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discriminative local features
[Lowe, ICCV 1999]

Do these images match?
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discriminative local features
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discriminative local features
[Lowe, ICCV 1999]
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descriptor matching
... back to image retrieval

15query
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descriptor matching
Feature correspondences with image #15
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descriptor matching
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Matching in descriptor space
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vector quantization → visual words
[Sivic and Zisserman, ICCV 2003]Vector quantization → visual words
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spatial matching
[Philbin et al. CVPR 2007]

original images



spatial matching
[Philbin et al. CVPR 2007]

local features



spatial matching
[Philbin et al. CVPR 2007]

tentative correspondences



spatial matching
[Philbin et al. CVPR 2007]

inliers



explicit feature maps (VLAD, Fisher)
[Jégou et al. CVPR 2010, Perronnin et al. CVPR 2010]
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to aggregate or not to aggregate?
[Tolias et al. ICCV 2013]

k = 128 as in VLAD



to aggregate or not to aggregate?
[Tolias et al. ICCV 2013]

k = 65k as in HE



neural codes
[Babenko et al. ECCV 2014]

2 A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky

trained to recognize Image-Net [1] classes. We measure such performance on
four standard benchmark datasets: INRIA Holidays [8], Oxford Buildings, Ox-
ford Building 105K [19], and the University of Kentucky benchmark (UKB) [16].
Perhaps unsurprisingly, these deep features perform well, although not better
than other state-of-the-art holistic features (e.g. Fisher vectors). Interestingly,
the relative performance of different layers of the CNN varies in different re-
trieval setups, and the best performance on the standard retrieval datasets is
achieved by the features in the middle of the fully-connected layers hierarchy.

Fig. 1. The convolutional neural network architecture used on our experiments. Purple
nodes correspond to input (an RGB image of size 224 × 224) and output (1000 class
labels). Green units correspond to outputs of convolutions, red units correspond to the
outputs of max pooling, and blue units correspond to the outputs of rectified linear
(ReLU) transform. Layers 6, 7, and 8 (the output) are fully connected to the preceding
layers. The units that correspond to the neural codes used in our experiments are
shown with red arrows. Stride=4 are used in the first convolutional layer, and stride=1
in the rest.

The good performance of neural codes demonstrate their universality, since
the task the network was trained for (i.e. classifying Image-Net classes) is quite
different from the retrieval task we consider. Despite the evidence of such univer-
sality, there is an obvious possibility to improve the performance of deep features
by adapting them to the task, and such adaptation is the subject of the second
part of the paper. Towards this end, we assemble a large-scale image dataset,
where the classes correspond to landmarks (similar to [14]), and retrain the CNN
on this collection using the original image-net network parameters as initializa-
tion. After such training, we observe a considerable improvement of the retrieval
performance on the datasets with similar image statistics, such as INRIA Holi-
days and Oxford Buildings, while the performance on the unrelated UKB dataset
degrades. In the second experiment of this kind, we retrain the initial network
on the Multi-view RGB-D dataset [12] of turntable views of different objects. As
expected, we observe the improvement on the more related UKB dataset, while
the performance on other datasets degrades or stays the same.

Finally, we focus our evaluation on the performance of the compact ver-
sions of the neural codes. We evaluate the performance of the PCA compression



regional descriptors
[Tolias et al. ICLR 2016]

Under review as a conference paper at ICLR 2016
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Figure 3: Left: Sample regions extracted at 3 different scales (l = 1 . . . 3). We show the top-left
region of each scale (gray colored region) and its neighboring regions towards each direction (dashed
borders). We depict the centers of all regions with a cross. Middle: Approximation error of the
maximum value versus the size of the response set for different values of exponent α. Measurements
are performed on 10 randomly selected images by evaluating all possible regions. The responses for
this set of images take values in [0, 151]. Right: Empirical distribution of the cosine similarity value
between the exact vector fR and its approximation f̃R. Measurements are collected by constructing
the exact and approximate vectors of all possible regions on 10 randomly sampled images.

of using all possible regions. A high value of the exponent α leads to a better approximation, while
applying on more elements makes the approximation less precise.

