Geometry in feature detection, matching, search, and clustering

Yannis Avrithis

Philadelphia, June 2015

motivation: visual search

challenges

- viewpoint
- lighting
- occlusion
- large scale

discriminative local features

[Lowe, ICCV 1999]

discriminative local features

[Lowe, ICCV 1999]

discriminative local features
 [Lowe, ICCV 1999]

descriptor matching

15

descriptor matching

descriptor matching

descriptor matching

vector quantization \rightarrow visual words

[Sivic and Zisserman, ICCV 2003]

vector quantization \rightarrow visual words

[Sivic and Zisserman, ICCV 2003]

spatial matching

original images

spatial matching

local features

spatial matching

tentative correspondences

spatial matching

inliers

applications

instance recognition [Kalantidis et al. 2011]

applications

class recognition [Boiman et al. 2008]

applications

object mining [Chum \& Matas 2008]

applications

reconstruction [Heinly et al. 2015]

applications

pose estimation [Sattler et al. 2012]

overview

- planar shape decomposition
- local feature detection
- feature geometry \& spatial matching
- descriptors, kernels \& embeddings
- nearest neighbor search
- clustering
- mining, location \& instance recognition

planar shape decomposition

psychophysical studies

minima rule

[Hoffman \& Richards 1983]
"divide a silhouette into parts at concave cusps and negative minima of curvature"

psychophysical studies

> minima rule
> [Hoffman \& Richards 1983]
> "divide a silhouette into parts at concave cusps and negative minima of curvature"

short-cut rule
 [Singh et al. 1999]

"divide a silhouette into parts using the shortest possible cuts"

computational models

current work

e.g. dual space decomposition
[Liu et al. 2014]

- mostly based on convexity
- requires optimization
- rules applied indirectly

computational models

current work

e.g. dual space decomposition
[Liu et al. 2014]

- mostly based on convexity
- requires optimization
- rules applied indirectly

quantitative evaluation

 practically non-existent until [De Winter \& Wagemans 2006]
medial axis

planar shape

- a set $X \subset \mathbb{R}^{2}$ whose boundary ∂X is a finite union of disjoint simple closed curves, such that for each curve there is a parametrization $\alpha:[0,1] \rightarrow \partial X$ by arc length that is piecewise smooth

distance map

- maps each point $x \in X$ to its minimal distance to boundary ∂X

$$
\mathcal{D}(X)(x)=\inf _{y \in \partial X} d(x, y)
$$

projection

- the set of points on ∂X at minimal distance to x

$$
\pi(x)=\{y \in \partial X: d(x, y)=\mathcal{D}(X)(x)\}
$$

medial axis

- the set of points with more than one projection points

$$
\mathcal{M}(X)=\left\{x \in \mathbb{R}^{2}:|\pi(x)|>1\right\}
$$

medial axis decomposition
[Papanelopoulos \& Avrithis, ongoing]

concave corners and "locale"

interior medial axis and raw cuts

cut equivalence on corners and branches

local convexity and short-cut rule

quantitative evaluation

	average		majority	
	H	R	H	R
DCE	0.208	0.497	0.188	0.466
SB	0.163	0.402	0.131	0.335
MD	0.151	0.371	0.126	0.328
FD	0.145	0.350	0.112	0.267
ACD	0.128	0.323	0.092	0.251
MAD	0.157	$\mathbf{0 . 1 9 3}$	0.118	$\mathbf{0 . 1 5 4}$
CBE	$\mathbf{0 . 1 1 1}$	0.288	$\mathbf{0 . 0 6 9}$	0.186
Human	-	-	0.104	0.137

$H=$ Hamming distance; $R=$ Rand index

medial axis decomposition...

- practically "reads off" all information from the medial axis
- requires no differentiation
- requires no optimization
- is based on local decisions only
- can use arbitrary salience measures

local feature detection

feature detectors

Hessian affine

[Mikolajczyk \& Schmid 2004]

- de facto standard in visual search
- too many responses

feature detectors

Hessian affine

[Mikolajczyk \& Schmid 2004]

- de facto standard in visual search
- too many responses

$\sqrt{93} \sqrt{4}$

maximally stable extremal regions [Matas et al. 2002]

- arbitrary shape
- too constrained

feature detectors

affine frames on isophotes
[Perdoch et al. 2007]

- only local stability
- based on bitangents

feature detectors

affine frames on isophotes
[Perdoch et al. 2007]

