searching over manifolds of image regions

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Menlo Park, May 2017

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

joint work with

Ahmet Iscen

Teddy Furon

Giorgos Tolias

Ondrej Chum

motivation: visual search

challenges

- viewpoint
- lighting

(ロ)、(部)、(E)、(E)、(E)

- occlusion
- large scale

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- background
- problem formulation
- diffusion on region manifolds
- fast spectral ranking

background

discriminative local features

[Lowe, ICCV 1999]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

discriminative local features

[Lowe, ICCV 1999]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

discriminative local features

[Lowe, ICCV 1999]

normalized features

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

イロト イポト イヨト イヨト 二百

▲□▶ ▲圖▶ ▲注▶ ▲注▶ … 注: 釣A@

vector quantization \rightarrow visual words

[Sivic and Zisserman, ICCV 2003]

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

vector quantization \rightarrow visual words

[Sivic and Zisserman, ICCV 2003]

[Philbin et al. CVPR 2007]

original images

イロト イ団ト イヨト イヨト 三臣

[Philbin et al. CVPR 2007]

local features

(ロ)、(部)、(E)、(E)、(E)

[Philbin et al. CVPR 2007]

tentative correspondences

◆□> <圖> < E> < E> E のQ@

[Philbin et al. CVPR 2007]

inliers

・ロト ・聞ト ・ヨト ・ヨト 三日

to aggregate or not to aggregate? [Tolias et al. ICCV 2013]

k = 128 as in VLAD

イロト 不得 トイヨト イヨト ヨー ろくで

to aggregate or not to aggregate? [Tolias et al. ICCV 2013]

k = 65 k as in HE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

neural codes

[Babenko et al. ECCV 2014]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへ⊙

regional descriptors

[Tolias et al. ICLR 2016]

fine tuning: regional descriptors

[Gordo et al. ECCV 2016]

イロト 不得 トイヨト イヨト ヨー ろくで

fine tuning: global descriptor

[Radenović et al. ECCV 2016]

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

fine tuning: global descriptor

[Radenović et al. ECCV 2016]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

query expansion

[Chum et al. ICCV 2007, Shen et al. CVPR 2012]

problem formulation

graph representation

• weighted undirected graph G with n vertices $V = \{v_1, \ldots, v_n\}$ and ℓ edges

- represented by symmetric non-negative $n \times n$ adjacency matrix W
- G has no self-loops: W has zero diagonal
- W is sparse with $2\ell \leq kn$ nonzero elements with $k \ll n$

symmetrically normalized representation

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

 $n \times n$:

- degree matrix $D := \operatorname{diag}(W\mathbf{1})$
- normalized adjacency matrix $W := D^{-1/2}WD^{-1/2}$
- Laplacian L := D W
- normalized Laplacian $\mathcal{L} := D^{-1/2}LD^{-1/2} = I W$

Laplacian properties

- both L and \mathcal{L} are singular and positive-semidefinite
- the eigenvalues of $\mathcal L$ are in [0,2]
- each eigenvector \mathbf{u} of L associated to eigenvalue 0 is constant within connected components of G (e.g., $L\mathbf{1} = D\mathbf{1} W\mathbf{1} = \mathbf{0}$); the corresponding eigenvector of \mathcal{L} is $D^{1/2}\mathbf{u}$

• if $\lambda_1 \geq \cdots \geq \lambda_n$ are the eigenvalues of \mathcal{W} , its spectral radius $\varrho(\mathcal{W}) := \max_i |\lambda_i| = \lambda_1 = 1$

regularized Laplacian

 $n \times n$:

• regularized Laplacian $L_{\alpha} := \beta^{-1}(D - \alpha W)$, where $\beta := 1 - \alpha$

- normalized regularized Laplacian $\mathcal{L}_{\alpha} := D^{-1/2} L_{\alpha} D^{-1/2} = \beta^{-1} (I - \alpha \mathcal{W})$
- both are positive-definite for $0 \leq \alpha < 1$
ranking on manifolds

[Zhou et al. NIPS 2003]

n×1 observation vector y with y_i = 1 if v_i is a query and 0 otherwise
diffusion or random walk: iterate for t = 1, 2, ...

$$\mathbf{x}^{(t)} := \alpha \mathcal{W} \mathbf{x}^{(t-1)} + (1-\alpha) \mathbf{y}$$

• if $0 \leq lpha < 1$, then as $t o \infty$, $\mathbf{x}^{(t)}$ tends to n imes 1 ranking vector

$$\mathbf{x}^* := \mathcal{L}_{lpha}^{-1} \mathbf{y}$$

• now, rank vertices $V=\{v_i\}$ by descending order of x_i

ranking on manifolds

[Zhou et al. NIPS 2003]

n×1 observation vector y with y_i = 1 if v_i is a query and 0 otherwise
diffusion or random walk: iterate for t = 1, 2, ...