By approximating the maximum in this manner, we can now use integral images (Viola & Jones,
2001) to approximate the regional feature vector fR defined on any rectangular region R. For each
channel, we construct the integral image of the 2D tensor whose value at position p is equal to
Xi(p)α, p ∈ R. Then, the sum of Equation (3) is simply given by the sum of 4 terms (Viola &
Jones, 2001). This allow us to efficiently compute max-pooling for many regions and therefore to
construct the corresponding feature vectors. This is in contrast to the explicit construction of many
regions with representation derived from fully connected layers, which is prohibitive due to the need
to resize/crop and re-feed each region to the network.

We evaluate the approximation quality by measuring the cosine similarity between the exact vector
and its approximate counterpart. The distribution of this similarity is presented in Figure 3 (right)
and is measured on all possible regions of 10 randomly selected images. The proposed approxima-
tion is very precise even for moderate values of α. We set α equal to 10 in all of our experiments.

Window detection. Let us now assume that there is another image Q depicting a single object,
i.e. cropped via a bounding box defining the object of interest. We denote as q the corresponding
MAC feature vector. The 2D region, defined on the CNN activations X of image I , that maximizes
the similarity to q is computed as

R̂ = arg max
R⊆Ω

f̃>Rq

‖f̃R‖‖q‖
. (4)

The region R̂ maximizing the similarity is mapped back to the original image I with a precision
of ( WWI

, HHI ) pixels, providing a rough localization of the object depicted in Q. The corresponding
similarity does not take into account all the visual content of image I and is therefore free from
the influence of background clutter. The brute-force detection of the optimal region by exhaustive
search is expensive, as the number of possible regions is in O(W 2H2). In preliminary tests, we
have evaluated a globally optimal solution based on branch and bound search, as in ESS (Lampert
et al., 2009). The necessary bounds are trivially derived for our representation. The search is not
significantly sped up in our case: The maxima are not distinct enough and a large number of regions
are considered, while the overhead of maintaining the priority queue is high.

AML: approximate max-pooling localization. Instead, we restrict the number of regions that we
evaluate and locally refine the best ones with simple heuristics. Candidate regions are uniformly
sampled with a search step equal to t. In addition, regions having an aspect ratio larger than s times
that of the query region are discarded. The parameters of the best region are refined in a coordinate
descent manner, while allowing a maximum change of 3 units. The refinement process is repeated
up to 5 times. Experiments show that the overlap of the detected region to the optimal one is high.

5



fine tuning: regional descriptors
[Gordo et al. ECCV 2016]

Learning global representations for image search 3

Fig. 1. Summary of the proposed CNN-based representation tailored for
retrieval. At training time, image triplets are sampled and simultaneously considered
by a triplet-loss that is well-suited for the task (top). A region proposal network (RPN)
learns which image regions should be pooled (bottom left). At test time (bottom right),
the query image is fed to the learned architecture to efficiently produce a compact global
image representation that can be compared with the dataset image representations with
a simple dot-product.

Finally, we would like to refer the reader to the recent work of Radenovic
et al. [18], concurrent to ours and published in these same proceedings, that
also proposes to learn representations for retrieval using a Siamese network on
a geometrically-verified landmark dataset.

The rest of the paper is organized as follows. Section 2 discusses related
works. Sections 3 and 4 present our contributions. Section 5 validates them on
five different datasets. Finally Section 6 concludes the paper.

2 Related Work

We now describe previous works most related to our approach.
Conventional image retrieval. Early techniques for instance-level retrieval
are based on bag-of-features representations with large vocabularies and inverted
files [19,20]. Numerous methods to better approximate the matching of the de-
scriptors have been proposed, see e.g. [21,22]. An advantage of these techniques is
that spatial verification can be employed to re-rank a short-list of results [20,23],
yielding a significant improvement despite a significant cost. Concurrently, meth-
ods that aggregate the local image patches have been considered. Encoding tech-
niques, such as the Fisher Vector [24], or VLAD [25], combined with compression
[26,27,28] produce global descriptors that scale to larger databases at the cost of
reduced accuracy. All these methods can be combined with other post-processing
techniques such as query expansion [29,30,31].



fine tuning: global descriptor
[Radenović et al. ECCV 2016]

CNN Image Retrieval Learns from BoW 5

VGG off-the-shelf

VGG ours
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Fig. 1. Visualization of patches corresponding to the MAC vector components that
have the highest contribution to the pairwise image similarity. Examples shown use
CNN before (top) and after (bottom) fine-tuning of VGG. The same color corresponds
to the same vector component (feature map) per image pair. The patch size is equal
to the receptive field of the last pooling layer.

