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discriminative local features
[Lowe, ICCV 1999]
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discriminative local features
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vector quantization — visual words
[Sivic and Zisserman, ICCV 2003]




vector quantization — visual words
[Sivic and Zisserman, ICCV 2003]




spatial matching
[Philbin et al. CVPR 2007]

original images



spatial matching
[Philbin et al. CVPR 2007]

local features



spatial matching
[Philbin et al. CVPR 2007]

tentative correspondences



spatial matching
[Philbin et al. CVPR 2007]

inliers



explicit feature maps (VLAD, Fisher)

[Jégou et al. CVPR 2010, Perronnin et al. CVPR 2010]
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explicit feature maps (VLAD, Fisher)
[Jégou et al. CVPR 2010, Perronnin et al. CVPR 2010]
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explicit feature maps (VLAD, Fisher)
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explicit feature maps (VLAD, Fisher)
[Jégou et al. CVPR 2010, Perronnin et al. CVPR 2010]
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to aggregate or not to aggregate?
[Tolias et al. ICCV 2013]
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to aggregate or not to aggregate?
[Tolias et al. ICCV 2013]

k = 65k as in HE



neural codes
[Babenko et al. ECCV 2014]
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regional descriptors

ICLR 2016]

[Tolias et al.
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fine tuning: regional descriptors
[Gordo et al. ECCV 2016]

Relevant

Non-relevant

Three-stream Siamese network (training)

Triplet loss




fine tuning: global descriptor
[Radenovi¢ et al. ECCV 2016]




fine tuning: global descriptor
[Radenovi¢ et al. ECCV 2016]




query expansion
[Chum et al. ICCV 2007, Shen et al. CVPR 2012]




problem formulation



graph representation

weighted undirected graph G with n vertices V = {vy,...,v,} and ¢
edges

represented by symmetric non-negative n x n adjacency matrix W
G has no self-loops: W has zero diagonal

W is sparse with 2¢ < kn nonzero elements with & < n



symmetrically normalized representation

n xn:
e degree matrix D : = diag(W1)
e normalized adjacency matrix W := D~1/2W D~1/2
e Laplacian L:=D -W
e normalized Laplacian £:= D Y2LD"Y2 =1 W



Laplacian properties

both L and L are singular and positive-semidefinite
the eigenvalues of £ are in [0, 2]

each eigenvector u of L associated to eigenvalue 0 is constant within
connected components of G (e.g. , L1 = D1 — W1 = 0); the
corresponding eigenvector of £ is D'/?u

if Ay > --- > A\, are the eigenvalues of W, its spectral radius

o(W) :=max; |Ni| =\ =1



regularized Laplacian

n X mn:
e regularized Laplacian Ly := 874D — aW), where :=1— «

e normalized regularized Laplacian
Lo:=DY2L,D72 = =11 —aW)
e both are positive-definite for 0 < a < 1



ranking on manifolds
[Zhou et al. NIPS 2003]

e n X 1 observation vector y with y; = 1 if v; is a query and 0 otherwise

o diffusion or random walk: iterate for t = 1,2, ...

x® = aWwxY 4 (1 - a)y



ranking on manifolds
[Zhou et al. NIPS 2003]

n x 1 observation vector y with y; = 1 if v; is a query and 0 otherwise

diffusion or random walk: iterate fort =1,2,...
x® = aWwxY 4 (1 - a)y
if 0 < a <1, then as t — oo, x() tends to n x 1 ranking vector
x =Ly

now, rank vertices V' = {v;} by descending order of z;



image retrieval

given N images, each represented by m region descriptors in R
dataset represented by n : = Nm descriptors V : = {vy,...,v,}
similarity s(v,z) := (v'z)] for v,z € R with v >0

E-NN similarity s(v;|z) : = s(v;,z) if v; is a k-NN of z in V and zero
otherwise

mutual neighbors: W :=min(S,ST) where s;; : = s(v;|v;)



challenges

how to handle unseen queries without recomputing W7
how to rank images given region ranking scores?
how to compute the ranking vector efficiently?

how scale up beyond a few thousand images?



