Large scale clustering and nearest neighbor search

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Prague, March 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Problem

ANN search

- Given query point **q**, find its nearest neighbor with respect to Euclidean distance within data set \mathcal{X} in a *d*-dimensional space
- Encode (compress) vectors, speed up distance computations
- Fit underlying distribution with little space & time overhead

Vector quantization

- Given data set $\mathcal{X},$ map it to discrete codebook $\mathcal C$ such that distortion is minimized

- Use ANN search to assign points to centroids
- Use vector quantization to improve ANN search

Problem

ANN search

- Given query point **q**, find its nearest neighbor with respect to Euclidean distance within data set \mathcal{X} in a *d*-dimensional space
- Encode (compress) vectors, speed up distance computations
- Fit underlying distribution with little space & time overhead

Vector quantization

- Given data set $\mathcal{X},$ map it to discrete codebook $\mathcal C$ such that distortion is minimized

- Use ANN search to assign points to centroids
- Use vector quantization to improve ANN search

Retrieval (image as point) [Jégou et al. '10][Perronnin et al. '10]

Retrieval (patch as point) [Tolias et al. '13][Qin et al. '13]

イロト イポト イヨト イヨト 一日

Localization, pose estimation [Sattler et al. '12][Li et al. '12]

Classification [Boiman et al. '08] [McCann & Lowe '12]

 $KL(p_Q | p_1) = 17.54$ $KL(p_Q | p_2) = 18.20$ $KL(p_Q | p_3) = 14.56$

BoW (patch quantization) [Sivic et al. '03][Philbin et al. '07]

BoW (codebook construction) [Philbin et al. '07][Avrithis '12]

Image clustering [Gong et al. '15][Avrithis '15]

イロト 不得 トイヨト イヨト ヨー ろくで

Overview (1)

Binary codes

- spectral hashing [Weiss et al. '08]
- iterative quantization [Gong & Lazebnik '11]

Quantization

- vector quantization (VQ) [Gray '84]
- product quantization (PQ) [Jégou et al. '11]
- optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
- locally optimized product quantization (LOPQ) [Kalantidis & Avrithis '14]

イロト 不得 トイヨト イヨト ヨー ろくで

Overview (1)

Binary codes

- spectral hashing [Weiss et al. '08]
- iterative quantization [Gong & Lazebnik '11]

Quantization

- vector quantization (VQ) [Gray '84]
- product quantization (PQ) [Jégou et al. '11]
- optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
- locally optimized product quantization (LOPQ) [Kalantidis & Avrithis '14]

Overview (2)

Non-exhaustive search

- non-exhaustive PQ [Jégou et al. '11]
- inverted multi-index [Babenko & Lempitsky '12]
- multi-LOPQ [Kalantidis & Avrithis '14]

Clustering

- hierarchical k-means [Nister & Stewenius '06]
- approximate k-means [Philbin et al. '07]
- approximate Gaussian mixtures [Kalantidis & Avrithis '12]
- dimensionality-recursive vector quantization [Avrithis '13]

- ranked retrieval [Broder et al. '14]
- inverted-quantized k-means [Avrithis et al. '15]

Overview (2)

Non-exhaustive search

- non-exhaustive PQ [Jégou et al. '11]
- inverted multi-index [Babenko & Lempitsky '12]
- multi-LOPQ [Kalantidis & Avrithis '14]

Clustering

- hierarchical k-means [Nister & Stewenius '06]
- approximate k-means [Philbin et al. '07]
- approximate Gaussian mixtures [Kalantidis & Avrithis '12]
- dimensionality-recursive vector quantization [Avrithis '13]

- ranked retrieval [Broder et al. '14]
- inverted-quantized k-means [Avrithis et al. '15]

Binary codes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽へぐ

Spectral hashing

[Weiss et al. '08]

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$, encode each by binary code \mathbf{y}_i
- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/t^2)$
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

minimize $\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$ subject to $\mathbf{y}_i \in \{-1, 1\}^k$ $\sum_{i} y_i = 0$ $\frac{1}{2} \sum_{\mathbf{y} \in \mathbf{y}_i} \mathbf{y}_i = I$

Spectral hashing

[Weiss et al. '08]