- only local stability
- based on bitangents

medial features

[Avrithis \& Rapantzikos 2011]

medial features

[Avrithis \& Rapantzikos, ICCV 2011]

additively weighted distance map

- given a non-increasing function $f: X \rightarrow \mathbb{R}$ of gradient strength, where X is the image plane,

$$
\mathcal{D}(f)(x)=\min _{y \in X}\{d(x, y)+f(y)\}
$$

for $x \in X$
weighted medial

- similarly to unweighted case

$$
\mathcal{M}(f)=\left\{x \in \mathbb{R}^{2}:|\pi(x)|>1\right\}
$$

region/boundary duality

region/boundary duality

region/boundary duality

region/boundary duality

original image

weighted distance map + medial

original image + weighted medial

region/boundary duality \& partition

original image + features

fragmentation factor

binary input

point labels

image partition

$$
\phi(\kappa)=\frac{1}{a(\kappa)} \sum_{e \in E(\kappa)} w^{2}(x(e))
$$

- selection criterion: is a region well-enclosed by boundaries?
law of closure \& perceptual grouping

image search experiment

 mAP on Oxford 5k| mAP | Inv. index | | Re-ranking | |
| :--- | ---: | ---: | ---: | ---: |
| Detector | 50 k | 200 k | 50 k | 200 k |
| MFD | $\mathbf{0 . 5 1 5}$ | $\mathbf{0 . 5 8 0}$ | $\mathbf{0 . 5 6 8}$ | $\mathbf{0 . 6 1 7}$ |
| Hessian-affine | 0.488 | 0.573 | 0.537 | 0.614 |
| MSER | 0.473 | 0.544 | 0.537 | 0.589 |
| SURF | 0.488 | 0.531 | 0.497 | 0.536 |
| SIFT | 0.395 | 0.457 | 0.434 | 0.495 |

medial features...

- have arbitrary scale and shape
- are not contrained to extremal regions
- decompose shapes into parts
- capture law of closure

feature geometry \& spatial matching

spatial matching for instance recognition

fast spatial matching
[Philbin et al. 2007]

- RANSAC variant
- single-correspondence hypotheses
- enumerate them all-O($\left.n^{2}\right)$

spatial matching for instance recognition

fast spatial matching
[Philbin et al. 2007]

- RANSAC variant
- single-correspondence hypotheses
- enumerate them all-O($\left.n^{2}\right)$

scale-invariant features

[Lowe 1999]

- Hough voting in 4d transformation space
- verification needed-still $O\left(n^{2}\right)$

spatial matching for class recognition

spectral matching

[Leordeanu \& Hebert et al. 2005]

$$
x^{\star}=\arg \max _{x \in\{0,1\}^{n}} x^{\top} A x
$$

- based on pairwise affinity
- mapping constraints
- relaxed to an eigenvalue problem

spatial matching for class recognition

spectral matching

[Leordeanu \& Hebert et al. 2005]

- based on pairwise affinity
- mapping constraints
- relaxed to an eigenvalue problem

spatial pyramid matching [Lazebnik et al. 2006]
- flexible matching
- non-invariant

Hough pyramid matching

[Tolias \& Avrithis, ICCV 2011]

- do not seek for inliers
- rather, look for hypotheses that agree with each other
- Hough voting in the 4d transformation space

$$
F(c)=F(q) F(p)^{-1}=\left[\begin{array}{cc}
M(c) & \mathbf{t}(c) \\
0^{\top} & 1
\end{array}\right]
$$

$$
f(c)=(x(c), y(c), \sigma(c), \theta(c))
$$

- pyramid matching in the transformation space

Hough pyramid matching

[Tolias \& Avrithis, ICCV 2011]

- do not seek for inliers
- rather, look for hypotheses that agree with each other
- Hough voting in the 4d transformation space

$$
\begin{gathered}
F(c)=F(q) F(p)^{-1}=\left[\begin{array}{cc}
M(c) & \mathbf{t}(c) \\
\mathbf{0}^{\top} & 1
\end{array}\right] \\
f(c)=(x(c), y(c), \sigma(c), \theta(c))
\end{gathered}
$$

- pyramid matching in the transformation space

Hough pyramid matching

[Tolias \& Avrithis, ICCV 2011]

- do not seek for inliers
- rather, look for hypotheses that agree with each other
- Hough voting in the 4d transformation space

$$
\begin{gathered}
F(c)=F(q) F(p)^{-1}=\left[\begin{array}{cc}
M(c) & \mathbf{t}(c) \\
\mathbf{0}^{\top} & 1
\end{array}\right] \\
f(c)=(x(c), y(c), \sigma(c), \theta(c))
\end{gathered}
$$

