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discriminative local features
[Lowe, ICCV 1999]
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discriminative local features
[Lowe, ICCV 1999]

features

normalized features



descriptor matching




descriptor matching




descriptor matching




descriptor matching




vector quantization — visual words
[Sivic and Zisserman, ICCV 2003]




vector quantization — visual words
[Sivic and Zisserman, ICCV 2003]




spatial matching

original images



spatial matching

local features



spatial matching

tentative correspondences



spatial matching

inliers



applications

instance recognition [Kalantidis et al. 2011]
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applications

class recognition [Boiman et al. 2008]

KL(p, | p)=17.54 KL(p,|p.)=18.20  KL(p,|p,)=14.56



applications
object mining [Chum & Matas 2008]




applications
reconstruction [Heinly et al. 2015]




applications
pose estimation [Sattler et al. 2012]




overview

planar shape decomposition

local feature detection

feature geometry & spatial matching
descriptors, kernels & embeddings
nearest neighbor search

clustering

mining, location & instance recognition



planar shape decomposition



in

psychophysical studies

minima rule

[Hoffman & Richards 1983]
“divide a silhouette into parts at
concave cusps and negative
minima of curvature”



psychophysical studies

minima rule

[Hoffman & Richards 1983]
“divide a silhouette into parts at
concave cusps and negative
minima of curvature”

in

short-cut rule

[Singh et al. 1999]

“divide a silhouette into parts
using the shortest possible cuts”



computational models

current work

e.g. dual space decomposition
[Liu et al. 2014]
e mostly based on convexity

e requires optimization

e rules applied indirectly



computational models

current work
e.g. dual space decomposition

[Liu et al. 2014]
e mostly based on convexity

e requires optimization

e rules applied indirectly

quantitative evaluation

practically non-existent until
[De Winter & Wagemans 2006]




medial axis

planar shape

o aset X C R? whose boundary X is a finite union of disjoint simple
closed curves, such that for each curve there is a parametrization
a:[0,1] — 9X by arc length that is piecewise smooth

distance map

e maps each point x € X to its minimal distance to boundary 0.X
DX = inf d
(X)(2) nf (z,9)

projection
e the set of points on 0.X at minimal distance to z
m(z) ={y € 90X : d(x,y) = D(X)(x)}
medial axis

e the set of points with more than one projection points
M(X) ={z e R? : |n(x)| > 1}



medial axis decomposition

[Papanelopoulos & Avrithis, ongoing]



exterior medial axis



concave corners and “locale”







cut equivalence on corners and branches




local convexity and short-cut rule




quantitative evaluation

average majority
H R H R

DCE 0.208 0.497 | 0.188 0.466
SB 0.163 0.402 | 0.131 0.335
MD 0.151 0.371 | 0.126 0.328
FD 0.145 0.350 | 0.112 0.267
ACD 0.128 0.323 | 0.092 0.251
MAD 0.157 0.193 | 0.118 0.154
CBE 0.111 0.283 | 0.069 0.186
Human - - 0.104 0.137

H = Hamming distance; R = Rand index




medial axis decompoaosition...

practically “reads off” all information from the medial axis
requires no differentiation

requires no optimization

is based on local decisions only

can use arbitrary salience measures



local feature detection



feature detectors

Hessian affine
[Mikolajczyk & Schmid 2004]
e de facto standard in visual search

e too many responses




feature detectors

Hessian affine
[Mikolajczyk & Schmid 2004]
e de facto standard in visual search

e too many responses

maximally stable extremal regions
[Matas et al. 2002]

e arbitrary shape

® too constrained




feature detectors

affine frames on isophotes

[Perdoch et al. 2007]
e only local stability

e based on bitangents




feature detectors

affine frames on isophotes

[Perdoch et al. 2007]
e only local stability

e based on bitangents

LY medial features
[Avrithis & Rapantzikos 2011]



medial features
[Avrithis & Rapantzikos, ICCV 2011]

additively weighted distance map

e given a non-increasing function f : X — R of gradient strength,
where X is the image plane,

