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vector quantization → visual words
[Sivic and Zisserman, ICCV 2003]Vector quantization → visual words
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instance recognition [Kalantidis et al. 2011]



applications
class recognition [Boiman et al. 2008]

Figure 3. “Image-to-Image” vs. “Image-to-Class” distance. A
Ballet class with large variability and small number (three) of ‘la-
belled’ images (bottom row). Even though the “Query-to-Image”
distance is large to each individual ‘labelled’ image, the “Query-
to-Class” distance is small. Top right image: For each descrip-
tor at each point in Q we show (in color) the ‘labelled’ image
which gave it the highest descriptor likelihood. It is evident that
the new query configuration is more likely given the three images,
than each individual image seperately. (Images taken from [4].)

the entire class C (using all images I ∈ C), we would
get better generalization capabilities than by employing in-
dividual “Image-to-Image” measurements. Such a direct
“Image-to-Class” distance can be obtained by computing
the KL-distance between the descriptor distributions of Q
and C. As can be seen in Fig. 3, even though the “Query-
to-Image” KL-distance is large for all the ‘labelled’ images
in the Ballet class, the “Query-to-Class” KL-distance may
still be small, enabling correct classification. Inferring new
image configurations by “composing pieces” from a set of
other images was previously shown useful in [17, 4].
We prove (Sec. 3) that under the Naive-Bayes assump-

tion, the optimal distance to use in image classification is
the KL “Image-to-Class” distance, and not the commonly
used “Image-to-Image” distribution distances (KL, χ2, etc.)

3. Probabilistic Formulation
In this section we derive the optimal Naive-Bayes im-

age classifier, which is approximated by NBNN (Sec. 4).
Given a new query (test) image Q, we want to find its
class C. It is well known [7] that maximum-a-posteriori
(MAP) classifier minimizes the average classification er-
ror: Ĉ = arg maxC p(C|Q). When the class prior p(C)
is uniform, the MAP classifier reduces to the Maximum-
Likelihood (ML) classifier:

Ĉ = arg max
C

p(C|Q) = arg max
C

p(Q|C).

Let d1, ..., dn denote all the descriptors of the query im-
age Q. We assume the simplest (generative) probabilistic
model, which is the Naive-Bayes assumption (that the de-
scriptors d1, ..., dn ofQ are i.i.d. given its class C), namely:

p(Q|C) = p(d1, .., dn|C) =

n∏

i=1

p(di|C)

Taking the log probability of the ML decision rule we get:

Ĉ = arg max
C

log(p(C|Q)) = arg max
C

1

n

n∑

i=1

log p(di|C)

(1)
The simple classifier implied by Eq. (1) is the optimal clas-
sification algorithm under the Naive-Bayes assumption. In
Sec 4 we show how this simple classifier can be accurately
approximated using a non-parametric NN-based algorithm
(without descriptor quantization).

Naive-Bayes classifier ⇔ Minimum “Image-to-Class”
KL-Distance: In Sec. 2.2 we discussed the generalization
benefits of using an “Image-to-Class” distance. We next
show that the above MAP classifier of Eq. (1) is equivalent
to minimizing “Query-to-Class” KL-distances.
Eq. (1) can be rewritten as:

Ĉ = arg max
C

∑

d

p(d|Q) log p(d|C)

where we sum over all possible descriptors d. We can sub-
tract a constant term independent of C from the right hand
side of the above equation, without affecting Ĉ. By sub-
tracting

∑
d p(d|Q) log p(d|Q), we get:

Ĉ = arg max
C

(
∑

d∈D

p(d|Q) log
p(d|C)

p(d|Q)
)

= arg min
C

( KL(p(d|Q)‖p(d|C)) ) (2)

where KL(·‖·) is the KL-distance (divergence) between
two probability distributions. In other words, under the
Naive-Bayes assumption, the optimal MAP classifier mini-
mizes a “Query-to-Class” KL-distance between the descrip-
tor distributions of the queryQ and the class C.
A similar relation between Naive-Bayes classification

and KL-distance was used in [28] for texture classifica-
tion, yet between pairs of images (i.e., “Image-to-Image”
distances and not “Image-to-Class” distances). Distances
between descriptor distributions for the purpose of classifi-
cation have also been used by others [6, 16, 20, 27, 30], but
again – between pairs of images.

4. The Approximation Algorithm Using NN
In this section we present the “NBNN” classifier, which

accurately approximates the optimal MAP Naive-Bayes im-
age classifier of Sec. 3.

Non-Parametric Descriptor Density Estimation:
The optimal MAP Naive-Bayes image classifier of Eq. (1)
requires computing the probability density p(d|C) of de-
scriptor d in a classC. Because the number of local descrip-
tors in an image database is huge (on the order of the num-
ber of pixels in the database), a Parzen density estimation



applications
object mining [Chum & Matas 2008]

2 Ondřej Chum and Jiřı́ Matas

Fig. 1. Visualization of a part of a cluster of spatially related images automatically discovered from a database of 100K images.
Only part of the cluster is shown. Overall, there are 113 images in the cluster, all correctly assigned. A sample of geometrically
verified correspondences is depicted as links between the images. Note that the images show the tower from opposite sides.

The above mentioned process starts with an image provided or selected by the user. However, 3D registration is
still a slow process. In general, it is not possible to do it online, and an immediate response to the user requires that
3D reconstruction is already available, computed off-line. The clustering method proposed in the paper is a suitable
back-end for such a system, as it discovers sufficiently large sets of overlapping images suitable for automatic recon-
struction. Moreover, it outputs inter-image correspondences that may bootstrap the 3D scene reconstruction process.
Availability of sufficient number of images is essential for the 3D reconstruction, and almost all sets that are usable
for 3D reconstruction have a size where our method retrieves the cluster almost certainly.

The rest of the paper is structured as follows. Section 2 reviews the work on unsupervised object and scene dis-
covery, Section 3 describes the use of min-Hash for data mining purposes. In Section 4 the method is experimentally
verified on real image databases.

2 Related work on unsupervised object and scene discovery

The problem of matching (organization) of an unordered image set was first addressed by Schaffalitzky and Zisserman
in [10]. Their objective was first automatic recovery of geometric relations between images from a spatially related
set (of tens of images) and then 3D reconstruction. We are interested in a similar problem, but also in discovery of
multiple such sets in databases with several orders of magnitude higher number of images.

Recently, the majority of image retrieval systems adopt the bag-of-words approach [11], which we also follow.
First, regions of interest are detected [12] and described by an invariant descriptor [13]. The descriptors are then
vector quantized into a vocabulary of visual words [11, 5, 6].

The approach closest to ours is [14] by Sivic and Zisserman whose objective is unsupervised discovery of multiple
instances of particular objects in feature films. Object hypotheses are instantiated on neighbourhoods centered around
regions of interest. The neighbourhoods include a predefined number of other regions and the hypothesized object is
represented by a fixed number of visual words describing the regions. Each hypothesized object is used as a query
against the database consisting of key frames of the film. To reduce the number of similarity evaluations, which each
requires counting the number of common visual words, only neighbourhoods centered at the same visual word are
compared.

The method requires
∑w

i=1 d
2
i similarity evaluations, where w is the size of vocabulary and di is the number of

regions assigned to i-th visual word. Let D be the number of documents and t the average number of features in an
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Reconstructing the World* in Six Days
*(As Captured by the Yahoo 100 Million Image Dataset)

Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm
Department of Computer Science, The University of North Carolina at Chapel Hill

{jheinly,jsch,dunn,jmf}@cs.unc.edu

Abstract

We propose a novel, large-scale, structure-from-motion
framework that advances the state of the art in data scal-
ability from city-scale modeling (millions of images) to
world-scale modeling (several tens of millions of images)
using just a single computer. The main enabling technology
is the use of a streaming-based framework for connected
component discovery. Moreover, our system employs an
adaptive, online, iconic image clustering approach based
on an augmented bag-of-words representation, in order to
balance the goals of registration, comprehensiveness, and
data compactness. We demonstrate our proposal by operat-
ing on a recent publicly available 100 million image crowd-
sourced photo collection containing images geographically
distributed throughout the entire world. Results illustrate
that our streaming-based approach does not compromise
model completeness, but achieves unprecedented levels of
efficiency and scalability.

1. Introduction

For decades, modeling the world from images has been
a major goal of computer vision, enabling a wide range
of applications including virtual reality, image-based lo-
calization, and autonomous navigation. One of the most
diverse data sources for modeling is Internet photo col-
lections, and the computer vision community has made
tremendous progress in large-scale structure-from-motion
(LS-SfM) from Internet datasets over the last decade. How-
ever, utilizing this wealth of information for LS-SfM re-
mains a challenging problem due to the ever-increasing
amount of image data. For example, it is estimated that
10% of all photos have been taken in the last year alone [1].
In a short period of time, research in large-scale modeling
has progressed from modeling using several thousand im-
ages [25, 26] to modeling from city-scale datasets of sev-
eral million [9]. Major research challenges that these ap-
proaches have focused on are:

Figure 1. Examples of our world-scale reconstructed models.

• Data Robustness: Enable the modeling from unorga-
nized and heterogeneous Internet photo collections.
• Compute & Storage Scalability: Achieve efficiency

to meet the true scale of Internet photo collections.
• Registration Comprehensiveness: Identify as many

camera-to-camera associations as possible.
• Model Completeness: Build 3D scene models that are

as extensive and panoramic as possible.

In practice, these goals have been prioritized differently
by existing LS-SfM frameworks [25, 26, 4, 3, 9, 24]. The
approach of Frahm et al. [9] emphasizes scalability to en-
able modeling from millions of images. While it achieves
impressive city-scale models, this emphasis leads to limita-
tions in the model completeness. In contrast, the approach
of Agarwal et al. [4, 3] prioritizes model completeness,
but can only model from hundreds of thousands of images,
instead of millions. We propose a novel structure-from-
motion framework that advances the state of the art in scal-
ability from city-scale modeling to world-scale modeling
(several tens of millions of images) using just a single com-
puter. Moreover, our approach does not compromise model
completeness, but achieves results that are on par or beyond
the state of the art in efficiency and scalability of LS-SfM
systems. We demonstrate this scalability by performing 3D
reconstructions from the 100 million image world-scale Ya-
hoo Flickr Creative Commons dataset [2, 28]. Our method
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Fast Image-Based Localization using Direct 2D-to-3D Matching

Torsten Sattler, Bastian Leibe, Leif Kobbelt
RWTH Aachen University
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Abstract
Recently developed Structure from Motion (SfM) recon-

struction approaches enable the creation of large scale 3D
models of urban scenes. These compact scene representa-
tions can then be used for accurate image-based localiza-
tion, creating the need for localization approaches that are
able to efficiently handle such large amounts of data. An
important bottleneck is the computation of 2D-to-3D cor-
respondences required for pose estimation. Current state-
of-the-art approaches use indirect matching techniques to
accelerate this search. In this paper we demonstrate that
direct 2D-to-3D matching methods have a considerable
potential for improving registration performance. We de-
rive a direct matching framework based on visual vocabu-
lary quantization and a prioritized correspondence search.
Through extensive experiments, we show that our frame-
work efficiently handles large datasets and outperforms cur-
rent state-of-the-art methods.

1. Introduction
Image-based localization is an important problem in

computer vision. Its applications include localization and
navigation for both pedestrians [22, 31, 13] and robots
[6, 5], Augmented Reality [1, 3], and the visualization of
photo collections [26]. Image-based localization is also an
important part in the pipeline of higher-level computer vi-
sion tasks such as semantic object annotation [9] and can
be used as an initial pose estimate to speed up large-scale
reconstructions from Internet photo collections [27].

Traditionally, large-scale image-based localization has
been treated as an image retrieval problem. After finding
those images in a database that are most similar to the query
image, the location of the query can be determined relative
to them [22, 31]. The huge progress achieved in the field
of image retrieval enables the use of an increasing num-
ber of images for the representation of real world scenes
[25, 19, 20]. However, the localization accuracy obtained
this way cannot be better than the precision of the GPS
positions available for the database images. To achieve a
higher localization accuracy, more detailed information is
needed which can be obtained from a 3D reconstruction
of the scene. Using these models additionally permits to

Figure 1: Our approach for image-based localization accu-
rately registers query images (bottom right) to a 3D scene
model of an entire city (top left, close-up view) using an
efficient 2D-to-3D matching framework.

estimate the orientation (and thus the complete pose) of
the camera and yields a much more structured representa-
tion of the scenes. Recent advances in SfM research [27]
now make it possible to construct models on a city-scale
level consisting of millions of points in only a few hours
[8, 29, 21], creating the need for image-based localization
methods that can handle such large datasets.