3.3 Whitening and dimensionality reduction

In this section, the post-processing of fine-tuned MAC vectors is considered. Pre-
vious methods [23,25] use PCA of an independent set for whitening and dimen-
sionality reduction, that is the covariance matrix of all descriptors is analyzed.
We propose to take advantage of the labelled data provided by the 3D models
and use linear discriminant projections originally proposed by Mikolajczyk and
Matas [45]. The projection is decomposed into two parts, whitening and rotation.
The whitening part is the inverse of the square-root of the intraclass covariance
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query expansion
[Chum et al. ICCV 2007, Shen et al. CVPR 2012]
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Figure 4. Illustration of k-NN re-ranking. The final rank of a
database image is determined by its ranks in the retrieval results
of the query and query’s k-NN.

Figure 5. Example of k-NN re-ranking. The 4-th nearest neigh-
bor is an irrelevant image. However, its nearest neighbors in the
dashes box will not receive high scores from other images. On
the contrary, the images with red and orange boxes are close to a
majority of the query’s nearest neighbors and will have high ranks.

In most cases, the majority of these k-nearest neighbors
contain the same object as in the query image, while there
are also some false alarms. See Fig.5 for example. As the
features are variant to view point change, occlusion or ob-
ject deformation, some images with the same object are not
visually close to the query, and are ranked very low. How-
ever, they may be visually similar to certain images in Nq .

To utilize such information, we also use each localized
object in Nq as a query and perform search. The rank of a
database image D when using Ni as the query is R(Ni, D),
as shown in Fig.4. According to the rank, we assign a score
1/R(Ni, D) to each database image. The final scores of the
database images are then collaboratively determined as:

S̄(Q, D) =
w0

R(Q, D)
+

k∑

i=1

wi

R(Ni, D)
(4)

where wi is the weight, which is determined by the
rank of Ni in the initial search. We set w0 = 1 and
wi = 1/(R(Q,Ni) + 1) = 1/(i + 1). Query itself can
be regarded as the 0-th nearest neighbor, and Eqn.4 is ac-

cordingly rewritten as:

S̄(Q, D) =

k∑

i=0

wi

R(Ni, D)
=

k∑

i=0

1

(i + 1)R(Ni, D)
(5)

We also consider the rank of the query in each of its n-
earest neighbors’ retrieval results, i.e., R(Ni, Q). Here, the
rank is a unidirectional measure. Query Q and its nearest
neighbor Ni are close only if R(Q,Ni) and R(Ni, Q) are
both high. Hence we modify the weight wi to be wi =
1/(R(Q, Ni) + R(Ni, Q) + 1)) = 1/(i + R(Ni, Q) + 1),
and the final scores of database images are determined by:

S̄(Q, D) =
k∑

i=0

1

(i + R(Ni, Q) + 1)R(Ni, D)
(6)

Images are then re-ranked based on S̄(Q,D).
After re-ranking, we can further use the new top-k re-

trieved images to perform re-ranking iteratively. In most
cases, the first iteration brings significant performance im-
provement.

The proposed k-NN re-ranking approach takes advan-
tage of the localized objects in the retrieved images by SC-
SM, as we can ignore those irrelevant features outside the
objects. Furthermore, as a rank-based approach, our re-
ranking method is robust to false retrieval results in Nq .
Unlike query expansion[5, 3], in our method, the score is in-
versely related to the ranking, and the feature information of
all the k-NN images is intentionally discarded. A database
image will not be re-ranked very highly unless it is close to
the query and the majority of those k-NN images. Consid-
er Fig.5 as an example, the irrelevant image in Nq assigns
scores to its top-retrieved results. However, the weight cor-
responding to this outlier is relatively small as the rank itself
in the query’s retrieval list is not high. Furthermore, the im-
ages in the dashed box will not receive scores from other
images in Nq and accordingly their scores for re-ranking is
still low. On the contrary, a relevant image such as the one
with red bounding box or orange box is close to several im-
ages in Nq and will have a high score. Experimental results
indicate our method is not sensitive to the selection of n-
earest neighbor number k. Even if k is large and there are
many outliers in Nq , the retrieval accuracy is still very high.
Since our method is robust to outliers, no spatial verification
is needed. Also, re-ranking can be efficiently performed on
the entire database.

