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overview

• neural networks

• convolution

• image retrieval

• graph-based methods



neural networks



logistic regression

• class activations

ak = w>k x + bk

= ln p(x|Ck)p(Ck)

• posterior class probabilities: softmax

yk(x) = softmaxk(a) : =
eak∑
j e

aj

= p(Ck|x)
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binary logistic regression

• activation

a = w>x + b

= ln
p(x|C1)p(C1)
p(x|C2)p(C2)

• posterior probability of class C1: sigmoid

y(x) = σ(a) : =
1

1 + e−a

= p(C1|x)
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binary logistic regression

• activation
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cross-entropy loss function

• input samples X = (xnd), activations A = (ank)

• output class probabilities Y = (ynk), ynk = softmaxk(an)

• target variables T = (tnk), tnk = 1[xn ∈ Ck]
• average cross-entropy

L = − ln p(T) = − 1

N

∑

n

∑

k

tnk ln ynk

• gradient
∂L

∂A
=

1

N
(Y −T)

by increasing a class activation, the loss decreases if the class is
correct, and increases otherwise
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two-layer network

• describe each sample with a feature vector obtained by a nonlinear
function

• model this function after a (binary) logistic regression unit

• layer 1 activations → “features”

z = h(W>
1 x + b1)

• layer 2 activations → class probabilities

y = softmax(W>
2 z + b2)
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activation function h
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optimization

• input samples X = (xnd), output class probabilities Y = (ynk)

• target variables T = (tnk)

• network parameters θ = ((W1,b1), (W2,b2))

• loss function

L = f(X,T;θ) = − 1

N

∑

n

∑

k

tnk ln ynk +
λ

2
(‖W1‖2F + ‖W2‖2F )

• optimization
θ∗ = arg max

θ
f(X,T;θ)

• gradient descent

θt+1 = θt − ε∂f
∂θ

(X,T;θt)
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computing the gradient

• chain rule: if f is differentiable at x and g is differentiable at
y = f(x), then g ◦ f is differentiable at x and

D(g ◦ f)(x) = Dg(y) ·Df(x)

• how to use it:

∂L

∂x1
=

∂L

∂x2
· ∂x2

∂x1

dx1 = dx2 ·Df(x1)

x x1 x2 x3 x4 x5 L

f

g

dx2dx1
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Z

b1 A1 W1

X input

bias

bias

weight

weight

target

affine

relu

affine



backpropagation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)

T C D L

Y

E

b2 A2 W2 R

Z

b1 A1 W1

X input

bias

bias

weight

weight

target

affine

relu



backpropagation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)
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b2 A2 W2 R

Z

b1 A1 W1

X input

bias

bias

weight

weight

target

affine



backpropagation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

T C D L

Y

E

b2 A2 W2 R

Z

b1 A1 W1

X input

bias

bias

weight

weight

target

affine



automatic differentiation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

what is an easy way to automatically
generate the backward code from the
forward one?



automatic differentiation

A1 = dot(X,W1) + b1

Z = max(0, A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

dA1 = dZ ∗ (Z > 0)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

def relu(A):
Z = max(0, A)
def back(dZ, dA):
dA += dZ ∗ (Z > 0)

return node(Z,back)



automatic differentiation

A1 = dot(X,W1) + b1

Z = relu(A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

Z.back(A1)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

def relu(A):
Z = max(0, A)
def back(dZ, dA):
dA += dZ ∗ (Z > 0)

return node(Z,back)



automatic differentiation

A1 = dot(X,W1) + b1

Z = relu(A1)
A2 = dot(Z,W2) + b2

E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
dW2 += dot(Z>, dA2)
db2 = sum0(dA2)
dZ = dot(dA2,W

>
2 )

