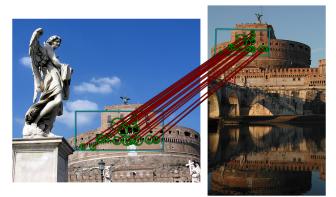
Geometry in feature detection, matching, search, and clustering

Yannis Avrithis

Heraklion, January 2016

motivation: visual search

challenges



- viewpoint
- lighting

(ロ)、(部)、(E)、(E)、(E)

- occlusion
- large scale

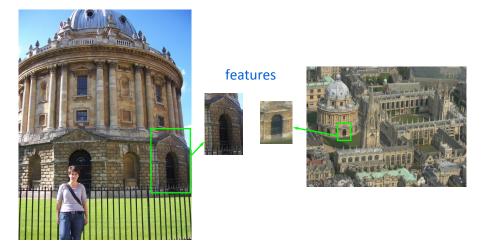
discriminative local features

[Lowe, ICCV 1999]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

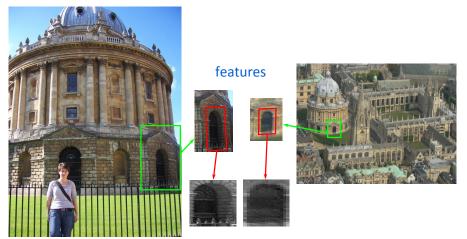
discriminative local features

[Lowe, ICCV 1999]



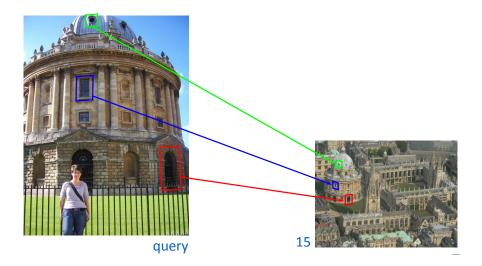
discriminative local features

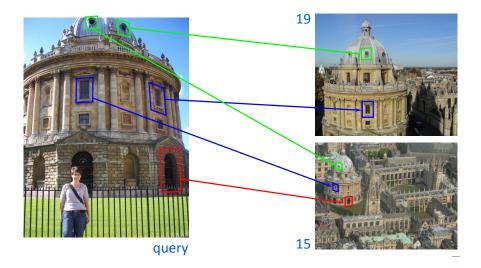
[Lowe, ICCV 1999]



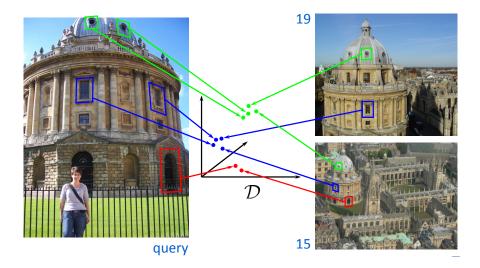
normalized features

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ



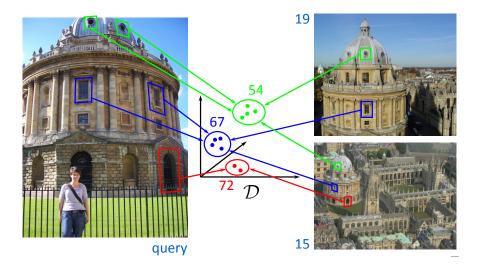


▲□▶ ▲圖▶ ▲注▶ ▲注▶ … 注: 釣A@



vector quantization \rightarrow visual words

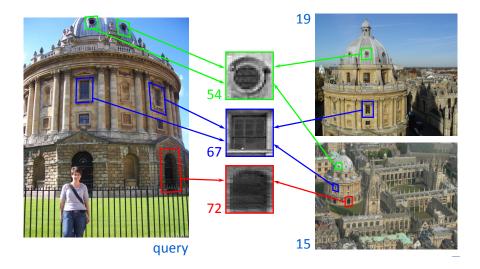
[Sivic and Zisserman, ICCV 2003]



・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

vector quantization \rightarrow visual words

[Sivic and Zisserman, ICCV 2003]

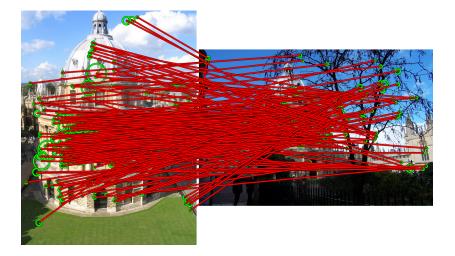


original images

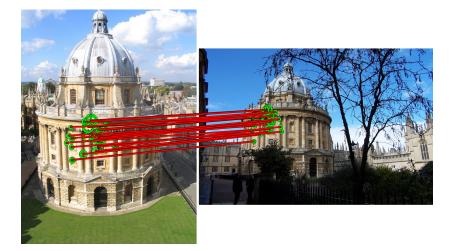
<ロ> (四) (四) (三) (三) (三) (三)

local features

< □ > < □ > < □ > < □ > < □ > < □ > = □



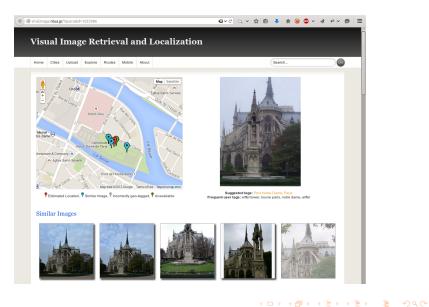
tentative correspondences



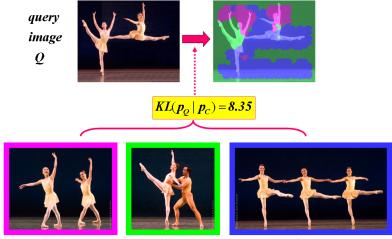
inliers

・ロト ・聞ト ・ヨト ・ヨト 三日

instance recognition [Kalantidis et al. 2011]



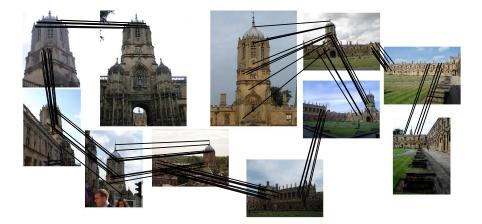
class recognition [Boiman et al. 2008]



 $KL(p_o | p_1) = 17.54$ $KL(p_o | p_2) = 18.20$

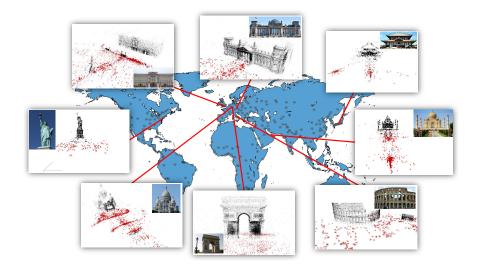
 $KL(p_0 | p_3) = 14.56$

object mining [Chum & Matas 2008]