5. Experiments

5.1. Datasets and implementation details

We have implemented our own retrieval system
with SIFT descriptors[13] and fast approximate k-means
clustering[15]. We evaluate our approach on four public



problem formulation



graph representation

• weighted undirected graph G with n vertices V = {v1, . . . , vn} and `
edges

• represented by symmetric non-negative n× n adjacency matrix W

• G has no self-loops: W has zero diagonal

• W is sparse with 2` ≤ kn nonzero elements with k � n



symmetrically normalized representation

n× n:

• degree matrix D : = diag(W1)

• normalized adjacency matrix W : = D−1/2WD−1/2

• Laplacian L : = D −W
• normalized Laplacian L : = D−1/2LD−1/2 = I −W



Laplacian properties

• both L and L are singular and positive-semidefinite

• the eigenvalues of L are in [0, 2]

• each eigenvector u of L associated to eigenvalue 0 is constant within
connected components of G (e.g. , L1 = D1−W1 = 0); the
corresponding eigenvector of L is D1/2u

• if λ1 ≥ · · · ≥ λn are the eigenvalues of W, its spectral radius
%(W) : = maxi |λi| = λ1 = 1



regularized Laplacian

n× n:

• regularized Laplacian Lα : = β−1(D − αW ), where β : = 1− α
• normalized regularized Laplacian
Lα : = D−1/2LαD

−1/2 = β−1(I − αW)

• both are positive-definite for 0 ≤ α < 1



ranking on manifolds
[Zhou et al. NIPS 2003]

• n× 1 observation vector y with yi = 1 if vi is a query and 0 otherwise

• diffusion or random walk: iterate for t = 1, 2, . . .

x(t) : = αWx(t−1) + (1− α)y

• if 0 ≤ α < 1, then as t→∞, x(t) tends to n× 1 ranking vector

x∗ : = L−1
α y

• now, rank vertices V = {vi} by descending order of xi



ranking on manifolds
[Zhou et al. NIPS 2003]

• n× 1 observation vector y with yi = 1 if vi is a query and 0 otherwise

• diffusion or random walk: iterate for t = 1, 2, . . .

x(t) : = αWx(t−1) + (1− α)y

• if 0 ≤ α < 1, then as t→∞, x(t) tends to n× 1 ranking vector

x∗ : = L−1
α y

• now, rank vertices V = {vi} by descending order of xi



image retrieval

• given N images, each represented by m region descriptors in Rd

• dataset represented by n : = Nm descriptors V : = {v1, . . . ,vn}
• similarity s(v, z) : = (v>z)γ+ for v, z ∈ Rd, with γ > 0

• k-NN similarity s(vi|z) : = s(vi, z) if vi is a k-NN of z in V and zero
otherwise

• mutual neighbors: W : = min(S, S>) where sij : = s(vi|vj)



challenges

• how to handle unseen queries without recomputing W?

• how to rank images given region ranking scores?

• how to compute the ranking vector efficiently?

• how scale up beyond a few thousand images?



diffusion on region manifolds



handling unseen queries

• keep W fixed, computed on dataset without queries

• given query image represented by {q1, . . . ,qm} ⊂ Rd, form the
observation vector by pooling over regions

yi : =

m∑

j=1

s(vi|qj)

• make y sparse by keeping only the k largest entries

• now, computing the ranking vector is constant in m



one query vector



two query vectors



ranking images

• given region ranking scores x∗ and dataset image represented by
{vi1 , . . . ,vim}, score image by

m∑

j=1

wjx
?
ij

• (uniform) sum pooling: w : = 1m

• assuming m < d, generalized max pooling [Murray and Perronnin
CVPR 2014, Iscen et al. 2014]:

w : = (Φ>Φ + λIm)−11m, (1)

where Φ : = (vi1 , . . . ,vim) and λ > 0
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diffusion is an iterative solver

• given linear system
Ax = b,

Jacobi solver decomposes A as ∆ +R where ∆ : = diag(A) and
iterates for t = 1, 2, . . .

x(t) : = ∆−1(b−Rx(t−1))

