Clustering and nearest neighbor search

Yannis Avrithis

University of Athens

Athens, November 2015

Problem

ANN search

- Given query point \mathbf{q} , find its nearest neighbor with respect to Euclidean distance within data set \mathcal{X} in a d-dimensional space
- Encode (compress) vectors, speed up distance computations
- Fit underlying distribution with little space & time overhead

Vector quantization

- Given data set \mathcal{X} , map it to discrete codebook \mathcal{C} such that distortion is minimized
- Use ANN search to assign points to centroids
- Use vector quantization to improve ANN search

Problem

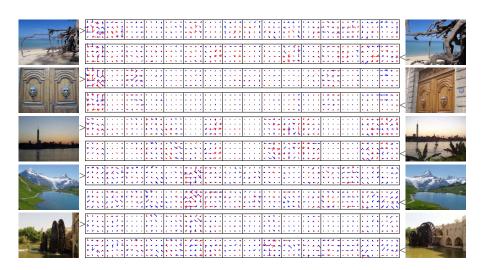
ANN search

- Given query point \mathbf{q} , find its nearest neighbor with respect to Euclidean distance within data set \mathcal{X} in a d-dimensional space
- Encode (compress) vectors, speed up distance computations
- Fit underlying distribution with little space & time overhead

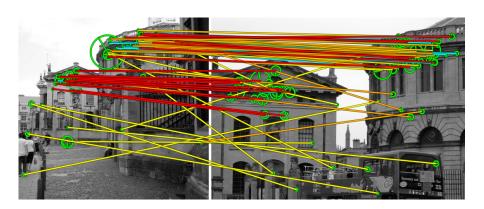
Vector quantization

- Given data set \mathcal{X} , map it to discrete codebook \mathcal{C} such that distortion is minimized
- Use ANN search to assign points to centroids
- Use vector quantization to improve ANN search

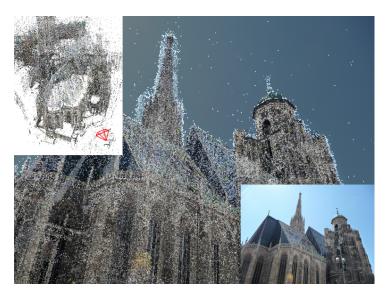
Retrieval (image as point) [Jégou et al. '10][Perronnin et al. '10]



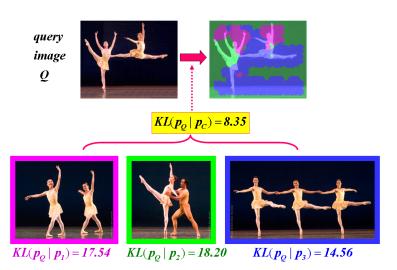
Retrieval (patch as point) [Tolias et al. '13][Qin et al. '13]



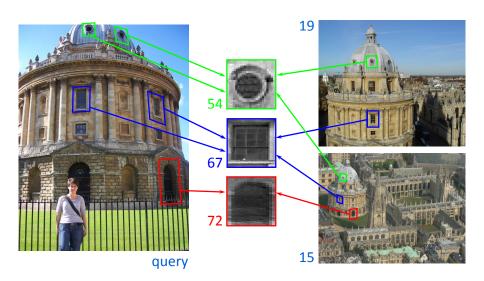
Localization, pose estimation [Sattler et al. '12][Li et al. '12]



Classification [Boiman et al. '08][McCann & Lowe '12]



BoW (patch quantization) [Sivic et al. '03][Philbin et al. '07]



BoW (codebook construction) [Philbin et al. '07][Avrithis '12]

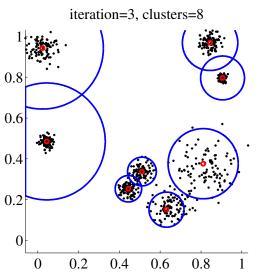
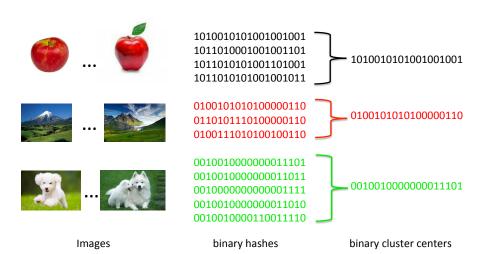