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$, encode each by binary code \mathbf{y}_i
- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/t^2)$
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

minimize
$$\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$
subject to
$$\mathbf{y}_i \in \{-1, 1\}^k$$
$$\sum_i \mathbf{y}_i = 0$$
$$\frac{1}{n} \sum_i \mathbf{y}_i \mathbf{y}_i^\top = I.$$

Spectral hashing Example

イロト 不得 トイヨト イヨト ヨー ろくで

- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones

Spectral hashing

Example

- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones

• Red: radius = 0; green: radius = 1; blue: radius = 2

Iterative quantization

[Gong and Lazebnik '11]

Quantize each data point to the closest vertex of the binary cube, $(\pm 1,\pm 1).$

イロト 不得 トイヨト イヨト ヨー ろくで

[Gray '84]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

[Gray '84]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ()~

[Gray '84]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- For small distortion \rightarrow large $k = |\mathcal{C}|$:
 - hard to train
 - too large to store
 - too slow to search

Product quantization

[Jégou et al. '11]

Product quantization

[Jégou et al. '11]

- train: $q=(q^1,\ldots,q^m)$ where q^1,\ldots,q^m obtained by VQ
- store: $|\mathcal{C}| = k^m$ with $|\mathcal{C}^1| = \cdots = |\mathcal{C}^m| = k$

• search:
$$\|\mathbf{y} - q(\mathbf{x})\|^2 = \sum_{j=1}^m \|\mathbf{y}^j - q^j(\mathbf{x}^j)\|^2$$
 where $q^j(\mathbf{x}^j) \in \mathcal{C}^j$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Optimized product quantization

[Ge et al. '13]

minimize $\sum_{\mathbf{x} \in \mathcal{X}} \min_{\hat{\mathbf{c}} \in \hat{\mathcal{C}}} \|\mathbf{x} - R^{\top} \hat{\mathbf{c}}\|^{2}$ subject to $\hat{\mathcal{C}} = \mathcal{C}^{1} \times \cdots \times \mathcal{C}^{m}$ $R^{\top} R = I$

Optimized product quantization

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

- independence: PCA-align by diagonalizing Σ as $U\Lambda U^{\top}$
- balanced variance: permute Λ by π such that $\prod_i \lambda_i$ is constant in each subspace; $R \leftarrow UP_{\pi}^{\top}$

• find \hat{C} by PQ on rotated data $\hat{X} = RX$

Locally optimized product quantization

[Kalantidis & Avrithis '14]

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

- compute residuals $r(\mathbf{x}) = \mathbf{x} Q(\mathbf{x})$ on coarse quantizer Q
- collect residuals $\mathcal{Z}_i = \{r(\mathbf{x}) : Q(\mathbf{x}) = \mathbf{c}_i\}$ per cell
- train $(R_i, q_i) \leftarrow \mathsf{OPQ}(\mathcal{Z}_i)$ per cell

Locally optimized product quantization

[Kalantidis & Avrithis '14]

- residual distributions closer to Gaussian assumption
- better captures the support of data distribution, like local PCA

- multimodal (e.g. mixture) distributions
- distributions on nonlinear manifolds

Local principal component analysis

[Kambhatla & Leen '97]

But, we are not doing dimensionality reduction!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Non-exhaustive search

[Babenko & Lempitsky '12]

• train codebook C from dataset $\{\mathbf{x}_n\}$, defining a coarse quantizer Q

- quantize each point x to Q(x) and encode its residual r(x) = x Q(x) by product quantizer q
- given query \mathbf{y} , visit w coarse cells closest to \mathbf{y}

[Babenko & Lempitsky '12]

- decompose vectors as $\mathbf{x}=(\mathbf{x}^1,\mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook $\mathcal{C}^1 imes \mathcal{C}^2$ gives a finer partition
- given query y, visit cells $(c^1,c^2)\in \mathcal{C}^1\times \mathcal{C}^2$ in ascending order of distance to y

Multi-sequence algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Result on SIFT1B: are NN in candidate lists?