Z.back(A1)
dW1 += dot(X>, dA1)
db1 = sum0(dA1)

def affine(X, (W,b)):
A = dot(X,W ) + b
def back(dA, dX, (dW, db)):
dW += dot(X>, dA)
db += sum0(dA)
dX += dot(dA,W>)

return node(A,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def affine(X, (W,b)):
A = dot(X,W ) + b
def back(dA, dX, (dW, db)):
dW += dot(X>, dA)
db += sum0(dA)
dX += dot(dA,W>)

return node(A,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
E = exp(A2)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

dA2 = dD ∗ (Y − T )/N
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def entropy(A, T ):
E = exp(A)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N
def back(dD, dA, ):
dA += dD ∗ (Y − T )/N

return node(D,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = entropy(A2, T )

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def entropy(A, T ):
E = exp(A)
Y = E/sum1(E)
C = −sum1(T ∗ log(Y ))
D = sum0(C)/N
def back(dD, dA, ):
dA += dD ∗ (Y − T )/N

return node(D,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = entropy(A2, T )

R = λ
2 ∗ (‖W1‖2F + ‖W2‖2F )

L = D +R

(dD, dR) = (dL, dL)
dW1 = dR ∗ λ ∗W1

dW2 = dR ∗ λ ∗W2

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def decay(W ):

R = λ
2 ∗ sum(‖w‖2F for w in W )

def back(dR, dW ):
for (w, dw) in zip(W,dW ):
dw += dR ∗ λ ∗ w

return node(R,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = entropy(A2, T )

R = decay((W1,W2))

L = D +R

(dD, dR) = (dL, dL)
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def decay(W ):

R = λ
2 ∗ sum(‖w‖2F for w in W )

def back(dR, dW ):
for (w, dw) in zip(W,dW ):
dw += dR ∗ λ ∗ w

return node(R,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = entropy(A2, T )

R = decay((W1,W2))

L = D +R

(dD, dR) = (dL, dL)
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def add(X):
S = sum(X)
def back(dS, dX):

for dx in dX:
dx += dS

return node(S, back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = entropy(A2, T )

R = decay((W1,W2))

L = add((D,R))
L.back((D,R))
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def add(X):
S = sum(X)
def back(dS, dX):

for dx in dX:
dx += dS

return node(S, back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
D = entropy(A2, T )

R = decay((W1,W2))

L = add((D,R))
L.back((D,R))
R.back((W1,W2))

D.back(A2, T )
A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def loss(A, T,W ):
L = entropy(A, T ) + decay(W )
return block(L)

def loss(A, T,W ):
D = entropy(A, T )
R = decay(W )
L = add((D,R))
def back(A, T,W ):
L.back((D,R))
R.back(W )
D.back(A, T )

return block(L,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def loss(A, T,W ):
L = entropy(A, T ) + decay(W )
return block(L)

def loss(A, T,W ):
D = entropy(A, T )
R = decay(W )
L = add((D,R))
def back(A, T,W ):
L.back((D,R))
R.back(W )
D.back(A, T )

return block(L,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def loss(A, T,W ):
L = entropy(A, T ) + decay(W )
return block(L)

def loss(A, T,W ):
D = entropy(A, T )
R = decay(W )
L = add((D,R))
def back(A, T,W ):
L.back((D,R))
R.back(W )
D.back(A, T )

return block(L,back)



automatic differentiation

A1 = affine(X, (W1,b1))
Z = relu(A1)
A2 = affine(Z, (W2,b2))
L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(Z, (W2,b2))

Z.back(A1)
A1.back(X, (W1,b1))

def model(X, (U1, U2)):
A = affine(relu(affine(X,U1)), U2)
return block(A)

def model(X, (U1, U2)):
A1 = affine(X,U1)
Z = relu(A)
A2 = affine(Z,U2)
def back(X, (U1, U2)):
A2.back(Z,U2)
Z.back(A)
A1.back(X,U1)

return block(A2,back)



automatic differentiation

A2 = model(X, ((W1,b1), (W2,b2)))

L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(X, ((W1,b1), (W2,b2)))

def model(X, (U1, U2)):
A = affine(relu(affine(X,U1)), U2)
return block(A)

def model(X, (U1, U2)):
A1 = affine(X,U1)
Z = relu(A)
A2 = affine(Z,U2)
def back(X, (U1, U2)):
A2.back(Z,U2)
Z.back(A)
A1.back(X,U1)

return block(A2,back)



automatic differentiation

A2 = model(X, ((W1,b1), (W2,b2)))

