Approximate nearest neighbor search: binary codes and vector quantization

Yannis Avrithis

University of Athens

Athens, March 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Problem

- Given query point **q**, find its nearest neighbor with respect to Euclidean distance within data set \mathcal{X} in a *d*-dimensional space
- Focus on large scale: encode (compress) vectors, speed up distance computations

• Fit underlying distribution with little space & time overhead

Retrieval (image as point) [Jégou et al. '10][Perronnin et al. '10]

Retrieval (patch as point) [Tolias et al. '13][Qin et al. '13]

イロト 不得 とくき とくき とうき

Localization, pose estimation [Sattler et al. '12][Li et al. '12]

Classification [Boiman et al. '08] [McCann & Lowe '12]

 $KL(p_Q | p_1) = 17.54$ $KL(p_Q | p_2) = 18.20$ $KL(p_Q | p_3) = 14.56$

Quantization [Sivic et al. '03][Philbin et al. '07]

Clustering [Philbin et al. '07][Avrithis '13]

Overview (1)

Tree-based search

- k-d trees [Bentley '75]
- randomized k-d trees [Silpa-Anan & Hartley '02]
- hierarchical k-means tree [Fukunaga & Narendra '75]
- FLANN [Muja & Lowe '09]

Binary codes

- locality sensitive hashing [Charikar '02]
- spectral hashing [Weiss et al. '08]
- iterative quantization [Gong and Lazebnik '11]

Overview (1)

Tree-based search

- k-d trees [Bentley '75]
- randomized k-d trees [Silpa-Anan & Hartley '02]
- hierarchical k-means tree [Fukunaga & Narendra '75]
- FLANN [Muja & Lowe '09]

Binary codes

- locality sensitive hashing [Charikar '02]
- spectral hashing [Weiss et al. '08]
- iterative quantization [Gong and Lazebnik '11]

Overview (2)

Quantization

- vector quantization (VQ)
- product quantization (PQ) [Jégou et al. '11]
- optimized product quantization (OPQ) [Ge et al. '13]
 Cartesian k-means [Norouzi & Fleet '13]
- locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

Non-exhaustive search

- non-exhaustive PQ [Jégou *et al.* '11]
- inverted multi-index [Babenko & Lempitsky '12]
- multi-LOPQ [Kalantidis and Avrithis '14]

Overview (2)

Quantization

- vector quantization (VQ)
- product quantization (PQ) [Jégou et al. '11]
- optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
- locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

Non-exhaustive search

- non-exhaustive PQ [Jégou et al. '11]
- inverted multi-index [Babenko & Lempitsky '12]
- multi-LOPQ [Kalantidis and Avrithis '14]

Overview (3)

Clustering

- hierarchical k-means [Nister & Stewenius '06]
- approximate k-means [Philbin et al. '07]
- approximate Gaussian mixtures [Kalantidis & Avrithis '12]
- dimensionality-recursive vector quantization [Avrithis '13]

• ranked retrieval [Broder et al. '14]

I. Tree-based search

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ の へ ()・

Construction

- choose the dimension of greatest variance
- split at medoid to make tree balanced
- recurse until both sides of splitting plane are empty

Search (exact)

• at each node, choose child according to splitting dimension and value

- starting at root, descend recursively
- backtrack

Construction

- choose the dimension of greatest variance
- split at medoid to make tree balanced
- recurse until both sides of splitting plane are empty

Search (exact)

• at each node, choose child according to splitting dimension and value

- starting at root, descend recursively
- backtrack

k-d tree

[Bentley '75]

k-d tree

[Bentley '75]

[Silpa-Anan & Hartley '75]

Construction

- construct *m* different trees
- randomly rotate data points
- choose randomly among the dimensions of greatest variance

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

• split at a random point near the medoid

Search (approximate)

- descend each tree once independently
- insert nodes in a shared priority queue
- keep descending until *l* leaves are visited

[Silpa-Anan & Hartley '75]

Construction

- construct *m* different trees
- randomly rotate data points
- choose randomly among the dimensions of greatest variance

イロト 不得 トイヨト イヨト ヨー ろくで

• split at a random point near the medoid

Search (approximate)

- descend each tree once independently
- insert nodes in a shared priority queue
- keep descending until *l* leaves are visited

[Silpa-Anan & Hartley '75]

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ ���

[Silpa-Anan & Hartley '75]