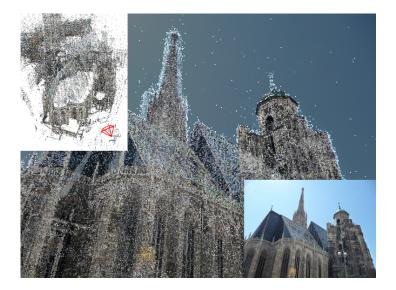
イロト イポト イヨト イヨト 二日

reconstruction [Heinly et al. 2015]



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

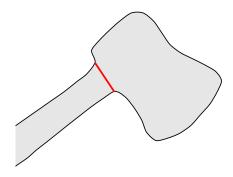
pose estimation [Sattler et al. 2012]



overview

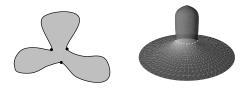
▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

- planar shape decomposition
- local feature detection
- feature geometry & spatial matching
- descriptors, kernels & embeddings
- nearest neighbor search
- clustering
- mining, location & instance recognition



planar shape decomposition

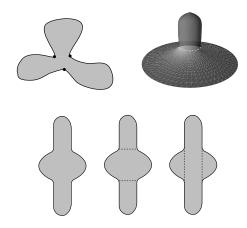
psychophysical studies



minima rule

[Hoffman & Richards 1983] "divide a silhouette into parts at concave cusps and negative minima of curvature"

psychophysical studies



minima rule

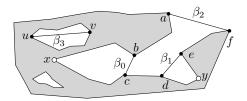
[Hoffman & Richards 1983] "divide a silhouette into parts at concave cusps and negative minima of curvature"

short-cut rule

[Singh *et al.* 1999] "divide a silhouette into parts using the shortest possible cuts"

イロト 不得 トイヨト イヨト ヨー うへつ

computational models



current work

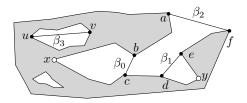
e.g. dual space decomposition [Liu *et al.* 2014]

[Liu *et al.* 2014] • mostly based on convexity

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

- requires optimization
- rules applied indirectly

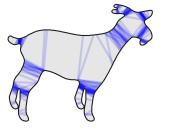
computational models



current work

e.g. dual space decomposition [Liu *et al.* 2014]

- mostly based on convexity
- requires optimization
- rules applied indirectly



quantitative evaluation

practically non-existent until [De Winter & Wagemans 2006]

イロト 不得 トイヨト イヨト ヨー うへつ

medial axis

planar shape

• a set $X \subset \mathbb{R}^2$ whose boundary ∂X is a finite union of disjoint simple closed curves, such that for each curve there is a parametrization $\alpha : [0,1] \to \partial X$ by arc length that is piecewise smooth

distance map

• maps each point $x \in X$ to its minimal distance to boundary ∂X

$$\mathcal{D}(X)(x) = \inf_{y \in \partial X} d(x, y)$$

projection

• the set of points on ∂X at minimal distance to x

$$\pi(x) = \{y \in \partial X : d(x,y) = \mathcal{D}(X)(x)\}$$

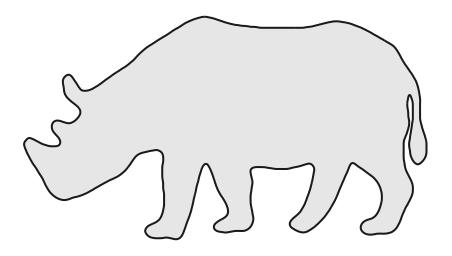
medial axis

• the set of points with more than one projection points

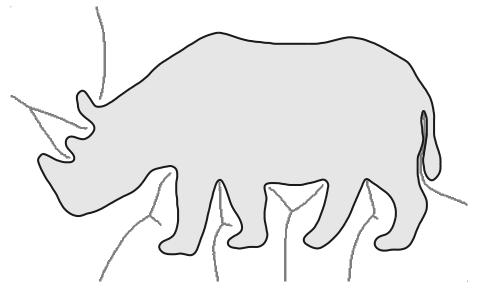
$$\mathcal{M}(X) = \{ x \in \mathbb{R}^2 : |\pi(x)| > 1 \}$$

medial axis decomposition

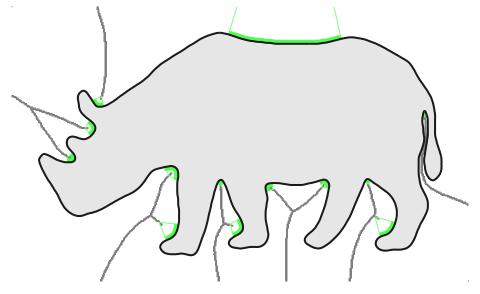
[Papanelopoulos & Avrithis, BMVC 2015]



exterior medial axis

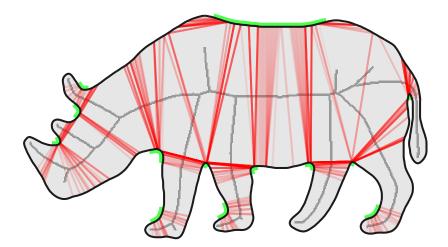


concave corners and "locale"

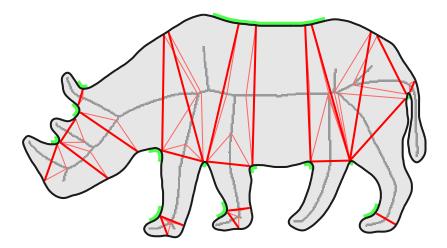


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

interior medial axis and raw cuts

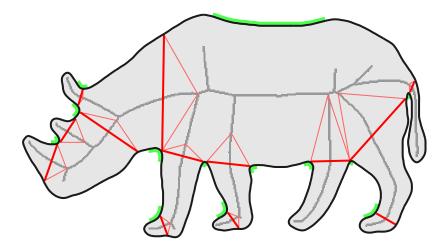


cut equivalence on corners and branches



▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ 差 のへで

local convexity and short-cut rule



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

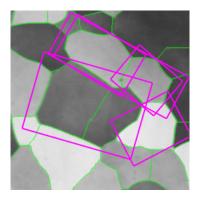
quantitative evaluation

	average		majority	
	H	R	Н	R
DCE	0.208	0.497	0.188	0.466
SB	0.163	0.402	0.131	0.335
MD	0.151	0.371	0.126	0.328
FD	0.145	0.350	0.112	0.267
ACD	0.128	0.323	0.092	0.251
MAD	0.157	0.193	0.118	0.154
CBE	0.111	0.288	0.069	0.186
Human	-	_	0.104	0.137

H = Hamming distance; R = Rand index

medial axis decomposition...