diffusion on region manifolds



handling unseen queries

keep W fixed, computed on dataset without queries

given query image represented by {qi,...,qn.} C R% form the
observation vector by pooling over regions

m

yii= s(vilay)

j=1

make y sparse by keeping only the k largest entries

now, computing the ranking vector is constant in m



one query vector




two query vectors




ranking images

e given region ranking scores x* and dataset image represented by
{Viy,..., Vi, }, score image by

m
*
: : w]x’i]’
Jj=1



ranking images

¢ given region ranking scores x* and dataset image represented by
{Vi,,..., Vi, }, score image by

m

*
E Wi,
J=1

¢ (uniform) sum pooling: w:=1,,
e assuming m < d, generalized max pooling [Murray and Perronnin
CVPR 2014, Iscen et al. 2014]:

wi= (D7D + \,,) 11, (1)

where @ : = (v;,,...,v;,)and A >0



diffusion is an iterative solver
e given linear system
Ax = b,

Jacobi solver decomposes A as A + R where A : = diag(A) and
iterates for t = 1,2,...

x® = A7 (b — Rx(tY)



diffusion is an iterative solver

* given linear system
Ax = b,

Jacobi solver decomposes A as A + R where A : = diag(A) and
iterates fort = 1,2, ...

x(®) . = Afl(b — Rx(tfl))
o given L, = 711 — aW), our system is
Lox =y
e hence, b=(1—-a)y, A=1, R=—aW and

x® = aWwxY 4+ (1 - a)y



normalization is preconditioning

o (symmetric) preconditioning: solve a related system with A replaced
by C~tAC—T



normalization is preconditioning

o (symmetric) preconditioning: solve a related system with A replaced
by C-1AC—T
e we could consider matrix L, and solve instead

Lo(D7'*x) = D'y

e by normalizing L, into L, we are actually performing preconditioning
with C = diag(Lq)"/?: diagonal scaling or Jacobi



efficient solution

e use conjugate gradient (CG) method to solve linear system
Lox=Yy

e implicitly, we are minimizing quadratic function

fa(x):= §XTEQX — xTy



experiments

datasets: Oxford5k, Paris6k, Oxford105k, Paris 106k, INSTRE (27k
images, 250 classes)

networks: VGG (d = 512) [Radenovi¢ et al. ECCV 2016], ResNet101
(d = 2048) [Gordo et al. ECCV 2016]

region descriptors: 3 scales (21 regions/image) as in R-MAC [Tolias et
al. ICLR 2016]

supervised whitening [Radenovi¢ et al. ECCV 2016]
parameters: v =3, a = 0.99, k = 50 (global), £ = 200 (regional)



dependence on neighbors, i (Oxford5k)
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efficient (regional) diffusion with CG
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examples
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scaling up

e compact representation: reduce regions/image (21 — 5) by a
Gaussian mixture model (GMM)

e approximate k-NN graph construction [Dong et al. WWW 2011]: 96
hours — 45 minutes on Oxford105k, mAP loss less than 1%

e truncate affinity matrix to 10k images for Oxford105k and Paris 106k:
14 — 1 second for re-ranking, constant in n and d



state of the art (global)

[Method | d[INSTRE|Oxf5k | Oxf105k [ Par6k [ Par106k|

l global descriptors - nearest neighbor search ‘

CrowT 512 - 68.2 | 63.2 |[79.8| 71.0
R-MAC 512| 47.7 | 777 | 70.1 |84.1| 768
R-MAC 2,048 62.6 83.9 80.8 93.8 89.9
NetVLADT 4,096 - 71.6 - 79.7 -

global descriptors - query expansion

R-MAC+AQE 512| 57.3 85.4 79.7 | 884 | 835
RMAC+SCSM| 512| 60.1 85.3 80.5 |89.4| 845
R-MAC+HN 512| 64.7 79.9 - 92.0 -
Global diffusion| 512| 70.3 85.7 82.7 94.1 92.5
R-MACH+AQE |2,048| 70.5 |89.6 | 88.3 | 953 | 927
R-MAC+SCSM [2,048| 71.4 89.1 87.3 | 954 | 925
Global diffusion|2,048| 80.5 87.1 87.4 |96.5| 95.4




state of the art (regional)