Hierarchical *k*-means tree

[Fukunaga & Narendra '75][Nister & Stewenius '06]

Hierarchical *k*-means tree

[Fukunaga & Narendra '75][Nister & Stewenius '06]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

FLANN (uniform data)

[Muja & Lowe '09]

9QC

FLANN (real data)

[Muja & Lowe '09]

 $\mathcal{O} \land \mathcal{O}$

Tree-based methods

All methods so far

- assume all data points are represented exactly in memory
- compute exact distances to a subset of data points
- design a data structure for efficient search

We rather focus on methods that

- only approximate data points
- use space partition not only to limit search but to approximate distances

design an efficient encoding

Tree-based methods

All methods so far

- assume all data points are represented exactly in memory
- compute exact distances to a subset of data points
- design a data structure for efficient search

We rather focus on methods that

- only approximate data points
- use space partition not only to limit search but to approximate distances

• design an efficient encoding

II. Binary codes

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Locality sensitive hashing

random projections [Charikar '02]

- Choose a random vector ${\bf a}$ from the d-dimensional Gaussian distribution $\mathcal{N}(0,1).$
- Define hash function $h_{\mathbf{a}}: \mathbb{R}^d \rightarrow \{-1,1\}$ with

$$h_{\mathbf{a}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{a} \cdot \mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{a} \cdot \mathbf{x} \ge 0\\ -1, & \text{if } \mathbf{a} \cdot \mathbf{x} < 0. \end{cases}$$

• Then, given $\mathbf{x},\mathbf{y}\in\mathbb{R}^{d}$,

$$\mathbb{P}[h_{\mathbf{a}}(\mathbf{x}) = h_{\mathbf{a}}(\mathbf{y})] = 1 - \frac{\theta(\mathbf{x}, \mathbf{y})}{\pi}$$

where $heta(\mathbf{x},\mathbf{y})$ is the angle between $\mathbf{x},\mathbf{y}.$

Locality sensitive hashing

random projections [Charikar '02]

- Choose a random vector ${\bf a}$ from the d-dimensional Gaussian distribution $\mathcal{N}(0,1).$
- Define hash function $h_{\mathbf{a}}: \mathbb{R}^d \rightarrow \{-1,1\}$ with

$$h_{\mathbf{a}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{a} \cdot \mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{a} \cdot \mathbf{x} \ge 0\\ -1, & \text{if } \mathbf{a} \cdot \mathbf{x} < 0. \end{cases}$$

• Then, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbb{P}[h_{\mathbf{a}}(\mathbf{x}) = h_{\mathbf{a}}(\mathbf{y})] = 1 - \frac{\theta(\mathbf{x}, \mathbf{y})}{\pi}$$

where $\theta(\mathbf{x}, \mathbf{y})$ is the angle between \mathbf{x}, \mathbf{y} .

Binary codes and Hamming distance

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$, represented by matrix $X \in \mathbb{R}^{d \times n}$.
- Define k hash functions $h_j : \mathbb{R}^d \to \{-1, 1\}$, and let $h(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_k(\mathbf{x})).$
- Encode each data point **x** by binary code $\mathbf{y} = h(\mathbf{x})$, and represent all encoded points by matrix $Y \in \{-1, 1\}^{k \times n}$.
 - For instance, $Y = sgn(A^{\top}X)$ for random projections, where $A \in \mathbb{R}^{d \times k}$ represents the k random vectors.

• Now, given a query **q**, encode it as $h(\mathbf{q})$ and search in Y by Hamming distance.

Binary codes and Hamming distance

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$, represented by matrix $X \in \mathbb{R}^{d \times n}.$
- Define k hash functions $h_j : \mathbb{R}^d \to \{-1, 1\}$, and let $h(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_k(\mathbf{x})).$
- Encode each data point x by binary code y = h(x), and represent all encoded points by matrix $Y \in \{-1, 1\}^{k \times n}$.
 - For instance, $Y = sgn(A^{\top}X)$ for random projections, where $A \in \mathbb{R}^{d \times k}$ represents the k random vectors.

• Now, given a query **q**, encode it as $h(\mathbf{q})$ and search in Y by Hamming distance.