$$\mathbf{x}^{(t)} := \alpha \mathcal{W} \mathbf{x}^{(t-1)} + (1-\alpha) \mathbf{y}$$

• if $0 \le \alpha < 1$, then as $t \to \infty$, $\mathbf{x}^{(t)}$ tends to $n \times 1$ ranking vector

$$\mathbf{x}^* := \mathcal{L}_{lpha}^{-1} \mathbf{y}$$

• now, rank vertices $V = \{v_i\}$ by descending order of x_i

image retrieval

- given N images, each represented by m region descriptors in \mathbb{R}^d
- dataset represented by n := Nm descriptors $\mathcal{V} := \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$
- similarity $s(\mathbf{v}, \mathbf{z}) := (\mathbf{v}^{\top} \mathbf{z})_{+}^{\gamma}$ for $\mathbf{v}, \mathbf{z} \in \mathbb{R}^{d}$, with $\gamma > 0$
- k-NN similarity $s(\mathbf{v}_i|\mathbf{z}) := s(\mathbf{v}_i, \mathbf{z})$ if \mathbf{v}_i is a k-NN of \mathbf{z} in \mathcal{V} and zero otherwise

• mutual neighbors: $W := \min(S, S^{\top})$ where $s_{ij} := s(\mathbf{v}_i | \mathbf{v}_j)$

challenges

- how to handle unseen queries without recomputing W?
- how to rank images given region ranking scores?
- how to compute the ranking vector efficiently?
- how scale up beyond a few thousand images?

diffusion on region manifolds

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

handling unseen queries

- keep W fixed, computed on dataset without queries
- given query image represented by $\{q_1, \ldots, q_m\} \subset \mathbb{R}^d$, form the *observation vector* by pooling over regions

$$y_i := \sum_{j=1}^m s(\mathbf{v}_i | \mathbf{q}_j)$$

- make $\mathbf y$ sparse by keeping only the k largest entries
- now, computing the ranking vector is constant in m

one query vector

two query vectors

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

ranking images

• given region ranking scores \mathbf{x}^* and dataset image represented by $\{\mathbf{v}_{i_1}, \ldots, \mathbf{v}_{i_m}\}$, score image by

$$\sum_{j=1}^m w_j x_i^\star$$

- (uniform) sum pooling: $\mathbf{w} := \mathbf{1}_m$
- assuming m < d, generalized max pooling [Murray and Perronnin CVPR 2014, Iscen *et al.* 2014]:

$$\mathbf{w} := (\Phi^{\top} \Phi + \lambda I_m)^{-1} \mathbf{1}_m, \tag{1}$$

where $\Phi := (\mathbf{v}_{i_1}, \dots, \mathbf{v}_{i_m})$ and $\lambda > 0$

ranking images

• given region ranking scores \mathbf{x}^* and dataset image represented by $\{\mathbf{v}_{i_1},\ldots,\mathbf{v}_{i_m}\}$, score image by

$$\sum_{j=1}^{m} w_j x_i^{\star}$$

- (uniform) sum pooling: $\mathbf{w} := \mathbf{1}_m$
- assuming m < d, generalized max pooling [Murray and Perronnin CVPR 2014, Iscen *et al.* 2014]:

$$\mathbf{w} := (\Phi^{\top} \Phi + \lambda I_m)^{-1} \mathbf{1}_m, \tag{1}$$

where $\Phi := (\mathbf{v}_{i_1}, \dots, \mathbf{v}_{i_m})$ and $\lambda > 0$

diffusion is an iterative solver

given linear system

 $A\mathbf{x} = \mathbf{b},$

Jacobi solver decomposes A as $\Delta+R$ where $\Delta:={\rm diag}(A)$ and iterates for $t=1,2,\ldots$

$$\mathbf{x}^{(t)} := \Delta^{-1}(\mathbf{b} - R\mathbf{x}^{(t-1)})$$

• given $\mathcal{L}_{lpha}=eta^{-1}(I-lpha\mathcal{W})$, our system is

$$\mathcal{L}_{lpha}\mathbf{x}=\mathbf{y}$$

• hence, $\mathbf{b} = (1 - \alpha)\mathbf{y}$, $\Delta = I$, $R = -\alpha \mathcal{W}$ and

$$\mathbf{x}^{(t)} := \alpha \mathcal{W} \mathbf{x}^{(t-1)} + (1-\alpha) \mathbf{y}$$

diffusion is an iterative solver

given linear system

 $A\mathbf{x} = \mathbf{b},$

Jacobi solver decomposes A as $\Delta+R$ where $\Delta:={\rm diag}(A)$ and iterates for $t=1,2,\ldots$

$$\mathbf{x}^{(t)} := \Delta^{-1}(\mathbf{b} - R\mathbf{x}^{(t-1)})$$

• given $\mathcal{L}_{\alpha} = \beta^{-1}(I - \alpha \mathcal{W})$, our system is

$$\mathcal{L}_{lpha}\mathbf{x} = \mathbf{y}$$

• hence, $\mathbf{b} = (1 - \alpha)\mathbf{y}$, $\Delta = I$, $R = -\alpha \mathcal{W}$ and

$$\mathbf{x}^{(t)} := \alpha \mathcal{W} \mathbf{x}^{(t-1)} + (1-\alpha) \mathbf{y}$$

normalization is preconditioning

• (symmetric) preconditioning: solve a related system with A replaced by $C^{-1}AC^{-\top}$