Essential for image-based localization using 3D models
is to establish correspondences between 2D local features in
the query image and 3D points in the model. The common
approach is to use the feature descriptors, e.g. SIFT [17],
for the 3D points computed during the reconstruction, for-
mulating the correspondence search as a descriptor match-
ing problem. Following the terminology from [16] we re-
fer to 2D image features and their descriptors as features
and to 3D points and their descriptors as points. We distin-
guish between direct and indirect 2D-to-3D matching. Di-
rect matching tries to find the 3D point corresponding to a
2D feature by searching for the nearest neighbors of that
feature’s descriptor in the space containing the 3D point de-
scriptors, while indirect methods use an intermediate con-
struct to represent points and their descriptors which does
not preserve the proximity in descriptor space. Classical di-
rect matching approaches such as approximative tree-based

2011 IEEE International Conference on Computer Vision
978-1-4577-1102-2/11/$26.00 c©2011 IEEE
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(a) exterior (b) interior (c) cuts

Figure 1: Main elements of our method. (a) Exterior medial axis and concave corners (in
green) as boundary arcs that are each the projection of one medial axis end vertex (minima
rule). (b) Interior medial axis and candidate cuts (in red) whose endpoints are contained in
corners and are projection points of the same medial axis point; only one such cut is selected
per corner and medial axis branch. (c) Final cuts according to short-cut and convexity rules:
the shortest cuts are selected for each corner such that each shape part is locally convex at
the corner, roughly forming an interior angle less than π (up to tolerance).

into the relation of minima to convexity by relaxing the latter to local convexity. Contrary to
global optimization models, this guarantees robustness [23].

The main ideas of our work are illustrated in Fig. 1. As in most related work, a shape is
decomposed into parts by defining a number of part-cuts which are line segments contained
in the shape. According to the minima rule [7], the part-cut endpoints are points of negative
minima of curvature of the shape boundary curve. But it is known [3] that such points
are exactly projection points (boundary points of minimal distance) of end vertices of the
exterior medial axis (the medial axis of the complement of the shape). Moreover, as shown
in Fig. 1a, one may get from a medial axis vertex not just one boundary point but an entire
arc. We call this arc a concave corner or simply corner. It is readily available and involves
no differentiation, contrary to all previous work. We show there are advantages over the
common single-point approach.

There is no constraint as to which pairs of minima (corner points) are candidate as part-
cut endpoints, hence all prior work examines all possible pairs. On the contrary, as shown in
Fig. 1b, we only consider pairs of points that are projection points of the same point of the
interior medial axis (of the shape itself). Similarly to semi-ligatures [1] and single-minimum
cuts [16], a cut may also have only one corner point as endpoint [25]. In either case, end-
point pairs are readily available by a single traversal of the medial axis. Comparing to the
conventional definition, which requires part-cuts to cross an axis of local symmetry [24], this
is a stronger definition in agreement with the definition of necks [23]. Contrary to common
belief, we show that it can actually be in accordance to psychophysical evidence [4]. For
each corner, we only select one cut per medial axis branch; this is a simple and intuitive rule
that has not been observed before.

Now, given a candidate list of cuts, the short-cut rule [25] suggests that priority be given
to the shortest over all cuts incident to each corner point; but it does not specify how many
should be kept. On the other hand, convexity-based approaches attempt to find a minimal
number of cuts such that each shape part is convex [21]. Clearly, a concave smooth boundary
curve segment would require an infinite partition, so convexity is only sought approximately.
But negative minima of curvature are points where the shape is locally maximally concave.
They are therefore the first points where one should establish convexity by cutting. Hence

planar shape decomposition
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language—and describing the relationships between these
subunits—again, not unlike the syntactical structure of a sen-
tence. And, just as some sentences admit multiple parses,
so too do some shapes. For example, compare the shape in
Figure 1a (which is nicely parsed by the part cut, indicated
by a dashed line, in Figure 1b) with the one in Figure 2a
(which can be parsed either by the part cuts shown in Figure
2b, or by the part cuts shown in Figure 2c). The parsing of
shapes, when it occurs, is quick and effortless—perhaps even
preattentive (Baylis & Driver, 1994; 1995a; 1995a; Driver &
Baylis, 1995; Hoffman & Singh, 1997).

Part-based representations have been studied extensively
by psychologists1 and computer scientists.2 Parts, unlike
template and Fourier approaches, can deal effectively with
occlusion, self-occlusion, and certain types of non-rigidity
in which rigid parts move relative to each other (Hoffman &
Richards, 1984; Pinker, 1985). They can explain the clas-
sic visual phenomenon, first noted by Mach, that symmetry
is easier to detect than repetition (Baylis & Driver, 1995b;
Driver & Baylis, 1995; Mach, 1885/1959), and the phe-
nomenon discovered by Attneave that a piece of curve looks
different depending on which side is taken to be “figure”
(Attneave, 1971; Hoffman & Richards, 1984; see Figure 5).
They can also alter the perception of transparency (Singh &
Hoffman, in press). However, parts may be less important
in the visual recognition of faces (Farah, 1996; Tanaka &
Farah, 1993; Turk & Pentland, 1991; Yuille, 1991).

A natural question arises: How does human vision parse
shapes into parts? Some theorists postulate that there is a set
of basic shapes, or primitives, which human vision searches
for in images—primitives such as generalized cones (Bin-
ford, 1971; Marr, 1977) or geons (Biederman, 1987). Ac-
cording to these theories, human vision parses a shape by
finding these primitives in the shape. Hence the primitives
are responsible for (i) finding parts, and (ii) describing them.

Other theorists postulate that there are rules, based on ge-
ometric properties alone, by which human vision computes
the boundaries between parts for any given shape. The min-
ima rule (Hoffman & Richards, 1984) is a step in that direc-
tion. For a 2D silhouette, the minima rule provides bound-
ary points on the silhouette outline, through which part cuts
must pass (see Figure 3a). And for 3D shapes, the minima

1A partial list includes Baylis & Driver (1994; 1995a; 1995b),
Bennett and Hoffman (1987), Beusmans, Hoffman, and Bennett
(1987), Biederman (1987), Biederman and Cooper (1991), Braun-
stein, Hoffman, and Saidpour (1989), Driver & Baylis (1995), Hoff-
man ((1983a); (1983b)), Hoffman and Richards (1984), Hoffman
and Singh (1997), Marr ((1977); (1982)), Marr & Nishihara, 1978),
Palmer, 1977), Pentland, 1986), Stevens & Brookes, 1988), Ter-
zopoulos, Witkin, & Kass (1987),Todd, Koenderink, van Doorn,
and Kappers (1995), Tversky and Hemenway (1984).

2A partial list includes Binford (1971, December), Brooks
(1981), Dickinson, Pentland, & Rosenfeld (1992), Guzman (1971),
Siddiqi and Kimia (1995), Winston (1975).

(a) (b)

Figure 3. Minima rule gives part boundaries which are (a) points
on 2D shapes, and (b) curves on 3D shapes.

rule provides boundary curves on the surface of the shape
through which part cuts must pass (see Figure 3b). However,
the minima rule does not define the part cuts themselves—it
only constrains them by requiring them to pass through the
boundary points it provides.

We deal here only with the parsing of silhouettes, not of
3D shapes. The relationship between 3D shapes and silhou-
ettes is complex, and beyond the scope of this paper (but see,
e.g., Richards, Koenderink, & Hoffman, 1987). However,
human subjects do see parts in silhouettes—so the parsing
of silhouettes is of psychological interest.

In this paper, we propose that human vision parses sil-
houettes according to the short-cut rule.

Short-cut rule: Divide silhouettes into parts using the short-
est possible cuts.

In other words, if boundary points can be joined in more
than one way to parse a silhouette, human vision prefers that
parsing which uses the shortest cuts. For the shape in Figure
2a, for instance, the short cut rule gives the cuts shown in
Figure 2b rather than the cuts shown in Figure 2c. In this pa-
per a cut is (1) a straight line which (2) crosses an axis of lo-
cal symmetry (see section entitled Short Cuts), (3) joins two
points on the outline of a silhouette, such that (4) at least one
of the two points has negative curvature. For some shapes
such as elbows, the short-cut rule can create boundary points
that are not negative minima of curvature.

We begin by reviewing the minima rule and related re-
search on shape partitioning. We then motivate the short-cut
rule by the geometry of transversal intersections, and relate it
to Petter’s rule for modal completion (Petter, 1956; Kanizsa,
1979, p. 40). Finally, we present five experiments that test,
and support, the short-cut rule.

A few caveats and disclaimers. There is much to the
parsing of visual shapes that we cannot explore here. First,
top-down factors can influence visual parsing (e.g., Schyns,
Goldstone, & Thibaut, 1998; Schyns & Murphy, 1994;
Schyns & Rodet, 1997; Singh & Landau, 1998). These
are no less important than the short-cut rule that we exam-
ine. But to keep this work to manageable size, we focus

minima rule
[Hoffman & Richards 1983]
“divide a silhouette into parts at
concave cusps and negative
minima of curvature”
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Figure 1a (which is nicely parsed by the part cut, indicated
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(which can be parsed either by the part cuts shown in Figure
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Hoffman, in press). However, parts may be less important
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of basic shapes, or primitives, which human vision searches
for in images—primitives such as generalized cones (Bin-
ford, 1971; Marr, 1977) or geons (Biederman, 1987). Ac-
cording to these theories, human vision parses a shape by
finding these primitives in the shape. Hence the primitives
are responsible for (i) finding parts, and (ii) describing them.

Other theorists postulate that there are rules, based on ge-
ometric properties alone, by which human vision computes
the boundaries between parts for any given shape. The min-
ima rule (Hoffman & Richards, 1984) is a step in that direc-
tion. For a 2D silhouette, the minima rule provides bound-
ary points on the silhouette outline, through which part cuts
must pass (see Figure 3a). And for 3D shapes, the minima
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Figure 3. Minima rule gives part boundaries which are (a) points
on 2D shapes, and (b) curves on 3D shapes.

rule provides boundary curves on the surface of the shape
through which part cuts must pass (see Figure 3b). However,
the minima rule does not define the part cuts themselves—it
only constrains them by requiring them to pass through the
boundary points it provides.

We deal here only with the parsing of silhouettes, not of
3D shapes. The relationship between 3D shapes and silhou-
ettes is complex, and beyond the scope of this paper (but see,
e.g., Richards, Koenderink, & Hoffman, 1987). However,
human subjects do see parts in silhouettes—so the parsing
of silhouettes is of psychological interest.

In this paper, we propose that human vision parses sil-
houettes according to the short-cut rule.

Short-cut rule: Divide silhouettes into parts using the short-
est possible cuts.

In other words, if boundary points can be joined in more
than one way to parse a silhouette, human vision prefers that
parsing which uses the shortest cuts. For the shape in Figure
2a, for instance, the short cut rule gives the cuts shown in
Figure 2b rather than the cuts shown in Figure 2c. In this pa-
per a cut is (1) a straight line which (2) crosses an axis of lo-
cal symmetry (see section entitled Short Cuts), (3) joins two
points on the outline of a silhouette, such that (4) at least one
of the two points has negative curvature. For some shapes
such as elbows, the short-cut rule can create boundary points
that are not negative minima of curvature.

We begin by reviewing the minima rule and related re-
search on shape partitioning. We then motivate the short-cut
rule by the geometry of transversal intersections, and relate it
to Petter’s rule for modal completion (Petter, 1956; Kanizsa,
1979, p. 40). Finally, we present five experiments that test,
and support, the short-cut rule.

A few caveats and disclaimers. There is much to the
parsing of visual shapes that we cannot explore here. First,
top-down factors can influence visual parsing (e.g., Schyns,
Goldstone, & Thibaut, 1998; Schyns & Murphy, 1994;
Schyns & Rodet, 1997; Singh & Landau, 1998). These
are no less important than the short-cut rule that we exam-
ine. But to keep this work to manageable size, we focus

minima rule
[Hoffman & Richards 1983]
“divide a silhouette into parts at
concave cusps and negative
minima of curvature”
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Many researchers have proposed that, for the purpose of recognition, human vision parses shapes
into component parts. Precisely how is not yet known. The minima rule for silhouettes (Hoffman &
Richards, 1984) defines boundary points at which to parse, but does not tell how to use these points to
cut silhouettes, and therefore does not tell what the parts are. In this paper, we propose the short-cut
rule, which states that, other things being equal, human vision prefers to use the shortest possible cuts
to parse silhouettes. We motivate this rule, and the well-known Petters rule for modal completion,
by the principle of transversality. We present five psychophysical experiments that test the short-cut
rule, show that it successfully predicts part cuts which connect boundary points given by the minima
rule, and show that it can also create new boundary points.