- practically "reads off" all information from the medial axis
- requires no differentiation
- requires no optimization
- is based on local decisions only
- can use arbitrary salience measures



local feature detection

Hessian affine [Mikolajczyk & Schmid 2004]

• de facto standard in visual search

too many responses

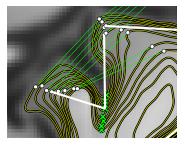
Hessian affine [Mikolajczyk & Schmid 2004]

- de facto standard in visual search
- too many responses

maximally stable extremal regions [Matas *et al.* 2002]

イロト 不得 トイヨト イヨト ヨー ろくで

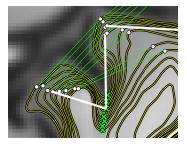
- arbitrary shape
- too constrained



affine frames on isophotes

[Perdoch et al. 2007]

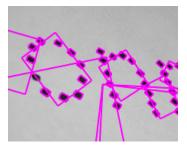
- only local stability
- based on bitangents



affine frames on isophotes

[Perdoch et al. 2007]

- only local stability
- based on bitangents



medial features [Avrithis & Rapantzikos 2011]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 | のへで

medial features

[Avrithis & Rapantzikos, ICCV 2011]

additively weighted distance map

- given a non-increasing function $f:X\to \mathbb{R}$ of gradient strength, where X is the image plane,

$$\mathcal{D}(f)(x) = \min_{y \in X} \{ d(x, y) + f(y) \}$$

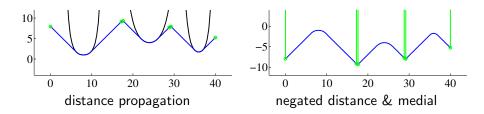
for $x \in X$

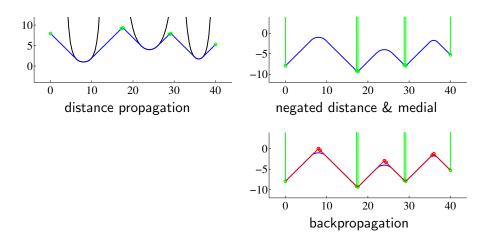
weighted medial

similarly to unweighted case

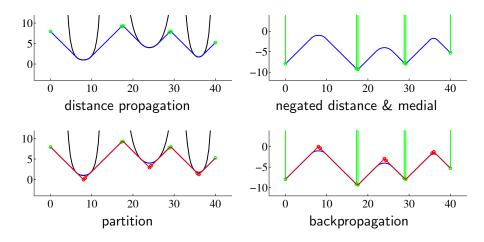
$$\mathcal{M}(f) = \{ x \in \mathbb{R}^2 : |\pi(x)| > 1 \}$$





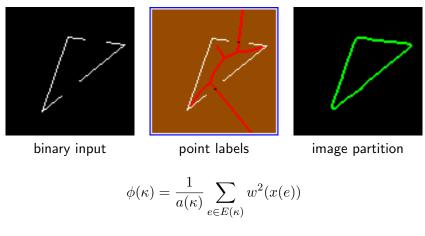


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

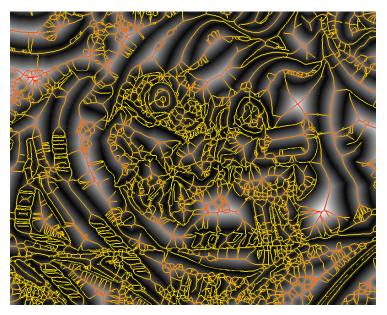
fragmentation factor



selection criterion: is a region well-enclosed by boundaries?

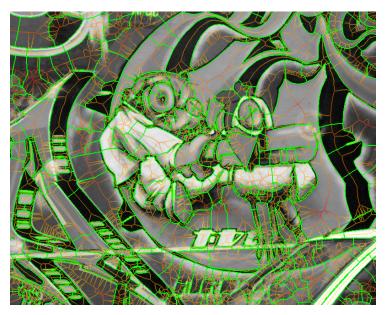
original image

weighted distance map + medial

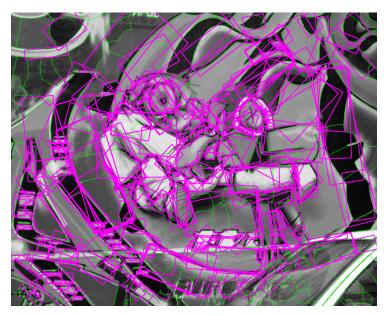


original image + weighted medial

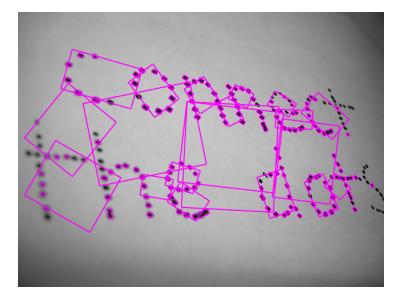
region/boundary duality & partition



original image + features



law of closure & perceptual grouping



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

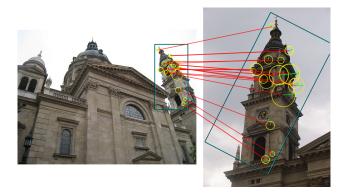
image search experiment mAP on Oxford 5k

mAP	Inv. index		Re-ranking	
Detector	50k	200k	50k	200k
MFD	0.515	0.580	0.568	0.617
Hessian-affine	0.488	0.573	0.537	0.614
MSER	0.473	0.544	0.537	0.589
SURF	0.488	0.531	0.497	0.536
SIFT	0.395	0.457	0.434	0.495

medial features...

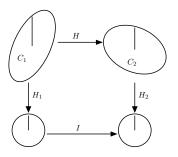
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

- have arbitrary scale and shape
- are not contrained to extremal regions
- decompose shapes into parts
- capture law of closure



feature geometry & spatial matching

spatial matching for instance recognition



fast spatial matching

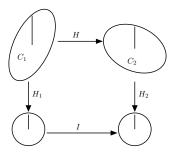
[Philbin et al. 2007]

- RANSAC variant
- single-correspondence hypotheses

イロト 不得 トイヨト イヨト ヨー ろくで

- enumerate them all— $O(n^2)$

spatial matching for instance recognition



fast spatial matching

[Philbin et al. 2007]

- RANSAC variant
- single-correspondence hypotheses
- enumerate them all— $O(n^2)$

scale-invariant features [Lowe 1999]

• Hough voting in 4d transformation space

イロト 不得 トイヨト イヨト ヨー うへつ

• verification needed—still $O(n^2)$

spatial matching for class recognition

$$x^{\star} = \arg \max_{x \in \{0,1\}^n} x^{\top} A x$$

spectral matching

[Leordeanu & Hebert et al. 2005]

- based on pairwise affinity
- mapping constraints
- relaxed to an eigenvalue problem

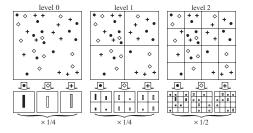
spatial matching for class recognition

$$x^{\star} = \arg \max_{x \in \{0,1\}^n} x^{\top} A x$$

spectral matching

[Leordeanu & Hebert et al. 2005]

- based on pairwise affinity
- mapping constraints
- relaxed to an eigenvalue problem



spatial pyramid matching [Lazebnik *et al.* 2006]

イロト 不得 トイヨト イヨト ヨー うへつ

- flexible matching
- non-invariant

Hough pyramid matching

[Tolias & Avrithis, ICCV 2011]