Spectral hashing

[Weiss et al. '08]

- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/t^2)$.
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

minimize $\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$ subject to $\mathbf{y}_i \in \{-1, 1\}^k$ $\sum_i y_i = 0$

Spectral hashing

[Weiss et al. '08]

- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/t^2)$.
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

minimize $\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$ subject to $\mathbf{y}_i \in \{-1, 1\}^k$ $\sum_i \mathbf{y}_i = 0$ $\frac{1}{n} \sum_i \mathbf{y}_i \mathbf{y}_i^\top = I.$

Spectral hashing Relaxation

- Define Laplacian matrix L = D S with $D = \text{diag}(S\mathbf{1})$.
- Problem is relaxed as

minimize $\operatorname{tr}(YLY^{\top})$ subject to $Y\mathbf{1} = 0$ $YY^{\top} = I$,

and solutions are the k eigenvectors of L with minimal eigenvalue, excluding eigenvector 1 with eigenvalue 0.

• See also Laplacian eigenmaps [Belkin & Niyogi '01].
Spectral hashing Relaxation

- Define Laplacian matrix L = D S with $D = \text{diag}(S\mathbf{1})$.
- Problem is relaxed as

minimize
$$\operatorname{tr}(YLY^{\top})$$

subject to $Y\mathbf{1} = 0$
 $YY^{\top} = I$,

and solutions are the k eigenvectors of L with minimal eigenvalue, excluding eigenvector $\mathbf{1}$ with eigenvalue 0.

• See also Laplacian eigenmaps [Belkin & Niyogi '01].

Spectral hashing

Out of sample extension

- Replace data points by probability distribution p; and Laplacian matrix by Laplacian operator L_p acting on functions.
- Then, solutions are the k eigenfunctions f of L_p (such that $L_p f = \lambda f$) with minimal eigenvalue, excluding eigenfunction $f(\mathbf{x}) = 1$ with eigenvalue 0.
- If *p* is uniform, then eigenfunctions have outer product form, and for 1-dimensional distribution on [*a*, *b*],

$$\phi_j(x) = \sin\left(\frac{\pi}{2} + \frac{j\pi}{b-a}x\right)$$
$$\lambda_j = 1 - e^{-\frac{t^2}{2}\left(\frac{j\pi}{b-a}\right)^2}$$

Spectral hashing

Out of sample extension

- Replace data points by probability distribution p; and Laplacian matrix by Laplacian operator L_p acting on functions.
- Then, solutions are the k eigenfunctions f of L_p (such that $L_p f = \lambda f$) with minimal eigenvalue, excluding eigenfunction $f(\mathbf{x}) = 1$ with eigenvalue 0.
- If p is uniform, then eigenfunctions have outer product form, and for 1-dimensional distribution on [a, b],

$$\phi_j(x) = \sin\left(\frac{\pi}{2} + \frac{j\pi}{b-a}x\right)$$
$$\lambda_j = 1 - e^{-\frac{t^2}{2}\left(\frac{j\pi}{b-a}\right)^2}$$

Spectral hashing Example

イロト 不得 トイヨト イヨト ヨー ろくで

- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones

Spectral hashing

Example

- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones

• Red: radius = 0; green: radius = 1; blue: radius = 2

Spectral hashing Algorithm

- 1. Center and rotate data points by PCA.
- **2.** Evaluate k smallest eigenvalues for each PCA direction.
- **3.** Sort the kd eigenvalues, exclude outer-product ones, and select the k smallest.
- 4. Set hash function $h_j(\mathbf{x}) = \operatorname{sgn}(\phi_j(\mathbf{x}))$ for each of the corresponding k eigenfunctions ϕ_j .

Spectral hashing

Result on LabelMe

Iterative quantization

[Gong and Lazebnik '11]

Quantize each data point to the closest vertex of the binary cube, $(\pm 1,\pm 1).$

イロト 不得 トイヨト イヨト ヨー ろくで

Iterative quantization Formulation

- Assume data points to be zero centered, $X\mathbf{1} = 0$.
- Assume hash functions $y^j = h_j(\mathbf{x}) = \operatorname{sgn}(\mathbf{a}_j \cdot \mathbf{x})$, or $Y = \operatorname{sgn}(A^\top X)$.
- Drop similarity preservation
- Balance $h_j(\mathbf{x}) \cdot \mathbf{1} = 0$ is equivalent to variance of $h_j(\mathbf{x})$ being maximized:

maximize
$$\sum_{j} \operatorname{var}(\operatorname{sgn}(\mathbf{a}_{j}^{\top}X))$$

subject to $\frac{1}{n}YY^{\top} = I.$

Iterative quantization Relaxation

- Drop sgn.
- Relax correlation constraint by just requiring hyperplanes to be orthogonal:

maximize $\operatorname{tr}(A^{\top}XX^{\top}A)$ subject to $A^{\top}A = I$,

and a solution consists of the k eigenvectors of data covariance matrix XX^\top with maximal eigenvalue.