D(f)(x) = min{d(z,y) + f(y)}

forx e X
weighted medial

e similarly to unweighted case

M(f) = {z e R?: [n(2)| > 1}



region/boundary duality

10 20 30 40
distance propagation



region/boundary duality
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original image




weighted distance map 4+ medial




| image + weighted medial

origina




region/boundary duality & partition
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fragmentation factor

binary input point labels image partition

e€E(k)

e selection criterion: is a region well-enclosed by boundaries?



law of closure & perceptual grouping




image search experiment

mAP on Oxford 5k

mAP Inv. index Re-ranking

Detector 50k 200k 50k 200k
MFD 0.515 | 0.580 | 0.568 | 0.617
Hessian-affine | 0.488 | 0.573 | 0.537 | 0.614
MSER 0.473 | 0.544 | 0.537 | 0.589
SURF 0.488 | 0.531 | 0.497 | 0.536
SIFT 0.395 | 0.457 | 0.434 | 0.495




medial features...

have arbitrary scale and shape
are not contrained to extremal regions
decompose shapes into parts

capture law of closure



feature geometry
& spatial matching



D

spatial matching for instance recognition

l
O

fast spatial matching

[Philbin et al. 2007]
e RANSAC variant

e single-correspondence hypotheses

e enumerate them all—O(n?)



spatial matching for instance recognition

7 5 fast spatial matching

[Philbin et al. 2007]
e RANSAC variant

e single-correspondence hypotheses

e enumerate them all—O(n?)

scale-invariant features
[Lowe 1999]

e Hough voting in 4d transformation
space

o verification needed—still O(n?)




spatial matching for class recognition

spectral matching
[Leordeanu & Hebert et al. 2005]
¥ =arg max z' Ax e based on pairwise affinity

ze{0,1}m . .
® mapping constraints

o relaxed to an eigenvalue
problem



spatial matching for class recognition

z* =arg max z Az
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spectral matching

[Leordeanu & Hebert et al. 2005]
e based on pairwise affinity
® mapping constraints

o relaxed to an eigenvalue
problem

spatial pyramid matching
[Lazebnik et al. 2006]

o flexible matching

e non-invariant



Hough pyramid matching
[Tolias & Avrithis, ICCV 2011]

e do not seek for inliers

e rather, look for hypotheses that agree with each other
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Flo = Fre) " = | 0 1]



Hough pyramid matching
[Tolias & Avrithis, ICCV 2011]

do not seek for inliers
rather, look for hypotheses that agree with each other

Hough voting in the 4d transformation space

Flo = Fre) " = | 0 1]

fle) = (x(c),y(c), 0(c), 0(c))

pyramid matching in the transformation space

-1
s(c) = g(bo) + Z 2 "{g(bx) — g(br—1)}

k=1



toy example

Hough pyramid
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toy example

correspondences, strengths

strength
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Hough pyramid matching ...

is invariant to similarity transformations

is flexible, allowing non-rigid motion and multiple matching surfaces or
objects

imposes one-to-one mapping



examples
HPM vs FSM [Philbin et al. 2007]

1l
i

fast spatial matching



examples
HPM vs FSM [Philbin et al. 2007]

Hough pyramid matchin



examples
HPM vs FSM [Philbin et al. 2007]

fast spatial matching



examples
HPM vs FSM [Philbin et al. 2007]

Hough pyramid matching



examples
HPM vs FSM [Philbin et al. 2007]

fast spatial matching



examples
HPM vs FSM [Philbin et al. 2007]

Hough pyramid matching



Hough pyramid matching ...

is non-iterative, and linear in the number of correspondences

in a given query time, can re-rank one order of magnitude more
images than the state of the art

typically needs less than one millisecond to match a pair of images, on
average



mAP

0.6

0.5

0.4

0.3

performance VS time
on World Cities 2M

WGC + HPM
—e— BoW + HPM
-e- WGC + FSM
—e— BoW + FSM
| | | | | | | | |

2 4 6 8 10 12 14 16 18

average time to filter and rerank (s)




comparison to state of the art
[Avrithis & Tolias, 1JCV 2014]

method | Ox5K | Ox105K | Paris | Holidays |
HPM (this work) 0.789 | 0.730 | 0.725 | 0.790
[Shen et al. 2012] 0.752 0.729 0.741 0.762