- do not seek for inliers
- rather, look for hypotheses that agree with each other
- Hough voting in the 4d transformation space

$$F(c) = F(q)F(p)^{-1} = \begin{bmatrix} M(c) & \mathbf{t}(c) \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$

$$f(c) = (x(c), y(c), \sigma(c), \theta(c))$$

pyramid matching in the transformation space

$$s(c) = g(b_0) + \sum_{k=1}^{L-1} 2^{-k} \{ g(b_k) - g(b_{k-1}) \}$$

$$s(C) = \sum_{c \in C \setminus X} w(c) s(c)$$

Hough pyramid matching

[Tolias & Avrithis, ICCV 2011]

- do not seek for inliers
- rather, look for hypotheses that agree with each other
- Hough voting in the 4d transformation space

$$F(c) = F(q)F(p)^{-1} = \begin{bmatrix} M(c) & \mathbf{t}(c) \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$

$$f(c) = (x(c), y(c), \sigma(c), \theta(c))$$

• pyramid matching in the transformation space

$$s(c) = g(b_0) + \sum_{k=1}^{L-1} 2^{-k} \{ g(b_k) - g(b_{k-1}) \}$$

$$s(C) = \sum_{c \in C \setminus X} w(c) s(c)$$

Hough pyramid matching

[Tolias & Avrithis, ICCV 2011]

- do not seek for inliers
- rather, look for hypotheses that agree with each other
- Hough voting in the 4d transformation space

$$F(c) = F(q)F(p)^{-1} = \begin{bmatrix} M(c) & \mathbf{t}(c) \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$

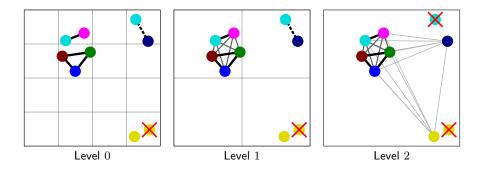
$$f(c) = (x(c), y(c), \sigma(c), \theta(c))$$

• pyramid matching in the transformation space

$$s(c) = g(b_0) + \sum_{k=1}^{L-1} 2^{-k} \{g(b_k) - g(b_{k-1})\}$$

$$s(C) = \sum_{c \in C \setminus X} w(c) s(c)$$

toy example Hough pyramid



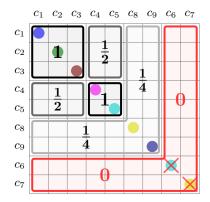
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

toy example

correspondences, strengths

	p q	strength
c_1	0-0	$(2+\frac{1}{2}2+\frac{1}{4}2)w(c)$
c_2	0-0	$(2+\frac{1}{2}2+\frac{1}{4}2)w(c_2)$
c_3	0-0	$(2+\frac{1}{2}2+\frac{1}{4}2)w(c_3)$
c_4	0-0	$(1+\frac{1}{2}3+\frac{1}{4}2)w(c_4)$
c_5	Q-0	$(1+\frac{1}{2}3+\frac{1}{4}2)w(c_3)$
c_6	X	0
c_7	X-O	0
c_8	0	$\frac{1}{4}6w(c_8)$
c_9	0-0	$\frac{1}{4}6w(c_9)$

toy example affinity matrix



◆□> ◆圖> ◆国> ◆国> 「国」の文化

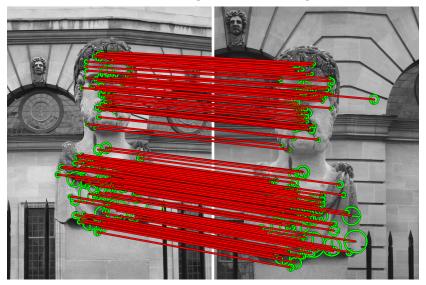
Hough pyramid matching ...

- is invariant to similarity transformations
- is flexible, allowing non-rigid motion and multiple matching surfaces or objects

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

imposes one-to-one mapping

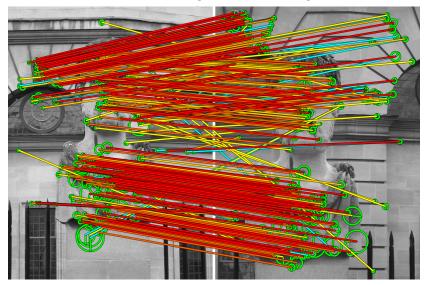
HPM vs FSM [Philbin et al. 2007]



fast spatial matching

イロト イロト イモト イモト 三日

HPM vs FSM [Philbin et al. 2007]



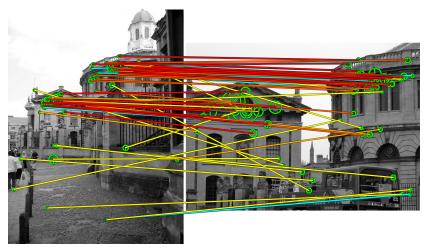
Hough pyramid matching

HPM vs FSM [Philbin et al. 2007]

fast spatial matching

<□> <0><</p>

HPM vs FSM [Philbin et al. 2007]



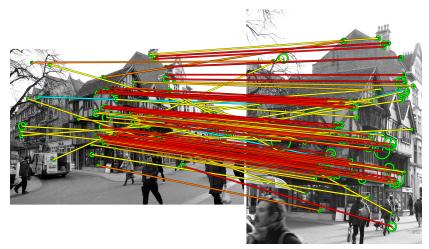
Hough pyramid matching

HPM vs FSM [Philbin et al. 2007]

fast spatial matching

examples

HPM vs FSM [Philbin et al. 2007]



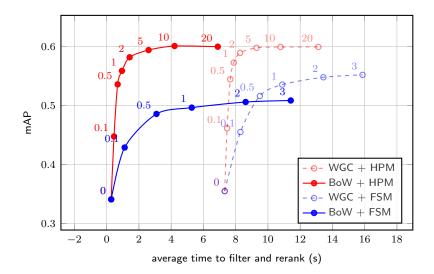
Hough pyramid matching

Hough pyramid matching

- is non-iterative, and linear in the number of correspondences
- in a given query time, can re-rank one order of magnitude more images than the state of the art
- typically needs less than one millisecond to match a pair of images, on average

performance vs time

on World Cities 2M

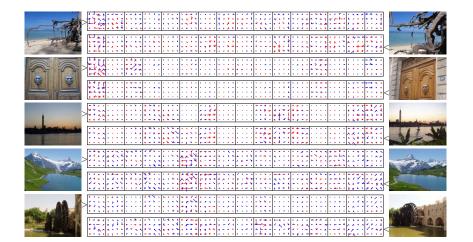


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ()~

comparison to state of the art

[Avrithis & Tolias, IJCV 2014]

method	Ox5K	0x105K	Paris	Holidays
HPM (this work)	0.789	0.730	0.725	0.790
[Shen <i>et al.</i> 2012]	0.752	0.729	0.741	0.762
GVP [Zhang et al. 2011]	0.696	-	-	-
SBoF [Cao <i>et al.</i> 2010]	0.656	-	0.632	-
[Perdoch <i>et al.</i> 2009]	0.789	0.726	-	0.715
FSM [Philbin et al. 2007]	0.647	0.541	-	-



descriptors, kernels & embeddings

set kernels & embeddings

normalized sum set kernel [Bo & Sminchisescu 2009]