• See also semi-supervised hashing [Wang et al. '10].

Iterative quantization Relaxation

- Drop sgn.
- Relax correlation constraint by just requiring hyperplanes to be orthogonal:

maximize $\operatorname{tr}(A^{\top}XX^{\top}A)$ subject to $A^{\top}A = I$,

and a solution consists of the k eigenvectors of data covariance matrix XX^\top with maximal eigenvalue.

• See also semi-supervised hashing [Wang et al. '10].

Iterative quantization Refinement

- But, if A is an optimal solution, then so is AR^{\top} for orthogonal $R \in \mathbb{R}^{k \times k}$.
- So, if $Z = A^{\top}X$ is the projected data, define loss

$$E(Y,R) = ||Y - RZ||_F^2$$

and repeat

- Fix R, update $Y \leftarrow \operatorname{sgn}(RZ)$
- Fix Y, update $R \leftarrow UV^{\top}$ where $YZ^{\top} = USV^{\top}$ (align by SVD)

See also multiclass spectral clustering [Yu & Shi '03].

Iterative quantization Refinement

- But, if A is an optimal solution, then so is AR^{\top} for orthogonal $R \in \mathbb{R}^{k \times k}$.
- So, if $Z = A^{\top}X$ is the projected data, define loss

$$E(Y,R) = ||Y - RZ||_F^2$$

and repeat

- Fix R, update $Y \leftarrow \operatorname{sgn}(RZ)$
- Fix Y, update $R \leftarrow UV^{\top}$ where $YZ^{\top} = USV^{\top}$ (align by SVD)

• See also multiclass spectral clustering [Yu & Shi '03].

Iterative quantization Result on CIFAR

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへ(?)

III. Quantization

Locality sensitive hashing

scalar quantization [Datar et al. '04]

- Choose a random vector a from the *d*-dimensional Gaussian distribution $f = \mathcal{N}(0, 1)$ and a real *b* uniformly in [0, r].
- Define hash function $h_{\mathbf{a},b}: \mathbb{R}^d \to \mathbb{Z}$ with

$$h_{\mathbf{a},b}(\mathbf{x}) = \left\lfloor \frac{\mathbf{a} \cdot \mathbf{x} + b}{r} \right\rfloor$$

• Then, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbb{P}[h_{\mathbf{a},b}(\mathbf{x}) = h_{\mathbf{a},b}(\mathbf{y})] = \int_0^r \frac{1}{c} f\left(\frac{1}{c}\right) \left(1 - \frac{t}{c}\right) dt$$

is decreasing with $c = \|\mathbf{x} - \mathbf{y}\|$.

Locality sensitive hashing

scalar quantization [Datar et al. '04]

- Choose a random vector a from the *d*-dimensional Gaussian distribution $f = \mathcal{N}(0, 1)$ and a real *b* uniformly in [0, r].
- Define hash function $h_{\mathbf{a},b}: \mathbb{R}^d \to \mathbb{Z}$ with

$$h_{\mathbf{a},b}(\mathbf{x}) = \left\lfloor \frac{\mathbf{a} \cdot \mathbf{x} + b}{r} \right\rfloor$$

• Then, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbb{P}[h_{\mathbf{a},b}(\mathbf{x}) = h_{\mathbf{a},b}(\mathbf{y})] = \int_0^r \frac{1}{c} f\left(\frac{1}{c}\right) \left(1 - \frac{t}{c}\right) dt$$

is decreasing with $c = \|\mathbf{x} - \mathbf{y}\|$.