• we could consider matrix L_{lpha} and solve instead

$$L_{\alpha}(D^{-1/2}\mathbf{x}) = D^{1/2}\mathbf{y}$$

• by normalizing L_{α} into \mathcal{L}_{α} , we are actually performing preconditioning with $C = \operatorname{diag}(L_{\alpha})^{1/2}$: diagonal scaling or Jacobi

normalization is preconditioning

- (symmetric) preconditioning: solve a related system with A replaced by $C^{-1}AC^{-\top}$
- we could consider matrix L_{α} and solve instead

$$L_{\alpha}(D^{-1/2}\mathbf{x}) = D^{1/2}\mathbf{y}$$

 by normalizing L_α into L_α, we are actually performing preconditioning with C = diag(L_α)^{1/2}: diagonal scaling or Jacobi

efficient solution

• use conjugate gradient (CG) method to solve linear system

$$\mathcal{L}_{\alpha}\mathbf{x} = \mathbf{y}$$

• implicitly, we are minimizing quadratic function

$$f_{\alpha}(\mathbf{x}) := \frac{1}{2}\mathbf{x}^{\top}\mathcal{L}_{\alpha}\mathbf{x} - \mathbf{x}^{\top}\mathbf{y}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

experiments

- datasets: Oxford5k, Paris6k, Oxford105k, Paris 106k, INSTRE (27k images, 250 classes)
- networks: VGG (d = 512) [Radenović et al. ECCV 2016], ResNet101 (d = 2048) [Gordo et al. ECCV 2016]
- region descriptors: 3 scales (21 regions/image) as in R-MAC [Tolias *et al.* ICLR 2016]

- supervised whitening [Radenović et al. ECCV 2016]
- parameters: $\gamma = 3$, $\alpha = 0.99$, k = 50 (global), k = 200 (regional)

dependence on neighbors, k (Oxford5k)

"small patterns appear more frequently than entire images"

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

efficient (regional) diffusion with CG

◆□ ▶ ◆□ ▶ ★ 三 ▶ ◆ 三 ▶ ● 三 ● ● ● ●

$\textbf{global} \rightarrow \textbf{regional}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

small objects (INSTRE)

<□> <目> <目> <目> <目> <日> <日> <日> <日> <日> <<□> <0<</p>

examples

1.8→100

2.6→100

 $(AP: 24.0 \rightarrow 89.9) \quad 3.1 \rightarrow 100 \quad 4.2 \rightarrow 100$

4.3→**100**

0.6→98.7

4.7→**100**

イロト 不得 トイヨト イヨト ヨー ろくで

5.9→100

5.9→**100**

 $(\mathsf{AP:}\ 56.5 {\rightarrow} 94.3)\ 8.2 {\rightarrow} 94.5\ 12.9 {\rightarrow} 91.5\ 18.8 {\rightarrow} 91.6\ 14.7 {\rightarrow} 85.4\ 13.3 {\rightarrow} 83.6\ 15.9 {\rightarrow} 86.1$

scaling up

- compact representation: reduce regions/image (21 \rightarrow 5) by a Gaussian mixture model (GMM)
- approximate k-NN graph construction [Dong et al. WWW 2011]: 96 hours → 45 minutes on Oxford105k, mAP loss less than 1%
- truncate affinity matrix to 10k images for Oxford105k and Paris 106k: $14 \rightarrow 1$ second for re-ranking, constant in n and d

state of the art (global)

Method	d	INSTRE	Oxf5k	Oxf105k	Par6k	Par106k					
global descriptors - nearest neighbor search											
CroW [†]	512	-	68.2	63.2	79.8	71.0					
R-MAC	512	47.7	77.7	70.1	84.1	76.8					
R-MAC	2,048	62.6	83.9	80.8	93.8	89.9					
$NetVLAD^\dagger$	4,096	-	71.6	-	79.7	-					
global descriptors - query expansion											
R-MAC+AQE	512	57.3	85.4	79.7	88.4	83.5					
R-MAC+SCSM	512	60.1	85.3	80.5	89.4	84.5					
R-MAC+HN	512	64.7	79.9	-	92.0	-					
Global diffusion	512	70.3	85.7	82.7	94.1	92.5					
R-MAC+AQE	2,048	70.5	89.6	88.3	95.3	92.7					
R-MAC+SCSM	2,048	71.4	89.1	87.3	95.4	92.5					
Global diffusion	2,048	80.5	87.1	87.4	96.5	95.4					

state of the art (regional)