Introduction

The ease with which we recognize visual objects is de-
ceptive: chess programs can now compete with chess mas-
ters, but no computer-vision system can compete with the vi-
sion of a toddler. Object recognition is complex and compu-
tationally demanding, and typically uses cues such as shape,
color, texture, motion, and context. However, the ease with
which we can, in many cases, recognize an object without
any cues but shape suggests that shape is a key aspect of
recognition. This raises the question: How does human vi-
sion represent shape for the purpose of recognition?

One proposal is that human vision uses parts combined
into structural representations (Biederman, 1987; 1990; Bie-
derman & Cooper, 1991; Hoffman & Richards, 1984; Marr
& Nishihara, 1978; Palmer, 1977). It represents a shape in
terms of (i) the shapes of its component parts and (ii) the
spatial relationships between these parts.

On this approach, representing a shape involves parsing
it into sub-units—not unlike parsing a sentence in natural
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(a) (b)

Figure 1. Part cut on a silhouette. The silhouette in (a) is unam-
biguously parsed in (b) with a part cut (depicted by a dashed line).

(b) (c)(a)

Figure 2. A silhouette with more than one parse. The silhouette
in (a) is naturally parsed as in (b) or in (c).

short-cut rule
[Singh et al. 1999]
“divide a silhouette into parts
using the shortest possible cuts”
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Figure 2. Bridges β0, β1, β2, and β3 and a concave feature x. The
end points of β3, u and v, are the antipodal vertices of the hole.
Bridges β0 and β1 are the children of β2.

associated vectors: the vector −→vi = −−−−→pi pi+1 and the out-
ward normal −→ni . Because DUDE performs decomposition
in both areas enclosed by P and, P , the complement of P ,
it is worth noting that P can be obtained by reversing the
ordering of {pi}. In many cases, polygons are usually ex-
tracted from images by detecting the silhouettes, thus usu-
ally containing many geometric and topological noises.

Because DUDE relies heavily on the measure of concav-
ity, let us now define the concept of bridge and pocket.

Definition 1. A bridge β of a given polygon P is a segment
β = vu connecting two points v and u on the boundary
∂P of P from the space exterior to P . More specifically, a
segment vu is a bridge of P if and only if v, u ∈ ∂P and the
open set of vu is in the complement P of P , i.e. vu◦ ⊂ P .

Therefore, a bridge cannot enter P or intersect the
boundary of P except at its end points. Examples of bridge
are shown in Fig. 2. Note that, unlike bridges defined [22],
this definition of bridge can be inside the convex hull of P .

Definition 2. A pocket ρ of a bridge β = vu is a subset
of the boundary ∂P connecting v and u so that the region
enclosed by β and ρ is completely in P .

Intuitively, when traversing the boundary of P , a bridge
can be viewed as a short cut over its pocket. For example,
the pocket of the bridge β0 in Fig. 2 is a polyline between
vertices b and c via x.

The relationship between the bridge and pocket gives us
an intuitive way to define concavity. For example, in the
simplest case, the concavity of vertices in the pocket is sim-
ply the straight line distances to the bridge. A complete
definition of concavity will be provided in Section 4 for the
cases that the pocket is embedded in other pockets.

4. Dual Space Decomposition of Polygons
In dual-space decomposition (DUDE), the input polygon

P is decomposed based on the decomposition of the com-
plementP ofP (dual-space). Algorithm 1 outlines the idea.
The algorithm starts by determining the bridges and pockets
from the convex hull CH(P ) of P . Algorithm 1 then pro-
ceeds by decomposing the regions Pi enclosed between the
bridge βi and pocket ρi pair. The cuts generated by these
recursively calls DUAL-DECOMP(Pi, τ ) are, by definition,

bridges of P . Concavity is then measured, important con-
cave features are identified using the bridges from CH(P )
and the cuts for Pi. Finally, P is decomposed using these
concave features. In the rest of this section, we will dis-
cuss each of these steps in detail. Figure 3 illustrates P is
decomposed to find concave features of P .

Algorithm 1 Dual-Space Decomposition
1: procedure DUAL-DECOMP(P , τ )
2: Compute convex hull CH(P ) of P
3: Determine bridges β = ∂CH(P ) \ ∂P
4: Determine pockets ρ from β
5: for all Pi enclosed by ρi ∈ ρ and βi ∈ β do
6: κ = κ∪DUAL-DECOMP(Pi, τ )
7: Measure concavity using β ∪ κ . see Section 4.1
8: c = FEATURES(β ∪ κ, τ ) . see Section 4.2
9: return CUT(P , c) . see Section 4.3

4.1. Bridge Hierarchy

Figure 3. Decomposed P .

The bridges β are ob-
tained from two sources:
(1) the convex hull bound-
ary (line 3 in Algorithm 1)
and (2) the decomposition of
the pockets (line 5 in Algo-
rithm 1). First, we note that
these bridges form a hierar-
chy. More specifically, we
say that a bridge β is the par-
ent of β′ if the pocket ρ of β
is contained in the pocket ρ′ of β′. For example, in Fig. 2,
bridges β0 and β1 are both kids of β2. It is not difficult to
show that this relationship of all bridges can be uniquely
determined. That is, when two pockets overlap, one must
enclose the other one. As a consequence, we can state the
following theorem.

Theorem 3. The hierarchical relationship of bridges deter-
mined in Algorithm 1 must form a tree structure.

As a result, each vertex of P has a unique path to the con-
vex hull boundary of P . The length of this path determines
the concavity of the vertex.

Note that a hole boundary is a pocket associated with
only bridges from the decomposition. When a hole is nearly
convex, there is no bridge associated with the hole. There-
fore, a pseudo bridge is created by connecting the antipodal
pair, i.e., two farthest apart vertices, of the hole (see β3 in
Figure 2). When a hole is decomposed by DUDE, bridges
are formed from the cuts. Given k bridges, we can form k
bridge hierarchies by using each cut as the root. We choose
the hierarchy with lowest depth to measure the concavity of
vertices in the hole.

3

current work
e.g. dual space decomposition
[Liu et al. 2014]
• mostly based on convexity

• requires optimization

• rules applied indirectly
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in both areas enclosed by P and, P , the complement of P ,
it is worth noting that P can be obtained by reversing the
ordering of {pi}. In many cases, polygons are usually ex-
tracted from images by detecting the silhouettes, thus usu-
ally containing many geometric and topological noises.

Because DUDE relies heavily on the measure of concav-
ity, let us now define the concept of bridge and pocket.

Definition 1. A bridge β of a given polygon P is a segment
β = vu connecting two points v and u on the boundary
∂P of P from the space exterior to P . More specifically, a
segment vu is a bridge of P if and only if v, u ∈ ∂P and the
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Therefore, a bridge cannot enter P or intersect the
boundary of P except at its end points. Examples of bridge
are shown in Fig. 2. Note that, unlike bridges defined [22],
this definition of bridge can be inside the convex hull of P .

Definition 2. A pocket ρ of a bridge β = vu is a subset
of the boundary ∂P connecting v and u so that the region
enclosed by β and ρ is completely in P .

Intuitively, when traversing the boundary of P , a bridge
can be viewed as a short cut over its pocket. For example,
the pocket of the bridge β0 in Fig. 2 is a polyline between
vertices b and c via x.

The relationship between the bridge and pocket gives us
an intuitive way to define concavity. For example, in the
simplest case, the concavity of vertices in the pocket is sim-
ply the straight line distances to the bridge. A complete
definition of concavity will be provided in Section 4 for the
cases that the pocket is embedded in other pockets.

4. Dual Space Decomposition of Polygons
In dual-space decomposition (DUDE), the input polygon

P is decomposed based on the decomposition of the com-
plementP ofP (dual-space). Algorithm 1 outlines the idea.
The algorithm starts by determining the bridges and pockets
from the convex hull CH(P ) of P . Algorithm 1 then pro-
ceeds by decomposing the regions Pi enclosed between the
bridge βi and pocket ρi pair. The cuts generated by these
recursively calls DUAL-DECOMP(Pi, τ ) are, by definition,

bridges of P . Concavity is then measured, important con-
cave features are identified using the bridges from CH(P )
and the cuts for Pi. Finally, P is decomposed using these
concave features. In the rest of this section, we will dis-
cuss each of these steps in detail. Figure 3 illustrates P is
decomposed to find concave features of P .

Algorithm 1 Dual-Space Decomposition
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2: Compute convex hull CH(P ) of P
3: Determine bridges β = ∂CH(P ) \ ∂P
4: Determine pockets ρ from β
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7: Measure concavity using β ∪ κ . see Section 4.1
8: c = FEATURES(β ∪ κ, τ ) . see Section 4.2
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Figure 3. Decomposed P .

The bridges β are ob-
tained from two sources:
(1) the convex hull bound-
ary (line 3 in Algorithm 1)
and (2) the decomposition of
the pockets (line 5 in Algo-
rithm 1). First, we note that
these bridges form a hierar-
chy. More specifically, we
say that a bridge β is the par-
ent of β′ if the pocket ρ of β
is contained in the pocket ρ′ of β′. For example, in Fig. 2,
bridges β0 and β1 are both kids of β2. It is not difficult to
show that this relationship of all bridges can be uniquely
determined. That is, when two pockets overlap, one must
enclose the other one. As a consequence, we can state the
following theorem.

Theorem 3. The hierarchical relationship of bridges deter-
mined in Algorithm 1 must form a tree structure.

As a result, each vertex of P has a unique path to the con-
vex hull boundary of P . The length of this path determines
the concavity of the vertex.

Note that a hole boundary is a pocket associated with
only bridges from the decomposition. When a hole is nearly
convex, there is no bridge associated with the hole. There-
fore, a pseudo bridge is created by connecting the antipodal
pair, i.e., two farthest apart vertices, of the hole (see β3 in
Figure 2). When a hole is decomposed by DUDE, bridges
are formed from the cuts. Given k bridges, we can form k
bridge hierarchies by using each cut as the root. We choose
the hierarchy with lowest depth to measure the concavity of
vertices in the hole.
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current work
e.g. dual space decomposition
[Liu et al. 2014]
• mostly based on convexity

• requires optimization

• rules applied indirectly

limitations

quantitative evaluation

practically non-existent until [De
Winter and Wagemans 2006] s

quantitative evaluation

practically non-existent until
[De Winter & Wagemans 2006]



medial axis

planar shape

• a set X ⊂ R2 whose boundary ∂X is a finite union of disjoint simple
closed curves, such that for each curve there is a parametrization
α : [0, 1]→ ∂X by arc length that is piecewise smooth

distance map

• maps each point x ∈ X to its minimal distance to boundary ∂X

D(X)(x) = inf
y∈∂X

d(x, y)

projection

• the set of points on ∂X at minimal distance to x

π(x) = {y ∈ ∂X : d(x, y) = D(X)(x)}
medial axis

• the set of points with more than one projection points

M(X) = {x ∈ R2 : |π(x)| > 1}



medial axis decomposition
[Papanelopoulos & Avrithis, ongoing]



exterior medial axis



concave corners and “locale”



interior medial axis and raw cuts



cut equivalence on corners and branches



local convexity and short-cut rule



quantitative evaluation

average majority
H R H R

DCE 0.208 0.497 0.188 0.466
SB 0.163 0.402 0.131 0.335
MD 0.151 0.371 0.126 0.328
FD 0.145 0.350 0.112 0.267

ACD 0.128 0.323 0.092 0.251
MAD 0.157 0.193 0.118 0.154

CBE 0.111 0.288 0.069 0.186
Human – – 0.104 0.137

H = Hamming distance; R = Rand index



medial axis decomposition...

• practically “reads off” all information from the medial axis

• requires no differentiation

• requires no optimization

• is based on local decisions only

• can use arbitrary salience measures



local feature detection



feature detectors

Although the computation may seem to be very time consuming, note that most
time is spent computing Lx and Ly, which is done only once in each step if the
factor s is kept constant. The iteration loop begins with selecting the integration
scale because we have noticed that this part of the algorithm is most robust to
a small localization error of an interest point. However, scale σI changes if the
shape of the patch is transformed. Given an initial approximate solution, the
presented algorithm allows to iteratively modify the shape, the scale and the
spatial location of a point and converges to a true affine invariant interest point.

The convergence properties of the shape adaptation algorithm are extensively
studied in [9]. In general the procedure converges provided that the initial esti-
mation of the affine deformation is sufficiently close to the true deformation and
that the integration scale is well adapted to the local signal structure.