GVP [Zhang et al. 2011] | 0.696 - -
SBoF [Cao et al. 2010] 0.656 - 0.632 -
[Perdoch et al. 2009] 0.789 | 0.726 - 0.715
FSM [Philbin et al. 2007] | 0.647 | 0.541 - -
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escriptors, kernels
& embeddings



set kernels & embeddings

normalized sum set kernel [Bo & Sminchisescu 2009]

e given kernel function k, define (finite) set kernel

K(X,Y)= ﬁ S k()

zeX yeYy



set kernels & embeddings

normalized sum set kernel [Bo & Sminchisescu 2009]
e given kernel function k, define (finite) set kernel
1
K(X,Y) = 59 S k()
XIS ey
example: Gaussian mixtures [Liu & Perronnin 2008]
e model set X by finite mixture distribution
1
fx(z) = x| > N(zlz,%), zeR?
zeX

e then,

1
(fx,fy)= X[V D N(aly,2x)

rzeX yeY



explicit feature maps
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explicit feature maps

I 1]— Hmﬁmmﬁﬂﬂﬂﬂﬂﬂ d(x1)

embedding
(coding)

zn LLIT]

|—||_||_||_||_|l_|l_|.—|l_h—| = d(zp)



explicit feature maps

I 1]— Hmﬁmmﬁﬂﬂﬂﬂﬂﬂ d(x1)

embedding
(coding)

aggregating
(pooling)

A TerdTn St



explicit feature maps

s OO ———  —meeoood0 (x1)

embedding
(coding)
z, I ey | = ()
aggregating
(pooling)
dimension
reduction

A Teed T St




two different perspectives

] \& Hamming embedding

[Jégou et al. 2008]
o large vocabulary

e binary signature & descriptor voting
e not aggregated

selective: discard weak votes



two different perspectives

] \& Hamming embedding

[Jégou et al. 2008]
e large vocabulary

e binary signature & descriptor voting
e not aggregated

e selective: discard weak votes

VLAD
[Jégou et al. 2010]
V(Xe) = Z z —q(x) e small vocabulary

X X e one aggregated vector per cell
e={reX:q@)=c} o linear operation

e not selective



common model: image similarity

K(X,Y) Y)Y wer (X, Ye)
ceC



common model: image similarity

K(X7 Y) = V(X) V(Y) Z Wek (Xm Yc)

—

normalization factor cell weighting cell similarity



common model: cell similarity

non aggregated

CSCEPIPIICLKLD)

zeXcyeYe



common model: cell similarity

non aggregated

¥ = 5 o o o00)

selectivity function descriptor representation (residual, binary, scalar)



common model: cell similarity

non aggregated

W(Xe, Vo) ZZ( )

selectivity function descriptor representation (residual, binary, scalar)

aggregated

.
Fa(Xe, Yo) = (Z o(x > o Y ow) | p =0 (X))

zeX, yeYe



common model: cell similarity

non aggregated

(X, Y2 ZZ( )

selectivity function descriptor representation (residual, binary, scalar)

aggregated

.
Fa(Xe, Yo) = (Z o(x > o Y ow) | p =0 (x0T e())

normalization ({2, power-law) cell representation



BoW, HE and VLAD in the common model

| model k(X.,Y.) o(x) o(u) Y(z) P(X.) |
BoW Ky, OF Kq 1 m z | Xe|

BOW  k(Xe¥o) = 3 D 1= (X x Y]

reX. YyEY,




BoW, HE and VLAD in the common model

| model k(X.,Y.) o(x) o(u) Y(z) P(X.) |
BoW Ky, OF Kq 1 m z | Xe|
HE Ky only b, w(E1-w) — —
BoW Vo)=Y > 1=|X] x|V
reEX. yEY,
HE K(Xe,Ye)= > Y w(h(ba,by)
zeX,. yeYe
K n(X(:-, Y ) —