Image clustering [Gong et al. '15][Avrithis '15]



Overview (1)

Binary codes

- locality sensitive hashing [Charikar '02]
- spectral hashing [Weiss et al. '08]
- iterative quantization [Gong and Lazebnik '11]

Quantization

- vector quantization (VQ) [Gray '84]
- product quantization (PQ) [Jégou et al. '11]
- optimized product quantization (OPQ) [Ge et al. '13]
 Cartesian k-means [Norouzi & Fleet '13]
- locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

Overview (1)

Binary codes

- locality sensitive hashing [Charikar '02]
- spectral hashing [Weiss et al. '08]
- iterative quantization [Gong and Lazebnik '11]

Quantization

- vector quantization (VQ) [Gray '84]
- product quantization (PQ) [Jégou et al. '11]
- optimized product quantization (OPQ) [Ge et al. '13]
 Cartesian k-means [Norouzi & Fleet '13]
- locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

Overview (2)

Non-exhaustive search

- non-exhaustive PQ [Jégou et al. '11]
- inverted multi-index [Babenko & Lempitsky '12]
- multi-LOPQ [Kalantidis and Avrithis '14]

Clustering

- hierarchical k-means [Nister & Stewenius '06]
- approximate k-means [Philbin et al. '07]
- approximate Gaussian mixtures [Kalantidis & Avrithis '12]
- dimensionality-recursive vector quantization [Avrithis '13]
- ranked retrieval [Broder et al. '14]
- inverted-quantized k-means [Avrithis et al. '15]

Overview (2)

Non-exhaustive search

- non-exhaustive PQ [Jégou et al. '11]
- inverted multi-index [Babenko & Lempitsky '12]
- multi-LOPQ [Kalantidis and Avrithis '14]

Clustering

- hierarchical k-means [Nister & Stewenius '06]
- approximate k-means [Philbin et al. '07]
- approximate Gaussian mixtures [Kalantidis & Avrithis '12]
- dimensionality-recursive vector quantization [Avrithis '13]
- ranked retrieval [Broder et al. '14]
- inverted-quantized k-means [Avrithis et al. '15]

Binary codes

Locality sensitive hashing

random projections [Charikar '02]

- Choose a random vector ${\bf a}$ from the d-dimensional Gaussian distribution ${\cal N}(0,1).$
- Define hash function $h_{\mathbf{a}}: \mathbb{R}^d \to \{-1,1\}$ with

$$h_{\mathbf{a}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{a} \cdot \mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{a} \cdot \mathbf{x} \ge 0 \\ -1, & \text{if } \mathbf{a} \cdot \mathbf{x} < 0. \end{cases}$$

• Then, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbb{P}[h_{\mathbf{a}}(\mathbf{x}) = h_{\mathbf{a}}(\mathbf{y})] = 1 - \frac{\theta(\mathbf{x}, \mathbf{y})}{\pi}$$

where $\theta(\mathbf{x}, \mathbf{y})$ is the angle between \mathbf{x}, \mathbf{y} .

Locality sensitive hashing

random projections [Charikar '02]

- Choose a random vector ${\bf a}$ from the d-dimensional Gaussian distribution ${\cal N}(0,1)$.
- Define hash function $h_{\mathbf{a}}: \mathbb{R}^d \to \{-1,1\}$ with

$$h_{\mathbf{a}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{a} \cdot \mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{a} \cdot \mathbf{x} \ge 0 \\ -1, & \text{if } \mathbf{a} \cdot \mathbf{x} < 0. \end{cases}$$

• Then, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbb{P}[h_{\mathbf{a}}(\mathbf{x}) = h_{\mathbf{a}}(\mathbf{y})] = 1 - \frac{\theta(\mathbf{x}, \mathbf{y})}{\pi}$$

where $\theta(\mathbf{x}, \mathbf{y})$ is the angle between \mathbf{x}, \mathbf{y} .