3.2 Affine Invariant Interest Point

Figure 1 presents two examples for interest point detection. Columns (a) display
the points used for initialization which are detected by the multi-scale Harris
detector. The circle around a point shows the scale of detection (the radius of
the circle is 3σI). Note that there is a significant change in location between
points detected at different scales and that the circles in corresponding images
(top and bottom row) do not cover the same image regions. The affine invariant
points to which the initial points converge are presented in the columns (b). We
can see that the method converges correctly even if the location and scale of the
initial point is relatively far from the point of convergence. Convergence is in
general obtained in less than 10 iterations. The minor differences between the

(a) (b) (c) (a) (b) (c)

Fig. 1. Affine invariant interest point detection : (a) Initial interest points detected with
the multi-scale Harris detector. (b) Points and corresponding affine regions obtained
after applying the iterative algorithm. (c) Point neighbourhoods normalized with the
estimated matrices to remove stretch and skew.

regions in columns (b) are caused by the imprecision of the scale estimation and
the error εC . The relation between two consecutive scales is 1.2 and εC is set
to 0.96. It is easy to identify these regions by comparing their locations, scales
and second moment matrices and to keep only one of them. We then obtain a
set of points where each one represents a different image location and structure.

135An Affine Invariant Interest Point Detector

Hessian affine
[Mikolajczyk & Schmid 2004]
• de facto standard in visual search

• too many responses
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Figure 5: CYLINDRICAL BOX: Epipolar geometry (top) and matched regions (bottom left). Fully
affine distortion, a non-planar object, textured surface and a strong specular reflection are present in
the scene. SHOUT (bottom right), a scene with a change of illumination spectral power distribution.
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maximally stable extremal regions

[Matas et al. 2002]

• arbitrary shape

• too constrained
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(a) (b) (c)

Figure 1. Example of stable affine frame construction: (a) each 10th isophote on a part of an image, (b) entry and exit
points (white) and the farthest point (green cross) from a bitangent (green hair lines) constructed on isophotes, (c) SAFs;
white lines connecting points (1, 0)T , (0, 0)T and (0, 1)T in the frame coordinate system.

isophote whereas the other one on quantities derived
from the whole isophote.

Detection of bitangent lines on concavities (see
Fig. 1(b)), exploits the fact that affine transformation
preserves tangency. First, curvature sign is estimated
and inflection points located (the curvature sign of the
curvature is preserved by affine transformations with
positive determinant). A local descent to the nearest
bitangent, as in [2], is employed to find all bitangents
on the concavity. Each local concavity is endowed with
entry, exit and farthest point from the bitangent.

Affine covariant frames are represented as a ma-
trix of the affine transformation which maps points
(1, 0)>, (0, 0)>, (0, 1)> from a normalized coordinate
system into image coordinates. The construction pro-
duces three points p, q, r – entry, exit points and far-
thest point on a concavity. The affine transformation
A representing this covariant frame is computed as

A =




M21 M22 M23

M31 M32 M33

0 0 1



−1

, M =




p1 q1 r1
p2 q2 r2
1 1 1



−1

(2)

Note that the construction can be easily extended
to efficiently compute a perspective covariant canonical
frame of Rothwell et al . [18] where all steps, including
selection of primitives, are performed invariantly to a
homography.

Our second construction combines covariance ma-
trix Σ(Q) with two points – the centre of gravity µ(Q)
of region Q and a point of extremal curvature qκ

µ(Q) =
1

|Q|
∑

q∈Q
q, Σ(Q) =

1

|Q|
∑

q∈Q
(q − µ)(q − µ)>.

(3)

The center of gravity µ(Q) provides two constraints,
i.e. resolving translation. The symmetric 2× 2 matrix
Σ(Q) of second central algebraic moments gives three
constraints. Together, the centre of gravity and the
covariance matrix fix the affine transformation up to
an unknown rotation. Normalization by the covariance
matrix therefore allows affine-invariant measurement of
distances, angles and curvatures.

To find local extrema of curvature qκ we need to
estimate curvature at each point of the discrete curve
– isophote. Curvature estimation via curvature scale-
space [12] is time consuming. Rather an approximation
of the continuous curve is computed by smoothing the
discrete curve with a Gaussian kernel, as in [20]

CQ(t) = BQ(t) ∗G(t, σ), (4)

where BQ is a discrete curve, t a curve parameter; σ is
set to a small value to filter quantisation effects. The
approximated continuous isophote CQ, is normalized
using µ(Q) and Σ(Q) to allow affine-invariant measure-
ment of angles

NQ(t) = (CQ(t)− µ(Q))Σ−1/2(Q). (5)

The local curvature κ(t) is then computed from the
angle between vectors l, r of a fixed length cast in
opposite directions from point NQ(t) along the curve
NQ. The curvature κ is estimated from the angle
cosα(t) = (l.r)/(| l|| r|), as follows

κ(t) = δ(t)
1 + cosα(t)

2
, where (6)

δ(t) =

{
1 if l1r2 − l2r1 > 0
−1 otherwise

Each of the local maxima qκ of κ(t) provides the re-
maining constraint for the affine transformation and
thus fixes one affine covariant frame.

affine frames on isophotes

[Perdoch et al. 2007]
• only local stability

• based on bitangents
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(a) (b) (c)

Figure 1. Example of stable affine frame construction: (a) each 10th isophote on a part of an image, (b) entry and exit
points (white) and the farthest point (green cross) from a bitangent (green hair lines) constructed on isophotes, (c) SAFs;
white lines connecting points (1, 0)T , (0, 0)T and (0, 1)T in the frame coordinate system.
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Note that the construction can be easily extended
to efficiently compute a perspective covariant canonical
frame of Rothwell et al . [18] where all steps, including
selection of primitives, are performed invariantly to a
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i.e. resolving translation. The symmetric 2× 2 matrix
Σ(Q) of second central algebraic moments gives three
constraints. Together, the centre of gravity and the
covariance matrix fix the affine transformation up to
an unknown rotation. Normalization by the covariance
matrix therefore allows affine-invariant measurement of
distances, angles and curvatures.

To find local extrema of curvature qκ we need to
estimate curvature at each point of the discrete curve
– isophote. Curvature estimation via curvature scale-
space [12] is time consuming. Rather an approximation
of the continuous curve is computed by smoothing the
discrete curve with a Gaussian kernel, as in [20]

CQ(t) = BQ(t) ∗G(t, σ), (4)

where BQ is a discrete curve, t a curve parameter; σ is
set to a small value to filter quantisation effects. The
approximated continuous isophote CQ, is normalized
using µ(Q) and Σ(Q) to allow affine-invariant measure-
ment of angles

NQ(t) = (CQ(t)− µ(Q))Σ−1/2(Q). (5)

The local curvature κ(t) is then computed from the
angle between vectors l, r of a fixed length cast in
opposite directions from point NQ(t) along the curve
NQ. The curvature κ is estimated from the angle
cosα(t) = (l.r)/(| l|| r|), as follows

κ(t) = δ(t)
1 + cosα(t)

2
, where (6)

δ(t) =

{
1 if l1r2 − l2r1 > 0
−1 otherwise

Each of the local maxima qκ of κ(t) provides the re-
maining constraint for the affine transformation and
thus fixes one affine covariant frame.

affine frames on isophotes

[Perdoch et al. 2007]
• only local stability

• based on bitangents

medial features
[Avrithis & Rapantzikos 2011]



medial features
[Avrithis & Rapantzikos, ICCV 2011]

additively weighted distance map

• given a non-increasing function f : X → R of gradient strength,
where X is the image plane,

D(f)(x) = min
y∈X
{d(x, y) + f(y)}

for x ∈ X
weighted medial

• similarly to unweighted case

M(f) = {x ∈ R2 : |π(x)| > 1}
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original image



weighted distance map + medial



original image + weighted medial



region/boundary duality & partition



original image + features



fragmentation factor

binary input point labels image partition

φ(κ) =
1

a(κ)

∑

e∈E(κ)

w2(x(e))

• selection criterion: is a region well-enclosed by boundaries?



law of closure & perceptual grouping



image search experiment
mAP on Oxford 5k

mAP Inv. index Re-ranking

Detector 50k 200k 50k 200k

MFD 0.515 0.580 0.568 0.617
Hessian-affine 0.488 0.573 0.537 0.614
MSER 0.473 0.544 0.537 0.589
SURF 0.488 0.531 0.497 0.536
SIFT 0.395 0.457 0.434 0.495



medial features...

• have arbitrary scale and shape

• are not contrained to extremal regions

• decompose shapes into parts

• capture law of closure



feature geometry
& spatial matching



spatial matching for instance recognition

Vocab Bag of
Size words Spatial
50K 0.473 0.599
100K 0.535 0.597
250K 0.598 0.633
500K 0.606 0.642
750K 0.609 0.630
1M 0.618 0.645

1.25M 0.602 0.625
0 2 4 6 8 10 12

x 10
5

0.45

0.5

0.55

0.6

0.65

Vocabulary Size

m
A

P

Bag of words
Spatial

Table 5. Examining the effect of vocabulary size on performance
for the 5K dataset. Each vocabulary is trained using AKM on
all 16.7M descriptors. There is a performance peak at 1 mil-
lion words. The spatial verification consistently improves perfor-
mance.

Scaling up with AKM. We explore a number of different
vocabulary sizes for the 5K dataset in table 5. This shows a
peak in performance at 1M visual words, although for large
numbers of clusters, the performance curve appears quite
flat and we predict the performance would not significantly
degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,
5K+100K and 5K+100K+1M datasets in table 4, rows (e)–
(g), using the 1M words visual vocabulary. In going from
the smallest dataset to the largest, a 226-fold increase in the
number of images, the performance falls by just over 20%.
We attribute this drop in performance to a lack of sufficient
discrimination in the quantization for the larger dataset. As
will be seen, this performance loss is ameliorated to some
extent once spatial ranking is included.

4. Spatial re-ranking
The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-
nificant section of the corpus. We have until now consid-
ered the features in each image as a visual bag-of-words
and have ignored the spatial configurations of features. We
now investigate re-ranking the top-ranked results using spa-
tial constraints. The spatial verification procedure estimates
a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
visual words.

4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
that hypothesis.

Transformation dof Matrix
translation +
isotropic scale 3

»

a 0 tx
0 a ty

–

translation +
anisotropic scale 4

»

a 0 tx
0 b ty

–

translation +
vertical shear

5
»

a 0 tx
b c ty

–

(a)

H1

I

H2

H

C1 C2

(b)
Table 6. (a) The three affine sub-groups compared in the spatial
re-ranking. (b) Computing H as H−1

2 H1, preserving “upness” for
the 5 dof case.

Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

fast spatial matching

[Philbin et al. 2007]
• RANSAC variant

• single-correspondence hypotheses

• enumerate them all—O(n2)
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a transformation between the query region and each target
image, based on how well its feature locations are predicted
by the estimated transformation. We then re-rank target im-
ages based on the discriminability of the spatially verified
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4.1. Transformations and their estimation
As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:
errors in a detected feature’s position and shape; and errors
due to outliers from mismatched or missing features, be-
cause of detector failure, occlusion, etc. The standard solu-
tion is to use the RANSAC algorithm [12]; this involves gen-
erating transformation hypotheses using a minimal num-
ber of correspondences and then evaluating each hypothesis
based on the number of “inliers” among all features under
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Typically, photos are taken from a restricted range of
canonical views and we can use this prior information to
speed up transformation estimation. We choose to use LO-
RANSAC [9], a variant of RANSAC. It involves generating
hypotheses of an approximate model and then iteratively re-
evaluating promising hypotheses using the full transforma-
tion. By selecting a restricted class of transformations for
the hypothesis generation stage and exploiting shape infor-
mation in the affine-invariant image regions, we are able to
generate hypotheses with only a single pair of correspond-
ing features. This greatly reduces the number of possible
hypotheses which need to be considered and significantly
speeds up the matching procedure. We therefore choose to
enumerate all such hypotheses, which removes the random-
ness from our algorithm, resulting in a deterministic proce-
dure.

We compare three affine sub-groups for hypothesis gen-
eration, with degrees of freedom ranging between 3 and 5,
that are listed in table 6(a). This is to evaluate whether or
not there is any significant performance difference between
transformation types. In each case we use a general (6 dof)
affine transformation for the iterative re-estimation step of
LO-RANSAC. The 3 dof transformation approximately cov-
ers situations such as a change in zoom or camera distance
to the scene, but not foreshortening. The 4 dof transforma-
tion approximately covers foreshortening by either a hori-
zontal or vertical scaling between views. The 5 dof trans-
formation preserves the vertical direction and allows for
anisotropic scaling and vertical shear. These three models
take advantage of the fact that images are usually displayed
on the web with the correct (upright) orientation. For this
reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method
(i) in the following results) is computed from a single region
correspondence using the regions’ centroids to estimate the
translation, and each region’s scale to estimate the isotropic
scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single
region correspondence, the scaling in the x direction is com-
puted from the ratio of the regions’ x extents (and similarly
for the y scaling).