Method	$m \times d$	INSTRE	Oxf5k	Oxf105k	Par6k	Par106k					
regional descriptors - nearest neighbor search											
R-match	21×512	55.5	81.5	76.5	86.1	79.9					
R-match	21×2,048	71.0	88.1	85.7	94.9	91.3					
regional descriptors - query expansion											
HQE	2.4k×128	74.7	89.4 [†]	84.0 [†]	82.8 [†]	-					
R-match+AQE	21×512	60.4	83.6	78.6	87.0	81.0					
Regional diffusion*	5×512	77.5	91.5	84.7	95.6	93.0					
Regional diffusion*	21×512	80.0	93.2	90.3	96.5	92.6					
R-match+AQE	21×2,048	77.1	91.0	89.6	95.5	92.5					
Regional diffusion*	5×2,048	88.4	95.0	90.0	96.4	95.8					
Regional diffusion*	21×2,048	89.6	95.8	94.2	96.9	95.3					

more challenges

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

- how to trade-off offline with online cost?
- how to get rid of truncation?
- how to generalize beyond the particular model?

faster than CG?

- want to solve $\mathcal{L}_{lpha}\mathbf{x}=\mathbf{y}$
- could invert \mathcal{L}_{lpha} offline, but it wouldn't be sparse
- could approximate $\mathcal{L}_{\alpha}^{-1}$ by $\Phi\Phi^{\top}$ where Φ is a (sparse) $n \times r$ matrix with $r \ll n$; then

$$\mathbf{x} \approx \Phi \Phi^\top \mathbf{y}$$

- but how to compute Φ without ever inverting \mathcal{L}_{α} ?
- still, there is no generalization; even α is given in advance

faster than CG?

- want to solve $\mathcal{L}_{lpha}\mathbf{x}=\mathbf{y}$
- could invert \mathcal{L}_{lpha} offline, but it wouldn't be sparse
- could approximate $\mathcal{L}_{\alpha}^{-1}$ by $\Phi\Phi^{\top}$ where Φ is a (sparse) $n \times r$ matrix with $r \ll n$; then

$$\mathbf{x} \approx \Phi \Phi^\top \mathbf{y}$$

- but how to compute Φ without ever inverting \mathcal{L}_{α} ?
- still, there is no generalization; even lpha is given in advance

faster than CG?

- want to solve $\mathcal{L}_{lpha}\mathbf{x}=\mathbf{y}$
- could invert \mathcal{L}_{lpha} offline, but it wouldn't be sparse
- could approximate $\mathcal{L}_{\alpha}^{-1}$ by $\Phi\Phi^{\top}$ where Φ is a (sparse) $n \times r$ matrix with $r \ll n$; then

$$\mathbf{x} \approx \boldsymbol{\Phi} \boldsymbol{\Phi}^\top \mathbf{y}$$

- but how to compute Φ without ever inverting \mathcal{L}_{α} ?
- still, there is no generalization; even α is given in advance

ranking as low-pass filtering

- output given by $x_i := \beta \sum_{t=0}^{\infty} \alpha^t y_{i-t}$
- or by recurrence $x_i = \alpha x_{i-1} + (1 \alpha)y_i$
- impulse response $h_i = \beta \alpha^i u_i$
- transfer function $H(z) := \beta \sum_{t=0}^{\infty} (az^{-1})^t = \beta/(1 \alpha z^{-1})$

イロト 不得 トイヨト イヨト ヨー ろくで

ranking as low-pass filtering

- using a weighted undirected graph G instead
- information "flows" in all directions, controlled by edge weights

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

transfer function

- in general, a function h : S → S, where S is the set of real symmetric square matrices including scalars, ℝ
- given \mathcal{W} (offline) and h, \mathbf{y} (online), the problem is now to compute

$$\mathbf{x}^* := h(\mathcal{W})\mathbf{y}$$

our standard choice is

$$h_{\alpha}(A) := (1 - \alpha)(I - \alpha A)^{-1}$$

• recalling that $\mathcal{L}_{\alpha} = \beta^{-1}(I - \alpha \mathcal{W})$,

$$\mathcal{L}_{\alpha}^{-1} = h_{\alpha}(\mathcal{W})$$

transfer function

- in general, a function h : S → S, where S is the set of real symmetric square matrices including scalars, ℝ
- given \mathcal{W} (offline) and h, \mathbf{y} (online), the problem is now to compute

$$\mathbf{x}^* := h(\mathcal{W})\mathbf{y}$$

our standard choice is

$$h_{\alpha}(A) := (1 - \alpha)(I - \alpha A)^{-1}$$

• recalling that $\mathcal{L}_{\alpha} = \beta^{-1}(I - \alpha \mathcal{W})$,

$$\mathcal{L}_{\alpha}^{-1} = h_{\alpha}(\mathcal{W})$$

(exact) spectral ranking

- given $A \in \mathcal{S}$ offline, compute the exact eigenvalue decomposition $U\Lambda U^\top = A$

• given h, \mathbf{y} online, compute

 $\mathbf{x} := Uh(\Lambda)U^{\top}\mathbf{y}$

where $h(\Lambda)$ is computed element-wise!