• given kernel function k, define (finite) set kernel

$$K(X,Y) = \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} k(x,y)$$

example: Gaussian mixtures [Liu & Perronnin 2008]

• model set X by finite mixture distribution

$$f_X(z) = \frac{1}{|X|} \sum_{x \in X} \mathcal{N}(z|x, \Sigma), \quad z \in \mathbb{R}^d$$

then

$$\langle f_X, f_Y \rangle = \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} \mathcal{N}(x|y, 2\Sigma)$$

set kernels & embeddings

normalized sum set kernel [Bo & Sminchisescu 2009]

• given kernel function k, define (finite) set kernel

$$K(X,Y) = \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} k(x,y)$$

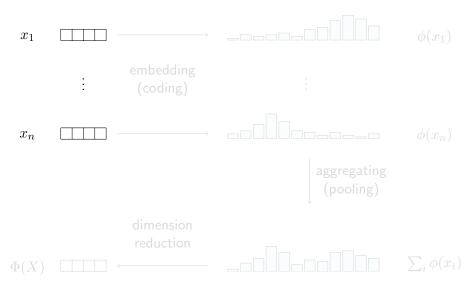
example: Gaussian mixtures [Liu & Perronnin 2008]

model set X by finite mixture distribution

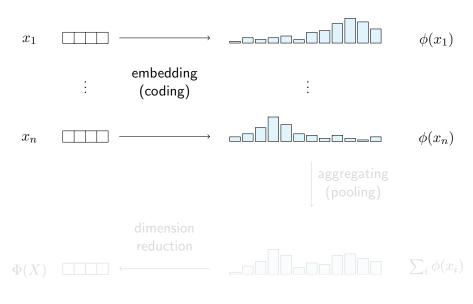
$$f_X(z) = \frac{1}{|X|} \sum_{x \in X} \mathcal{N}(z|x, \Sigma), \quad z \in \mathbb{R}^d$$

then,

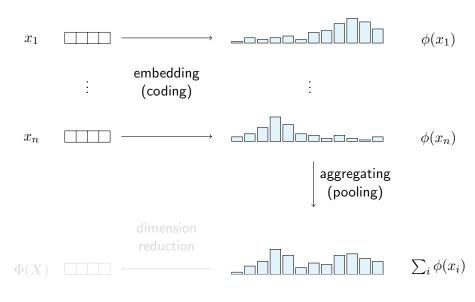
$$\langle f_X, f_Y \rangle = \frac{1}{|X||Y|} \sum_{x \in X} \sum_{y \in Y} \mathcal{N}(x|y, 2\Sigma)$$



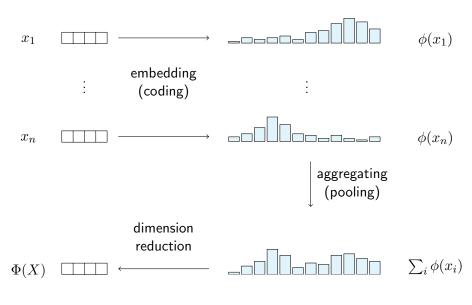
◆□ > ◆□ > ◆三 > ◆三 > ・三 > シへの



▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - 釣べ⊙

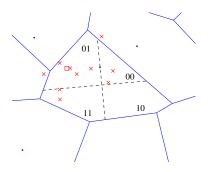


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

two different perspectives



$$V(X_c) = \sum_{x \in X_c} x - q(x)$$
$$X_c = \{x \in X : q(x) = c\}$$

Hamming embedding

[Jégou *et al.* 2008]

- large vocabulary
- binary signature & descriptor voting
- not aggregated
- selective: discard weak votes

VLAD

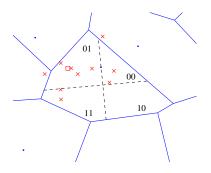
[Jégou et al. 2010]

- small vocabulary
- one aggregated vector per cell

イロト 不得 トイヨト イヨト ヨー ろくで

- linear operation
- not selective

two different perspectives



Hamming embedding

[Jégou *et al.* 2008]

- large vocabulary
- binary signature & descriptor voting
- not aggregated
- selective: discard weak votes

VLAD

[Jégou et al. 2010]

- small vocabulary
- one aggregated vector per cell

イロト 不得 トイヨト イヨト ヨー ろくで

- linear operation
- not selective

$$V(X_c) = \sum_{x \in X_c} x - q(x)$$
$$X_c = \{x \in X : q(x) = c\}$$

common model: image similarity

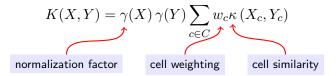
$$K(X,Y) = \gamma(X) \gamma(Y) \sum_{c \in C} w_c \kappa (X_c, Y_c)$$

normalization factor

cell weighting

cell similarity

common model: image similarity



non aggregated

$$\kappa_n(X_c, Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} \sigma\left(\phi(x)^\top \phi(y)\right)$$

selectivity function

descriptor representation (residual, binary, scalar)

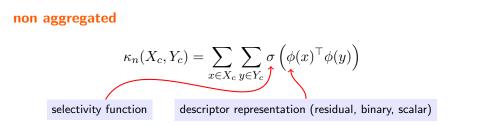
aggregated

$$\kappa_a(X_c, Y_c) = \sigma \left\{ \psi \left(\sum_{x \in X_c} \phi(x) \right)^\top \psi \left(\sum_{y \in Y_c} \phi(y) \right) \right\} = \sigma \left(\Phi(X_c)^\top \Phi(Y_c) \right)$$

normalization (ℓ_2 , power-law)

cell representation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ



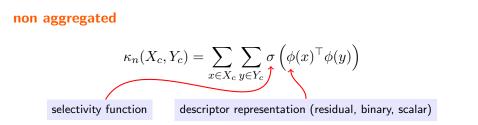
aggregated

$$\kappa_a(X_c, Y_c) = \sigma \left\{ \psi \left(\sum_{x \in X_c} \phi(x) \right)^\top \psi \left(\sum_{y \in Y_c} \phi(y) \right) \right\} = \sigma \left(\Phi(X_c)^\top \Phi(Y_c) \right)$$

normalization (ℓ_2 , power-law)

cell representation

イロト 不得 トイヨト イヨト ヨー ろくで



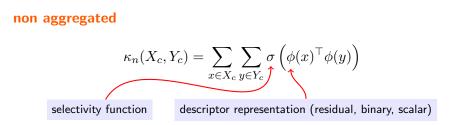
aggregated

$$\kappa_a(X_c, Y_c) = \sigma \left\{ \psi \left(\sum_{x \in X_c} \phi(x) \right)^\top \psi \left(\sum_{y \in Y_c} \phi(y) \right) \right\} = \sigma \left(\Phi(X_c)^\top \Phi(Y_c) \right)$$

normalization (ℓ_2 , power-law)

cell representation

イロト 不得 トイヨト イヨト ヨー ろくで



aggregated

$$\kappa_a(X_c, Y_c) = \sigma \left\{ \psi \left(\sum_{x \in X_c} \phi(x) \right)^\top \psi \left(\sum_{y \in Y_c} \phi(y) \right) \right\} = \sigma \left(\Phi(X_c)^\top \Phi(Y_c) \right)$$