The 5 dof transformation (method iii) is estimated from

fast spatial matching

[Philbin et al. 2007]
• RANSAC variant

• single-correspondence hypotheses

• enumerate them all—O(n2)

sional vectors is known to have high complexity if an ex-
act solution is required. However, a modification of the k-d
tree algorithm called the best-bin-first search method (Beis
& Lowe [3]) can identify the nearest neighbors with high
probability using only a limited amount of computation. To
further improve the efficiency of the best-bin-first algorithm,
the SIFT key samples generated at the larger scale are given
twice the weight of those at the smaller scale. This means
that the larger scale is in effect able to filter the most likely
neighbours for checking at the smaller scale. This also im-
proves recognition performance by giving more weight to
the least-noisy scale. In our experiments, it is possible to
have a cut-off for examining at most 200 neighbors in a
probabilisticbest-bin-first search of 30,000 key vectors with
almost no loss of performance compared to finding an exact
solution.

An efficient way to cluster reliable model hypotheses
is to use the Hough transform [1] to search for keys that
agree upon a particular model pose. Each model key in the
database contains a record of the key’s parameters relative
to the model coordinate system. Therefore, we can create
an entry in a hash table predicting the model location, ori-
entation, and scale from the match hypothesis. We use a
bin size of 30 degrees for orientation, a factor of 2 for scale,
and 0.25 times the maximum model dimension for location.
These rather broad bin sizes allow for clustering even in the
presence of substantial geometric distortion, such as due to a
change in 3D viewpoint. To avoid the problem of boundary
effects in hashing, each hypothesis is hashed into the 2 clos-
est bins in each dimension, giving a total of 16 hash table
entries for each hypothesis.

6. Solution for affine parameters

The hash table is searched to identify all clusters of at least
3 entries in a bin, and the bins are sorted into decreasing or-
der of size. Each such cluster is then subject to a verification
procedure in which a least-squares solution is performed for
the affine projection parameters relating the model to the im-
age.

The affine transformation of a model point [x y]T to an
image point [u v]T can be written as

"
u

v

#
=

"
m1 m2

m3 m4

#"
x

y

#
+

"
tx

ty

#

where the model translation is [tx ty]T and the affine rota-
tion, scale, and stretch are represented by themi parameters.

We wish to solve for the transformation parameters, so

Figure 3: Model images of planar objects are shown in the
top row. Recognition results below show model outlinesand
image keys used for matching.

the equation above can be rewritten as
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This equation shows a single match, but any number of fur-
ther matches can be added, with each match contributing
two more rows to the first and last matrix. At least 3 matches
are needed to provide a solution.

We can write this linear system as

Ax = b

The least-squares solution for the parameters x can be deter-

scale-invariant features
[Lowe 1999]

• Hough voting in 4d transformation
space

• verification needed—still O(n2)



spatial matching for class recognition

x? = arg max
x∈{0,1}n

x>Ax

spectral matching

[Leordeanu & Hebert et al. 2005]

• based on pairwise affinity

• mapping constraints

• relaxed to an eigenvalue
problem



spatial matching for class recognition

x? = arg max
x∈{0,1}n

x>Ax

spectral matching

[Leordeanu & Hebert et al. 2005]

• based on pairwise affinity

• mapping constraints

• relaxed to an eigenvalue
problem

get the following definition of a pyramid match kernel:

κL(X,Y ) = IL +

L−1∑

�=0

1

2L−�

(
I� − I�+1

)
(2)

=
1

2L
I0 +

L∑

�=1

1

2L−�+1
I� . (3)

Both the histogram intersection and the pyramid match ker-
nel are Mercer kernels [7].

3.2. Spatial Matching Scheme

As introduced in [7], a pyramid match kernel works
with an orderless image representation. It allows for pre-
cise matching of two collections of features in a high-
dimensional appearance space, but discards all spatial in-
formation. This paper advocates an “orthogonal” approach:
perform pyramid matching in the two-dimensional image
space, and use traditional clustering techniques in feature
space.1 Specifically, we quantize all feature vectors into M
discrete types, and make the simplifying assumption that
only features of the same type can be matched to one an-
other. Each channel m gives us two sets of two-dimensional
vectors, Xm and Ym, representing the coordinates of fea-
tures of type m found in the respective images. The final
kernel is then the sum of the separate channel kernels:

KL(X,Y ) =

M∑

m=1

κL(Xm, Ym) . (4)

This approach has the advantage of maintaining continuity
with the popular “visual vocabulary” paradigm — in fact, it
reduces to a standard bag of features when L = 0.

Because the pyramid match kernel (3) is simply a
weighted sum of histogram intersections, and because
c min(a, b) = min(ca, cb) for positive numbers, we can
implement KL as a single histogram intersection of “long”
vectors formed by concatenating the appropriately weighted
histograms of all channels at all resolutions (Fig. 1). For
L levels and M channels, the resulting vector has dimen-
sionality M

∑L
�=0 4� = M 1

3 (4L+1 − 1). Several experi-
ments reported in Section 5 use the settings of M = 400
and L = 3, resulting in 34000-dimensional histogram in-
tersections. However, these operations are efficient because
the histogram vectors are extremely sparse (in fact, just as
in [7], the computational complexity of the kernel is linear
in the number of features). It must also be noted that we did
not observe any significant increase in performance beyond
M = 200 and L = 2, where the concatenated histograms
are only 4200-dimensional.

1In principle, it is possible to integrate geometric information directly
into the original pyramid matching framework by treating image coordi-
nates as two extra dimensions in the feature space.
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Figure 1. Toy example of constructing a three-level pyramid. The
image has three feature types, indicated by circles, diamonds, and
crosses. At the top, we subdivide the image at three different lev-
els of resolution. Next, for each level of resolution and each chan-
nel, we count the features that fall in each spatial bin. Finally, we
weight each spatial histogram according to eq. (3).

The final implementation issue is that of normalization.
For maximum computational efficiency, we normalize all
histograms by the total weight of all features in the image,
in effect forcing the total number of features in all images to
be the same. Because we use a dense feature representation
(see Section 4), and thus do not need to worry about spuri-
ous feature detections resulting from clutter, this practice is
sufficient to deal with the effects of variable image size.

4. Feature Extraction

This section briefly describes the two kinds of features
used in the experiments of Section 5. First, we have so-
called “weak features,” which are oriented edge points, i.e.,
points whose gradient magnitude in a given direction ex-
ceeds a minimum threshold. We extract edge points at two
scales and eight orientations, for a total of M = 16 chan-
nels. We designed these features to obtain a representation
similar to the “gist” [21] or to a global SIFT descriptor [12]
of the image.

For better discriminative power, we also utilize higher-
dimensional “strong features,” which are SIFT descriptors
of 16× 16 pixel patches computed over a grid with spacing
of 8 pixels. Our decision to use a dense regular grid in-
stead of interest points was based on the comparative evalu-
ation of Fei-Fei and Perona [4], who have shown that dense
features work better for scene classification. Intuitively, a
dense image description is necessary to capture uniform re-
gions such as sky, calm water, or road surface (to deal with
low-contrast regions, we skip the usual SIFT normalization
procedure when the overall gradient magnitude of the patch
is too weak). We perform k-means clustering of a random
subset of patches from the training set to form a visual vo-
cabulary. Typical vocabulary sizes for our experiments are
M = 200 and M = 400.

spatial pyramid matching

[Lazebnik et al. 2006]

• flexible matching

• non-invariant



Hough pyramid matching
[Tolias & Avrithis, ICCV 2011]

• do not seek for inliers

• rather, look for hypotheses that agree with each other

• Hough voting in the 4d transformation space

F (c) = F (q)F (p)−1 =

[
M(c) t(c)
0> 1

]

f(c) = (x(c), y(c), σ(c), θ(c))

• pyramid matching in the transformation space

s(c) = g(b0) +

L−1∑

k=1

2−k{g(bk)− g(bk−1)}

s(C) =
∑

c∈C\X
w(c)s(c)
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Hough pyramid matching . . .

• is invariant to similarity transformations

• is flexible, allowing non-rigid motion and multiple matching surfaces or
objects

• imposes one-to-one mapping



examples
HPM vs FSM [Philbin et al. 2007]

fast spatial matching
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Hough pyramid matching . . .

• is non-iterative, and linear in the number of correspondences

• in a given query time, can re-rank one order of magnitude more
images than the state of the art

• typically needs less than one millisecond to match a pair of images, on
average



performance vs time
on World Cities 2M
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comparison to state of the art
[Avrithis & Tolias, IJCV 2014]

method Ox5K Ox105K Paris Holidays

HPM (this work) 0.789 0.730 0.725 0.790
[Shen et al. 2012] 0.752 0.729 0.741 0.762
GVP [Zhang et al. 2011] 0.696 - - -
SBoF [Cao et al. 2010] 0.656 - 0.632 -
[Perdoch et al. 2009] 0.789 0.726 - 0.715
FSM [Philbin et al. 2007] 0.647 0.541 - -
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Figure 1. Images and corresponding VLAD descriptors, for k=16 centroids (D=16×128). The components of the descriptor are represented
like SIFT, with negative components (see Equation 1) in red.

words k: we consider values ranging from k=16 to k=256.
Figure 1 depicts the VLAD representations associated

with a few images, when aggregating 128-dimensional
SIFT descriptors. The components of our descriptor map
to components of SIFT descriptors. Therefore we adopt the
usual 4 × 4 spatial grid representation of oriented gradients
for each vi=1..k. We have accumulated the descriptors in 16
of them, one per visual word. In contrast to SIFT descrip-
tors, a component may be positive or negative, due to the
difference in Equation 1.

One can observe that the descriptors are relatively sparse
(few values have a significant energy) and very structured:
most high descriptor values are located in the same cluster,
and the geometrical structure of SIFT descriptors is observ-
able. Intuitively and as shown later, a principal component
analysis is likely to capture this structure. For sufficiently
similar images, the closeness of the descriptors is obvious.

3. From vectors to codes
This section addresses the problem of coding an image

vector. Given a D-dimensional input vector, we want to
produce a code of B bits encoding the image representa-
tion, such that the nearest neighbors of a (non-encoded)
query vector can be efficiently searched in a set of n en-
coded database vectors.

We handle this problem in two steps, that must be opti-
mized jointly: 1) a projection that reduces the dimension-
ality of the vector and 2) a quantization used to index the

resulting vectors. For this purpose, we consider the recent
approximate nearest neighbor search method of [7], which
is briefly described in the next section. We will show the
importance of the joint optimization by measuring the mean
squared Euclidean error generated by each step.

3.1. Approximate nearest neighbor

Approximate nearest neighbors search methods [4, 11,
15, 24, 27] are required to handle large databases in com-
puter vision applications [22]. One of the most popu-
lar techniques is Euclidean Locality-Sensitive Hashing [4],
which has been extended in [11] to arbitrary metrics. How-
ever, these approaches and the one of [15] are memory con-
suming, as several hash tables or trees are required. The
method of [27], which embeds the vector into a binary
space, better satisfies the memory constraint. It is, how-
ever, significantly outperformed in terms of the trade-off
between memory and accuracy by the product quantization-
based approximate search method of [7]. In the following,
we use this method, as it offers better accuracy and because
the search algorithm provides an explicit approximation of
the indexed vectors. This allows us to compare the vector
approximations introduced by the dimensionality reduction
and the quantization. We use the asymmetric distance com-
putation (ADC) variant of this approach, which only en-
codes the vectors of the database, but not the query vector.
This method is summarized in the following.
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HE and WGC for large scale image search 7
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Figure 2: Illustration of k-means clustering and our binary signature. (a) Fine
clustering. (b) Low k and binary signature: the similarity search within a
Voronoi cell is based on the Hamming distance. Key: ·=centroid, �=descriptor,
×=noisy versions of this descriptor.
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BoW, HE and VLAD in the common model
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0, otherwise
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impact of selectivity

α = 1, τ = 0.0

α = 1, τ = 0.25

thresholding removes false correspondences



impact of selectivity

α = 3, τ = 0.0

α = 3, τ = 0.25

correspondences weighed based on confidence



impact of aggregation & burstiness
k = 128 as in VLAD



impact of aggregation & burstiness
k = 65k as in HE



comparison to state of the art
[Tolias et al. IJCV 2015]

Dataset MA Oxf5k Oxf105k Par6k Holiday

ASMK? 76.4 69.2 74.4 80.0
ASMK? × 80.4 75.0 77.0 81.0
ASMK 78.1 - 76.0 81.2
ASMK × 81.7 - 78.2 82.2

HE [Jégou et al. ’10] 51.7 - - 74.5
HE [Jégou et al. ’10] × 56.1 - - 77.5
HE-BURST [Jain et al. ’10] 64.5 - - 78.0
HE-BURST [Jain et al. ’10] × 67.4 - - 79.6
Fine vocab. [Mikuĺık et al. ’10] × 74.2 67.4 74.9 74.9
AHE-BURST [Jain et al. ’10] 66.6 - - 79.4
AHE-BURST [Jain et al. ’10] × 69.8 - - 81.9
Rep. structures [Torri et al. ’13] × 65.6 - - 74.9
Locality [Tao et al. ’14] × 77.0 - - 78.7
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inverted index inverted multi-index
Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

nearest neighbor search



binary codes

Figure 2: Left: Eigenfunctions for a uniform rectangular distribution in 2D. Right: Thresh-
olded eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues de-
pend on the aspect ratio of the rectangle and the spatial frequency of the cut – it is better
to cut the long dimension first and lower spatial frequencies are better than higher ones.
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Figure 3: Comparison of neighborhood defined by hamming balls of different radii using
codes obtained with LSH, Boosting, RBM and spectral hashing when using 3, 7 and 15 bits.
The yellow dot denotes a test sample. The red points correspond to the locations that are
within a hamming distance of zero. Green corresponds to a hamming ball of radius 1, and
blue to radius 2.