- pyramid matching in the transformation space

$$
\begin{gathered}
s(c)=g\left(b_{0}\right)+\sum_{k=1}^{L-1} 2^{-k}\left\{g\left(b_{k}\right)-g\left(b_{k-1}\right)\right\} \\
s(C)=\sum_{c \in C \backslash X} w(c) s(c)
\end{gathered}
$$

toy example

Hough pyramid

Level 0

Level 1

toy example

correspondences, strengths

	p	q	strength
c_{1}	O	$\left(2+\frac{1}{2} 2+\frac{1}{4} 2\right) w\left(c_{1}\right)$	
c_{2}	$\left(2+\frac{1}{2} 2+\frac{1}{4} 2\right) w\left(c_{2}\right)$		
c_{3}	$\left(2+\frac{1}{2} 2+\frac{1}{4} 2\right) w\left(c_{3}\right)$		
c_{4}	$\left(1+\frac{1}{2} 3+\frac{1}{4} 2\right) w\left(c_{4}\right)$		
c_{5}	0	0	
c_{6}		$\frac{1}{4} 6 w\left(c_{8}\right)$	
c_{7}	$\frac{1}{4} 6 w\left(c_{9}\right)$		
c_{8}		0	
c_{9}	O		

toy example

affinity matrix

Hough pyramid matching ...

- is invariant to similarity transformations
- is flexible, allowing non-rigid motion and multiple matching surfaces or objects
- imposes one-to-one mapping

examples

HPM vs FSM [Philbin et al. 2007]

fast spatial matching

examples

HPM vs FSM [Philbin et al. 2007]

Hough pyramid matching

examples

HPM vs FSM [Philbin et al. 2007]

fast spatial matching

examples

HPM vs FSM [Philbin et al. 2007]

Hough pyramid matching

examples

HPM vs FSM [Philbin et al. 2007]

examples

HPM vs FSM [Philbin et al. 2007]

Hough pyramid matching

Hough pyramid matching ...

- is non-iterative, and linear in the number of correspondences
- in a given query time, can re-rank one order of magnitude more images than the state of the art
- typically needs less than one millisecond to match a pair of images, on average

performance vs time

on World Cities 2M

comparison to state of the art

[Avrithis \& Tolias, IJCV 2014]

method	Ox5K	Ox105K	Paris	Holidays
HPM (this work)	$\mathbf{0 . 7 8 9}$	$\mathbf{0 . 7 3 0}$	0.725	$\mathbf{0 . 7 9 0}$
[Shen et al. 2012]	0.752	0.729	$\mathbf{0 . 7 4 1}$	0.762
GVP [Zhang et al. 2011]	0.696	-	-	-
SBoF [Cao et al. 2010]	0.656	-	0.632	-
[Perdoch et al. 2009]	$\mathbf{0 . 7 8 9}$	0.726	-	0.715
FSM [Philbin et al. 2007]	0.647	0.541	-	-

descriptors, kernels \& embeddings

set kernels \& embeddings

normalized sum set kernel [Bo \& Sminchisescu 2009]

- given kernel function k, define (finite) set kernel

$$
K(X, Y)=\frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} k(x, y)
$$

- model set X by finite mixture distribution

- then,

set kernels \& embeddings

normalized sum set kernel [Bo \& Sminchisescu 2009]

- given kernel function k, define (finite) set kernel

$$
K(X, Y)=\frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} k(x, y)
$$

example: Gaussian mixtures [Liu \& Perronnin 2008]

- model set X by finite mixture distribution

$$
f_{X}(z)=\frac{1}{|X|} \sum_{x \in X} \mathcal{N}(z \mid x, \Sigma), \quad z \in \mathbb{R}^{d}
$$

- then,

$$
\left\langle f_{X}, f_{Y}\right\rangle=\frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} \mathcal{N}(x \mid y, 2 \Sigma)
$$

explicit feature maps

x_{1}

embedding
(coding)
$x_{n} \quad \square \square \square$

$$
\phi\left(x_{n}\right)
$$

aggregating
(pooling)

dimension

reduction

$\sum_{i} \phi\left(x_{i}\right)$

explicit feature maps

dimension

reduction

explicit feature maps

dimension
reduction

$$
\sum_{i} \phi\left(x_{i}\right)
$$

explicit feature maps

dimension
reduction
$\Phi(X)$

$$
\sum_{i} \phi\left(x_{i}\right)
$$

two different perspectives

Hamming embedding

[Jégou et al. 2008]

- large vocabulary
- binary signature \& descriptor voting
- not aggregated
- selective: discard weak votes