BoW, HE and VLAD in the common model

| model k(X.,Y.) o(x) o(u) Y(z) P(X.) |
BoW Ky, OF Kq 1 m z | Xe|
HE Ky only b, w(E1-w) — —
VLAD Kk or kg 7(2) u z V(X.)
BoW k(X Yo)= Y > 1=|X]x|V]
reEX. yEY,
HE K (X, Ye) Z Z h (bs, by)
zeX,. yeYe
VLAD  r(XeYo) = D 3 rla) 'rly) = V(X)) TV(Y.)
zeX. yeYe
in(Xe, Ye) Z Z < To z/)
zeX,. yeY,

yeYe

Ko(Xe,Ys) = 0 {u < 3 o@)) b (Z ()(g/)) } - <<I>(4¥(;)T(I>(Y’(.,)>



aggregated selective match kernel
[Tolias et al. ICCV 2013]

o cell similarity

~

ASMK(X,,Y.) = 04 (V(XC)TV(YC))



aggregated selective match kernel
[Tolias et al. ICCV 2013]

o cell similarity
ASMK(X,,Y,) = 04 (V(XC)TV(YC))
o cell representation: /5-normalized aggregated residual

(I)(Xc) = V(Xc) = V(Xc)/“V(Xc)H



aggregated selective match kernel
[Tolias et al. ICCV 2013]

o cell similarity
ASMK(X. Yo) = a0 (V(X0) TV (Yo))
o cell representation: /5-normalized aggregated residual
B(Xe) = V(Xe) = V(Xo)/[V(Xo)|
o selectivity function

_ sgn(u)|ul®, u>T
oa(u) = { 0, otherwise



impact of selectivity

thresholding removes false correspondences



impact of selectivity

a=3, 7=0.0

1Y

correspondences weighed based on confidence



impact of aggregation & burstiness
k =128 as in VLAD




k = 65k as in HE

impact of aggregation & burstiness




comparison to state of the art

[Tolias et al. 1JCV 2015]

| Dataset | MA | Oxf5k Oxfl05k Parbk Holiday |
ASMK* 76.4 69.2 74.4 80.0
ASMK* X 80.4 75.0 77.0 81.0
ASMK 78.1 - 76.0 81.2
ASMK X 81.7 - 78.2 82.2
HE [Jégou et al. '10] 51.7 N R 745
HE [Jégou et al. '10] X 56.1 - - 77.5
HE-BURST [Jain et al. '10] 64.5 - - 78.0
HE-BURST [Jain et al. '10] X 67.4 - - 79.6
Fine vocab. [Mikulik et al. '10] X 74.2 67.4 74.9 74.9
AHE-BURST [Jain et al. '10] 66.6 - - 79.4
AHE-BURST [Jain et al. '10] X 69.8 - - 81.9
Rep. structures [Torri et al. '13] | x 65.6 - - 74.9
Locality [Tao et al. '14] X 77.0 - - 78.7







binary codes

spectral hashing

[Weiss et al. 2008]

similarity preserving, balanced,
uncorrelated

spectral relaxation

out of sample extension: uniform
assumption



binary codes

spectral hashing
[Weiss et al. 2008]
e similarity preserving, balanced,
uncorrelated

e spectral relaxation

e out of sample extension: uniform
assumption

iterative quantization
[Gong & Lazebnik 2011]

e quantize to closest vertex of binary
cube

o PCA followed by interleaved
rotation and quantization

= 0 1




vector quantization
[Gray 1984]
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distortion dataset codebook quantizer



vector quantization
[Gray 1984]
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For small distortion — large k = |C|:
e hard to train
e too large to store
e too slow to search



product quantization
[Jégou et al. 2011]
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o train: ¢ = (¢, ..

product quantization
[Jégou et al. 2011]
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,q™) where ¢!, ... ¢™ obtained by VQ

e store: |C| = k™ with |C’1| =-..=|C™" =k

e search: |ly — q(x

x)|I* = ley — ¢’ (x7)|* where ¢/ (x/) € C



optimized product quantization
[Ge et al. 2013]
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optimized product quantization

Parametric solution for x ~ N (0,Y)

e independence: PCA-align by diagonalizing ¥ as UAU "

e balanced variance: permute A by 7 such that [], \; is constant in
each subspace; R < UP,

e find C by PQ on rotated data X = RX



locally optimized product quantization
[Kalantidis & Avrithis, CVPR 2014]

o compute residuals r(x) = x — ¢(x) on coarse quantizer ¢
e collect residuals Z, = {r(x) : ¢(x) = c} per cell
e train (Re,qc) < OPQ(Zc) per cell



locally optimized product quantization
[Kalantidis & Avrithis, CVPR 2014]
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e residual distributions closer to Gaussian assumption
o better captures the support of data distribution, like local PCA

e multimodal (e.g. mixture) distributions
e distributions on nonlinear manifolds



local principal component analysis
[Kambhatla & Leen 1997]