• Thresholding the analytical eigenfunctions at zero, to obtain binary codes.

This simple algorithm has two obvious limitations. First, it assumes a multidimensional
uniform distribution generated the data. We have experimented with using multidimensional
Gaussians instead. Second, even though it avoids the trivial 3 way dependencies that arise
from outer-product eigenfunctions, other high-order dependencies between the bits may
exist. We have experimented with using only frequencies that are powers of two to avoid
these dependencies. Neither of these more complicated variants of spectral hashing gave a
significant improvement in performance in our experiments.

Figure 4a compares the performance of spectral hashing to LSH, RBMs and Boosting on a
2D rectangle and figure 3 visualizes the Hamming balls for the different methods. Despite
the simplicity of spectral hashing, it outperforms the other methods. Even when we apply
RBMs and Boosting to the output of spectral hashing the performance does not improve.
A similar pattern of results is shown in high dimensional synthetic data (figure 4b).

Some insight into the superior performance can be obtained by comparing the partitions
that each bit defines on the data (figures 2,1). Recall that we seek partitions that give low
cut value and are approximately independent. LSH which uses random linear partitions
may give very unbalanced partitions. RBMs and Boosting both find good partitions, but
the partitions can be highly dependent on each other.

3 Results

In addition to the synthetic results we applied the different algorithms to the image databases
discussed in [3]. Figure 5 shows retrieval results for spectral hashing, RBMs and boosting
on the “labelme” dataset. Note that even though the spectral hashing uses a terrible model
of the statistics of the database — it simply assumes a N dimensional rectangle, it performs
better than boosting which actually uses the distribution (the difference in performance
relative to RBMs is not significant). Not only is the performance numerically better, but

6

spectral hashing

[Weiss et al. 2008]
• similarity preserving, balanced,

uncorrelated

• spectral relaxation

• out of sample extension: uniform
assumption
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Figure 1. Toy illustration of the proposed ITQ method (see Section
2 for details). The basic binary encoding scheme is to quantize
each data point to the closest vertex of the binary cube, (±1,±1)
(this is equivalent to quantizing points according to their quad-
rant). (a) The x and y axes correspond to the PCA directions of
the data. Note that quantization assigns points in the same cluster
to different vertices. (b) Randomly rotated data – the variance is
more balanced and the quantization error is lower. (c) Optimized
rotation found by ITQ – quantization error is lowest, and the par-
titioning respects the cluster structure.

ternating minimization approach for refining the initial or-
thogonal transformation to reduce quantization error. This
approach, dubbed iterative quantization (ITQ) has con-
nections to the orthogonal Procrustes problem [15] and to
eigenvector discretization for multi-class spectral partition-
ing [22], and in our experiments it outperforms the methods
of [12, 19, 21]. Moreover, ITQ can be coupled not only with
PCA, but with any projection onto an orthogonal basis. In
particular, we show how to combine ITQ with canonical
correlation analysis (CCA) to incorporate information from
clean or noisy class labels in order to improve the semantic
consistency of the code.

The rest of this paper is organized as follows. The ITQ
method is described in Section 2. The experimental evalu-
ation presented in Section 3 shows results for the unsuper-
vised scenario, where ITQ is applied to PCA-projected data.
Section 4 describes the supervised version of our method
based on CCA.

2. Unsupervised Code Learning
In this section, we address the problem of learning bi-

nary codes without any supervisory information in the form
of class labels. We first apply linear dimensionality reduc-
tion to the data, and then perform binary quantization in the
resulting space. For the first step, discussed in Section 2.1,
we follow the maximum variance formulation of [19, 21],
which yields PCA projections. The major novelty of our
method is in the second step (Section 2.2), where we try to
preserve the locality structure of the projected data by ro-
tating it so as to minimize the discretization error. Figure 1
illustrates the idea behind our method.

Let us first introduce our notation. We have a set of n
data points {x1,x2, . . . ,xn}, xi ∈ Rd, that form the rows

of the data matrix X ∈ Rn×d. We assume that the points
are zero-centered, i.e.,

∑n
i=1 xi = 0. Our goal is to learn

a binary code matrix B ∈ {−1, 1}n×c, where c denotes the
code length.1 For each bit k = 1, . . . , c, the binary encoding
function is defined by hk(x) = sgn(xwk), where wk is a
column vector of hyperplane coefficients and sgn(v) = 1 if
v ≥ 0 and 0 otherwise. For a matrix or a vector, sgn(·) will
denote the result of element-wise application of the above
function. Thus, we can write the entire encoding process
as B = sgn(XW ), where W ∈ Rd×c is the matrix with
columns wk.

2.1. Dimensionality Reduction

Following the formulation of [19, 21], we want to pro-
duce an efficient code in which the variance of each bit is
maximized and the bits are pairwise uncorrelated. We can
do this by maximizing the following objective function:

I(W ) =
∑

k

var(hk(x)) =
∑

k

var(sgn(xwk)) ,

1

n
BTB = I .

As shown in [19], the variance is maximized by encod-
ing functions that produce exactly balanced bits, i.e., when
hk(x) = 1 for exactly half of the data points and−1 for the
other half. However, the requirement of exact balancedness
makes the above objective function intractable. Adopting
the same signed magnitude relaxation as in [19], we get the
following continuous objective function:

Ĩ(W ) =
∑

k

E(‖xwk‖22) =
1

n

∑

k

wT
kX

TXwk

=
1

n
tr(WTXTXW ) , WTW = I . (1)

The constraintWTW = I requires the hashing hyperplanes
to be orthogonal to each other, which is a relaxed version
of the requirement that code bits be pairwise decorrelated.
This objective function is exactly the same as that of Prin-
cipal Component Analysis (PCA). For a code of c bits, we
obtain W by taking the top c eigenvectors of the data co-
variance matrix XTX .

2.2. Binary Quantization

Let v ∈ Rc be a vector in the projected space. It is easy
to show (see below) that sgn(v) is the vertex of the hyper-
cube {−1, 1}c closest to v in terms of Euclidean distance.
The smaller the quantization loss ‖ sgn(v)−v‖2, the better
the resulting binary code will preserve the original locality
structure of the data. Now, going back to eq. (1), it is clear

1In our formulation, the entries of B take on values {−1, 1} instead
of {0, 1} because the proposed quantization-based scheme of Section 2.2
requires both the data and the binary cube to be zero-centered.
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iterative quantization

[Gong & Lazebnik 2011]

• quantize to closest vertex of binary
cube

• PCA followed by interleaved
rotation and quantization



vector quantization
[Gray 1984]

minimize E(C) =
∑

x∈X
min
c∈C
‖x− c‖2 =

∑

x∈X
‖x− q(x)‖2

distortion dataset codebook quantizer



vector quantization
[Gray 1984]

• For small distortion → large k = |C|:
• hard to train
• too large to store
• too slow to search



product quantization
[Jégou et al. 2011]

minimize
∑

x∈X
min
c∈C
‖x− c‖2

subject to C = C1 × · · · × Cm



product quantization
[Jégou et al. 2011]

• train: q = (q1, . . . , qm) where q1, . . . , qm obtained by VQ

• store: |C| = km with |C1| = · · · = |Cm| = k

• search: ‖y − q(x)‖2 =

m∑

j=1

‖yj − qj(xj)‖2 where qj(xj) ∈ Cj



optimized product quantization
[Ge et al. 2013]

minimize
∑

x∈X
min
ĉ∈Ĉ
‖x−R>ĉ‖2

subject to Ĉ = C1 × · · · × Cm
R>R = I



optimized product quantization
Parametric solution for x ∼ N (0,Σ)

• independence: PCA-align by diagonalizing Σ as UΛU>

• balanced variance: permute Λ by π such that
∏
i λi is constant in

each subspace; R← UP>π
• find Ĉ by PQ on rotated data X̂ = RX



locally optimized product quantization
[Kalantidis & Avrithis, CVPR 2014]

• compute residuals r(x) = x− q(x) on coarse quantizer q

• collect residuals Zc = {r(x) : q(x) = c} per cell

• train (Rc, qc)← OPQ(Zc) per cell



locally optimized product quantization
[Kalantidis & Avrithis, CVPR 2014]

• residual distributions closer to Gaussian assumption

• better captures the support of data distribution, like local PCA
• multimodal (e.g. mixture) distributions
• distributions on nonlinear manifolds



local principal component analysis
[Kambhatla & Leen 1997]

Copyright © 2001 All Rights Reserved

but, we are not doing dimensionality reduction!



inverted multi-index
[Babenko & Lempitsky 2012]
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• train codebook C from dataset {xn}
• this codebook provides a coarse partition of the space



inverted multi-index
[Babenko & Lempitsky 2012]
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• decompose vectors as x = (x1,x2)

• train codebooks C1, C2 from datasets {x1
n}, {x2

n}
• induced codebook C1 × C2 gives a finer partition

• given query q, visit cells (c1, c2) ∈ C1 × C2 in ascending order of
distance to q, by first computing distances to q1,q2



inverted multi-index
multi-sequence algorithm
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Figure 2. Top – The overview of the query process within the inverted multi-index. First, the two halves of the query q1 and q2 are
matched w.r.t. sub-codebooks U and V to produce the two sequences of codewords ordered by the distance (denoted r and s) from the
respective query half. Then, those sequences are traversed with the multi-sequence algorithm that outputs the pairs of codewords ordered
by the distance from the query. The lists associated with those pairs are concatenated to produce the answer to the query. Bottom – The
first iterations of the multi-sequence algorithm in this example. Red denotes pairs in the priority queue, blue indicates traversed pairs (the
pair traversed at the current iteration is emphasized). Green numbers correspond to pair indices (i and j), while black symbols give original
codewords (uα(i) and vβ(j)). The numbers in entries are the distances r(i)+s(j) = d

(
q, [uα(i) vβ(j)]

)
.

{(r(i), s(j)) | i = 1 . . . L, j = 1 . . . L} in the or-
der of the increasing sum r(i) + s(j) (which equals
d(q, [uα(i) vβ(j)])). In this way, the centroids [uα(i) vβ(j)]
are visited in the order of increasing distance from q. The
traversal starts from the pair (1, 1) naturally corresponding
to the cell around the centroid [uα(1) vβ(1)], which the
query falls into. During the traversal, the lists Wα(i) β(j)

are concatenated, until the length of the answer exceeds the
predefined length T , at which point the traversal stops.

We propose an algorithm to perform such a traver-
sal (Figure 2-bottom). This multi-sequence algorithm is
based around a priority queue of index pairs (i, j), where
the priority of each pair is defined as − (r(i) + s(j)) =
−d

(
q, [uα(i) vβ(j)]

)
. The queue is initialized with a sin-

gle pair (1, 1). At each subsequent step t, the pair (it, jt)
with top priority (lowest distance from q) is popped from
the queue and considered traversed (the associated list
Wα(i) β(j) is added to the output list). The pairs (it + 1, jt)
and (it, jt+1) are then considered for the insertion into the
priority queue. The pair (it+1, jt) is inserted into the queue
if its other preceding pair (it + 1, jt − 1) has also been tra-
versed (or if jt=1). Similarly, the pair (it, jt+1) is inserted
into the queue if its other preceding pair (it− 1, jt+1) has
also been traversed (or if it=1). The idea is that each pair
is inserted only once when both of its preceding pairs are
traversed.