L = loss(A2, T, (W1,W2))

L.back(A2, T, (W1,W2))

A2.back(X, ((W1,b1), (W2,b2)))

def model(X, (U1, U2)):
A = affine(relu(affine(X,U1)), U2)
return block(A)

def model(X, (U1, U2)):
A1 = affine(X,U1)
Z = relu(A)
A2 = affine(Z,U2)
def back(X, (U1, U2)):
A2.back(Z,U2)
Z.back(A)
A1.back(X,U1)

return block(A2,back)



convolution



MNIST digits dataset

• 10 classes, 60k training images, 10k test images, 28 × 28 images



fully connected layers

• a two-layer network with fully connected layers can easily learn to
classify MNIST digits (less that 3% error), but learns more than
actually required



shuffling the dimensions



shuffling the dimensions



shuffling the dimensions



convolution

• convolution results in sparser connections between units, local
receptive fields, translation equivariance, shared weights and less
parameters to learn

• a convolutional network performs better (less than 1% error), but not
on shuffled digits



convolution

• convolution results in sparser connections between units, local
receptive fields, translation equivariance, shared weights and less
parameters to learn

• a convolutional network performs better (less than 1% error), but not
on shuffled digits



LTI systems and convolution
• discrete-time signal: x[n], n ∈ Z
• translation (or shift, or delay) tk(x)[n] = x[n− k], k ∈ Z
• unit impulse δ[n] = 1[n = 0], so that x[n] =

∑

k

x[k]δ[n− k]

• linear system (or filter)

f

(∑

i

aixi

)
=
∑

i

aif(xi)

• time-invariant (or translation equivariant) system

f(tk(x)) = tk(f(x))

• if f is LTI with impulse response h = f(δ), then f(x) = x ∗ h:

f(x)[n] = f

(∑

k

x[k]tk(δ)

)
[n] =

∑

k

x[k]tk(f(δ))[n]

=
∑

k

x[k]h[n− k]
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LTI systems and convolution
• discrete-time signal: x[n], n ∈ Z
• translation (or shift, or delay) tk(x)[n] = x[n− k], k ∈ Z
• unit impulse δ[n] = 1[n = 0], so that x[n] =
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convolution
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convolution in feature maps

filter 1

filter weights shared
among all spatial positions

input output 1
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convolution in feature maps

filter 2

new filter, but still shared
among all spatial positions

input output 2
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new filter, but still shared
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input output 2
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new filter, but still shared
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convolution in feature maps

filter 3

different filter for each
output dimension

input output 3



convolution in feature maps

filter 4

different filter for each
output dimension

input output 4



convolution in feature maps

filter 5

different filter for each
output dimension

input output 5



convolution in feature maps

filter 5

1 × 1 filter is matrix
multiplication

input output 5



LeNet-5
[LeCun et al. 1998]
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
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• sub-sampling gradually introduces translation, scale and distortion
invariance

• non-linearity included in sub-sampling layers as feature maps are
increasing in dimension

Lecun, Bottou, Bengio, Haffner. IEEE Proc. 1998. Gradient-Based Learning Applied to Document Recognition.



ImageNet

• 22k classes, 15M samples

• ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1000
classes, 1.2M training images, 50k validation images, 150k test images

Russakovsky, Deng, Su, Krause, et al. 2014. Imagenet Large Scale Visual Recognition Challenge.



AlexNet
[Krizhevsky et al. 2012]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

• implementation on two GPUs; connectivity between the two
subnetworks is limited

• ReLU, data augmentation, local response normalization, dropout

• outperformed all previous models on ILSVRC by 10%

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



learned layer 1 kernels
[Krizhevsky et al. 2012]

with magnitudes proportional to the corresponding eigenvalues times a random variable drawn from
a Gaussian with mean zero and standard deviation 0.1. Therefore to each RGB image pixel Ixy =
[IRxy, I

G
xy, I

B
xy]

T we add the following quantity:

[p1,p2,p3][α1λ1, α2λ2, α3λ3]
T

where pi and λi are ith eigenvector and eigenvalue of the 3 × 3 covariance matrix of RGB pixel
values, respectively, and αi is the aforementioned random variable. Each αi is drawn only once
for all the pixels of a particular training image until that image is used for training again, at which
point it is re-drawn. This scheme approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and color of the illumination. This
scheme reduces the top-1 error rate by over 1%.