normalization (ℓ_2 , power-law) cell representation

BoW, HE and VLAD in the common model

model	$\kappa(X_c, Y_c)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi(X_c)$
BoW	κ_n or κ_a	1	u	z	$ X_c $
HE	κ_n only		$w\left(\frac{B}{2}(1-u)\right)$		
VLAD	κ_n or κ_a				$V(X_c)$

$$\begin{split} \mathsf{BoW} \qquad & \kappa(X_c,Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} 1 = |X_c| \times |Y_c| \\ \mathsf{HE} \qquad & \kappa(X_c,Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} \psi(\mathsf{h}(b_x,b_y)) \\ \mathsf{VLAD} \qquad & \kappa(X_c,Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} r(x)^\top r(y) = V(X_c)^\top V(Y_c) \\ & \kappa_n(X_c,Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} \sigma\left(\phi(x)^\top \phi(y)\right) \\ & \kappa_a(X_c,Y_c) = \sigma\left\{\psi\left(\sum_{x \in X_c} \phi(x)\right)^\top \psi\left(\sum_{y \in Y_c} \phi(y)\right)\right\} = \sigma\left(\Phi(X_c)^\top \Phi(Y_c)\right) \end{split}$$

BoW, HE and VLAD in the common model

model	$\kappa(X_c, Y_c)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi(X_c)$
BoW	κ_n or κ_a	1	u	z	$ X_c $
HE	κ_n only	\hat{b}_x	$w\left(\frac{B}{2}(1-u)\right)$		_
VLAD	κ_n or κ_a		u ,		$V(X_c)$

BoW
$$\kappa(X_c, Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} 1 = |X_c| \times |Y_c|$$

HE $\kappa(X_c, Y_c) = \sum \sum w (h(b_x, b_y))$

$$\mathsf{VLAD} \quad \kappa(X_c, Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} r(x)^\top r(y) = V(X_c)^\top V(x)^\top V(x)$$

$$\kappa_n(X_c, Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} \overset{\blacktriangleright}{\sigma} \left(\phi(x)^\top \phi(y) \right)$$

$$\kappa_a(X_c, Y_c) = \sigma \left\{ \psi \left(\sum_{x \in X_c} \phi(x) \right)^\top \psi \left(\sum_{y \in Y_c} \phi(y) \right) \right\} = \sigma \left(\Phi(X_c)^\top \Phi(Y_c) \right)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

BoW, HE and VLAD in the common model

model	$\kappa(X_c, Y_c)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi(X_c)$
BoW	κ_n or κ_a	1	u	z	$ X_c $
HE	κ_n only	\hat{b}_x	$w\left(\frac{B}{2}(1-u)\right)$		_
VLAD	κ_n or κ_a	r(x)	u u	z	$V(X_c)$

BoW
$$\kappa(X_c, Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} 1 = |X_c| \times |Y_c|$$

HE
$$\kappa(X_c, Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} w(h(b_x, b_y))$$

$$\begin{array}{l} \mathsf{VLAD} \quad \kappa\left(X_c, Y_c\right) = \sum_{x \in X_c} \sum_{y \in Y_c} r(x)^\top r(y) = V(X_c)^\top V(Y_c) \\ \\ \kappa_n(X_c, Y_c) = \sum_{x \in X_c} \sum_{y \in Y_c} \sigma\left(\phi(x)^\top \phi(y)\right) \\ \\ \kappa_a(X_c, Y_c) = \sigma\left\{\psi\left(\sum_{x \in X_c} \phi(x)\right)^\top \psi\left(\sum_{y \in Y_c} \phi(y)\right)\right\} = \sigma\left(\Phi(X_c)^\top \Phi(Y_c)\right) \end{array}$$

aggregated selective match kernel

[Tolias et al. ICCV 2013]

cell similarity

$$\mathsf{ASMK}(X_c, Y_c) = \sigma_{\alpha} \left(\hat{V}(X_c)^\top \hat{V}(Y_c) \right)$$

• cell representation: ℓ_2 -normalized aggregated residual

$$\Phi(X_c) = \hat{V}(X_c) = V(X_c) / ||V(X_c)||$$

selectivity function

$$\sigma_{\alpha}(u) = \begin{cases} \operatorname{sgn}(u)|u|^{\alpha}, & u > \tau \\ 0, & \text{otherwise} \end{cases}$$

aggregated selective match kernel

[Tolias et al. ICCV 2013]

cell similarity

$$\mathsf{ASMK}(X_c, Y_c) = \sigma_{\alpha} \left(\hat{V}(X_c)^\top \hat{V}(Y_c) \right)$$

• cell representation: ℓ_2 -normalized aggregated residual

$$\Phi(X_c) = \hat{V}(X_c) = V(X_c) / \|V(X_c)\|$$

selectivity function

$$\sigma_{\alpha}(u) = \begin{cases} \operatorname{sgn}(u)|u|^{\alpha}, & u > \tau \\ 0, & \text{otherwise} \end{cases}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

aggregated selective match kernel

[Tolias et al. ICCV 2013]

cell similarity

$$\mathsf{ASMK}(X_c, Y_c) = \sigma_{\alpha} \left(\hat{V}(X_c)^\top \hat{V}(Y_c) \right)$$

• cell representation: ℓ_2 -normalized aggregated residual

$$\Phi(X_c) = \hat{V}(X_c) = V(X_c) / \|V(X_c)\|$$

selectivity function

$$\sigma_{\alpha}(u) = \begin{cases} \operatorname{sgn}(u)|u|^{\alpha}, & u > \tau \\ 0, & \text{otherwise} \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

impact of selectivity

 $\alpha = 1, \ \tau = 0.0$

 $\alpha=1,\ \tau=0.25$

thresholding removes false correspondences

impact of selectivity

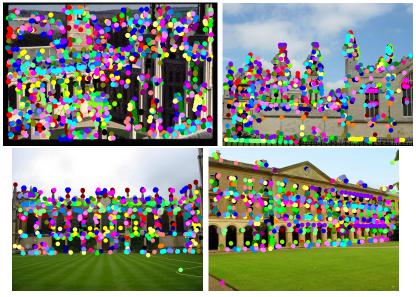
 $\alpha = 3, \ \tau = 0.0$

 $\alpha = 3, \ \tau = 0.25$

correspondences weighed based on confidence

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ つ へ ()・

impact of aggregation & burstiness k = 128 as in VLAD

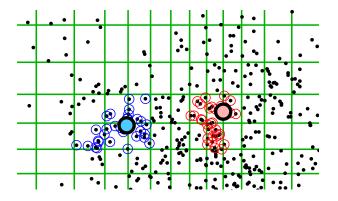


impact of aggregation & burstiness k = 65k as in HE

comparison to state of the art

[Tolias et al. IJCV 2015]