Binary codes and Hamming distance

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$.
- Define k hash functions $h_j: \mathbb{R}^d \to \{-1,1\}$, and let $h(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_k(\mathbf{x})).$
- Encode each data point x by binary code y = h(x).
- Now, given a query \mathbf{q} , encode it as $h(\mathbf{q})$ and search in Y by Hamming distance

Binary codes and Hamming distance

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$.
- Define k hash functions $h_j: \mathbb{R}^d \to \{-1,1\}$, and let $h(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_k(\mathbf{x})).$
- Encode each data point x by binary code y = h(x).
- Now, given a query \mathbf{q} , encode it as $h(\mathbf{q})$ and search in Y by Hamming distance.

[Weiss et al. '08]

- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/t^2)$.
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

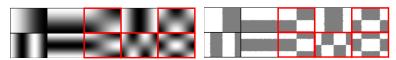
minimize
$$\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$
subject to
$$\mathbf{y}_i \in \{-1, 1\}^k$$
$$\sum_i \mathbf{y}_i = 0$$
$$\frac{1}{n} \sum_i \mathbf{y}_i \mathbf{y}_i^\top = I.$$

[Weiss et al. '08]

- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_i\|^2/t^2)$.
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

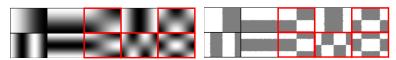
minimize
$$\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$
subject to
$$\mathbf{y}_i \in \{-1, 1\}^k$$
$$\sum_i \mathbf{y}_i = 0$$
$$\frac{1}{n} \sum_i \mathbf{y}_i \mathbf{y}_i^\top = I.$$

Example

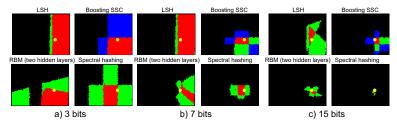


- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones

Example

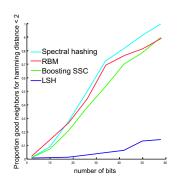


- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones



• Red: radius = 0; green: radius = 1; blue: radius = 2

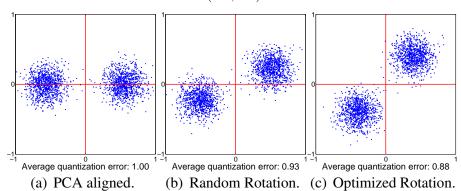
Result on LabelMe



Iterative quantization

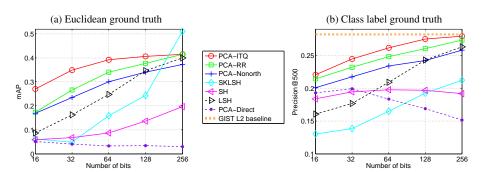
[Gong and Lazebnik '11]

Quantize each data point to the closest vertex of the binary cube, $(\pm 1, \pm 1)$.

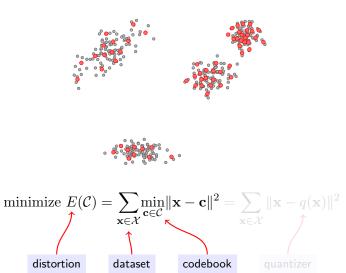


Iterative quantization

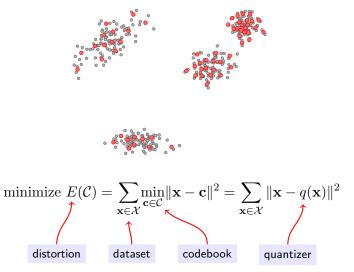
Result on CIFAR



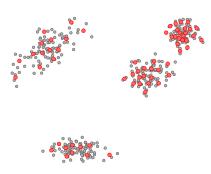
[Gray '84]



[Gray '84]



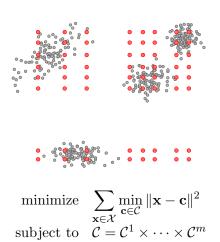
[Gray '84]



- For small distortion \rightarrow large $k = |\mathcal{C}|$:
 - hard to train
 - too large to store
 - too slow to search

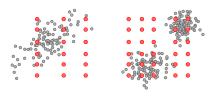
Product quantization

[Jégou et al. '11]



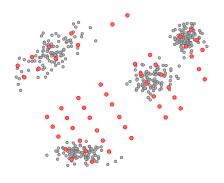
Product quantization

[Jégou et al. '11]