VLAD

- small vocabulary
- one aggregated vector per cell
- linear operation
- not selective

two different perspectives

Hamming embedding

[Jégou et al. 2008]

- large vocabulary
- binary signature \& descriptor voting
- not aggregated
- selective: discard weak votes

VLAD

[Jégou et al. 2010]

- small vocabulary
- one aggregated vector per cell
- linear operation
- not selective

common model: image similarity

$$
K(X, Y)=\gamma(X) \gamma(Y) \sum_{c \in C} w_{c} \kappa\left(X_{c}, Y_{c}\right)
$$

common model: image similarity

common model: cell similarity

non aggregated

$$
\kappa_{n}\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} \sigma\left(\phi(x)^{\top} \phi(y)\right)
$$

aggregated

common model: cell similarity

non aggregated

common model: cell similarity

non aggregated

aggregated
$\kappa_{a}\left(X_{c}, Y_{c}\right)=\sigma\left\{\psi\left(\sum_{x \in X_{c}} \phi(x)\right)^{\top} \psi\left(\sum_{y \in Y_{c}} \phi(y)\right)\right\}=\sigma\left(\Phi\left(X_{c}\right)^{\top} \Phi\left(Y_{c}\right)\right)$

common model: cell similarity

non aggregated

aggregated
$\kappa_{a}\left(X_{c}, Y_{c}\right)=\sigma\{\underbrace{\{\underbrace{}_{x \in X_{c}} \sum_{\text {cell representation }} \phi(x))^{\top} \psi\left(\sum_{y \in Y_{c}} \phi(y)\right)\}}_{\text {normalization (} \ell_{2} \text {, power-law) }}=\sigma\left(\Phi\left(X_{c}\right)^{\top} \Phi\left(Y_{c}\right)\right)$

BoW, HE and VLAD in the common model

model	$\kappa\left(X_{c}, Y_{c}\right)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi\left(X_{c}\right)$
BoW	κ_{n} or κ_{a}	1	u	z	$\left\|X_{c}\right\|$
HE	κ_{n} only	\hat{b}_{x}	$\omega\left(\frac{B}{2}(1-u)\right)$	-	-
VLAD	κ_{n} or κ_{a}	$r(x)$	u		$V\left(X_{c}\right)$

$$
\begin{aligned}
& \text { BoW } \quad \kappa\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} 1=\left|X_{c}\right| \times\left|Y_{c}\right| \\
& \text { HE } \\
& \kappa\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} \\
& \text { VLAD } \\
& \kappa\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} r \\
& \kappa_{n}\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} \underset{\sigma}{\downarrow}\left(\phi(x)^{\top} \phi(y)\right) \\
& \kappa_{a}\left(X_{c}, Y_{c}\right)=\sigma\left\{\psi\left(\sum_{x \in X_{c}} \phi(x)\right)^{\top} \psi\left(\sum_{y \in Y_{c}} \phi(y)\right)\right\}=\sigma\left(\Phi\left(X_{c}\right)^{\top} \Phi\left(Y_{c}\right)\right)
\end{aligned}
$$

BoW, HE and VLAD in the common model

model	$\kappa\left(X_{c}, Y_{c}\right)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi\left(X_{c}\right)$
BoW	κ_{n} or κ_{a}	1	u	z	$\left\|X_{c}\right\|$
HE	κ_{n} only	\hat{b}_{x}	$w\left(\frac{B}{2}(1-u)\right)$	-	-
VLAD	κ_{n} or κ_{a}	$f(x)$	u	z	$V\left(X_{c}\right)$

BoW

$$
\kappa\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} 1=\left|X_{c}\right| \times\left|Y_{c}\right|
$$

HE

$$
\kappa\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} w\left(\mathrm{~h}\left(b_{x}, b_{y}\right)\right)
$$

$$
\kappa_{n}\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} \stackrel{\downarrow}{\sigma}\left(\phi(x)^{\top} \phi(y)\right)
$$

$$
\kappa_{a}\left(X_{c}, Y_{c}\right)=\sigma\left\{\psi\left(\sum_{x \in X_{c}} \phi(x)\right)^{\top} \psi\left(\sum_{y \in Y_{c}} \phi(y)\right)\right\}=\sigma\left(\Phi\left(X_{c}\right)^{\top} \Phi\left(Y_{c}\right)\right)
$$