4.2 Dropout

Combining the predictions of many different models is a very successful way to reduce test errors
[1, 3], but it appears to be too expensive for big neural networks that already take several days
to train. There is, however, a very efficient version of model combination that only costs about a
factor of two during training. The recently-introduced technique, called “dropout” [10], consists
of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are
“dropped out” in this way do not contribute to the forward pass and do not participate in back-
propagation. So every time an input is presented, the neural network samples a different architecture,
but all these architectures share weights. This technique reduces complex co-adaptations of neurons,
since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many different random subsets of the
other neurons. At test time, we use all the neurons but multiply their outputs by 0.5, which is a
reasonable approximation to taking the geometric mean of the predictive distributions produced by
the exponentially-many dropout networks.

We use dropout in the first two fully-connected layers of Figure 2. Without dropout, our network ex-
hibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.

Figure 3: 96 convolutional kernels of size
11×11×3 learned by the first convolutional
layer on the 224×224×3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.

5 Details of learning

We trained our models using stochastic gradient descent
with a batch size of 128 examples, momentum of 0.9, and
weight decay of 0.0005. We found that this small amount
of weight decay was important for the model to learn. In
other words, weight decay here is not merely a regularizer:
it reduces the model’s training error. The update rule for
weight w was

vi+1 := 0.9 · vi − 0.0005 · ε · wi − ε ·
〈
∂L

∂w

∣∣
wi

〉

Di

wi+1 := wi + vi+1

where i is the iteration index, v is the momentum variable, ε is the learning rate, and
〈
∂L
∂w

∣∣
wi

〉
Di

is

the average over the ith batch Di of the derivative of the objective with respect to w, evaluated at
wi.

We initialized the weights in each layer from a zero-mean Gaussian distribution with standard de-
viation 0.01. We initialized the neuron biases in the second, fourth, and fifth convolutional layers,
as well as in the fully-connected hidden layers, with the constant 1. This initialization accelerates
the early stages of learning by providing the ReLUs with positive inputs. We initialized the neuron
biases in the remaining layers with the constant 0.

We used an equal learning rate for all layers, which we adjusted manually throughout training.
The heuristic which we followed was to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. The learning rate was initialized at 0.01 and

6

• 96 kernels of size 11× 11× 3

• top: 48 GPU 1 kernels; bottom: 48 GPU 2 kernels

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



visualizing intermediate layers
[Zeiler and Fergus 2014]

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

• reconstructed patterns from top 9 activations of selected features of
layer 4 and corresponding image patches

Zeiler, Fergus. ECCV 2014. Visualizing and Understanding Convolutional Networks.
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siamese architecture
[LeCun et al. 2005]

`ij

loss tij

g θ g

xi xj

yi = g(xi;θ) yj = g(xj ;θ)

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.



manifold learning
[LeCun et al. 2006]

• input samples xi, output vectors yi = g(xi;θ)
• target variables tij = 1[sim(xi,xj)]
• contrastive loss

`ij = tij‖yi − yj‖2 + (1− tij)[m− ‖yi − yj‖]2+

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning
[LeCun et al. 2006]

• input samples xi, output vectors yi = g(xi;θ)
• target variables tij = 1[sim(xi,xj)]
• contrastive loss

`ij = tij‖yi − yj‖2 + (1− tij)[m− ‖yi − yj‖]2+
similar

Figure 2. Figure showing the spring system. The solid circles rep-
resent points that are similar to the point in the center. Thehol-
low circles represent dissimilar points. The springs are shown as
red zigzag lines. The forces acting on the points are shown in
blue arrows. The length of the arrows approximately gives the
strength of the force. In the two plots on the right side, the x-axis
is the distanceDW and the y-axis is the value of the loss function.
(a). Shows the points connected to similar points withattract-
only springs. (b). The loss function and its gradient associated
with similar pairs. (c) The point connected only with dissimilar
points inside the circle of radiusm with m-repulse-onlysprings.
(d) Shows the loss function and its gradient associated withdis-
similar pairs. (e) Shows the situation where a point is pulled by
other points in different directions, creating equilibrium.