1

but, we are not doing dimensionality reduction!



inverted multi-index
[Babenko & Lempitsky 2012]

.04 . 06
inverted index

e train codebook C' from dataset {x,}

e this codebook provides a coarse partition of the space



inverted multi-index
[Babenko & Lempitsky 2012]
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inverted multi-index

decompose vectors as x = (x!,x?)
train codebooks C1, C? from datasets {x.}, {x2}
induced codebook C x C? gives a finer partition

given query q, visit cells (c!',c?) € C' x C? in ascending order of
distance to q, by first computing distances to q', q*



inverted multi-index

multi-sequence algorithm
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Multi-LOPQ

[Kalantidis & Avrithis, CVPR 2014]
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comparison to state of the art

on SIFT1B, 128-bit codes

T Method |R=1] 10 | 100 |
20K IVFADC+R [Jégou et al. '11] 0.262 | 0.701 | 0.962
LOPQ+R [Kalantidis & Avrithis '14] 0.350 | 0.820 | 0.978
Multi-D-ADC [Babenko & Lempitsky '12] || 0.304 | 0.665 | 0.740
10K | OMulti-D-OADC [Ge et al. '13] 0.345 | 0.725 | 0.794
Multi-LOPQ [Kalantidis & Avrithis '14] 0.430 | 0.761 | 0.782
Multi-D-ADC [Babenko & Lempitsky '12] || 0.328 | 0.757 | 0.885
30K | OMulti-D-OADC [Ge et al. '13] 0.366 | 0.807 | 0.913
Multi-LOPQ [Kalantidis & Avrithis '14] 0.463 | 0.865 | 0.905
Multi-D-ADC [Babenko & Lempitsky '12] || 0.334 | 0.793 | 0.959
100K | OMulti-D-OADC [Ge et al. '13] 0.373 | 0.841 | 0.973
Multi-LOPQ [Kalantidis & Avrithis '14] 0.476 | 0.919 | 0.973
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clustering



ANN search - clustering connection

hierarchical k-means
[Nister & Stewenius 2006]
use k-means tree for ANN search




ANN search - clustering connection

hierarchical k-means
[Nister & Stewenius 2006]
use k-means tree for ANN search

o
c o approximate k-means
2 N [Philbin et al. 2007]
e o ® use ANN search to accelerate assignment
step
(0]



ANN search - clustering connection

[Jégou et al. 2010]
use k-means on subspaces to
accelerate ANN search

:‘- ".; o product quantization
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ANN search - clustering connection

product quantization
[Jégou et al. 2010]

use k-means on subspaces to
accelerate ANN search

inverted multi-index

[Babenko & Lempitsky 2012]
exhaustively search on subspaces
before searching on entire space
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DRVQ base case: d =1




DRVQ recursion: d — 2d




DRVQ: vector quantization

| k | 16k 8k 4k 2k 1k 512
approximate (us) | 0.95 0.83 0.80 0.73 0.80 0.90
exact (ms) 119 079 051 026 021 0.1

averaged over the n = 75k SIFT descriptors of the 55 cropped query
images of Oxford 5k



DRVQ: clustering

log kp (d = 29 .
i 2g4p(8 16) 37 time (m)
Tk |6 7 8 0 11 14| 12996
g8k|6 7 8 9 11 13| 119.43
4|6 7 8 9 10 12| 2007
%[5 6 7 8 9 11| 2792
k|5 6 7 8 9 10| 2608
5124 5 6 7 8 9| 0866

] 4k | approximate k-means 504.2

4 codebooks at d = 32 dimensions each on n = 12.5M 128-dimensional
SIFT descriptors of Oxford 5k



DRVQ: clustering

log kp (d = 29 .
i 2g4p(8 16) 37 time (m)
Tk |6 7 8 0 11 14| 12996
k|6 7 8 9 11 13| 119.43
4|6 7 8 9 10 12| 2007
%[5 6 7 8 0 11| 2792
k|5 6 7 8 9 10| 2608
5124 5 6 7 8 9| 0866