BoW, HE and VLAD in the common model

model	$\kappa\left(X_{c}, Y_{c}\right)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi\left(X_{c}\right)$
BoW	κ_{n} or κ_{a}	1	u	z	$\left\|X_{c}\right\|$
HE	κ_{n} only	\hat{b}_{x}	$w\left(\frac{B}{2}(1-u)\right)$	-	$\left.-\bar{X}_{n}\right)$
VLAD	κ_{n} or κ_{a}	$r(x)$	u	z	$V\left(X_{c}\right)$

Bow $\quad \kappa\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} 1=\left|X_{c}\right| \times\left|Y_{c}\right|$
HE $\quad \kappa\left(X_{c}, Y_{c}\right)=\sum_{x \in X_{c}} \sum_{y \in Y_{c}} w\left(\mathrm{~h}\left(b_{x}, b_{y}\right)\right)$
$\begin{aligned} \mathrm{VLAD} \quad \kappa\left(X_{c}, Y_{c}\right) & =\sum_{x \in X_{c}} \sum_{y \in Y_{c}} \underbrace{r(x)^{\top} r(y)=V\left(X_{c}\right)^{\top} V\left(Y_{c}\right)} \\ \kappa_{n}\left(X_{c}, Y_{c}\right) & =\sum_{x \in X_{c}} \sum_{y \in Y_{c}} \sigma\left(\phi(x)^{\top} \phi(y)\right)\end{aligned}$
$\kappa_{a}\left(X_{c}, Y_{c}\right)=\sigma\left\{\psi\left(\sum_{x \in X_{c}} \phi(x)\right)^{\top} \psi\left(\sum_{y \in Y_{c}} \phi(y)\right)\right\}=\sigma\left(\underset{\left.\left(X_{c}\right)^{\top} \Phi\left(Y_{c}\right)\right)}{\downarrow}\right.$

aggregated selective match kernel

[Tolias et al. ICCV 2013]

- cell similarity

$$
\operatorname{ASMK}\left(X_{c}, Y_{c}\right)=\sigma_{\alpha}\left(\hat{V}\left(X_{c}\right)^{\top} \hat{V}\left(Y_{c}\right)\right)
$$

- cell representation: ℓ_{2}-normalized aggregated residual

$$
\Phi\left(X_{c}\right)=\hat{V}\left(X_{c}\right)=V\left(X_{c}\right) /\left\|V\left(X_{c}\right)\right\|
$$

selectivity function

aggregated selective match kernel

[Tolias et al. ICCV 2013]

- cell similarity

$$
\operatorname{ASMK}\left(X_{c}, Y_{c}\right)=\sigma_{\alpha}\left(\hat{V}\left(X_{c}\right)^{\top} \hat{V}\left(Y_{c}\right)\right)
$$

- cell representation: ℓ_{2}-normalized aggregated residual

$$
\Phi\left(X_{c}\right)=\hat{V}\left(X_{c}\right)=V\left(X_{c}\right) /\left\|V\left(X_{c}\right)\right\|
$$

selectivity function

aggregated selective match kernel

[Tolias et al. ICCV 2013]

- cell similarity

$$
\operatorname{ASMK}\left(X_{c}, Y_{c}\right)=\sigma_{\alpha}\left(\hat{V}\left(X_{c}\right)^{\top} \hat{V}\left(Y_{c}\right)\right)
$$

- cell representation: ℓ_{2}-normalized aggregated residual

$$
\Phi\left(X_{c}\right)=\hat{V}\left(X_{c}\right)=V\left(X_{c}\right) /\left\|V\left(X_{c}\right)\right\|
$$

- selectivity function

$$
\sigma_{\alpha}(u)= \begin{cases}\operatorname{sgn}(u)|u|^{\alpha}, & u>\tau \\ 0, & \text { otherwise }\end{cases}
$$

impact of selectivity

thresholding removes false correspondences

impact of selectivity

correspondences weighed based on confidence
impact of aggregation \& burstiness $k=128$ as in VLAD

impact of aggregation \& burstiness $k=65 \mathbf{k}$ as in HE

comparison to state of the art

[Tolias et al. IJCV 2015]

Dataset	MA	Oxf5k	Oxf105k	Par6k	Holiday
ASMK *		76.4	69.2	74.4	80.0
ASMK *	\times	80.4	75.0	77.0	81.0
ASMK		78.1	-	76.0	81.2
ASMK	\times	81.7	-	78.2	82.2
HE [Jégou et al. '10]		51.7	-	-	74.5
HE [Jégou et al. '10]	\times	56.1	-	-	77.5
HE-BURST [Jain et al. '10]		64.5	-	-	78.0
HE-BURST [Jain et al. '10]	\times	67.4	-	-	79.6
Fine vocab. [Mikulík et al. '10]	\times	74.2	67.4	74.9	74.9
AHE-BURST [Jain et al. '10]		66.6	-	-	79.4
AHE-BURST [Jain et al. '10]	\times	69.8	-	-	81.9
Rep. structures [Torri et al. '13]	\times	65.6	-	-	74.9
Locality [Tao et al. '14]	\times	77.0	-	-	78.7

nearest neighbor search

binary codes

spectral hashing

[Weiss et al. 2008]