When DW > m, ∂LD

∂W
= 0. Thus there is no gradient

(force) on the two points that are dissimilar and are at a
distanceDW > m. If DW < m then

∂LD

∂W
= −(m − DW )

∂DW

∂W
(9)

Again, comparing equations5 and9 it is clear that the dis-
similar loss functionLD corresponds to them-repulse-only
spring; its gradient gives the force of the spring,∂DW

∂W
gives

the spring constantK and(m−DW ) gives the perturbation
X . The negative sign denotes the fact that the force is re-
pulsive only. Clearly the force is maximum whenDW = 0
and absent whenDW = m. See figure2.

Here, especially in the case ofLS, one might think that
simply makingDW = 0 for all attract-onlysprings would
put the system in equilibrium. Consider, however, figure2e.
Supposeb1 is connected tob2 and b3 with attract-only
springs. Then decreasingDW betweenb1 andb2 will in-
creaseDW betweenb1 and b3. Thus by minimizing the

global loss functionL over all springs, one would ultimately
drive the system to its equilibrium state.

2.3. The Algorithm

The algorithm first generates the training set, then trains
the machine.

Step 1: For each input sample~Xi, do the following:

(a) Using prior knowledge find the set of samples
S ~Xi

= { ~Xj}
p
j=1

, such that ~Xj is deemed sim-

ilar to ~Xi.

(b) Pair the sample~Xi with all the other training
samples and label the pairs so that:
Yij = 0 if ~Xj ∈ S ~Xi

, andYij = 1 otherwise.

Combine all the pairs to form the labeled training set.

Step 2: Repeat until convergence:

(a) For each pair( ~Xi, ~Xj) in the training set, do

i. If Yij = 0, then updateW to decrease
DW = ‖GW ( ~Xi) − GW ( ~Xj)‖2

ii. If Yij = 1, then updateW to increase
DW = ‖GW ( ~Xi) − GW ( ~Xj)‖2

This increase and decrease of euclidean distances in the out-
put space is done by minimizing the above loss function.

3. Experiments

The experiments presented in this section demonstrate
the invariances afforded by our approach and also clarify the
limitations of techniques such as LLE. First we give details
of the parameterized machineGW that learns the mapping
function.

3.1. Training Architecture

The learning architecture is similar to the one used in [4]
and [5]. Called asiamesearchitecture, it consists of two
copies of the functionGW which share the same set of pa-
rametersW , and a cost module. A loss module whose input
is the output of this architecture is placed on top of it. The
input to the entire system is a pair of images( ~X1, ~X2) and
a labelY . The images are passed through the functions,
yielding two outputsG( ~X1) andG( ~X2). The cost module
then generates the distanceDW (GW ( ~X1), GW ( ~X2)). The
loss function combinesDW with label Y to produce the
scalar lossLS or LD, depending on the labelY . The pa-
rameterW is updated using stochastic gradient. The gradi-
ents can be computed by back-propagation through the loss,
the cost, and the two instances ofGW . The total gradient is
the sum of the contributions from the two instances.

The experiments involving airplane images from the
NORB dataset [10] use a 2-layer fully connected neural
network asGW . The number of hidden and output units

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning
[LeCun et al. 2006]

• input samples xi, output vectors yi = g(xi;θ)
• target variables tij = 1[sim(xi,xj)]
• contrastive loss

`ij = tij‖yi − yj‖2 + (1− tij)[m− ‖yi − yj‖]2+
dissimilar

Figure 2. Figure showing the spring system. The solid circles rep-
resent points that are similar to the point in the center. Thehol-
low circles represent dissimilar points. The springs are shown as
red zigzag lines. The forces acting on the points are shown in
blue arrows. The length of the arrows approximately gives the
strength of the force. In the two plots on the right side, the x-axis
is the distanceDW and the y-axis is the value of the loss function.
(a). Shows the points connected to similar points withattract-
only springs. (b). The loss function and its gradient associated
with similar pairs. (c) The point connected only with dissimilar
points inside the circle of radiusm with m-repulse-onlysprings.
(d) Shows the loss function and its gradient associated withdis-
similar pairs. (e) Shows the situation where a point is pulled by
other points in different directions, creating equilibrium.