[Method m x d[INSTRE[Oxf5k | Oxf105k | Par6k | Par106k |
l regional descriptors - nearest neighbor search ‘
R-match 21x512| 55.5 81.5 76.5 86.1 79.9
R-match 21x2,048| 71.0 88.1 85.7 94.9 91.3

| regional descriptors - query expansion |
HQE 2.4kx128] 74.7 |[89.47 84.0" [ 82.87] -
R-match+AQE 21x512| 60.4 83.6 78.6 87.0 81.0
Regional diffusion* 5x512| 77.5 91.5 84.7 95.6 | 93.0
Regional diffusion*| 21x512| 80.0 93.2 90.3 96.5 92.6
R-match+AQE 21x2,048| 77.1 91.0 89.6 95.5 92.5
Regional diffusion*| 5x2,048| 88.4 | 95.0 | 90.0 | 96.4 | 95.8
Regional diffusion* [21x2,048| 89.6 | 95.8 | 94.2 | 96.9 | 953




more challenges

e how to trade-off offline with online cost?
e how to get rid of truncation?

e how to generalize beyond the particular model?
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fast spectral ranking



faster than CG?

e want to solve Lo,x =y

e could invert L, offline, but it wouldn't be sparse



faster than CG?

want to solve L,x =y
could invert L, offline, but it wouldn't be sparse

could approximate £! by ®®T where ® is a (sparse) n x r matrix
with r < n; then

X & <I><I>Ty



faster than CG?

want to solve L,x =y
could invert L, offline, but it wouldn't be sparse
could approximate £! by ®®T where ® is a (sparse) n x r matrix
with r < n; then
X & (IDCIJTy
but how to compute ® without ever inverting L£,?

still, there is no generalization; even « is given in advance



ranking as low-pass filtering

Yi Zq

G 0>0->0>0>0>0>0>0 | (G 0->0->0->0->0->0->0->0

* output given by z; := 8> 2, oty

e or by recurrence x; = az;—1 + (1 — a)y;

* impulse response h; = Botu;

o transfer function H(z) := 83 2 (az™h) = B/(1 — az™!)

)



ranking as low-pass filtering

e using a weighted undirected graph G instead

e information “flows” in all directions, controlled by edge weights



transfer function

e in general, a function h : § — S, where S is the set of real symmetric
square matrices including scalars, R

e given W (offline) and h,y (online), the problem is now to compute

x*:=h(W)y



transfer function

in general, a function h: & — S, where S is the set of real symmetric
square matrices including scalars, R

given W (offline) and h,y (online), the problem is now to compute
x*:=hW)y
our standard choice is
ha(A) 1= (1—a)(I —aA)™?

recalling that L, = B71(I — aW),



(exact) spectral ranking

e given A € S offline, compute the exact eigenvalue decomposition

UAUT = A



(exact) spectral ranking

e given A € S offline, compute the exact eigenvalue decomposition
UAUT = A
e given h,y online, compute
x:=Uh(ANU"y

where h(A) is computed element-wise!



when/why does it work?

e let H be the family of functions h with a series expansion

[e.e]

h(A) =) Al

t=0

o if h € H and the series converges, then

h(A) = Uh(MUT = U diag(h(\1), ..., h(A)U T



when/why does it work?

let H be the family of functions h with a series expansion

[e.e]

h(A) =) Al

t=0
if h € H and the series converges, then
h(A) = Uh(AMU T = U diag(h(\1), ..., h(A))U "
in particular, h, € H, having the geometric progression expansion
ha(A) :=B(I —aAd)™' =8 (aA
t=0

which converges absolutely if p(aA) < 1
but, this holds for A =W because a < 1 and p(W) =1



low-rank approximation: stage 1

e given A, compute an n x # matrix Q with QT Q = I; that represents
an approximate basis for the range of A:

QQTA~ A



low-rank approximation: stage 1

o given A, compute an n X 7 matrix Q with QT Q = I; that represents
an approximate basis for the range of A:

QQTA~ A

e how? simultaneous iteration: randomly draw an n X 7 standard
Gaussian matrix B9 and repeat for t = 0,...,q — 1:
1. compute QR factorization Q) R() = B(*)
2. define the n x 7 matrix B4+ : = AQ(

e finally, set Q : = Q1 B:= B@ = AQ



low-rank approximation: stage 2

e compute an approximate rank-r eigenvalue decomposition
UANUT =~ A

where U is n x 7 with UTU = I, and A is r x r diagonal



low-rank approximation: stage 2

e compute an approximate rank-r eigenvalue decomposition
UANUT =~ A

where Uisn x rwith UTU =1, and Aisr x r diagonal
e how? [Halko et al. SIAM 2011]
1. form the # x # matrix C : = Q"B = QT AQ

2. compute its eigendecomposition Xi//AﬂA/T =C
3. form (V, A) by keeping from (V/, A) the rows/columns corresponding to
the r largest eigenvalues

4. define U :=QV



when/why does it work?

e an average-case bound on HA — QQTAH decays to |Ar41]
exponentially fast in ¢ [Halko et al. SIAM 2011]

e since QQT A~ A and A is symmetric,

Ar~QQTAQQT =QCQT ~QVAVTQT =UAUT



when/why does it work?

an average-case bound on HA - QQTAH decays to |Ar41]
exponentially fast in ¢ [Halko et al. SIAM 2011]

since QQ T A ~ A and A is symmetric,
A~ QQRTAQQT =QCQT ~QVAVTQT =UAUT

the approximation C' ~ VAV T involves an additional term of |\, 1]
in the error [Halko et al. SIAM 2011]

when approximating h(A) by Uh(A)U ", |h(A\-41)| governs the error
instead: A should be nondecreasing when restricted to scalars



back to image retrieval

e given W offline, compute the rank-r eigenvalue decomposition
UANUT =~ W
e given h,y online, compute

x:=Uh(A)U"y



back to image retrieval

given W offline, compute the rank-r eigenvalue decomposition
UANUT =~ W
given h,y online, compute
x:=Uh(A)U"y
score per image obtained by sparse N x n pooling matrix X
X:=XX
the N x r matrix U : = XU is computed offline so that, online,

X=Uh(MNU"y



(fast) spectral ranking



(fast) spectral ranking
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(fast) spectral ranking

X =Uh(ANU"y
N x 1 N xr rXr rXn n X 1

ranking search transfer embed observation
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practical considerations

e search independently in each connected component of G; otherwise
maximal eigenvalue of each component dominates the eigenvalues of
the few (or one) “giant” component



practical considerations

e search independently in each connected component of G; otherwise
maximal eigenvalue of each component dominates the eigenvalues of
the few (or one) “giant” component

o “weighted” FSR: if n; is the £2-norm of the i-th row of U, adjust
ranking vector as
v =i+ (1-n)v]q
falling back on original dot-product similarity for sparsely populated
parts of the graph
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mAP

100
80
60
40

20

Oxford105k per landmark (weighted FSR)

—_ all souls (78)
—— ashmolean (25)
—_ balliol (12)

[ — — bodleian (24)
—— christ church (78)
——  cornmarket (9)

—_ hertford (54)
—_— keble (7)
——  magdalen (54)

\ L] - pittrivers (6)

| |
100 Ik 2k 5k 10K| —  radcliffe (221)

rank r



mAP

sparse U (Oxford105k, ResNet101)

95

90

85

80

20

40 60 80 100
sparsity



state of the art (global)

[Method | d[INSTRE]Oxf5k|Oxf105k]| Par6k | Par106k |
| global descriptors - Euclidean search |
R-MAC 512| 47.7 .7 70.1 84.1| 76.8
R-MAC 2,048| 626 | 839 | 808 |93.8| 899
| global descriptors - manifold search |
Diffusion 512| 70.3 | 857 | 825 |941| 925
FSR.rank-r| 512 70.3 | 858 | 85.0 |93.8| 924
Diffusion 2,048| 80.5 |87.1| 868 |96.5| 95.4
FSR.rRANK-7|2,048| 80.5 |87.5| 879 | 964 | 953




state of the art (regional)