Dataset	MA	Oxf5k	Oxf105k	Par6k	Holiday
ASMK*		76.4	69.2	74.4	80.0
ASMK*	×	80.4	75.0	77.0	81.0
ASMK		78.1	-	76.0	81.2
ASMK	×	81.7	-	78.2	82.2
HE [Jégou <i>et al.</i> '10]		51.7	-	-	74.5
HE [Jégou <i>et al.</i> '10]	×	56.1	-	-	77.5
HE-BURST [Jain et al. '10]		64.5	-	-	78.0
HE-BURST [Jain et al. '10]	×	67.4	-	-	79.6
Fine vocab. [Mikulík et al. '10]	×	74.2	67.4	74.9	74.9
AHE-BURST [Jain et al. '10]		66.6	-	-	79.4
AHE-BURST [Jain et al. '10]	×	69.8	-	-	81.9
Rep. structures [Torri et al. '13]	×	65.6	-	-	74.9
Locality [Tao et al. '14]	×	77.0	-	-	78.7



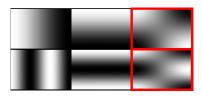
nearest neighbor search

イロト 不得 トイヨト イヨト ヨー ろくで

binary codes

spectral hashing

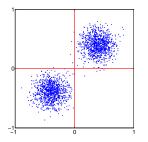
- similarity preserving, balanced, uncorrelated
- spectral relaxation
- out of sample extension: uniform assumption



binary codes

[Weiss et al. 2008]

- similarity preserving, balanced, uncorrelated
- spectral relaxation
- out of sample extension: uniform assumption



iterative quantization

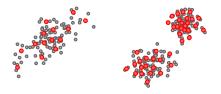
[Gong & Lazebnik 2011]

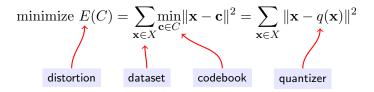
• quantize to closest vertex of binary cube

• PCA followed by interleaved rotation and quantization

vector quantization

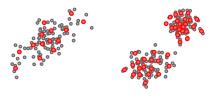
[Gray 1984]





vector quantization

[Gray 1984]

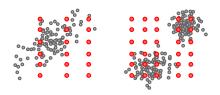


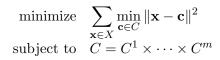
▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

- For small distortion \rightarrow large k = |C|:
 - hard to train
 - too large to store
 - too slow to search

product quantization

[Jégou et al. 2011]

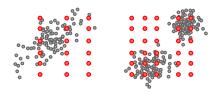




◆□▶ ◆□▶ ◆ 臣▶ ★ 臣▶ 「臣」 のへで

product quantization

[Jégou et al. 2011]



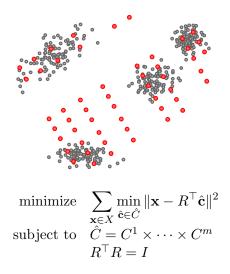
- train: $q=(q^1,\ldots,q^m)$ where q^1,\ldots,q^m obtained by VQ
- store: $|C| = k^m$ with $|C^1| = \cdots = |C^m| = k$

• search:
$$\|\mathbf{y} - q(\mathbf{x})\|^2 = \sum_{j=1}^m \|\mathbf{y}^j - q^j(\mathbf{x}^j)\|^2$$
 where $q^j(\mathbf{x}^j) \in C^j$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

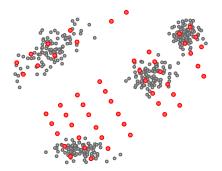
optimized product quantization

[Ge et al. 2013]



optimized product quantization

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

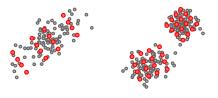


- independence: PCA-align by diagonalizing Σ as $U\Lambda U^{\top}$
- balanced variance: permute Λ by π such that $\prod_i \lambda_i$ is constant in each subspace; $R \leftarrow UP_{\pi}^{\top}$

• find \hat{C} by PQ on rotated data $\hat{X}=RX$

locally optimized product quantization

[Kalantidis & Avrithis, CVPR 2014]

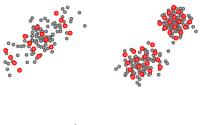


イロト 不得 トイヨト イヨト ヨー うへつ

- compute residuals $r(\mathbf{x}) = \mathbf{x} q(\mathbf{x})$ on coarse quantizer q
- collect residuals $Z_{\mathbf{c}} = \{r(\mathbf{x}) : q(\mathbf{x}) = \mathbf{c}\}$ per cell
- train $(R_{\mathbf{c}}, q_{\mathbf{c}}) \leftarrow \mathsf{OPQ}(Z_{\mathbf{c}})$ per cell

locally optimized product quantization

[Kalantidis & Avrithis, CVPR 2014]

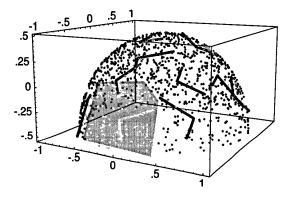


- residual distributions closer to Gaussian assumption
- better captures the support of data distribution, like local PCA

- multimodal (e.g. mixture) distributions
- distributions on nonlinear manifolds

local principal component analysis

[Kambhatla & Leen 1997]

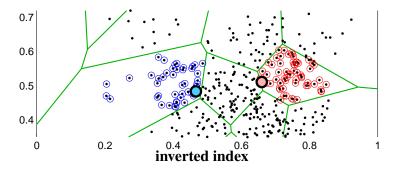


but, we are not doing dimensionality reduction!

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

inverted multi-index

[Babenko & Lempitsky 2012]

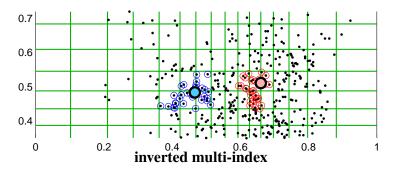


• train codebook C from dataset $\{\mathbf{x}_n\}$

• this codebook provides a coarse partition of the space

inverted multi-index

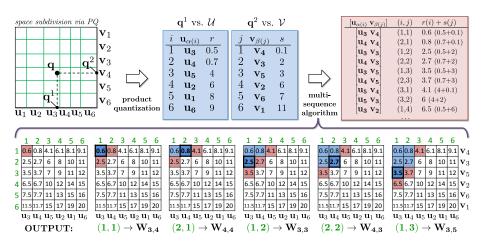
[Babenko & Lempitsky 2012]



- decompose vectors as $\mathbf{x}=(\mathbf{x}^1,\mathbf{x}^2)$
- train codebooks C^1, C^2 from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook $C^1 \times C^2$ gives a finer partition
- given query q, visit cells $(c^1, c^2) \in C^1 \times C^2$ in ascending order of distance to q, by first computing distances to q^1, q^2

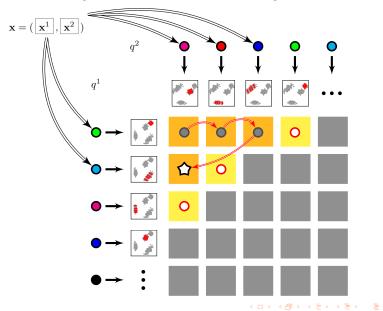
inverted multi-index

multi-sequence algorithm



Multi-LOPQ

[Kalantidis & Avrithis, CVPR 2014]