(exact) spectral ranking

- given $A \in \mathcal{S}$ offline, compute the exact eigenvalue decomposition

$$U\Lambda U^{\top} = A$$

• given h, \mathbf{y} online, compute

$$\mathbf{x} := Uh(\Lambda)U^{\top}\mathbf{y}$$

where $h(\Lambda)$ is computed element-wise!

when/why does it work?

• let \mathcal{H} be the family of functions h with a series expansion

$$h(A) = \sum_{t=0}^{\infty} c_t A^t$$

• if $h \in \mathcal{H}$ and the series converges, then

$$h(A) = Uh(\Lambda)U^{\top} = U \operatorname{diag}(h(\lambda_1), \dots, h(\lambda_n))U^{\top}$$

• in particular, $h_lpha \in \mathcal{H}$, having the *geometric progression* expansion

$$h_{\alpha}(A) := \beta (I - \alpha A)^{-1} = \beta \sum_{t=0}^{\infty} (\alpha A)^{t},$$

which converges absolutely if $\rho(\alpha A) < 1$

• but, this holds for $A=\mathcal{W}$ because lpha < 1 and $arrho(\mathcal{W})=1$
when/why does it work?

• let \mathcal{H} be the family of functions h with a series expansion

$$h(A) = \sum_{t=0}^{\infty} c_t A^t$$

• if $h \in \mathcal{H}$ and the series converges, then

$$h(A) = Uh(\Lambda)U^{\top} = U \operatorname{diag}(h(\lambda_1), \dots, h(\lambda_n))U^{\top}$$

• in particular, $h_{\alpha} \in \mathcal{H}$, having the *geometric progression* expansion

$$h_{\alpha}(A) := \beta (I - \alpha A)^{-1} = \beta \sum_{t=0}^{\infty} (\alpha A)^t,$$

which converges absolutely if $\rho(\alpha A) < 1$

• but, this holds for $A=\mathcal{W}$ because lpha<1 and $arrho(\mathcal{W})=1$

 given A, compute an n × r̂ matrix Q with Q^TQ = I_{r̂} that represents an approximate basis for the range of A:

 $QQ^\top A \approx A$

- how? simultaneous iteration: randomly draw an $n \times \hat{r}$ standard Gaussian matrix $B^{(0)}$ and repeat for $t = 0, \ldots, q 1$:
 - **1.** compute QR factorization $Q^{(t)}R^{(t)} = B^{(t)}$
 - **2.** define the $n \times \hat{r}$ matrix $B^{(t+1)} := AQ^{(t)}$
- finally, set $Q := Q^{(q-1)}$, $B := B^{(q)} = AQ$

 given A, compute an n × r̂ matrix Q with Q^TQ = I_{r̂} that represents an approximate basis for the range of A:

$$QQ^{\top}A \approx A$$

- how? simultaneous iteration: randomly draw an $n \times \hat{r}$ standard Gaussian matrix $B^{(0)}$ and repeat for $t = 0, \ldots, q 1$:
 - **1.** compute QR factorization $Q^{(t)}R^{(t)} = B^{(t)}$
 - 2. define the $n \times \hat{r}$ matrix $B^{(t+1)} := AQ^{(t)}$
- finally, set $Q:=Q^{(q-1)},\ B:=B^{(q)}=AQ$

compute an approximate rank-r eigenvalue decomposition

$$U\Lambda U^{\top}\approx A$$

where U is $n \times r$ with $U^{\top}U = I_r$ and Λ is $r \times r$ diagonal

- how? [Halko et al. SIAM 2011]
 - **1.** form the $\hat{r} \times \hat{r}$ matrix $C := Q^{\top}B = Q^{\top}AQ$
 - **2.** compute its eigendecomposition $\hat{V}\hat{\Lambda}\hat{V}^{ op}=C$

4. define U := QV

compute an approximate rank-r eigenvalue decomposition

$$U\Lambda U^{\top}\approx A$$

where U is $n \times r$ with $U^{\top}U = I_r$ and Λ is $r \times r$ diagonal

- how? [Halko et al. SIAM 2011]
 - **1.** form the $\hat{r} \times \hat{r}$ matrix $C := Q^{\top}B = Q^{\top}AQ$
 - **2.** compute its eigendecomposition $\hat{V}\hat{\Lambda}\hat{V}^{\top} = \hat{C}$
 - 3. form (V, Λ) by keeping from $(\hat{V}, \hat{\Lambda})$ the rows/columns corresponding to the r largest eigenvalues

4. define U := QV

when/why does it work?