] 4k | approximate k-means 504.2

4 codebooks at d = 32 dimensions each on n = 12.5M 128-dimensional
SIFT descriptors of Oxford 5k



inverted-quantized k-means
[Avrithis et al. ongoing]

clustering of 100M images in less than one hour on a single core
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Buxton Memorial Fountain

From Wikipedia, the free encyclopedia

The Buxton Memorial Fountain is a mermorial and drinking fountain in Landon, the United Kingdom, that commemorates the
emancipation of slaves in the British Ermpire in 1834

It was commissioned by Charles Buxton MP, and was dedicated to his father Thomas Fowell Buxton along with William Wilberforce,
Thamas Clarkson, Thamas Babington Macaulay, Henry Brougham and Stephen Lushingtan, all of whorm were invalved in the abolition. It
was designed by Gothic architect Sarmuel Sanders Teulon (1812-1873) in 1865 coincidently with the passing of the Thirteenth
Amendment to the United States Constitution, which effectively ended the westem slave-trade. !

It was otiginally constructed in Parliament Square, erected at  cost of £1,200. As part of the postwar redesign of the square it was
rernoved in 1949 and not reinstated in its present position in Victoria Tower Gardens until 1957.%! There were eight decorative figures of
Biritish nilers on it, but four were stolen in 1960 and four in 1971. They were replaced by fibreglass figures in 1980. By 2005 these were
missing, and the fountain was no langer working. Between auturn 2006 and February 2007 restoration warks were cartied out, The
restored fountain was unveiled on 27 March 2007 as pant of the commemoration of the 200th anniversary of the act to abolish the slave
trade 1

A memorial plague commemarating the 150th anniversary of the Anti-Slavery Society was added in 1989

Description [edit]

The base is octagonal, about twelve feet in diameter, having open arches an the eight sides, supported on clustered shafis of polished
Devanshire marble around a large central shaft, with faur massive granite basins. Surmounting the pinnacles at the angles of the octagan
are eight figures of bronze, representing the different rulers of England; the Britons represented by Caractacus, the Romans by
Constantine, the Danes by Canute, the Saxans by Alfred, the Nermans by William the Canguerar, and so an, ending with Queen Victoria,
The fountain bears an inscription to the eflect that it is "intended as 2 memorial of those mermbers of Parliament who, with Mr.
Wilberforce, advocated the abolition of the Bitish slave-trade, achieved in 1807; and of those members of Parliament who, with Sir T.

The Budon Memorial Fourtain, designed by &
Samuel Sanders Tevlon, celebrating the

emancipation af slaves inthe British Empire in
1834, in Victoria Tower Gardens, Milkark,
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Victoria Tower Gardens

From Wikipedia, the ree encyclopedia Coordinates: ) 51729 49.0"

oI

Victoria Tower Gardens is a public park alang the north bank of the River Thames in Landon. As its name suggests, it is ajacent to
the Victaria Tower, the south-westem comer of the Palace of Westminster. The park, which extends southwards from the Palace to
Larbeth Bridge, sandwiched between Millsank and the river, also forms part of the Thames Embankment

Contents [fice]

1 Features

2 Transpont

3 History

4 Bxternal links

5 References

Victoria Tower Gardens, 2005, with the Buston &

Features [edit]  Wemerial Fourtain atthe front v the Pefece of
Westminster inthe baskgrourd

The park features

« A reproduction of the sculpture The Burghers of Calais by Auguste Rodin, purchased by the Brtish Govemment in 1911 and positioned in the Gardens in 1915,

o A 1930 statue of the sufiragette Emmeline Fankhurst, by A.G. Walker.

o The Buxton Memorial Fountain - originally constructed in Parliament Sauare, this was removed in 1940 and placed in its present position in 1957. It was commissioned by Charles
Bustan MP to commernarate the emancipation of skaves in 1834, dedicated to his father Thormas Fowell Buxton, and designed by Gothic architect Samuzl Sanders Taulon
(1812-1673) in 1865

« A stone wall with two modem-style goats with kids — situated at the southem end of the Gardens.

Transport [edi]
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