- train: $q=(q^1,\ldots,q^m)$ where q^1,\ldots,q^m obtained by VQ
- store: $|\mathcal{C}| = k^m$ with $|\mathcal{C}^1| = \cdots = |\mathcal{C}^m| = k$
- search: $\|\mathbf{y} q(\mathbf{x})\|^2 = \sum_{j=1}^m \|\mathbf{y}^j q^j(\mathbf{x}^j)\|^2$ where $q^j(\mathbf{x}^j) \in \mathcal{C}^j$

[Ge et al. '13]



minimize
$$\sum_{\mathbf{x} \in \mathcal{X}} \min_{\hat{\mathbf{c}} \in \hat{\mathcal{C}}} \|\mathbf{x} - R^{\top} \hat{\mathbf{c}}\|^{2}$$
subject to
$$\hat{\mathcal{C}} = \mathcal{C}^{1} \times \cdots \times \mathcal{C}^{m}$$
$$R^{\top} R = I$$

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

From rate-distortion theory, distortion satisfies

$$E \ge k^{-2/d} d|\Sigma|^{1/d}$$

and practical distortion achieved by k-means is typically within $\sim 5\%$ of the bound. So after rotation $\hat{\Sigma} = R \Sigma R^{\top}$,

$$E_{PQ} \ge k^{-2m/d} \frac{d}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d}$$

But, by arithmetic-geometric means and Fisher's inequalities,

$$\frac{1}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d} \ge \prod_{i=1}^{m} |\hat{\Sigma}_{ii}|^{1/d} \ge |\hat{\Sigma}|^{1/d} = |\Sigma|^{1/d}$$

with equality implying balanced variance and independence.

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

• From rate-distortion theory, distortion satisfies

$$E \ge k^{-2/d} d|\Sigma|^{1/d}$$

and practical distortion achieved by k-means is typically within $\sim 5\%$ of the bound. So after rotation $\hat{\Sigma} = R \Sigma R^{\top}$,

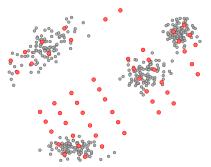
$$E_{\mathsf{PQ}} \ge k^{-2m/d} \frac{d}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d}$$

But, by arithmetic-geometric means and Fisher's inequalities,

$$\frac{1}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d} \ge \prod_{i=1}^{m} |\hat{\Sigma}_{ii}|^{1/d} \ge |\hat{\Sigma}|^{1/d} = |\Sigma|^{1/d}$$

with equality implying balanced variance and independence.

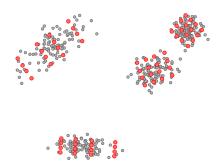
Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$



- independence: PCA-align by diagonalizing Σ as $U\Lambda U^{\top}$
- balanced variance: permute Λ by π such that $\prod_i \lambda_i$ is constant in each subspace; $R \leftarrow UP_\pi^\top$
- find $\hat{\mathcal{C}}$ by PQ on rotated data $\hat{X} = RX$

Locally optimized product quantization

[Kalantidis & Avrithis '14]



- ullet compute residuals $r(\mathbf{x}) = \mathbf{x} Q(\mathbf{x})$ on coarse quantizer Q
- collect residuals $\mathcal{Z}_i = \{r(\mathbf{x}) : Q(\mathbf{x}) = \mathbf{c}_i\}$ per cell
- train $(R_i, q_i) \leftarrow \mathsf{OPQ}(\mathcal{Z}_i)$ per cell

Locally optimized product quantization

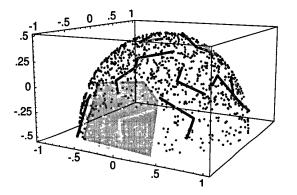
[Kalantidis & Avrithis '14]



- residual distributions closer to Gaussian assumption
- better captures the support of data distribution, like local PCA
 - multimodal (e.g. mixture) distributions
 - distributions on nonlinear manifolds

Local principal component analysis

[Kambhatla & Leen '97]



But, we are not doing dimensionality reduction!