- an average-case bound on $||A QQ^{\top}A||$ decays to $|\lambda_{r+1}|$ exponentially fast in q [Halko *et al.* SIAM 2011]
- since $QQ^{\top}A \approx A$ and A is symmetric,

$\boldsymbol{A} \approx \boldsymbol{Q} \boldsymbol{Q}^\top \boldsymbol{A} \boldsymbol{Q} \boldsymbol{Q}^\top = \boldsymbol{Q} \boldsymbol{C} \boldsymbol{Q}^\top \approx \boldsymbol{Q} \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^\top \boldsymbol{Q}^\top = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^\top$

- the approximation $C \approx V \Lambda V^{\top}$ involves an additional term of $|\lambda_{r+1}|$ in the error [Halko *et al.* SIAM 2011]
- when approximating h(A) by $Uh(\Lambda)U^{\top}$, $|h(\lambda_{r+1})|$ governs the error instead: h should be nondecreasing when restricted to scalars

when/why does it work?

- an average-case bound on $||A QQ^{\top}A||$ decays to $|\lambda_{r+1}|$ exponentially fast in q [Halko *et al.* SIAM 2011]
- since $QQ^{\top}A \approx A$ and A is symmetric,

 $\boldsymbol{A} \approx \boldsymbol{Q} \boldsymbol{Q}^\top \boldsymbol{A} \boldsymbol{Q} \boldsymbol{Q}^\top = \boldsymbol{Q} \boldsymbol{C} \boldsymbol{Q}^\top \approx \boldsymbol{Q} \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^\top \boldsymbol{Q}^\top = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^\top$

- the approximation $C \approx V \Lambda V^{\top}$ involves an additional term of $|\lambda_{r+1}|$ in the error [Halko *et al.* SIAM 2011]
- when approximating h(A) by $Uh(\Lambda)U^{\top}$, $|h(\lambda_{r+1})|$ governs the error instead: h should be nondecreasing when restricted to scalars

back to image retrieval

- given ${\mathcal W}$ offline, compute the rank-r eigenvalue decomposition $U\Lambda U^{\top}\approx {\mathcal W}$
- given h, \mathbf{y} online, compute

$$\mathbf{x} := Uh(\Lambda)U^{\top}\mathbf{y}$$

• score per image obtained by sparse N imes n pooling matrix Σ

$$\overline{\mathbf{x}} := \Sigma \mathbf{x}$$

• the $N \times r$ matrix $\overline{U} := \Sigma U$ is computed offline so that, online, $\overline{\pi} = \overline{U} b(\Lambda) U^{\top} r$

back to image retrieval

- given $\mathcal W$ offline, compute the rank-r eigenvalue decomposition $U\Lambda U^{\top}\approx \mathcal W$
- given h, \mathbf{y} online, compute

$$\mathbf{x} := Uh(\Lambda)U^{\top}\mathbf{y}$$

• score per image obtained by sparse $N \times n$ pooling matrix Σ

$$\overline{\mathbf{x}} := \Sigma \mathbf{x}$$

• the $N \times r$ matrix $\overline{U} := \Sigma U$ is computed offline so that, online,

$$\overline{\mathbf{x}} = \overline{U}h(\Lambda)U^{\top}\mathbf{y}$$

(fast) spectral ranking

$$\overline{\mathbf{x}} = \overline{U} h(\Lambda) U^\top \mathbf{y}$$

(fast) spectral ranking

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

(fast) spectral ranking

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

small scale

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

Oxford105k

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

practical considerations

- search independently in each connected component of G; otherwise maximal eigenvalue of each component dominates the eigenvalues of the few (or one) "giant" component
- "weighted" FSR: if η_i is the ℓ^2 -norm of the *i*-th row of U, adjust ranking vector as

$$x_i' = x_i + (1 - \eta_i) \mathbf{v}_i^\top \mathbf{q}$$

falling back on original dot-product similarity for sparsely populated parts of the graph

practical considerations

- search independently in each connected component of G; otherwise maximal eigenvalue of each component dominates the eigenvalues of the few (or one) "giant" component
- "weighted" FSR: if η_i is the ℓ^2 -norm of the *i*-th row of U, adjust ranking vector as

$$x_i' = x_i + (1 - \eta_i) \mathbf{v}_i^\top \mathbf{q}$$

falling back on original dot-product similarity for sparsely populated parts of the graph

Oxford105k per landmark (FSR)

Oxford105k per landmark (weighted FSR)

◆□> ◆圖> ◆臣> ◆臣> 「臣」 のへで

sparse U (Oxford105k, ResNet101)

state of the art (global)