- similarity preserving, balanced, uncorrelated
- spectral relaxation
- out of sample extension: uniform assumption

binary codes

spectral hashing

[Weiss et al. 2008]

- similarity preserving, balanced, uncorrelated
- spectral relaxation
- out of sample extension: uniform assumption

iterative quantization

[Gong \& Lazebnik 2011]

- quantize to closest vertex of binary cube
- PCA followed by interleaved rotation and quantization

vector quantization

[Gray 1984]

vector quantization

[Gray 1984]

- For small distortion \rightarrow large $k=|C|$:
- hard to train
- too large to store
- too slow to search

product quantization

[Jégou et al. 2011]

product quantization

[Jégou et al. 2011]

- train: $q=\left(q^{1}, \ldots, q^{m}\right)$ where q^{1}, \ldots, q^{m} obtained by VQ
- store: $|C|=k^{m}$ with $\left|C^{1}\right|=\cdots=\left|C^{m}\right|=k$
- search: $\|\mathbf{y}-q(\mathbf{x})\|^{2}=\sum_{j=1}^{m}\left\|\mathbf{y}^{j}-q^{j}\left(\mathbf{x}^{j}\right)\right\|^{2}$ where $q^{j}\left(\mathbf{x}^{j}\right) \in C^{j}$

optimized product quantization

[Ge et al. 2013]

$$
\begin{aligned}
\operatorname{minimize} & \sum_{\mathbf{x} \in X} \min _{\hat{\mathbf{c}} \in \hat{C}}\left\|\mathbf{x}-R^{\top} \hat{\mathbf{c}}\right\|^{2} \\
\text { subject to } & \hat{C}=C^{1} \times \cdots \times C^{m} \\
& R^{\top} R=I
\end{aligned}
$$

optimized product quantization

Parametric solution for $\mathrm{x} \sim \mathcal{N}(0, \Sigma)$

- independence: PCA-align by diagonalizing Σ as $U \Lambda U^{\top}$
- balanced variance: permute Λ by π such that $\prod_{i} \lambda_{i}$ is constant in each subspace; $R \leftarrow U P_{\pi}^{\top}$
- find \hat{C} by PQ on rotated data $\hat{X}=R X$

locally optimized product quantization

[Kalantidis \& Avrithis, CVPR 2014]

- compute residuals $r(\mathbf{x})=\mathbf{x}-q(\mathbf{x})$ on coarse quantizer q
- collect residuals $Z_{\mathbf{c}}=\{r(\mathbf{x}): q(\mathbf{x})=\mathbf{c}\}$ per cell
- train $\left(R_{\mathbf{c}}, q_{\mathbf{c}}\right) \leftarrow \mathrm{OPQ}\left(Z_{\mathbf{c}}\right)$ per cell

locally optimized product quantization

[Kalantidis \& Avrithis, CVPR 2014]

- residual distributions closer to Gaussian assumption
- better captures the support of data distribution, like local PCA
- multimodal (e.g. mixture) distributions
- distributions on nonlinear manifolds

local principal component analysis

[Kambhatla \& Leen 1997]

but, we are not doing dimensionality reduction!

inverted multi-index

[Babenko \& Lempitsky 2012]

- train codebook C from dataset $\left\{\mathbf{x}_{n}\right\}$
- this codebook provides a coarse partition of the space

inverted multi-index

[Babenko \& Lempitsky 2012]