Non-exhaustive search

Inverted index

IVFADC [Jégou et al. '11]

Construction

- train a coarse quantizer Q of K centroids or cells
- quantize each point $\mathbf{x} \in \mathcal{X}$ to $Q(\mathbf{x})$ and compute its residual vector $r(\mathbf{x}) = \mathbf{x} Q(\mathbf{x})$
- quantize residuals by a product quantizer q
- for each cell, maintain an inverted list of data points and PQ-encoded residuals

Search

- ullet quantize query ${f y}$ to w nearest cells
- ullet exhaustively search by PQ only within the w inverted lists

Inverted index

IVFADC [Jégou et al. '11]

Construction

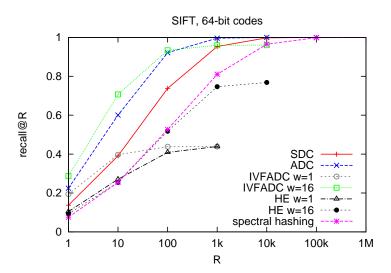
- train a coarse quantizer Q of K centroids or cells
- quantize each point $\mathbf{x} \in \mathcal{X}$ to $Q(\mathbf{x})$ and compute its residual vector $r(\mathbf{x}) = \mathbf{x} Q(\mathbf{x})$
- quantize residuals by a product quantizer q
- for each cell, maintain an inverted list of data points and PQ-encoded residuals

Search

- ullet quantize query ${f y}$ to w nearest cells
- ullet exhaustively search by PQ only within the w inverted lists

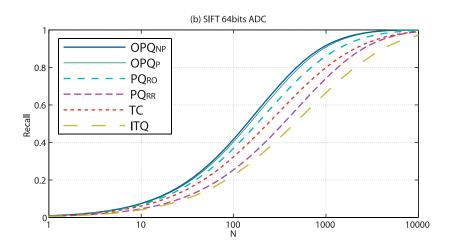
Product quantization

Comparison on SIFT1M



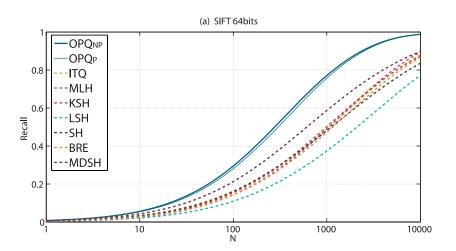
Optimized product quantization

Comparison on SIFT1M

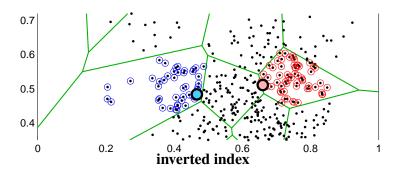


Optimized product quantization

vs. binary codes on SIFT1M

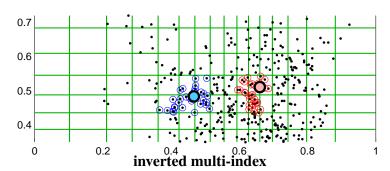


[Babenko & Lempitsky '12]



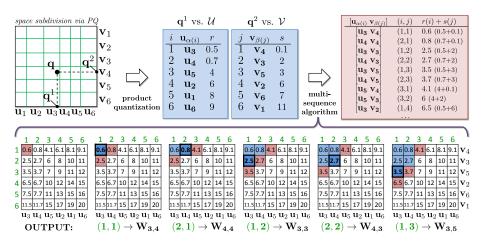
- train codebook $\mathcal C$ from dataset $\{\mathbf x_n\}$
- this codebook provides a coarse partition of the space

[Babenko & Lempitsky '12]

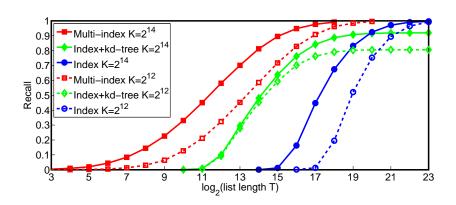


- decompose vectors as $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- ullet induced codebook $\mathcal{C}^1 imes \mathcal{C}^2$ gives a finer partition
- given query y, visit cells $(c^1, c^2) \in \mathcal{C}^1 \times \mathcal{C}^2$ in ascending order of distance to y

Multi-sequence algorithm

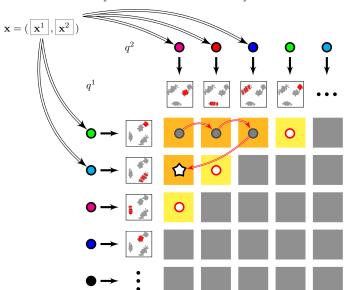


Result on SIFT1B: are NN in candidate lists?