[Gray '84]

Construction

- given dataset $\mathcal{X} \subset \mathbb{R}^d$
- construct finite codebook $\mathcal{C} \subset \mathbb{R}^d$
- map (quantize) each point $\mathbf{x} \in \mathcal{X}$ to $q(\mathbf{x}) = \min_{\mathbf{c} \in \mathcal{C}} \|\mathbf{x} \mathbf{c}\|^2$
- discard dataset; represent each point by $\log k$ bits, where $k = |\mathcal{C}|$

Search (approximate, exhaustive)

- given query y
- for each $\mathbf{c} \in \mathcal{C}$, compute and store distance $\|\mathbf{y} \mathbf{c}\|^2$
- for each $\mathbf{x} \in \mathcal{X}$, approximate distance $\|\mathbf{y} \mathbf{x}\|^2$ by $\|\mathbf{y} q(\mathbf{x})\|^2$, which is looked up

[Gray '84]

Construction

- given dataset $\mathcal{X} \subset \mathbb{R}^d$
- construct finite codebook $\mathcal{C} \subset \mathbb{R}^d$
- map (quantize) each point $\mathbf{x} \in \mathcal{X}$ to $q(\mathbf{x}) = \min_{\mathbf{c} \in \mathcal{C}} \|\mathbf{x} \mathbf{c}\|^2$
- discard dataset; represent each point by $\log k$ bits, where $k = |\mathcal{C}|$

Search (approximate, exhaustive)

- given query \mathbf{y}
- for each $\mathbf{c} \in \mathcal{C}$, compute and store distance $\|\mathbf{y} \mathbf{c}\|^2$
- for each $\mathbf{x} \in \mathcal{X}$, approximate distance $\|\mathbf{y} \mathbf{x}\|^2$ by $\|\mathbf{y} q(\mathbf{x})\|^2$, which is looked up

[Gray '84]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

[Gray '84]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ()~

[Gray '84]

<□> <0>

- For small distortion \rightarrow large $k = |\mathcal{C}|$:
 - hard to train
 - too large to store
 - too slow to search

Product quantization

[Jégou et al. '11]

Product quantization

[Jégou et al. '11]

- train: $q=(q^1,\ldots,q^m)$ where q^1,\ldots,q^m obtained by VQ
- store: $|\mathcal{C}| = k^m$ with $|\mathcal{C}^1| = \cdots = |\mathcal{C}^m| = k$

• search:
$$\|\mathbf{y} - q(\mathbf{x})\|^2 = \sum_{j=1}^m \|\mathbf{y}^j - q^j(\mathbf{x}^j)\|^2$$
 where $q^j(\mathbf{x}^j) \in \mathcal{C}^j$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

[Ge et al. '13]

minimize $\sum_{\mathbf{x} \in \mathcal{X}} \min_{\hat{\mathbf{c}} \in \hat{\mathcal{C}}} \|\mathbf{x} - R^{\top} \hat{\mathbf{c}}\|^{2}$ subject to $\hat{\mathcal{C}} = \mathcal{C}^{1} \times \cdots \times \mathcal{C}^{m}$ $R^{\top} R = I$

Non-parametric solution

 $\begin{array}{ll} \text{rotate:} & \hat{X} \leftarrow RX \\ \text{update:} & q \leftarrow \mathsf{PQ}(\hat{X}) \quad [\text{one step}] \\ \text{assign:} & Y \leftarrow q(\hat{X}) \\ \text{align:} & R \leftarrow UV^\top \text{ where } YX^\top = USV^\top \end{array}$

• From PQ only one step of centroid update is needed, because update of *R* does not alter assignment.

• Alignment minimizes $||Y - RX||_F^2$, as in ITQ.

Non-parametric solution

 $\begin{array}{ll} \text{rotate:} & \hat{X} \leftarrow RX \\ \text{update:} & q \leftarrow \mathsf{PQ}(\hat{X}) \quad [\text{one step}] \\ \text{assign:} & Y \leftarrow q(\hat{X}) \\ \text{align:} & R \leftarrow UV^\top \text{ where } YX^\top = USV^\top \end{array}$

• From PQ only one step of centroid update is needed, because update of *R* does not alter assignment.

• Alignment minimizes $||Y - RX||_F^2$, as in ITQ.

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

• From rate-distortion theory, distortion satisfies

 $E \ge k^{-2/d} d|\Sigma|^{1/d}$

and practical distortion achieved by k-means is typically within $\sim 5\%$ of the bound. So after rotation $\hat{\Sigma}=R\Sigma R^{\top}$,

$$E_{\mathsf{PQ}} \ge k^{-2m/d} \frac{d}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d}$$

But, by arithmetic-geometric means and Fisher's inequalities,

$$\frac{1}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d} \ge \prod_{i=1}^{m} |\hat{\Sigma}_{ii}|^{1/d} \ge |\hat{\Sigma}|^{1/d} = |\Sigma|^{1/d}$$

with equality implying balanced variance and independence.