When DW > m, ∂LD

∂W
= 0. Thus there is no gradient

(force) on the two points that are dissimilar and are at a
distanceDW > m. If DW < m then

∂LD

∂W
= −(m − DW )

∂DW

∂W
(9)

Again, comparing equations5 and9 it is clear that the dis-
similar loss functionLD corresponds to them-repulse-only
spring; its gradient gives the force of the spring,∂DW

∂W
gives

the spring constantK and(m−DW ) gives the perturbation
X . The negative sign denotes the fact that the force is re-
pulsive only. Clearly the force is maximum whenDW = 0
and absent whenDW = m. See figure2.

Here, especially in the case ofLS, one might think that
simply makingDW = 0 for all attract-onlysprings would
put the system in equilibrium. Consider, however, figure2e.
Supposeb1 is connected tob2 and b3 with attract-only
springs. Then decreasingDW betweenb1 andb2 will in-
creaseDW betweenb1 and b3. Thus by minimizing the

global loss functionL over all springs, one would ultimately
drive the system to its equilibrium state.

2.3. The Algorithm

The algorithm first generates the training set, then trains
the machine.

Step 1: For each input sample~Xi, do the following:

(a) Using prior knowledge find the set of samples
S ~Xi

= { ~Xj}
p
j=1

, such that ~Xj is deemed sim-

ilar to ~Xi.

(b) Pair the sample~Xi with all the other training
samples and label the pairs so that:
Yij = 0 if ~Xj ∈ S ~Xi

, andYij = 1 otherwise.

Combine all the pairs to form the labeled training set.

Step 2: Repeat until convergence:

(a) For each pair( ~Xi, ~Xj) in the training set, do

i. If Yij = 0, then updateW to decrease
DW = ‖GW ( ~Xi) − GW ( ~Xj)‖2

ii. If Yij = 1, then updateW to increase
DW = ‖GW ( ~Xi) − GW ( ~Xj)‖2

This increase and decrease of euclidean distances in the out-
put space is done by minimizing the above loss function.

3. Experiments

The experiments presented in this section demonstrate
the invariances afforded by our approach and also clarify the
limitations of techniques such as LLE. First we give details
of the parameterized machineGW that learns the mapping
function.

3.1. Training Architecture

The learning architecture is similar to the one used in [4]
and [5]. Called asiamesearchitecture, it consists of two
copies of the functionGW which share the same set of pa-
rametersW , and a cost module. A loss module whose input
is the output of this architecture is placed on top of it. The
input to the entire system is a pair of images( ~X1, ~X2) and
a labelY . The images are passed through the functions,
yielding two outputsG( ~X1) andG( ~X2). The cost module
then generates the distanceDW (GW ( ~X1), GW ( ~X2)). The
loss function combinesDW with label Y to produce the
scalar lossLS or LD, depending on the labelY . The pa-
rameterW is updated using stochastic gradient. The gradi-
ents can be computed by back-propagation through the loss,
the cost, and the two instances ofGW . The total gradient is
the sum of the contributions from the two instances.

The experiments involving airplane images from the
NORB dataset [10] use a 2-layer fully connected neural
network asGW . The number of hidden and output units

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning
[LeCun et al. 2006]

used was 20 and 3 respectively. Experiments on the MNIST
dataset [9] used a convolutional network asGW (figure3).
Convolutional networks are trainable, non-linear learning
machines that operate at pixel level and learn low-level fea-
tures and high-level representations in an integrated manner.
They are trainedend-to-endto map images to outputs. Be-
cause of a structure of shared weights and multiple layers,
they can learn optimal shift-invariant local feature detectors
while maintaining invariance to geometric distortions of the
input image.