Multi-LOPQ

[Kalantidis & Avrithis '14]



Multi-LOPQ

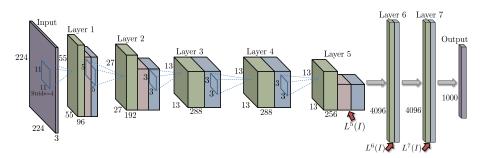
Result on SIFT1B, 128-bit codes

T	Method	R=1	10	100
20K	IVFADC+R [Jégou et al. '11]	0.262	0.701	0.962
	LOPQ+R [Kalantidis & Avrithis '14]	0.350	0.820	0.978
10K	Multi-D-ADC [Babenko & Lempitsky '12]	0.304	0.665	0.740
	OMulti-D-OADC [Ge et al. '13]	0.345	0.725	0.794
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.430	0.761	0.782
30K	Multi-D-ADC [Babenko & Lempitsky '12]	0.328	0.757	0.885
	OMulti-D-OADC [Ge et al. '13]	0.366	0.807	0.913
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.463	0.865	0.905
100K	Multi-D-ADC [Babenko & Lempitsky '12]	0.334	0.793	0.959
	OMulti-D-OADC [Ge et al. '13]	0.373	0.841	0.973
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.476	0.919	0.973

Application: image search

Deep learned image features

[Krizhevsky et al. '12]

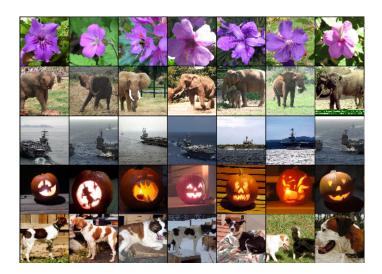


Deep learned image features

Classification

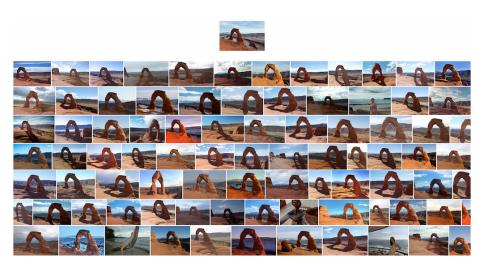
Deep learned image features

Search



Multi-LOPQ

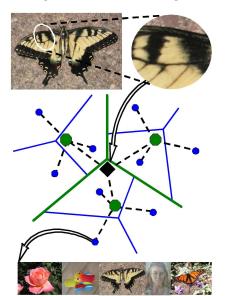
Image query on Flickr 100M (deep learned features, 4k ightarrow 128 dimensions)



Clustering

Hierarchical k-means

[Nister & Stewenius '06]



Approximate *k*-means

[Philbin et al. '07]

- centroids updated as in k-means
- points assigned to centroids by approximate search
- search by randomized k-d trees, even before the latter was published or FLANN was available
- index rebuilt in every k-means iteration

Approximate k-means

vs. Hierarchical k-means

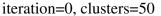
Method	Dataset	mAP		
		Bag-of-words	Spatial	
(a) HKM-1	5K	0.439	0.469	
(b) HKM-2	5K	0.418		
(c) HKM-3	5K	0.372		
(d) HKM-4	5K	0.353		
(e) AKM	5K	0.618	0.647	
(f) AKM	5K+100K	0.490	0.541	
(g) AKM	5K+100K+1M	0.393	0.465	

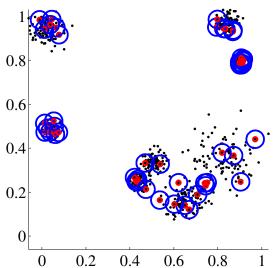
Robust approximate *k*-means

[Li et al. '10]

- the nearest neighbor in one iteration is re-used in the next
- less effort spent for new neighbor search
- faster convergence at same quality

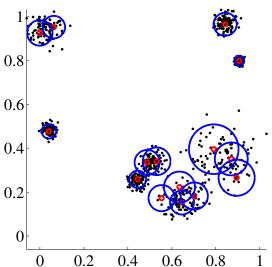
[Kalantidis & Avrithis '12]