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

• From rate-distortion theory, distortion satisfies

$$E \ge k^{-2/d} d|\Sigma|^{1/d}$$

and practical distortion achieved by k-means is typically within $\sim 5\%$ of the bound. So after rotation $\hat{\Sigma}=R\Sigma R^{\top}$,

$$E_{\mathsf{PQ}} \ge k^{-2m/d} \frac{d}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d}$$

But, by arithmetic-geometric means and Fisher's inequalities,

$$\frac{1}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d} \ge \prod_{i=1}^{m} |\hat{\Sigma}_{ii}|^{1/d} \ge |\hat{\Sigma}|^{1/d} = |\Sigma|^{1/d}$$

with equality implying balanced variance and independence.

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

- independence: PCA-align by diagonalizing Σ as $U\Lambda U^{\top}$
- balanced variance: permute Λ by π such that $\prod_i \lambda_i$ is constant in each subspace; $R \leftarrow UP_{\pi}^{\top}$

• find \hat{C} by PQ on rotated data $\hat{X} = RX$

Locally optimized product quantization

[Kalantidis & Avrithis '14]

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

- compute residuals $r(\mathbf{x}) = \mathbf{x} Q(\mathbf{x})$ on coarse quantizer Q
- collect residuals $\mathcal{Z}_i = \{r(\mathbf{x}) : Q(\mathbf{x}) = \mathbf{c}_i\}$ per cell
- train $(R_i, q_i) \leftarrow \mathsf{OPQ}(\mathcal{Z}_i)$ per cell

Locally optimized product quantization

[Kalantidis & Avrithis '14]

- residual distributions closer to Gaussian assumption
- better captures the support of data distribution, like local PCA

- multimodal (e.g. mixture) distributions
- distributions on nonlinear manifolds

Local principal component analysis

[Kambhatla & Leen '97]

But, we are not doing dimensionality reduction!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

IV. Non-exhaustive search

Inverted index

IVFADC [Jégou et al. '11]

Construction

- train a coarse quantizer Q of K centroids or cells
- quantize each point ${\bf x}\in {\cal X}$ to $Q({\bf x})$ and compute its residual vector $r({\bf x})={\bf x}-Q({\bf x})$
- quantize residuals by a product quantizer q
- for each cell, maintain an inverted list of data points and PQ-encoded residuals

Search

- quantize query \mathbf{y} to w nearest cells
- exhaustively search by PQ only within the w inverted lists

Inverted index

IVFADC [Jégou et al. '11]

Construction

- train a coarse quantizer Q of K centroids or cells
- quantize each point ${\bf x}\in {\cal X}$ to $Q({\bf x})$ and compute its residual vector $r({\bf x})={\bf x}-Q({\bf x})$
- quantize residuals by a product quantizer q
- for each cell, maintain an inverted list of data points and PQ-encoded residuals

Search

- quantize query \mathbf{y} to w nearest cells
- exhaustively search by PQ only within the w inverted lists
Inverted index

IVFADC [Jégou et al. '11]

Product quantization Result on SIFT1M

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ ― 差 … 釣��

Product quantization vs. FLANN on SIFT1M

- keep uncompressed vectors \mathcal{X} in memory
- find the R top-ranking points by IVFADC
- re-rank according to corresponding uncompressed vectors

Product quantization

vs. FLANN on SIFT1M

◆□→ ◆□→ ◆三→ ◆三→ 三三 - のへで

Optimized product quantization Result on SIFT1M

(b) SIFT 64bits ADC

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Optimized product quantization vs. binary codes on SIFT1M

(a) SIFT 64bits

[Babenko & Lempitsky '12]

• train codebook C from dataset $\{\mathbf{x}_n\}$

• this codebook provides a coarse partition of the space

[Babenko & Lempitsky '12]

- decompose vectors as $\mathbf{x}=(\mathbf{x}^1,\mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook $\mathcal{C}^1 imes \mathcal{C}^2$ gives a finer partition
- given query y, visit cells $(c^1,c^2)\in \mathcal{C}^1\times \mathcal{C}^2$ in ascending order of distance to y

Multi-sequence algorithm

Result on SIFT1B: are NN in candidate lists?