• given Lα = β−1(I − αW), our system is

Lαx = y

• hence, b = (1− α)y, ∆ = I, R = −αW and

x(t) : = αWx(t−1) + (1− α)y
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normalization is preconditioning

• (symmetric) preconditioning: solve a related system with A replaced
by C−1AC−>

• we could consider matrix Lα and solve instead

Lα(D−1/2x) = D1/2y

• by normalizing Lα into Lα, we are actually performing preconditioning
with C = diag(Lα)1/2: diagonal scaling or Jacobi
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efficient solution

• use conjugate gradient (CG) method to solve linear system

Lαx = y

• implicitly, we are minimizing quadratic function

fα(x) : =
1

2
x>Lαx− x>y



experiments

• datasets: Oxford5k, Paris6k, Oxford105k, Paris 106k, INSTRE (27k
images, 250 classes)

• networks: VGG (d = 512) [Radenović et al. ECCV 2016], ResNet101
(d = 2048) [Gordo et al. ECCV 2016]

• region descriptors: 3 scales (21 regions/image) as in R-MAC [Tolias et
al. ICLR 2016]

• supervised whitening [Radenović et al. ECCV 2016]

• parameters: γ = 3, α = 0.99, k = 50 (global), k = 200 (regional)



dependence on neighbors, k (Oxford5k)
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efficient (regional) diffusion with CG
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global → regional
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small objects (INSTRE)
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examples

(AP: 43.1→84.9) 0.5→100 0.6→100 1.8→100 0.6→98.7 2.6→100 2.6→100

(AP: 24.0→89.9) 3.1→100 4.2→100 4.3→100 4.7→100 5.9→100 5.9→100

(AP: 56.5→94.3) 8.2→94.5 12.9→91.5 18.8→91.6 14.7→85.4 13.3→83.6 15.9→86.1



scaling up

• compact representation: reduce regions/image (21 → 5) by a
Gaussian mixture model (GMM)

• approximate k-NN graph construction [Dong et al. WWW 2011]: 96
hours → 45 minutes on Oxford105k, mAP loss less than 1%

• truncate affinity matrix to 10k images for Oxford105k and Paris 106k:
14 → 1 second for re-ranking, constant in n and d



state of the art (global)

Method d INSTRE Oxf5k Oxf105k Par6k Par106k

global descriptors - nearest neighbor search

CroW† 512 - 68.2 63.2 79.8 71.0
R-MAC 512 47.7 77.7 70.1 84.1 76.8
R-MAC 2,048 62.6 83.9 80.8 93.8 89.9
NetVLAD† 4,096 - 71.6 - 79.7 -

global descriptors - query expansion

R-MAC+AQE 512 57.3 85.4 79.7 88.4 83.5
R-MAC+SCSM 512 60.1 85.3 80.5 89.4 84.5
R-MAC+HN 512 64.7 79.9 - 92.0 -
Global diffusion 512 70.3 85.7 82.7 94.1 92.5
R-MAC+AQE 2,048 70.5 89.6 88.3 95.3 92.7
R-MAC+SCSM 2,048 71.4 89.1 87.3 95.4 92.5
Global diffusion 2,048 80.5 87.1 87.4 96.5 95.4



state of the art (regional)

Method m× d INSTRE Oxf5k Oxf105k Par6k Par106k

regional descriptors - nearest neighbor search

R-match 21×512 55.5 81.5 76.5 86.1 79.9
R-match 21×2,048 71.0 88.1 85.7 94.9 91.3

regional descriptors - query expansion

HQE 2.4k×128 74.7 89.4† 84.0† 82.8† -
R-match+AQE 21×512 60.4 83.6 78.6 87.0 81.0
Regional diffusion? 5×512 77.5 91.5 84.7 95.6 93.0
Regional diffusion? 21×512 80.0 93.2 90.3 96.5 92.6
R-match+AQE 21×2,048 77.1 91.0 89.6 95.5 92.5
Regional diffusion? 5×2,048 88.4 95.0 90.0 96.4 95.8
Regional diffusion? 21×2,048 89.6 95.8 94.2 96.9 95.3



more challenges

• how to trade-off offline with online cost?

• how to get rid of truncation?

• how to generalize beyond the particular model?
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fast spectral ranking



faster than CG?

