recursively compute squared Euclidean distance to all
centroids

I d = 1: compute δ(x, c) = (x− c)2 for all c ∈ C.
I d > 1:

I delegate δL(xL, zL), δR(xR, zR), for all z ∈ Z
I let δ(x, z) = δL(xL, zL) + δR(xR, zR) for any x ∈ I, z ∈ Z
I minimize q(x) = argminc∈C δ(x, c)

I exact because centroids are stored for d = 1 and quantized
on grid for d > 1

I time complexity with D = 2P (tree of height P), Kp
centroids at 2p dimensions (level p) and K = {K0, . . . , KP}
I recursive: O(φ(K)) = O(K logD) where φ(K) =∑P

p=0 2
P−pKp

I näıve: O(KP2
P) = O(KD)

Product propagation

1 function (q∗, E)← pp(C,Z, h, δ;EL, ER, τ)
2 E ← ∅; initialize queue Q
3 for z ∈ Z do state[z]← alive
4 for c ∈ C do push(c, h(c))
5 while ¬Q.empty() do
6 z ← Q.extract-min()
7 state[z]← far; c← q∗[z]
8 for y ∈ EL(zL) do scan(c, (y, zR))

9 for y ∈ ER(zR) do scan(c, (zL, y))

10 return (q∗, E)

11 function scan(c, z)
12 if state[z] = alive then push(c, z)
13 if state[z] = close then relax(c, z)
14 if state[z] = far then join(c, z)

15 function push(c, z)
16 dist[z]← δ(c, z); q∗[z]← c
17 Q.insert(z); state[z]← close

18 function relax(c, z)
19 d← δ(c, z)
20 if d < dist[z] then
21 dist[z]← d; q∗[z]← c
22 Q.decrease-key(z, d)

23 function join(c, z) . only at termination
24 if δ(c, z) + dist[z] < τ then
25 E ← E ∪ (c, q∗[z])

Experiments

Clustering
4 codebooks at D = 32 dimensions each on N = 12.5M
128-dimensional SIFT descriptors of Oxford 5K

K
logKp (d = 2p)

time (m)
1 2 4 8 16 32

16K 6 7 8 9 11 14 129.96
8K 6 7 8 9 11 13 119.43
4K 6 7 8 9 10 12 20.07
2K 5 6 7 8 9 11 2.792
1K 5 6 7 8 9 10 2.608

512 4 5 6 7 8 9 0.866

4K AKM [1] 504.2

Vector quantization
averaged over the N = 75K SIFT descriptors of the 55
cropped query images of Oxford 5K

K 16K 8K 4K 2K 1K 512

Approximate (µs) 0.95 0.83 0.80 0.73 0.80 0.90
Exact (ms) 1.19 0.79 0.51 0.26 0.21 0.11

101 102

0.5

0.6

0.7

0.8

0.9

1

R

R
ec

al
l@
R K = 16K

K = 8K
K = 4K
K = 2K
K = 1K
K = 512

Image retrieval
fourth-order multi-index [3] with 4K sub-codebooks, partially inverted at 24bit/point, MA k = 90

Training set Oxford 5K / other [*] Paris 6K / other [*]
K MA Other

Test set Ox5K Ox105K Pa6K Pa106K Ox5K Ox105K

This work 0.716 0.657 0.696 0.584 0.703 0.640 4K4 X
Perdoch et al. 2009 0.717 0.568 — — 0.558 0.423 1M
Arandjelovic et al. 2012 0.683 0.581 — — — — 1M
Shen et al. 2012 0.649 0.568 — — — — 1M
Philbin et al. 2008 0.614 0.498 — — 0.403 0.290 1M
Philbin et al. 2008 0.673 0.534 — — 0.493 0.343 1M X
Philbin et al. 2007 0.618 0.490 — — — — 1M
Jegou et al. 2010 — — — — 0.615 0.516 200K X HE, WGC
Jegou et al. 2009 — — — — 0.647 — 20K X HE, WGC
Mikulik et al. 2012 — — 0.625* 0.533* 0.618* 0.554* 16M X
Mikulik et al. 2012 — — 0.749* 0.675* 0.742* 0.674* 16M * Learning

http://image.ntua.gr/iva/research/drvq Contact: iavr@image.ntua.gr

DRVQ: vector quantization

k 16k 8k 4k 2k 1k 512

Approximate (µs) 0.95 0.83 0.80 0.73 0.80 0.90
Exact (ms) 1.19 0.79 0.51 0.26 0.21 0.11

averaged over the n = 75k SIFT descriptors of the 55 cropped query
images of Oxford 5k

DRVQ: clustering

k
log kp (d = 2p)

time (m)
1 2 4 8 16 32

16k 6 7 8 9 11 14 129.96
8k 6 7 8 9 11 13 119.43
4k 6 7 8 9 10 12 20.07
2k 5 6 7 8 9 11 2.792
1k 5 6 7 8 9 10 2.608

512 4 5 6 7 8 9 0.866

4k Approximate k-means 504.2

4 codebooks at d = 32 dimensions each on n = 12.5M 128-dimensional
SIFT descriptors of Oxford 5k

Approximate k-means
[Philbin et al. ’07]

• centroids updated as in k-means

• points assigned to centroid by approximate search

• index rebuilt in every k-means iteration

Ranked retrieval
[Broder et al. ’14]

• centroids updated as in k-means

• points assigned by inverse search from centroids to points

• points may remain unassigned

• index built only once

Inverted-quantized k-means
[unpublished ’15]

ranked retrieval DRVQ

AGM IQ-means

Inverted-quantized k-means
[unpublished ’15]

101 102 103 104
4

4.5

5

·104

time (sec)

av
er

ag
e

d
is

to
rt

io
n

IQ-means
RR
AKM
k-means

http://image.ntua.gr/iva/research/

Thank you!

http://image.ntua.gr/iva/research/