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Locally optimized product quantization Result on SIFT1B, 64-bit codes

Method	R = 1	R = 10	R = 100
Ck-means [Norouzi & Fleet '13]	-	-	0.649
IVFADC [Jégou <i>et al.</i> '11]	0.106	0.379	0.748
IVFADC [Jégou <i>et al.</i> '11]	0.088	0.372	0.733
OPQ [Ge <i>et al.</i> '13]	0.114	0.399	0.777
Multi-D-ADC [Babenko & Lempitsky '12]	0.165	0.517	0.860
LOR+PQ [Kalantidis & Avrithis '14]	0.183	0.565	0.889
LOPQ [Kalantidis & Avrithis '14]	0.199	0.586	0.909

Most benefit comes from locally optimized rotation!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

Multi-LOPQ

[Kalantidis & Avrithis '14]

Sac

Multi-LOPQ

Result on SIFT1B, 128-bit codes

Т	Method	R = 1	10	100
2014	IVFADC+R [Jégou <i>et al.</i> '11]	0.262	0.701	0.962
201	LOPQ+R [Kalantidis & Avrithis '14]	0.350	0.820	0.978
	Multi-D-ADC [Babenko & Lempitsky '12]	0.304	0.665	0.740
10K	OMulti-D-OADC [Ge et al. '13]	0.345	0.725	0.794
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.430	0.761	0.782
	Multi-D-ADC [Babenko & Lempitsky '12]	0.328	0.757	0.885
30K	OMulti-D-OADC [Ge et al. '13]	0.366	0.807	0.913
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.463	0.865	0.905
100K	Multi-D-ADC [Babenko & Lempitsky '12]	0.334	0.793	0.959
	OMulti-D-OADC [Ge et al. '13]	0.373	0.841	0.973
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.476	0.919	0.973

Application: image search

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Deep learned image features

[Krizhevsky et al. '12]

()

Deep learned image features Classification

	mite	container ship	motor scooter	leopard
	black widow	lifeboat	go-kart	jaguar
Π	cockroach	amphibian	moped	cheetah
	tick	fireboat	bumper car	snow leopard
П	starfish	drilling platform	golfcart	Egyptian cat
and a little	New Contraction	A CONTRACTOR OF THE OWNER OF THE		

Ĵ	grille	mushroom	cherry	Madagascar cat		
	convertible	agaric	dalmatian		squirrel monkey	
	grille	mushroom	grape		spider monkey	
	pickup	jelly fungus	elderberry		titi	
	beach wagon	gill fungus	ffordshire bullterrier		indri	
	fire engine	dead-man's-fingers	currant	Ĩ	howler monkey	

Deep learned image features Search

Deep learned image features Layer 1 features

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Deep learned image features Layer 2 features

Multi-LOPQ

Image query on Flickr 100M (deep learned features, 4k ightarrow 128 dimensions)

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q ()~

V. Clustering

Hierarchical *k*-means

[Nister & Stewenius '06]

Approximate *k*-means

[Philbin et al. '07]

- centroids updated as in k-means
- points assigned to centroids by approximate search
- search by randomized *k*-d trees, even before the latter was published or FLANN was available

• index rebuilt in every k-means iteration

Approximate *k*-means

vs. Hierarchical *k*-means

Method	Dataset	mAP	
		Bag-of-words	Spatial
(a) HKM-1	5K	0.439	0.469
(b) HKM-2	5K	0.418	
(c) HKM-3	5K	0.372	
(d) HKM-4	5K	0.353	
(e) AKM	5K	0.618	0.647
(f) AKM	5K + 100K	0.490	0.541
(g) AKM	5K+100K+1M	0.393	0.465

Robust approximate k-means [Li et al. '10]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- the nearest neighbor in one iteration is re-used in the next
- less effort spent for new neighbor search
- faster convergence at same quality

[Kalantidis & Avrithis '12]

iteration=0, clusters=50

[Kalantidis & Avrithis '12]

[Kalantidis & Avrithis '12]

[Kalantidis & Avrithis '12]

Image search—mAP on Oxford 5k

Method			RAKM			AKM	AGM
k	350k	500k	550k	600k	700k	550k	857k
5k	0.471	0.479	0.486	0.485	0.476	0.485	0.492
5k + 20k	0.439	0.440	0.448	0.441	0.437	0.447	0.459
5k + 1M	_	_	0.250	_	_	_	0.280

ANN search - clustering connection

- *hierarchical k-means*: use *k*-means tree for ANN search
- *approximate k-means*: use ANN search to accelerate assignment step
- *product quantization*: use *k*-means on subspaces to accelerate ANN search

• *inverted multi-index*: exhaustively search on subspaces before searching on entire space

What is the actual connection? Can we use recursion to solve both problems at the same time?