Sac

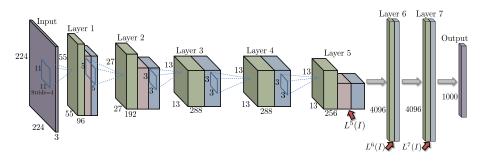
comparison to state of the art on SIFT1B, 128-bit codes

T	Method	R = 1	10	100
20K	IVFADC+R [Jégou et al. '11]	0.262	0.701	0.962
ZUK	LOPQ+R [Kalantidis & Avrithis '14]	0.350	0.820	0.978
	Multi-D-ADC [Babenko & Lempitsky '12]	0.304	0.665	0.740
10K	OMulti-D-OADC [Ge et al. '13]	0.345	0.725	0.794
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.430	0.761	0.782
30K	Multi-D-ADC [Babenko & Lempitsky '12]	0.328	0.757	0.885
	OMulti-D-OADC [Ge et al. '13]	0.366	0.807	0.913
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.463	0.865	0.905
100K	Multi-D-ADC [Babenko & Lempitsky '12]	0.334	0.793	0.959
	OMulti-D-OADC [Ge et al. '13]	0.373	0.841	0.973
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.476	0.919	0.973

application: image search

deep learned image features

[Krizhevsky et al. '12]



()

deep learned image features classification

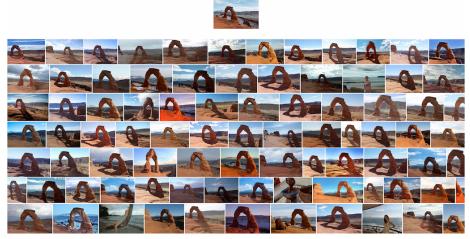
					leepuid		
	mite	container ship		motor scooter		leopard	
	black widow			go-kart		jaguar	
	cockroach	amphibian		moped		cheetah	
П	tick	fireboat		bumper car	r –	snow leopard	
Ĩ	starfish	drilling platform		golfcart	ſ	Egyptian cat	
2.2		A REAL PROPERTY OF		1	No.		

grille	mu	mushroom		cherry		Madagascar cat	
convertib	е	agaric		dalmatian		squirrel monkey	
gri	e	mushroom		grape		spider monkey	
pick	p	jelly fungus	í I	elderberry		titi	
beach wag	n 🚺	gill fungus	ffordshire	bullterrier		indri	
fire engi	e 🛛 dead-r	nan's-fingers		currant	Ĩ	howler monkey	

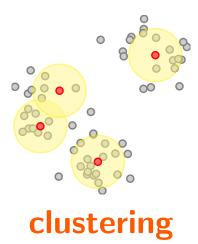
deep learned image features search

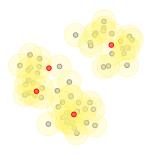
multi-LOPQ

image query on Flickr 100M (deep learned features, $4k \rightarrow 128$ dimensions)



credit: Y. Kalantidis

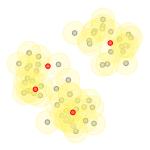




approximate *k*-means

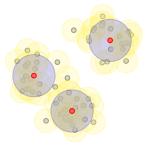
[Philbin *et al.* 2007] use ANN search to accelerate assignment step

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●



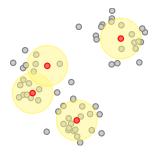
approximate k-means

[Philbin *et al.* 2007] use ANN search to accelerate assignment step



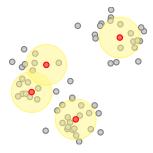
approximate Gaussian mixtures

[Kalantidis & Avrithis '12] dynamically estimate number of clusters

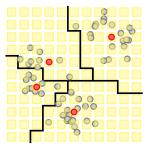


ranked retrieval [Broder *et al.* '14] inverted search from centroids to points

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●



ranked retrieval [Broder *et al.* '14] inverted search from centroids to points

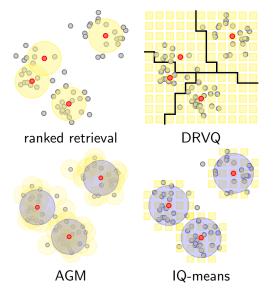


dimensionality-recursive vector quantization [Avrithis '13] quantize points, compute distance map

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

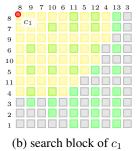
inverted-quantized k-means

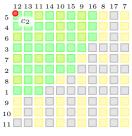
[Avrithis et al. '15]



inverted-quantized k-means

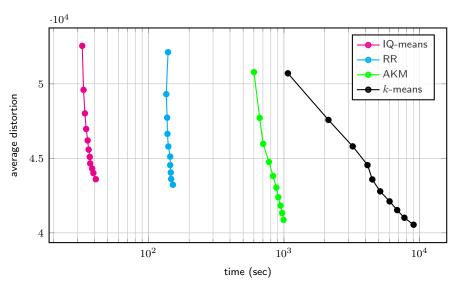
(a) visited cells on original grid





(c) search block of c_2

inverted-quantized k-means comparison on SIFT1M with $k \in \{10^3, ..., 10^4\}$



inverted-quantized k-means

time / iteration & average precision on YFCC100M, initial $k=10^5\,$

	Cell-KM	DKM (×300)	D-IQ-Means
k/k'	100000	100000	85742
time (s)	13068.1	7920.0	140.6
precision	0.474	0.616	0.550

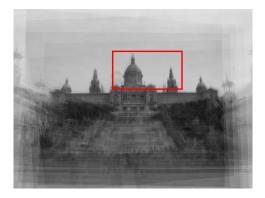
inverted-quantized k-means

mining on a 100M image collection

Paris500k

Paris500k + YFCC100M

< ロ > (同 > (回 > (回 >))



mining, location & instance recognition

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

http://viral.image.ntua.gr

query

result

PEstimated Location 🕈 Similar Image, 🕈 Incorrectly geo-tagged 🕈 Unavailable

Suggested tags: Buxton Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Buxton Memorial Fountain, Winchester Palace, Architecture, Victorian gothic

Similar Images

Similarity: 0.619 Details Original ••

Similarity: 0.491 letails Original ••

Similarity: 0.397 Details Original ••

Similarity: 0.385 Details Original ••

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

suggested tags

Suggested tags: Buxton Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Buxton Memorial Fountain, Winchester Palace, Architecture, Victorian gothic

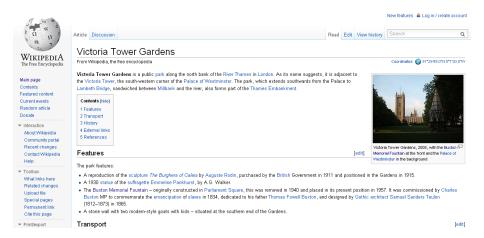
▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

related wikipedia articles

Print/export

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

related wikipedia articles



イロト 不得 トイヨト イヨト ヨー ろくで

VIRaL explore

VIRaL explore

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (2)

VIRaL routes

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

credits

Yannis Kalantidis

Giorgos Tolias

Christos Varitimidis

Kimon Kontosis

Marios Phinikettos

Kostas Rapantzikos

http://image.ntua.gr/iva/research/

thank you!