Method	d	INSTRE	Oxf5k	Oxf105k	Par6k	Par106k					
global descriptors - Euclidean search											
R-MAC	512	47.7	77.7	70.1	84.1	76.8					
R-MAC	2,048	62.6	83.9	80.8	93.8	89.9					
global descriptors - manifold search											
Diffusion	512	70.3	85.7	82.5	94.1	92.5					
FSR.rank-r	512	70.3	85.8	85.0	93.8	92.4					
Diffusion	2,048	80.5	87.1	86.8	96.5	95.4					
FSR.rank-r	2,048	80.5	87.5	87.9	96.4	95.3					

state of the art (regional)

Method	$m \times d$	INSTRE	Oxf5k	Oxf105k	Par6k	Par106k					
regional descriptors - Euclidean search											
R-match	21×512	55.5	79.8	76.5	86.1	79.9					
R-match	21×2,048	71.0	88.1	85.7	94.9	91.3					
regional descriptors - manifold search											
Diffusion	5×512	77.5	91.5	84.7	95.6	93.0					
FSR.APPROX	5×512	78.4	89.9	86.5	95.6	92.4					
Diffusion	21×512	80.0	93.2	90.3	96.5	92.6					
FSR.Approx	21×512	80.4	90.6	-	96.5	-					
Diffusion	5×2,048	88.4	95.0	90.0	96.4	95.8					
FSR.APPROX	5×2,048	88.5	95.1	93.0	96.5	95.2					
Diffusion	21×2,048	89.6	95.8	94.2	96.9	95.3					
FSR.Approx	21×2,048	89.2	95.8	-	97.0	-					

query time (Oxford105k)

- rank r = 5k: 0.14s
- rank r = 10k: 0.30s
- CG: 14s
- CG (truncated): 1s

hard examples?

interpretation: random fields

• a Gaussian Markov random field (GMRF) with precision A and mean μ can be parametrized as

$$p(\mathbf{x}) := \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, A^{-1}) \propto e^{-E(\mathbf{x}|\mathbf{b}, A)}$$

where $E(\mathbf{x}|\mathbf{b},A):=\frac{1}{2}\mathbf{x}^{\top}A\mathbf{x}-\mathbf{b}^{\top}\mathbf{x}$ is a quadratic energy

• its expectation $\mu = A^{-1}\mathbf{b}$ is the minimizer of this energy

- our solution $\mathbf{x}^* = \mathcal{L}_{lpha}^{-1} \mathbf{y}$ is the expectation of a GMRF with energy

$$f_{\alpha}(\mathbf{x}) := E(\mathbf{x}|\mathbf{y}, \mathcal{L}_{\alpha}) = \frac{1}{2}\mathbf{x}^{\top}\mathcal{L}_{\alpha}\mathbf{x} - \mathbf{y}^{\top}\mathbf{x}$$

• if $\hat{\mathbf{x}} := D^{-1/2}\mathbf{x}$, this energy has the same minimizer as

$$\alpha \sum_{i,j} w_{ij} \|\hat{x}_i - \hat{x}_j\|^2 + (1 - \alpha) \|\mathbf{x} - \mathbf{y}\|^2$$

interpretation: random fields

• a Gaussian Markov random field (GMRF) with precision A and mean μ can be parametrized as

$$p(\mathbf{x}) := \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, A^{-1}) \propto e^{-E(\mathbf{x}|\mathbf{b}, A)}$$

where $E(\mathbf{x}|\mathbf{b},A) := \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$ is a quadratic energy

- its expectation $\mu = A^{-1}\mathbf{b}$ is the minimizer of this energy
- our solution $\mathbf{x}^* = \mathcal{L}_{lpha}^{-1} \mathbf{y}$ is the expectation of a GMRF with energy

$$f_{\alpha}(\mathbf{x}) := E(\mathbf{x}|\mathbf{y}, \mathcal{L}_{\alpha}) = \frac{1}{2}\mathbf{x}^{\top}\mathcal{L}_{\alpha}\mathbf{x} - \mathbf{y}^{\top}\mathbf{x}$$

• if $\hat{\mathbf{x}} := D^{-1/2}\mathbf{x}$, this energy has the same minimizer as

$$\alpha \sum_{i,j} w_{ij} \|\hat{x}_i - \hat{x}_j\|^2 + (1 - \alpha) \|\mathbf{x} - \mathbf{y}\|^2$$

interpretation: random fields

a Gaussian Markov random field (GMRF) with precision A and mean
 μ can be parametrized as

$$p(\mathbf{x}) := \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, A^{-1}) \propto e^{-E(\mathbf{x}|\mathbf{b}, A)}$$

where $E(\mathbf{x}|\mathbf{b}, A) := \frac{1}{2}\mathbf{x}^{\top}A\mathbf{x} - \mathbf{b}^{\top}\mathbf{x}$ is a quadratic energy