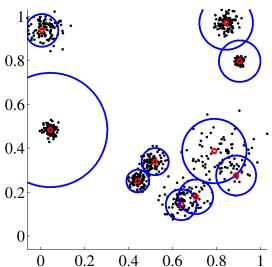


[Kalantidis & Avrithis '12]

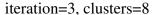
iteration=1, clusters=15

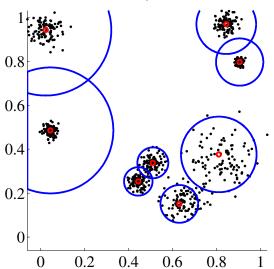


[Kalantidis & Avrithis '12]



[Kalantidis & Avrithis '12]





Expectation-maximization

[Dempster et al. '77]

Mixture of K d-dimensional normal densities or components,

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \mu_k, \mathbf{\Sigma}_k).$$

• Responsibility of component k for point \mathbf{x} :

$$\gamma_k(\mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\mu_j, \Sigma_j)}.$$

• Maximum likelihood solution for π, μ, Σ given N i.i.d. observations:

$$\pi_k = \frac{N_k}{N}$$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} \mathbf{x}_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^{\top}.$$

Expectation-maximization

[Dempster et al. '77]

Mixture of K d-dimensional normal densities or components,

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \mu_k, \mathbf{\Sigma}_k).$$

• Responsibility of component k for point \mathbf{x} :

$$\gamma_k(\mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\mu_j, \Sigma_j)}.$$

• Maximum likelihood solution for π, μ, Σ given N i.i.d. observations:

$$\pi_k = \frac{N_k}{N}$$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} \mathbf{x}_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^{\top}.$$

Generalized responsibility and sampling

Represent component k by function

$$p_k(\mathbf{x}) = \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k).$$

• Responsibility of component *k* for function *q*:

$$\hat{\gamma}_k(q) = \frac{\langle q, p_k \rangle}{\sum_{j=1}^K \langle q, p_j \rangle},$$

where $\langle p, q \rangle = \int p(\mathbf{x})q(\mathbf{x})d\mathbf{x}$ is the L^2 inner product.

• 'Sampling' a large component through a smaller one: $\langle p_1,p_2\rangle \to p_1(\mu_2)$ and $\hat{\gamma}_1(p_2) \to \gamma_1(\mu_2)$ as $p_2(x) \to \delta(x-\mu_2)$

Generalized responsibility and sampling

Represent component k by function

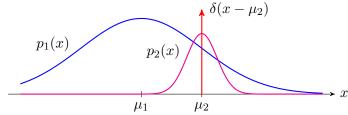
$$p_k(\mathbf{x}) = \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k).$$

• Responsibility of component *k* for function *q*:

$$\hat{\gamma}_k(q) = \frac{\langle q, p_k \rangle}{\sum_{j=1}^K \langle q, p_j \rangle},$$

where $\langle p, q \rangle = \int p(\mathbf{x})q(\mathbf{x})d\mathbf{x}$ is the L^2 inner product.

• 'Sampling' a large component through a smaller one: $\langle p_1,p_2\rangle \to p_1(\mu_2)$ and $\hat{\gamma}_1(p_2) \to \gamma_1(\mu_2)$ as $p_2(x) \to \delta(x-\mu_2)$.



Method			RAKM			AKM	AGM
k	350k	500k	550k	600k	700k	550k	857k
5k	0.471	0.479	0.486	0.485	0.476	0.485	0.492
5k + 20k	0.439	0.440	0.448	0.441	0.437	0.447	0.459
5k + 1M	_	_	0.250	_	_	_	0.280

ANN search - clustering connection

- hierarchical k-means: use k-means tree for ANN search
- approximate k-means: use ANN search to accelerate assignment step
- product quantization: use k-means on subspaces to accelerate ANN search
- *inverted multi-index*: exhaustively search on subspaces before searching on entire space

What is the actual connection? Can we use recursion to solve both problems at the same time?