- decompose vectors as $\mathbf{x}=\left(\mathbf{x}^{1}, \mathbf{x}^{2}\right)$
- train codebooks C^{1}, C^{2} from datasets $\left\{\mathbf{x}_{n}^{1}\right\},\left\{\mathbf{x}_{n}^{2}\right\}$
- induced codebook $C^{1} \times C^{2}$ gives a finer partition
- given query \mathbf{q}, visit cells $\left(\mathbf{c}^{1}, \mathbf{c}^{2}\right) \in C^{1} \times C^{2}$ in ascending order of distance to \mathbf{q}, by first computing distances to $\mathbf{q}^{1}, \mathbf{q}^{2}$

inverted multi-index

multi-sequence algorithm

Multi-LOPQ

[Kalantidis \& Avrithis, CVPR 2014]

comparison to state of the art

on SIFT1B, 128-bit codes

T	Method	$R=1$	10	100
20 K	IVFADC+R [Jégou et al. '11]	0.262	0.701	0.962
	LOPQ+R [Kalantidis \& Avrithis '14]	0.350	0.820	0.978
10 K	Multi-D-ADC [Babenko \& Lempitsky '12]	0.304	0.665	0.740
	OMulti-D-OADC [Ge et al. '13]	0.345	0.725	0.794
	Multi-LOPQ [Kalantidis \& Avrithis '14]	0.430	0.761	0.782
30 K	Multi-D-ADC [Babenko \& Lempitsky '12]	0.328	0.757	0.885
	OMulti-D-OADC [Ge et al. '13]	0.366	0.807	0.913
	Multi-LOPQ [Kalantidis \& Avrithis '14]	0.463	0.865	0.905
100 K	Multi-D-ADC [Babenko \& Lempitsky '12]	0.334	0.793	0.959
	OMulti-D-OADC [Ge et al. '13]	0.373	0.841	0.973
	Multi-LOPQ [Kalantidis \& Avrithis '14]	0.476	0.919	0.973

image query on Flickr 100M

deep learned features, $4 k \rightarrow 128$ dimensions

credit: Y. Kalantidis

ANN search - clustering connection

hierarchical k-means

[Nister \& Stewenius 2006]
use k-means tree for ANN search

ANN search - clustering connection

hierarchical k-means

[Nister \& Stewenius 2006]

use k-means tree for ANN search

approximate k-means
[Philbin et al. 2007]
use ANN search to accelerate assignment step

ANN search - clustering connection

> product quantization
> [Jégou et al. 2010]
> use k-means on subspaces to accelerate ANN search

```
\(\therefore\) \%iํํำ
```


ANN search - clustering connection

product quantization
[Jégou et al. 2010]
use k-means on subspaces to accelerate ANN search

inverted multi-index
[Babenko \& Lempitsky 2012] exhaustively search on subspaces before searching on entire space
dimensionality-recursive vector quantization [Avrithis, ICCV 2013]

DRVQ base case: $d=1$

DRVQ recursion: $d \rightarrow 2 d$

DRVQ: vector quantization

k	16 k	8 k	4 k	2 k	1 k	512
approximate $(\mu \mathrm{s})$	0.95	0.83	0.80	0.73	0.80	0.90
exact (ms)	1.19	0.79	0.51	0.26	0.21	0.11

averaged over the $n=75 \mathrm{k}$ SIFT descriptors of the 55 cropped query images of Oxford $5 k$

DRVQ: clustering

k	$\log k_{p}\left(d=2^{p}\right)$					time (m)	
	1	2	4	8	16		
16 k	6	7	8	9	11	14	129.96
8 k	6	7	8	9	11	13	119.43
4 k	6	7	8	9	10	12	20.07
2 k	5	6	7	8	9	11	2.792
1 k	5	6	7	8	9	10	2.608
512	4	5	6	7	8	9	0.866
4 k	approximate k-means					504.2	

4 codebooks at $d=32$ dimensions each on $n=12.5 \mathrm{M}$ 128-dimensional SIFT descriptors of Oxford $5 k$

DRVQ: clustering

k	$\log k_{p}\left(d=2^{p}\right)$					time (m)	
	1	2	4	8	16		
16 k	6	7	8	9	11	14	129.96
8 k	6	7	8	9	11	13	119.43
4 k	6	7	8	9	10	12	20.07
2 k	5	6	7	8	9	11	2.792
1 k	5	6	7	8	9	10	2.608
512	4	5	6	7	8	9	0.866
4 k	approximate k-means					504.2	

4 codebooks at $d=32$ dimensions each on $n=12.5 \mathrm{M}$ 128-dimensional SIFT descriptors of Oxford $5 k$

inverted-quantized k-means

[Avrithis et al. ongoing]
clustering of 100 M images in less than one hour on a single core

mining,
location \& instance
recognition

http://viral.image.ntua.gr

query

result

१ Estimated Location 9 similar Image, \uparrow Incorrectly geo-tagged 9 Unavailable

Suggested tags: Buxton Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Buxton Wemorial Fountain, Winchester Palace, Architecture, Victorian gothic