- its expectation $\mu = A^{-1}\mathbf{b}$ is the minimizer of this energy
- our solution $\mathbf{x}^* = \mathcal{L}_{lpha}^{-1} \mathbf{y}$ is the expectation of a GMRF with energy

$$f_{\alpha}(\mathbf{x}) := E(\mathbf{x}|\mathbf{y}, \mathcal{L}_{\alpha}) = \frac{1}{2}\mathbf{x}^{\top}\mathcal{L}_{\alpha}\mathbf{x} - \mathbf{y}^{\top}\mathbf{x}$$

• if $\hat{\mathbf{x}} := D^{-1/2}\mathbf{x}$, this energy has the same minimizer as

$$\alpha \sum_{i,j} w_{ij} \|\hat{x}_i - \hat{x}_j\|^2 + (1 - \alpha) \|\mathbf{x} - \mathbf{y}\|^2$$

interpretation: graph filtering

- a signal of period n is a vector $\mathbf{s} \in \mathbb{R}^n$ where $s_{\overline{i}} := s_{(i \mod n)+1}$
- a shift of s is the mapping $s_{\overline{i}} \mapsto s_{\overline{i-1}}$; also represented by $s \mapsto C_n s$ where C_n is an $n \times n$ circulant zero-one matrix
- A linear, shift invariant, causal filter is the mapping $\mathbf{s}\mapsto H\mathbf{s}$ where

$$H := h(C_n) = \sum_{t=0}^{\infty} h_t C_n^t$$

- matrix C_n has the eigenvalue decomposition $U\Lambda U^{\top}$ where U^{\top} is the $n \times n$ discrete Fourier transform matrix \mathcal{F}
- if the series $h(C_n)$ converges, filtering $\mathbf{s} \mapsto H\mathbf{s}$ is written as

$$\mathbf{s} \mapsto \mathcal{F}^{-1}h(\Lambda)\mathcal{F}\mathbf{s}$$

interpretation: graph filtering

- a signal of period n is a vector $\mathbf{s} \in \mathbb{R}^n$ where $s_{\overline{i}} := s_{(i \mod n)+1}$
- a shift of s is the mapping $s_{\overline{i}} \mapsto s_{\overline{i-1}}$; also represented by $s \mapsto C_n s$ where C_n is an $n \times n$ circulant zero-one matrix
- A linear, shift invariant, causal filter is the mapping $\mathbf{s}\mapsto H\mathbf{s}$ where

$$H := h(C_n) = \sum_{t=0}^{\infty} h_t C_n^t$$

- matrix C_n has the eigenvalue decomposition $U\Lambda U^{\top}$ where U^{\top} is the $n \times n$ discrete Fourier transform matrix \mathcal{F}
- if the series $h(C_n)$ converges, filtering $\mathbf{s} \mapsto H\mathbf{s}$ is written as

$$\mathbf{s} \mapsto \mathcal{F}^{-1}h(\Lambda)\mathcal{F}\mathbf{s}$$

interpretation: graph filtering

- a signal of period n is a vector $\mathbf{s} \in \mathbb{R}^n$ where $s_{\overline{i}} := s_{(i \mod n)+1}$
- a shift of s is the mapping $s_{\overline{i}} \mapsto s_{\overline{i-1}}$; also represented by $s \mapsto C_n s$ where C_n is an $n \times n$ circulant zero-one matrix
- A linear, shift invariant, causal filter is the mapping $\mathbf{s}\mapsto H\mathbf{s}$ where

$$H := h(C_n) = \sum_{t=0}^{\infty} h_t C_n^t$$

- matrix C_n has the eigenvalue decomposition $U\Lambda U^{\top}$ where U^{\top} is the $n \times n$ discrete Fourier transform matrix \mathcal{F}
- if the series $h(C_n)$ converges, filtering $\mathbf{s} \mapsto H\mathbf{s}$ is written as

$$\mathbf{s} \mapsto \mathcal{F}^{-1}h(\Lambda)\mathcal{F}\mathbf{s}$$

summary

- do not inject query into dataset; search for its neighbors instead
- diffusion is a (slow) iterative solver; use CG instead
- still expensive at large scale: truncate
- cast retrieval as linear graph filtering in the frequency domain
- efficiently compute an approximate Fourier basis of the graph offline
- reduce manifold search to Euclidean followed by dot product similarity search

summary

- do not inject query into dataset; search for its neighbors instead
- diffusion is a (slow) iterative solver; use CG instead
- still expensive at large scale: truncate
- cast retrieval as linear graph filtering in the frequency domain
- efficiently compute an approximate Fourier basis of the graph offline
- reduce manifold search to Euclidean followed by dot product similarity search

diffusion on region manifolds (CVPR 2017) https://arxiv.org/abs/1611.05113

fast spectral ranking https://arxiv.org/abs/1703.06935

thank you!