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Multi-LOPQ

[Kalantidis & Avrithis '14]

Sac

Multi-LOPQ

Result on SIFT1B, 128-bit codes

Т	Method	R = 1	10	100
20K	IVFADC+R [Jégou <i>et al.</i> '11]	0.262	0.701	0.962
	LOPQ+R [Kalantidis & Avrithis '14]	0.350	0.820	0.978
10K	Multi-D-ADC [Babenko & Lempitsky '12]	0.304	0.665	0.740
	OMulti-D-OADC [Ge et al. '13]	0.345	0.725	0.794
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.430	0.761	0.782
30K	Multi-D-ADC [Babenko & Lempitsky '12]	0.328	0.757	0.885
	OMulti-D-OADC [Ge et al. '13]	0.366	0.807	0.913
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.463	0.865	0.905
100K	Multi-D-ADC [Babenko & Lempitsky '12]	0.334	0.793	0.959
	OMulti-D-OADC [Ge et al. '13]	0.373	0.841	0.973
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.476	0.919	0.973

Application: image search

Deep learned image features

[Krizhevsky et al. '12] [Babenko et al. '14]

э.

Image search on CNN activations

[Razavian '14, Babenko '15, Kalantidis '15, Tolias '16]

Multi-LOPQ on CNN activations

Image query on Flickr 100M (4k \rightarrow 128 dimensions)

Clustering

Hierarchical *k*-means

[Nister & Stewenius '06]

Approximate *k*-means

[Philbin et al. '07][Gong et al. '15]

- 日本 - 4 日本 - 4 日本 - 日本

- centroids updated as in k-means
- points assigned to centroids by approximate search
- index rebuilt in every k-means iteration

Ranked retrieval

[Broder et al. '14]

- points assigned by inverse search from centroids to points
- needs conflict resolution; points may remain unassigned
- index built only once; resembles mean shift [Cheng et al. '95]

Dimensionality-recursive vector quantization

[Avrithis '13]

イロト 不得 トイヨト イヨト ヨー ろくで

- points quantized as in multi-index
- cells assigned exhaustively by distance map from centroids
- points assigned by lookup

Approximate Gaussian mixtures

[Kalantidis & Avrithis '12]

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

- centroids & variances updated as in EM
- points soft-assigned by approximate search
- k dynamically estimated

Inverted-quantized *k*-means

[Avrithis et al. '15]

イロト 不得 トイヨト イヨト ヨー ろくで

- inverse search as in RR
- points quantized as in DRVQ; search as in multi-index
- k dynamically estimated as in AGM

Inverted-quantized k-means

representation: for each cell u_{α} , with $X_{\alpha} = \{x \in X : q(x) = u_{\alpha}\}$

• probability
$$p_{\alpha} = |X_{\alpha}|/n$$

• mean $\mu_{\alpha} = \frac{1}{|X_{\alpha}|} \sum_{x \in X_{\alpha}} x$ of all points in X_{α}

update: for each centroid c_m , with $A_m = \{ \alpha \in I : a(u_\alpha) = m \}$

$$c_m \leftarrow \frac{1}{\sum_{\alpha \in A_m} p_\alpha} \sum_{\alpha \in A_m} p_\alpha \mu_\alpha,$$

assignment: for each centroid c_m ,

- find the w nearest sub-codewords in each of two sub-codebooks
- run multi-sequence independently in $w \times w$ search block
- assign visited cells $m \leftarrow a(u_{\alpha})$; resolve conflicts

Centroid-to-cell search

(a) visited cells on original grid

(c) search block of c_2

・ロト・日本・日本・日本・ション

- quantize each centroid to closest cell just before search
- get centroid-to-centroid search at no extra cost
- greedily delete centroids as in EGM [Avrithis & Kalantidis '12]

Comparison on SIFT1M with $k \in \{10^3, \ldots, 10^4\}$

Comparison on YFCC100M, initial $k = 10^5$

AlexNet fc7 features, 128 dimensions, optimized decomposition

	Cell-KM	DKM (×300)	D-IQ-Means
k/k'	100000	100000	85742
time (s)	13068.1	7920.0	140.6
precision	0.474	0.616	0.550

Cell-KM *k*-means on points quantized to cell **DKM** distributed *k*-means on 300 machines

Mining on YFCC100M

Paris500k

Paris500k + YFCC100M

Y. Avrithis, Y. Kalantidis, E. Anagnostopoulos, I. Z. Emiris. Web-scale image clustering revisited. ICCV 2015.

http://image.ntua.gr/iva/research/

Thank you!