[Method m x d[INSTRE[Oxf5k [ Oxf105k [ Par6k | Par106k |
| regional descriptors - Euclidean search |
R-match 21x512| 555 |79.8 | 765 |86.1| 79.9
R-match 21x2,048| 71.0 88.1 85.7 949 | 91.3

| regional descriptors - manifold search |
Diffusion 5x512| 775 | 915 | 847 |956 | 93.0
FSR.APPROX 5x512| 784 |89.9| 865 |956| 924
Diffusion 21x512| 80.0 |93.2| 903 |965| 92.6
FSR.apPrOX| 21x512| 80.4 90.6 - 96.5 -
Diffusion 5x2,048| 88.4 95.0 90.0 96.4 95.8
FSR.arPrOX| 5x2,048| 88.5 95.1 93.0 96.5 95.2
Diffusion 21x2,048| 89.6 |95.8 | 94.2 | 969 | 953
FSR.APPROX |21%2,048| 89.2 | 95.8 - 97.0 -




query time (Oxford105k)

rank r = bk: 0.14s

rank r = 10k: 0.30s
CG: 14s

CG (truncated): 1s



hard examples?
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interpretation: random fields

* a Gaussian Markov random field (GMRF) with precision A and mean
1 can be parametrized as

p(x) : = N(x|pp, A7) oc e~ EGIDA)

where E(x|b, A) : = %XTAX —b"x is a quadratic energy

e its expectation . = A~ 'b is the minimizer of this energy



interpretation: random fields

* a Gaussian Markov random field (GMRF) with precision A and mean
1 can be parametrized as

p(x) : = N(x|pp, A7) oc e~ EGIDA)

where E(x|b, A) : = %XTAX — b x is a quadratic energy
o its expectation &t = A~ 'b is the minimizer of this energy

o our solution x* = L'y is the expectation of a GMRF with energy

1
fa(X) = E(X|Y7 ‘Ca) = §XT£04X - yTX



interpretation: random fields

a Gaussian Markov random field (GMRF) with precision A and mean
1 can be parametrized as

p(x) : = N(x|pp, A7) oc e~ EGIDA)

where E(x|b, A) : = %XTAX — b x is a quadratic energy
its expectation u = A~'b is the minimizer of this energy

our solution x* = £y is the expectation of a GMRF with energy
L T T
fa(X) = E(X|Y7£a) = §X Lox—y X

if X : = D~1/2x, this energy has the same minimizer as

N A2 2
@) willE; =257+ (1 —a) |x —y|
i7j



interpretation: graph filtering

e asignal of period n is a vector s € R" where s; : = S(; mod n)+1

e ashift of s is the mapping s; — s;—; also represented by s — C),s
where C,, is an n X n circulant zero-one matrix



interpretation: graph filtering

* asignal of period n is a vector s € R™ where s; : = 5(; mod n)+1

e a shift of s is the mapping s; — s;—; also represented by s — C);s
where C,, is an n X n circulant zero-one matrix

e A linear, shift invariant, causal filter is the mapping s — H's where

H:=h(Cy) =Y hC},
t=0



interpretation: graph filtering

a signal of period n is a vector s € R" where s; : = $(; mod n)+1

a shift of s is the mapping s; — s;—; also represented by s — C);s
where C,, is an n X n circulant zero-one matrix

A linear, shift invariant, causal filter is the mapping s — H's where
o0
H:=h(Cy) =Y hC},
t=0

matrix C), has the eigenvalue decomposition UAU " where U is the
n x n discrete Fourier transform matrix F

if the series h(C),) converges, filtering s — H's is written as

s — F'h(A)Fs



summary

e do not inject query into dataset; search for its neighbors instead
o diffusion is a (slow) iterative solver; use CG instead

e still expensive at large scale: truncate



summary

do not inject query into dataset; search for its neighbors instead
diffusion is a (slow) iterative solver; use CG instead

still expensive at large scale: truncate

cast retrieval as linear graph filtering in the frequency domain
efficiently compute an approximate Fourier basis of the graph offline

reduce manifold search to Euclidean followed by dot product similarity
search



diffusion on region manifolds (CVPR 2017)
https://arxiv.org/abs/1611.05113

fast spectral ranking
https://arxiv.org/abs/1703.06935
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