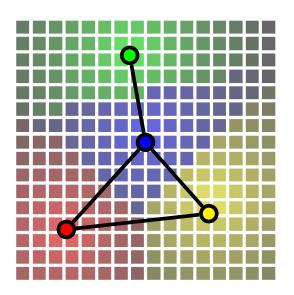
ANN search - clustering connection

- hierarchical k-means: use k-means tree for ANN search
- approximate k-means: use ANN search to accelerate assignment step
- product quantization: use k-means on subspaces to accelerate ANN search
- *inverted multi-index*: exhaustively search on subspaces before searching on entire space

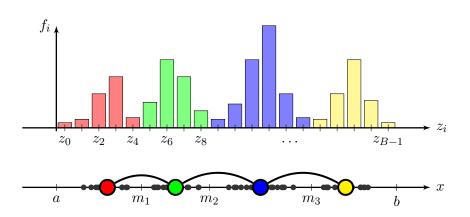
What is the actual connection? Can we use recursion to solve both problems at the same time?

Dimensionality-recursive vector quantization

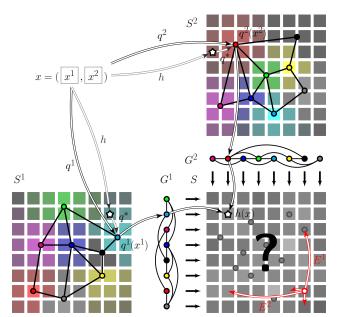
[Avrithis '13]



DRVQ base case: d = 1



DRVQ recursion: $d \rightarrow 2d$



DRVQ: vector quantization

k	16k	8k	4k	2k	1k	512
Approximate (μs)	0.95	0.83	0.80	0.73	0.80	0.90
Approximate (μs) Exact (ms)	1.19	0.79	0.51	0.26	0.21	0.11

averaged over the $n=75\mathrm{k}$ SIFT descriptors of the 55 cropped query images of Oxford 5k

DRVQ: clustering

k		log	time (m)				
K	1	2	4	8	16	32	time (m)
16k	6	7	8	9	11	14	129.96
8k	6	7	8	9	11	13	119.43
4k	6	7	8	9	10	12	20.07
2k	5	6	7	8	9	11	2.792
1k	5	6	7	8	9	10	2.608
512	4	5	6	7	8	9	0.866
4k	Approximate k -means					504.2	

4 codebooks at d= 32 dimensions each on n= 12.5M 128-dimensional SIFT descriptors of Oxford 5k

Approximate *k*-means

[Philbin et al. '07]

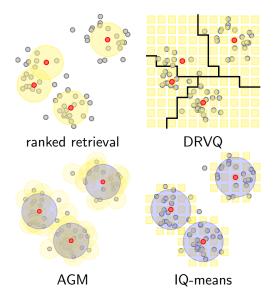
- centroids updated as in k-means
- points assigned to centroid by approximate search
- index rebuilt in every k-means iteration

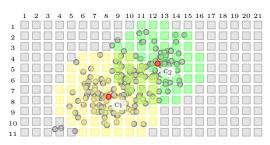
Ranked retrieval

[Broder et al. '14]

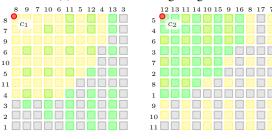
- centroids updated as in k-means
- points assigned by inverse search from centroids to points
- points may remain unassigned
- index built only once

[Avrithis et al. '15]





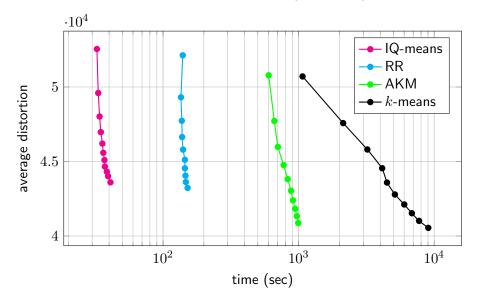
(a) visited cells on original grid



(b) search block of c_1

(c) search block of c_2

Comparison on SIFT1M with $k \in \{10^3, \dots, 10^4\}$



Time / iteration & average precision on YFCC100M, initial $k=10^5\,$

	Cell-KM	DKM (×300)	D-IQ-Means
k/k'	100000	100000	85742
time (s)	13068.1	7920.0	140.6
precision	0.474	0.616	0.550

Mining on a 100M image collection

Paris500k

Paris500k + YFCC100M

http://image.ntua.gr/iva/research/

Thank you!