• want to solve Lαx = y

• could invert Lα offline, but it wouldn’t be sparse

• could approximate L−1
α by ΦΦ> where Φ is a (sparse) n× r matrix

with r � n; then
x ≈ ΦΦ>y

• but how to compute Φ without ever inverting Lα?

• still, there is no generalization; even α is given in advance
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ranking as low-pass filtering

i

yi

G i

xi

G

• output given by xi : = β
∑∞

t=0 α
tyi−t

• or by recurrence xi = αxi−1 + (1− α)yi

• impulse response hi = βαiui

• transfer function H(z) : = β
∑∞

t=0(az−1)t = β/(1− αz−1)



ranking as low-pass filtering

i

yi

G i

xi

G

• using a weighted undirected graph G instead

• information “flows” in all directions, controlled by edge weights



transfer function

• in general, a function h : S → S, where S is the set of real symmetric
square matrices including scalars, R

• given W (offline) and h,y (online), the problem is now to compute

x∗ : = h(W)y

• our standard choice is

hα(A) : = (1− α)(I − αA)−1

• recalling that Lα = β−1(I − αW),

L−1
α = hα(W)
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(exact) spectral ranking

• given A ∈ S offline, compute the exact eigenvalue decomposition

UΛU> = A

• given h,y online, compute

x : = Uh(Λ)U>y

where h(Λ) is computed element-wise!
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when/why does it work?

• let H be the family of functions h with a series expansion

h(A) =

∞∑

t=0

ctA
t

• if h ∈ H and the series converges, then

h(A) = Uh(Λ)U> = U diag(h(λ1), . . . , h(λn))U>

• in particular, hα ∈ H, having the geometric progression expansion

hα(A) : = β(I − αA)−1 = β

∞∑

t=0

(αA)t,

which converges absolutely if %(αA) < 1

• but, this holds for A =W because α < 1 and %(W) = 1
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low-rank approximation: stage 1

• given A, compute an n× r̂ matrix Q with Q>Q = Ir̂ that represents
an approximate basis for the range of A:

QQ>A ≈ A

• how? simultaneous iteration: randomly draw an n× r̂ standard
Gaussian matrix B(0) and repeat for t = 0, . . . , q − 1:

1. compute QR factorization Q(t)R(t) = B(t)

2. define the n× r̂ matrix B(t+1) : = AQ(t)

• finally, set Q : = Q(q−1), B : = B(q) = AQ
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low-rank approximation: stage 2

• compute an approximate rank-r eigenvalue decomposition

UΛU> ≈ A

where U is n× r with U>U = Ir and Λ is r × r diagonal

• how? [Halko et al. SIAM 2011]

1. form the r̂ × r̂ matrix C : = Q>B = Q>AQ
2. compute its eigendecomposition V̂ Λ̂V̂ > = C
3. form (V,Λ) by keeping from (V̂ , Λ̂) the rows/columns corresponding to

the r largest eigenvalues
4. define U : = QV
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when/why does it work?

• an average-case bound on
∥∥A−QQ>A

∥∥ decays to |λr+1|
exponentially fast in q [Halko et al. SIAM 2011]

• since QQ>A ≈ A and A is symmetric,

A ≈ QQ>AQQ> = QCQ> ≈ QV ΛV >Q> = UΛU>

• the approximation C ≈ V ΛV > involves an additional term of |λr+1|
in the error [Halko et al. SIAM 2011]

• when approximating h(A) by Uh(Λ)U>, |h(λr+1)| governs the error
instead: h should be nondecreasing when restricted to scalars
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back to image retrieval

• given W offline, compute the rank-r eigenvalue decomposition

UΛU> ≈ W

• given h,y online, compute

x : = Uh(Λ)U>y

• score per image obtained by sparse N × n pooling matrix Σ

x : = Σx

• the N × r matrix U : = ΣU is computed offline so that, online,

x = Uh(Λ)U>y
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(fast) spectral ranking

x = Uh(Λ)U>y

N × 1
ranking

N × r
search

r × r
transfer

r × n
embed

n× 1
observation
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practical considerations

• search independently in each connected component of G; otherwise
maximal eigenvalue of each component dominates the eigenvalues of
the few (or one) “giant” component

• “weighted” FSR: if ηi is the `2-norm of the i-th row of U , adjust
ranking vector as

x′i = xi + (1− ηi)v>i q
falling back on original dot-product similarity for sparsely populated
parts of the graph



practical considerations

• search independently in each connected component of G; otherwise
maximal eigenvalue of each component dominates the eigenvalues of
the few (or one) “giant” component