ANN search - clustering connection

- *hierarchical k-means*: use *k*-means tree for ANN search
- approximate k-means: use ANN search to accelerate assignment step
- *product quantization*: use *k*-means on subspaces to accelerate ANN search

• *inverted multi-index*: exhaustively search on subspaces before searching on entire space

What is the actual connection? Can we use recursion to solve both problems at the same time?

[Avrithis '13]

[Avrithis '13]

Problem

• given n points in d dimensions, quantize to k centroids under minimal distortion, with $n > 10^6, d > 10^2, k > 10^3$.

Bottleneck: k-means assignment

- exhaustive search: O(nk) time
- approximate search: *e.g.*, $O(n \log k)$.

Lookup?

- n queries over the same centroids
- why not lookup on precomputed distance maps?
- O(n) time, but $O(2^d)$ space: fine *e.g.* for d = 2.

Curse of dimensionality

- what if d > 10? is then lookup possible?
- $O(k^2\log k)$ pre-processing, O(n) time to assign, at $O(k^2)$ space.

[Avrithis '13]

Problem

• given n points in d dimensions, quantize to k centroids under minimal distortion, with $n > 10^6, d > 10^2, k > 10^3$.

Bottleneck: k-means assignment

- exhaustive search: O(nk) time
- approximate search: e.g. , $O(n \log k)$.

Lookup?

- n queries over the same centroids
- why not lookup on precomputed distance maps?
- O(n) time, but $O(2^d)$ space: fine *e.g.* for d = 2.

Curse of dimensionality

- what if d > 10? is then lookup possible?
- $O(k^2\log k)$ pre-processing, O(n) time to assign, at $O(k^2)$ space

[Avrithis '13]

Problem

• given n points in d dimensions, quantize to k centroids under minimal distortion, with $n > 10^6, d > 10^2, k > 10^3$.

Bottleneck: k-means assignment

- exhaustive search: O(nk) time
- approximate search: e.g. , $O(n \log k)$.

Lookup?

- n queries over the same centroids
- why not lookup on precomputed distance maps?
- O(n) time, but $O(2^d)$ space: fine *e.g.* for d = 2.

Curse of dimensionality

- what if d > 10? is then lookup possible?
- $O(k^2 \log k)$ pre-processing, O(n) time to assign, at $O(k^2)$ space.
DRVQ base case: d = 1

◆□> ◆圖> ◆国> ◆国> 「国」のへで

DRVQ recursion: $d \rightarrow 2d$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへ()

DRVQ: vector quantization

k	16k	8k	4k	2k	1k	512
Approximate (μ s)	0.95	0.83	0.80	0.73	0.80	0.90
Exact (ms)	1.19	0.79	0.51	0.26	0.21	0.11

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

averaged over the $n=75{\rm k}~{\rm SIFT}$ descriptors of the 55 cropped query images of Oxford 5k

DRVQ: clustering

k		log	time (m)				
	1	2	4	8	16	32	time (III)
16k	6	7	8	9	11	14	129.96
8k	6	7	8	9	11	13	119.43
4k	6	7	8	9	10	12	20.07
2k	5	6	7	8	9	11	2.792
1k	5	6	7	8	9	10	2.608
512	4	5	6	7	8	9	0.866
4k	Ap	pro	504.2				

4 codebooks at d= 32 dimensions each on n= 12.5M 128-dimensional SIFT descriptors of Oxford 5k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Approximate *k*-means

[Philbin et al. '07]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- centroids updated as in k-means
- points assigned to centroid by approximate search
- index rebuilt in every k-means iteration

Ranked retrieval

[Broder et al. '14]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- centroids updated as in k-means
- points assigned by inverse search from centroids to points
- points may remain unassigned
- index built only once

Inverted-quantized *k*-means

[unpublished '15]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ◆��

Inverted-quantized *k*-means

[unpublished '15]

◆□> ◆□> ◆目> ◆目> ◆目> ○○○

http://image.ntua.gr/iva/research/

Thank you!

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~