The multi-sequence algorithm produces a sequence of

pairs (i, j), whose lists Wi,j are accumulated into the query
response. One can prove the correctness of the algorithm:

Corollary 1 (correctness): the multi-sequence algo-
rithm produces the sequence of pairs in the order of in-
creasing r(i) + s(i) and will eventually visit every pair in
{1 . . . L} ⊗ {1 . . . L}.

Regarding the efficiency of the algorithm, one can prove
that the queue within the algorithm grows slow enough:

Corollary 2: at the tth step of the algorithm, when t
pairs have been output, the priority queue is no longer than
0.5 +

√
2t+ 0.25.

The proof of both corollaries and the pseudocode of the
multi-sequence algorithm are given in the supplementary
material.

Inverted index vs. inverted multi-index. Let us now
discuss the relative efficiency of the two indexing structures,
given the same codebook size K. In this situation, the in-
duced subdivision of the space is very different for the stan-
dard inverted index and for the inverted multi-index (Fig-
ure 1). In particular, the standard index maintains K lists
that correspond to the space subdivision into K cells, while
the multi-index maintains K2 lists corresponding to a much
finer subdivision of the space. While the lengths of the cell
lists within the inverted index tend to be balanced (due to
the nature of the k-means algorithm), the distribution of list
lengths within the multi-index is highly non-uniform. In
particular, there are lots of empty lists that correspond to ui



Multi-LOPQ
[Kalantidis & Avrithis, CVPR 2014]

x = ( x1 , x2 )

q2

q1 ...

..
.



comparison to state of the art
on SIFT1B, 128-bit codes

T Method R = 1 10 100

20K
IVFADC+R [Jégou et al. ’11] 0.262 0.701 0.962
LOPQ+R [Kalantidis & Avrithis ’14] 0.350 0.820 0.978

10K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.304 0.665 0.740
OMulti-D-OADC [Ge et al. ’13] 0.345 0.725 0.794
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.430 0.761 0.782

30K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.328 0.757 0.885
OMulti-D-OADC [Ge et al. ’13] 0.366 0.807 0.913
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.463 0.865 0.905

100K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.334 0.793 0.959
OMulti-D-OADC [Ge et al. ’13] 0.373 0.841 0.973
Multi-LOPQ [Kalantidis & Avrithis ’14] 0.476 0.919 0.973



image query on Flickr 100M
deep learned features, 4k → 128 dimensions

credit: Y. Kalantidis
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ANN search - clustering connection

which with the cited number of 2000 stable features per

frame amounts to about 50 training images in the database.

Lowe’s approach has been used on around 5000 objects

in a commercial application, but we are not aware of an

academic reference describing these results.

For the most part, the above approaches keep amounts

of data around in the database that is on the order of

magnitude as large as the image patches themselves, or

at least the region descriptors. However, the compactness

of the database is very important for query efficiency in

a large database. With our vocabulary tree approach, the

representation of an image patch is simply one or two

integers, which should be contrasted to the hundreds of

bytes or floats used for a descriptor vector.

Compactness is also the most important difference

between our approach and the hierarchical approach used

by Grauman and Darrell [5]. They use a pyramid of

histograms, at each level doubling the number of bins along

each axis without considering the distribution of data. By

using a vocabulary adapted to the likely distribution of

data, we can use a much smaller tree, resulting in better

resolution while maintaining a compact representation. We

also estimate that our approach is around a factor 1000

faster.

For feature extraction, we use our own implementation

of Maximally Stable Extremal Regions (MSERs) [10].

They have been found to perform well in thorough

performance evaluation [13, 4]. We warp an elliptical

patch around each MSER region into a circular patch.

The remaining portion of our feature extraction is then

implemented according to the SIFT feature extraction

pipeline by Lowe [9]. Canonical directions are found based

on an orientation histogram formed on the image gradients.

SIFT descriptors are then extracted relative to the canonical

directions. The SIFT descriptors have been found highly

distinctive in performance evaluation [12]. The normalized

SIFT descriptors are then quantized with the vocabulary

tree. Finally, a hierarchical scoring scheme is applied to

retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization

that is built by hierarchical k-means clustering. A large

set of representative descriptor vectors are used in the

unsupervised training of the tree.

Instead of k defining the final number of clusters or

quantization cells, k defines the branch factor (number of

children of each node) of the tree. First, an initial k-

means process is run on the training data, defining k cluster

centers. The training data is then partitioned into k groups,

where each group consists of the descriptor vectors closest

to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary

tree. The hierarchical quantization is defined at each level by k
centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining

quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some

maximum number of levels L, and each division into k parts

is only defined by the distribution of the descriptor vectors

that belong to the parent quantization cell. The process is

illustrated in Figure 2.

In the online phase, each descriptor vector is simply

propagated down the tree by at each level comparing

the descriptor vector to the k candidate cluster centers

(represented by k children in the tree) and choosing the

closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot

products, which is very efficient if k is not too large. The

path down the tree can be encoded by a single integer and

is then available for use in scoring.

Note that the tree directly defines the visual vocabulary

and an efficient search procedure in an integrated

manner. This is different from for example defining a

visual vocabulary non-hierarchically, and then devising

an approximate nearest neighbor search in order to find

visual words efficiently. We find the seamless choice

more appealing, although the latter approach also defines

quantization cells in the original space if used consistently

and deterministically. The hierarchical approach also gives

more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of

the vocabulary in a non-hierarchical manner would be very

high, the computational cost in the hierarchical approach is

hierarchical k-means
[Nister & Stewenius 2006]
use k-means tree for ANN search
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which with the cited number of 2000 stable features per

frame amounts to about 50 training images in the database.

Lowe’s approach has been used on around 5000 objects

in a commercial application, but we are not aware of an

academic reference describing these results.

For the most part, the above approaches keep amounts

of data around in the database that is on the order of

magnitude as large as the image patches themselves, or

at least the region descriptors. However, the compactness

of the database is very important for query efficiency in

a large database. With our vocabulary tree approach, the

representation of an image patch is simply one or two

integers, which should be contrasted to the hundreds of

bytes or floats used for a descriptor vector.

Compactness is also the most important difference

between our approach and the hierarchical approach used

by Grauman and Darrell [5]. They use a pyramid of

histograms, at each level doubling the number of bins along

each axis without considering the distribution of data. By

using a vocabulary adapted to the likely distribution of

data, we can use a much smaller tree, resulting in better

resolution while maintaining a compact representation. We

also estimate that our approach is around a factor 1000

faster.

For feature extraction, we use our own implementation

of Maximally Stable Extremal Regions (MSERs) [10].

They have been found to perform well in thorough

performance evaluation [13, 4]. We warp an elliptical

patch around each MSER region into a circular patch.

The remaining portion of our feature extraction is then

implemented according to the SIFT feature extraction

pipeline by Lowe [9]. Canonical directions are found based

on an orientation histogram formed on the image gradients.

SIFT descriptors are then extracted relative to the canonical

directions. The SIFT descriptors have been found highly

distinctive in performance evaluation [12]. The normalized

SIFT descriptors are then quantized with the vocabulary

tree. Finally, a hierarchical scoring scheme is applied to

retrieve images from a database.

3. Building and Using the Vocabulary Tree

The vocabulary tree defines a hierarchical quantization

that is built by hierarchical k-means clustering. A large

set of representative descriptor vectors are used in the

unsupervised training of the tree.

Instead of k defining the final number of clusters or

quantization cells, k defines the branch factor (number of

children of each node) of the tree. First, an initial k-

means process is run on the training data, defining k cluster

centers. The training data is then partitioned into k groups,

where each group consists of the descriptor vectors closest

to a particular cluster center.

The same process is then recursively applied to

Figure 2. An illustration of the process of building the vocabulary

tree. The hierarchical quantization is defined at each level by k
centers (in this case k = 3) and their Voronoi regions.

each group of descriptor vectors, recursively defining

quantization cells by splitting each quantization cell into k
new parts. The tree is determined level by level, up to some

maximum number of levels L, and each division into k parts

is only defined by the distribution of the descriptor vectors

that belong to the parent quantization cell. The process is

illustrated in Figure 2.

In the online phase, each descriptor vector is simply

propagated down the tree by at each level comparing

the descriptor vector to the k candidate cluster centers

(represented by k children in the tree) and choosing the

closest one. This is a simple matter of performing k
dot products at each level, resulting in a total of kL dot

products, which is very efficient if k is not too large. The

path down the tree can be encoded by a single integer and

is then available for use in scoring.

Note that the tree directly defines the visual vocabulary

and an efficient search procedure in an integrated

manner. This is different from for example defining a

visual vocabulary non-hierarchically, and then devising

an approximate nearest neighbor search in order to find

visual words efficiently. We find the seamless choice

more appealing, although the latter approach also defines

quantization cells in the original space if used consistently

and deterministically. The hierarchical approach also gives

more flexibility to the subsequent scoring procedure.

While the computational cost of increasing the size of

the vocabulary in a non-hierarchical manner would be very

high, the computational cost in the hierarchical approach is

hierarchical k-means
[Nister & Stewenius 2006]
use k-means tree for ANN search
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Abstract

Large scale duplicate detection, clustering and mining
of documents or images has been conventionally treated
with seed detection via hashing, followed by seed growing
heuristics using fast search. Principled clustering methods,
especially kernelized and spectral ones, have higher com-
plexity and are difficult to scale above millions. Under the
assumption of documents or images embedded in Euclidean
space, we revisit recent advances in fast approximate k-
means variants, and borrow their best ingredients to intro-
duce a new one, inverted-quantized k-means (IQ-means).
Its sampling-based initialization is a form of hashing and
analogous to seed detection, while its update iterations are
analogous to seed growing, but are now principled in the
sense of distortion minimization. Key underlying concepts
are quantization of data points and multi-index based in-
verted search from centroids to cells. We further design a
dynamic variant that is able to determine the number of
clusters k in a single run at nearly zero additional cost.
Combined with powerful deep learned representations, we
achieve clustering of a 100 million image collection on a
single core in less than one hour.

1. Introduction

NEARLY two decades ago [6], discovering duplicates
among millions of web documents was the motiva-

tion behind one of the first locality sensitive hashing (LSH)
schemes, later known as MinHash [7]. The same method
was subsequently used to select seeds which, followed by
efficient search and spatial verification, would lead to clus-
tering and mining in collections of up to 105 images [11].

Many approaches followed, but problems have remained
such as failing to discover infrequent documents, seed
growing relying on heuristics, or more principled methods
like medoid shift still being too costly to scale up [38].
Pairwise matching remains a problem that is inherently
quadratic in the number of documents, and approximate
nearest neighbor (ANN) search has been employed to help.
Approximate k-means (AKM) is one such attempt [26],

(a) Ranked retrieval [8] (b) DRVQ [1]

(c) EGM [2] (d) This work: IQ-means

Figure 1: Different k-means variants. (??) Data points; (??)
centroids; ( ) search range; ( ) estimated cluster extent, used
to dynamically determine k.

where each data point is assigned to the nearest centroid
by ANN search. But in this work we focus our attention on
the inverse process.

Observing that data points remain fixed during k-means
iterations, ranked retrieval [8] chooses to search for near-
est data points using centroids as queries, as illustrated in
Fig. 1a. This choice dispenses the need to rebuild an in-
dex at each iteration, and requires less queries because cen-
troids are naturally less than data points. Points are exam-
ined more than once and not all points are assigned to cen-
troids; it is observed however that distortion is not influ-
enced much. If range queries were used, this method would
be very similar to mean shift [10], except that centroid dis-
placement is not independent here.

Dimensionality-recursive vector quantization
(DRVQ) [1] relies on the same inverted centroid-to-
data queries. However, search is based on ideas extended
from the inverted multi-index [4]. The entire search
process for all centroids resembles a propagation on a
two-dimensional grid, where each cell is visited only
once and all cells are assigned to centroids, defining a
discrete Voronoi diagram, as illustrated in Fig. 1b. Further,

1

approximate k-means

[Philbin et al. 2007]
use ANN search to accelerate assignment
step



ANN search - clustering connection
product quantization

[Jégou et al. 2011]

minimize
∑

x∈X
min
c∈C
‖x− c‖2

subject to C = C1 × · · · × Cm

product quantization

[Jégou et al. 2010]
use k-means on subspaces to
accelerate ANN search
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accelerate ANN search
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

inverted multi-index
[Babenko & Lempitsky 2012]
exhaustively search on subspaces
before searching on entire space
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Quantize and Conquer: A dimensionality-recursive solution
to clustering, vector quantization, and image retrieval

Yannis Avrithis
National Technical University of Athens

Abstract

Inspired by the close relation between nearest neighbor
search and clustering in high-dimensional spaces as well as
the success of one helping to solve the other, we introduce
a new paradigm where both problems are solved simultane-
ously. Our solution is recursive, not in the size of input data
but in the number of dimensions. One result is a cluster-
ing algorithm that is tuned to small codebooks but does not
need all data in memory at the same time and is practically
constant in the data size. As a by-product, a tree struc-
ture performs either exact or approximate quantization on
trained centroids, the latter being not very precise but ex-
tremely fast. A lesser contribution is a new indexing scheme
for image retrieval that exploits multiple small codebooks to
provide an arbitrarily fine partition of the descriptor space.
Large scale experiments on public datasets exhibit state of
the art performance and remarkable generalization.