Similar Images

Similarity: 0.619
Details Original \bullet

Similarity: 0.491
Details Original e*

Similarity: 0.397
Details Original ee

Similarity: 0.385
Details Original \bullet

suggested tags

Suggested tags: Buxton Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Buxton Memorial Fountain, Winchester Palace, Architecture, Victorian gothic

related wikipedia articles

WikipediA
The Free Encyclopedia

Main page

Contents
Featured content
Current events
Random article

- Interaction About Wikipedia
Community portal Recentchanges Contact Míkipedia Donate to Wikipedia Help
- Toolbox

What links here Related changes
Upload file
Special pages Permanent link Cite this page

Read Edit View history
Search

Buxton Memorial Fountain

From Mikipedia, the free encyclopedia

The Buxton Memorial Fountain is a memorial and drinking fountain in London, the United Kingdom, that commemorates the emancipation of slaves in the British Empire in 1834.
It was commissioned by Charles Buxton MP, and was dedicated to his father Thomas Fowell Buxton along with William Wilberforce, Thomas Clarkson, Thomas Babington Macaulay, Henry Brougham and Stephen Lushington, all of whom were involved in the abolition. It was designed by Gothic architect Samuel Sanders Teulon (1812-1873) in 1865 coincidently with the passing of the Thirteenth Amendment to the United States Constitution, which effectively ended the western slave-trade. ${ }^{[1]}$
It was originally constructed in Parliament Square, erected al a cost of $£ 1,200$. As part of the postwar redesign of the square it was removed in 1949 and not reinstated in its present position in Victoria Tower Gardens until 1957. ${ }^{[2]}$ There were eight decorative figures of British rulers on it, but four were stolen in 1960 and four in 1971. They were replaced by fibreglass figures in 1980. By 2005 these were missing, and the fountain was no longer working. Between autumn 2006 and February 2007 restoration works were carried out. The restored fountain was unveiled on 27 March 2007 as part of the commemoration of the 200th anniversary of the act to abolish the slave trade ${ }^{[3]}$
A memorial plaque commemorating the 150th anniversary of the Anti-Slavery Society was added in 1989.

Description

The base is octagonal, about twelve feet in diameter, having open arches on the eight sides, supported on clustered shafts of polished Devonshire marble around a large central shat, with four massive granite basins. Surmounting the pinnacles at the angles of the octagon are eight figures of bronze, representing the different rulers of England; the Britons represented by Caractacus, the Romans by Constantine, the Danes by Canute, the Saxons by Alfred, the Normans by William the Conqueror, and so on, ending with Queen Victoria. The fountain bears an inscription to the effect that it is "intended as a memorial of those members of Parliament who, with Mr. Wiberforce, advocated the abolition of the British slave-trade, achieved in 1807; and of those members of Parliament who, with Sir T.

The Buxton Memorial Fountiain, designed by Sarmuel Sanders Teulon, celebrating the emancipation of slaves in the British Empire in 1634, in Victoria Tower Gerdens, Millbanil,

related wikipedia articles

WikipediA
The Free Encyclopedia

Main page

Contents
Featured content
Current events
Random article
Donate

- Interaction About Wikipedia Community portal Recentchanges Contact Wíkipedia Help
- Toolbox

What links here Related changes
Upload file
Special pages
Permanent link cite this page

- Frintiexport

Victoria Tower Gardens

From Mikipedia, the free encyclopedia

Coordinates: 5192949.0"N $0^{19730.014 n}$
Victoria Tower Gardens is a public park along the north bank of the River Thames in London. As its name suggests, it is adjacent to the Victoria Tower, the south-western corner of the Palace of Westminster. The park, which extends southwards from the Palace to Lambeth Bridge, sandwiched between Millbank and the river, also forms part of the Thames Embankment.

```
Contents [hide]
1 Features
2Transport
3History
4 External links
5References
```


Features

The park features

- A reproduction of the sculpture The Burghers of Calais by Auguste Rodin, purchased by the British Government in 1911 and positioned in the Gardens in 1915
- A 1930 statue of the suffragette Emmeline Pankhurst, by A.G. Walker.
- The Euxton Memorial Fountain - originally constructed in Parliament Square, this was removed in 1940 and placed in its present position in 1957. It was commissioned by Charles Buxton MP to commemorate the emancipation of slaves in 1834, dedicated to his father Thomas Fowell Buxton, and designed by Gothic architect Samuel Sanders Teulor (1812-1873) in 1865.
- A stone wall with two modern-style goats with kids - situated at the southem end of the Gardens.

Transport

VIRaL explore

VIRaL explore

VIRaL routes

credits

http://image.ntua.gr/iva/research/

thank you!