• “weighted” FSR: if ηi is the `2-norm of the i-th row of U , adjust
ranking vector as

x′i = xi + (1− ηi)v>i q
falling back on original dot-product similarity for sparsely populated
parts of the graph



Oxford105k per landmark (FSR)
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Oxford105k per landmark (weighted FSR)
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sparse U (Oxford105k, ResNet101)
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state of the art (global)

Method d INSTRE Oxf5k Oxf105k Par6k Par106k

global descriptors - Euclidean search

R-MAC 512 47.7 77.7 70.1 84.1 76.8
R-MAC 2,048 62.6 83.9 80.8 93.8 89.9

global descriptors - manifold search

Diffusion 512 70.3 85.7 82.5 94.1 92.5
FSR.rank-r 512 70.3 85.8 85.0 93.8 92.4
Diffusion 2,048 80.5 87.1 86.8 96.5 95.4
FSR.rank-r 2,048 80.5 87.5 87.9 96.4 95.3



state of the art (regional)

Method m× d INSTRE Oxf5k Oxf105k Par6k Par106k

regional descriptors - Euclidean search

R-match 21×512 55.5 79.8 76.5 86.1 79.9
R-match 21×2,048 71.0 88.1 85.7 94.9 91.3

regional descriptors - manifold search

Diffusion 5×512 77.5 91.5 84.7 95.6 93.0
FSR.approx 5×512 78.4 89.9 86.5 95.6 92.4
Diffusion 21×512 80.0 93.2 90.3 96.5 92.6
FSR.approx 21×512 80.4 90.6 - 96.5 -
Diffusion 5×2,048 88.4 95.0 90.0 96.4 95.8
FSR.approx 5×2,048 88.5 95.1 93.0 96.5 95.2
Diffusion 21×2,048 89.6 95.8 94.2 96.9 95.3
FSR.approx 21×2,048 89.2 95.8 - 97.0 -



query time (Oxford105k)

• rank r = 5k: 0.14s

• rank r = 10k: 0.30s

• CG: 14s

• CG (truncated): 1s



hard examples?

(AP: 92.1) #5 #32 #51 #70 #71 #76 #79 #126

(AP: 92.7) #2 #4 #8 #61 #68 #72 #75 #108



interpretation: random fields

• a Gaussian Markov random field (GMRF) with precision A and mean
µ can be parametrized as

p(x) : = N (x|µ, A−1) ∝ e−E(x|b,A)

where E(x|b, A) : = 1
2x
>Ax− b>x is a quadratic energy

• its expectation µ = A−1b is the minimizer of this energy

• our solution x∗ = L−1
α y is the expectation of a GMRF with energy

fα(x) : = E(x|y,Lα) =
1

2
x>Lαx− y>x

• if x̂ : = D−1/2x, this energy has the same minimizer as

α
∑

i,j

wij ‖x̂i − x̂j‖2 + (1− α) ‖x− y‖2
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interpretation: graph filtering

• a signal of period n is a vector s ∈ Rn where sī : = s(i mod n)+1

• a shift of s is the mapping sī 7→ si−1; also represented by s 7→ Cns
where Cn is an n× n circulant zero-one matrix

• A linear, shift invariant, causal filter is the mapping s 7→ Hs where

H : = h(Cn) =

∞∑

t=0

htC
t
n

• matrix Cn has the eigenvalue decomposition UΛU> where U> is the
n× n discrete Fourier transform matrix F

• if the series h(Cn) converges, filtering s 7→ Hs is written as

s 7→ F−1h(Λ)Fs
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summary

• do not inject query into dataset; search for its neighbors instead

• diffusion is a (slow) iterative solver; use CG instead

• still expensive at large scale: truncate

• cast retrieval as linear graph filtering in the frequency domain

• efficiently compute an approximate Fourier basis of the graph offline

• reduce manifold search to Euclidean followed by dot product similarity
search
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diffusion on region manifolds (CVPR 2017)
https://arxiv.org/abs/1611.05113

fast spectral ranking
https://arxiv.org/abs/1703.06935

thank you!

https://arxiv.org/abs/1611.05113
https://arxiv.org/abs/1703.06935