1. Introduction
We often visualize a clustering process in two dimensions
as in Figure 1, where a number of centroids partition the
underlying space into Voronoi cells. Even with k-means,
which is arguably the fastest alternative at large scale, the
cost is dominated by the assignment of data points to the
nearest centroid. It is thus popular to solve this subproblem
by approximate search [20]. In the 2D discrete space of
Figure 1, one may envision solving first the inverse problem
of computing a distance map on the entire 2D grid, which
could then respond to assignment queries by lookup.

By analogy, one may envision image retrieval as a propa-
gation process on this grid, where query descriptors serve as
source points and a local distance map is generated around
these points. Indexed images have their descriptors dis-
tributed on the grid and only those at a specific range from
source points are retrieved. Weighting of points is possible
based on the distance to nearest query point, as specified by
the position on the grid where they are found.

But how about spaces of up to 128 dimensions as in
the case of SIFT descriptors? Unfortunately, the number

Figure 1. Clustering and space partitioning, visualized on 2D dis-
crete space. Coloring of Voronoi cells follows that of the corre-
sponding centroid; patch intensity follows the distance map.

of grid positions increases exponentially in the number of
dimensions, which prevents us from visiting or even repre-
senting the entire space. This is exactly our contribution in
this work: we use a 2D discrete grid not just as an anal-
ogy but to actually solve clustering or search problems in
higher-dimensional spaces. The key idea is that the grid
actually represents a 2d-dimensional space S. The two “di-
mensions” that we see in fact capture the discrete topology
of two subspaces SL, SR, each of d dimensions, that de-
compose S into a Cartesian product S = SL × SR.

In a clustering setting, and assuming that we see cen-
troids as point sources and do compute a distance map via
propagation from the sources to the entire grid, it is possible
to obtain a triangulation as a by-product, having the cluster
centroids as vertices as in Figure 1. The graph represent-
ing this triangulation captures exactly the discrete topology
of the space. Doing this for both SL and SR, we may ap-
ply the same idea to S, ending up with an algorithm that is
recursive in the number of dimensions.

In a retrieval setting, we do not even need a single code-
book for the entire descriptor space. We may start recur-
sion after decomposing e.g. into two or four subspaces,
of dimension 64 or 32 respectively for SIFT descriptors.

1



DRVQ base case: d = 1

fi
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DRVQ recursion: d→ 2d

Quantize and Conquer: A dimensionality-recursive solution
to clustering, vector quantization, and image retrieval

Yannis Avrithis, NTUA

Motivation

I Connection between clustering and approximate nearest neighbor (ANN) search
I approximate k-means (AKM) [1]: use ANN search to accelerate assignment step
I product quantization (PQ) [2]: use k-means on subspaces to accelerate ANN search
I inverted multi-index [3]: exhaustively search on subspaces before searching on entire space

I What is the actual connection under subspace decomposition? Is there something missing?

I Can we use recursion to solve both problems at the same time?

Problem

I Given n points in d dimensions, quantize to k centroids under
minimal distortion, with n > 106, d > 102, k > 103

I k-means assignment step is the bottleneck
I exhaustive search: O(nk) time; ANN search (AKM): e.g., O(n log k)
I n nearest neighbor queries over the same set of k centroids
I so why not lookup on precomputed distance maps and Voronoi cells?
I O(n) time, but O(2d) space: fine e.g. for d = 2

I But what if d > 10? Is then a lookup-based solution possible?

I Our dimensionality-recursive clustering (DRC) takes O(k3) time
to pre-process and O(n) time to assign, at O(k2) space

DRC Base case: one dimension

Given

I set X of N data points on interval I = [a, b) of R
I target number K > 1 of centroids

Representation

I partition I into B � K subintervals (bins) of length ` = (b− a)/B
I let Z = {z0, . . . , zB−1} be the midpoints of subintervals

I allocate x ∈ X to bin r(x) = b(x− a)/`c ∈ {0, . . . , B − 1}
I quantize points via h : I → Z with x 7→ h(x) = zr(x) = a + `r(x) + `/2

Initialization

I let Xi = {x ∈ X : r(x) = i} be the set of points allocated to bin i

I measure discrete distribution f by normalized histogram frequency fi = |Xi|/N
I centroids C = {c0, . . . , cK−1}: K samples out of Z with replacement, according to f

fi

zi
z0 z2 z4 z6 z8 . . . zB−1

x
a bm1 m2 m3

c0 c1 c2 c3

Quantizer

I ideal: q : I → C with x 7→ q(x) = argminc∈C ‖x− c‖
I approximation: restriction q∗ : Z → C, i.e., compute q(z) and store as q∗[z] for all z ∈ Z.

Assignment step

I let mk be the midpoint of [ck−1, ck) for k = 1, . . . , K − 1; m0 = a, mK = b

I then Voronoi cell Vk = {z ∈ Z : q(z) = ck} found as Z ∩ [mk,mk+1) for all ck ∈ C
I assign q∗[z]← ck for all z ∈ Vk
Update step

I weighted averaging over Voronoi cells: ck ←
∑
i:zi∈Vk fizi for all ck ∈ C

At termination

I approximate q(x) ' q∗[h(x)] ∈ C for all x ∈ X
I construct graph G = {C,E} with edges E = {(ck−1, ck) : k = 1, . . . , K − 1} between successive

centroids as a neighborhood system over I

DRC Recursion: from d to 2d dimensions
(or: learning a joint distribution from two marginal ones)

Subspace decomposition

I decompose 2d-dimensional space S into product SL × SR of d-dimensional subspaces SL, SR

I write x ∈ S as x = (xL, xR) with projections xL ∈ SL, xR ∈ SR
Given

I set X of N data points on interval I = IL × IR of S

I target number K > 1 of centroids

I sets of projections XL, XR clustered into CL, CR, each of J centroids

I each projection xL (xR) quantized to qL(xL) ∈ CL (qR(xR) ∈ CR)

I graphs GL = {CL, EL}, GR = {CR, ER} representing neighborhood systems over IL, IR

Representation

I let Z = CL × CR be a grid of B = J × J points in S

I write Z = {z0, . . . , zB−1}: again, a discrete representation of I

I quantize points via h : I → Z with x 7→ h(x) = (qL(xL), qR(xR))

Initialization

I let Xi = {x ∈ X : h(x) = zi} be the set of points allocated to bin i

I measure f with fi = |Xi|/N and sample C = {c0, . . . , cK−1} as in one dimension

x = ( x1 , x2 )

S2
q2(x2)

G2

S1 G1 S

q1(x1)

h(x)

E1

E2

?

q1

q2

h

h

q∗

q∗

Clustering

I assignment: compute q(z) and store as q∗[z] for all z ∈ Z: product propagation, O(K3)

I update: exactly as in one dimension

At termination

I quantize centroids to nearest points on grid Z as ck ← h(ck) for ck ∈ C
I approximate q(x) ' q∗[h(x)] ∈ C for all x ∈ X
I compute graph G = {C,E} once at final assignment step, as by-product of propagation
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Dim.-recursive quantization (DRQ)

Approximate quantization

I recursively compute q(x) by delegating qL(x), qR(x) if
d > 1:

q(x) '
{
q∗[a + `r(x) + `/2], d = 1

q∗[qL(xL), qR(xR)], d > 1

I time complexity when D = 2P : O(D)
I tree structure with D leaves and D − 1 internal nodes
I hence, D scalar quantizations and D − 1 lookups

I not precise enough for NN search, but fine for k-means
assignment

Exact quantization

I recursively compute squared Euclidean distance to all
centroids

I d = 1: compute δ(x, c) = (x− c)2 for all c ∈ C.
I d > 1:

I delegate δL(xL, zL), δR(xR, zR), for all z ∈ Z
I let δ(x, z) = δL(xL, zL) + δR(xR, zR) for any x ∈ I, z ∈ Z
I minimize q(x) = argminc∈C δ(x, c)

I exact because centroids are stored for d = 1 and quantized
on grid for d > 1

I time complexity with D = 2P (tree of height P ), Kp
centroids at 2p dimensions (level p) and K = {K0, . . . , KP}
I recursive: O(φ(K)) = O(K logD) where φ(K) =∑P

p=0 2
P−pKp

I näıve: O(KP2
P ) = O(KD)

Product propagation

1 function (q∗, E)← pp(C,Z, h, δ;EL, ER, τ )
2 E ← ∅; initialize queue Q
3 for z ∈ Z do state[z]← alive
4 for c ∈ C do push(c, h(c))
5 while ¬Q.empty() do
6 z ← Q.extract-min()
7 state[z]← far; c← q∗[z]
8 for y ∈ EL(zL) do scan(c, (y, zR))

9 for y ∈ ER(zR) do scan(c, (zL, y))

10 return (q∗, E)

11 function scan(c, z)
12 if state[z] = alive then push(c, z)
13 if state[z] = close then relax(c, z)
14 if state[z] = far then join(c, z)

15 function push(c, z)
16 dist[z]← δ(c, z); q∗[z]← c
17 Q.insert(z); state[z]← close

18 function relax(c, z)
19 d← δ(c, z)
20 if d < dist[z] then
21 dist[z]← d; q∗[z]← c
22 Q.decrease-key(z, d)

23 function join(c, z) . only at termination
24 if δ(c, z) + dist[z] < τ then
25 E ← E ∪ (c, q∗[z])

Experiments

Clustering
4 codebooks at D = 32 dimensions each on N = 12.5M
128-dimensional SIFT descriptors of Oxford 5K

K
logKp (d = 2p)

time (m)
1 2 4 8 16 32

16K 6 7 8 9 11 14 129.96
8K 6 7 8 9 11 13 119.43
4K 6 7 8 9 10 12 20.07
2K 5 6 7 8 9 11 2.792
1K 5 6 7 8 9 10 2.608

512 4 5 6 7 8 9 0.866

4K AKM [1] 504.2

Vector quantization
averaged over the N = 75K SIFT descriptors of the 55
cropped query images of Oxford 5K

K 16K 8K 4K 2K 1K 512

Approximate (µs) 0.95 0.83 0.80 0.73 0.80 0.90
Exact (ms) 1.19 0.79 0.51 0.26 0.21 0.11

101 102

0.5

0.6

0.7

0.8

0.9

1

R

R
ec

al
l@
R K = 16K

K = 8K
K = 4K
K = 2K
K = 1K
K = 512

Image retrieval
fourth-order multi-index [3] with 4K sub-codebooks, partially inverted at 24bit/point, MA k = 90

Training set Oxford 5K / other [*] Paris 6K / other [*]
K MA Other

Test set Ox5K Ox105K Pa6K Pa106K Ox5K Ox105K

This work 0.716 0.657 0.696 0.584 0.703 0.640 4K4 X
Perdoch et al. 2009 0.717 0.568 — — 0.558 0.423 1M
Arandjelovic et al. 2012 0.683 0.581 — — — — 1M
Shen et al. 2012 0.649 0.568 — — — — 1M
Philbin et al. 2008 0.614 0.498 — — 0.403 0.290 1M
Philbin et al. 2008 0.673 0.534 — — 0.493 0.343 1M X
Philbin et al. 2007 0.618 0.490 — — — — 1M
Jegou et al. 2010 — — — — 0.615 0.516 200K X HE, WGC
Jegou et al. 2009 — — — — 0.647 — 20K X HE, WGC
Mikulik et al. 2012 — — 0.625* 0.533* 0.618* 0.554* 16M X
Mikulik et al. 2012 — — 0.749* 0.675* 0.742* 0.674* 16M * Learning

http://image.ntua.gr/iva/research/drvq Contact: iavr@image.ntua.gr



DRVQ: vector quantization

k 16k 8k 4k 2k 1k 512

approximate (µs) 0.95 0.83 0.80 0.73 0.80 0.90
exact (ms) 1.19 0.79 0.51 0.26 0.21 0.11

averaged over the n = 75k SIFT descriptors of the 55 cropped query
images of Oxford 5k



DRVQ: clustering
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4 codebooks at d = 32 dimensions each on n = 12.5M 128-dimensional
SIFT descriptors of Oxford 5k
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inverted-quantized k-means
[Avrithis et al. ongoing]

clustering of 100M images in less than one hour on a single core
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