Figure 3. Architecture of the functionGW (a convolutional net-
work) which was learned to map the MNIST data to a low dimen-
sional manifold with invariance to shifts.

The layers of the convolutional network comprise a con-
volutional layerC1 with 15 feature maps, a subsampling
layerS2, a second convolutional layerC3 with 30 feature
maps, and fully connected layerF3 with 2 units. The sizes
of the kernels for theC1 andC3 were 6x6 and 9x9 respec-
tively.

3.2. Learned Mapping of MNIST samples

The first experiment is designed to establish the basic
functionality of the DrLIM approach. The neighborhood
graph is generated with euclidean distances and no prior
knowledge.

The training set is built from 3000 images of the hand-
written digit 4 and 3000 images of the handwritten digit 9
chosen randomly from the MNIST dataset [9]. Approxi-
mately 1000 images of each digit comprised the test set.
These images were shuffled, paired, and labeled according
to a simple euclidean distance measure: each sample~Xi

was paired with its 5 nearest neighbors, producing the set
SXi . All other possible pairs were labeled dissimilar, pro-
ducing 30,000 similar pairs and on the order of 18 million
dissimilar pairs.

The mapping of the test set to a 2D manifold is shown
in figure 4. The lighter-colored blue dots are 9’s and the
darker-colored red dots are 4’s. Several input test samples
are shown next to their manifold positions. The 4’s and 9’s
are in two somewhat overlapping regions, with an overall
organization that is primarily determined by the slant angle
of the samples. The samples are spread rather uniformly in
the populated region.

Figure 4. Experiment demonstrating the effectiveness of the Dr-
LIM in a trivial situation with MNIST digits. A Euclidean near-
est neighbor metric is used to create the local neighborhoodrela-
tionships among the training samples, and a mapping function is
learned with a convolutional network. Figure shows the placement
of thetestsamples in output space. Even though the neighborhood
relationships among these samples are unknown, they are well or-
ganized and evenly distributed on the 2D manifold.

3.3. Learning a Shift-Invariant Mapping of MNIST
samples

In this experiment, the DrLIM approach is evaluated us-
ing 2 categories of MNIST, distorted by adding samples that
have been horizontally translated. The objective is to learn
a 2D mapping that is invariant to horizontal translations.

In the distorted set, 3000 images of 4’s and 3000 im-
ages of 9’s are horizontally translated by -6, -3, 3, and 6
pixels and combined with the originals, producing a total
of 30,000 samples. The 2000 samples in the test set were
distorted in the same way.

First the system was trained using pairs from a euclidean
distance neighborhood graph (5 nearest neighbors per sam-
ple), as in experiment 1. The large distances between trans-
lated samples creates a disjoint neighborhood relationship
graph and the resulting mapping is disjoint as well. The out-
put points are clustered according to the translated position
of the input sample (figure5). Within each cluster, however,
the samples are well organized and evenly distributed.

For comparison, the LLE algorithm was used to map the
distorted MNIST using the same euclidean distance neigh-
borhood graph. The result was a degenerate embedding in
which differently registered samples were completely sepa-
rated (figure6). Although there is sporadic local organiza-

Figure 8. Test set results: the DrLIM approach learned a mapping to 3d space for images of a single airplane (extracted from NORB dataset).
The output manifold is shown under five different viewing angles. The manifold is roughly cylindrical with a systematic organization: along
the circumference varies azimuth of camera in the viewing half-sphere. Along the height varies the camera elevation in the viewing sphere.
The mapping is invariant to the lighting condition, thanks to the prior knowledge built into the neighborhood relationships.

similar pairs, the system avoids collapse to a constant func-
tion and maintains an equilibrium in output space, much as
a mechanical system of interconnected springs does.

The experiments with LLE show that LLE is most useful
where the input samples are locally very similar and well-
registered. If this is not the case, then LLE may give degen-
erate results. Although it is possible to run LLE with arbi-
trary neighborhood relationships, the linear reconstruction
of the samples negates the effect of very distant neighbors.
Other dimensionality reduction methods have avoided this
limitation, but none produces a function that can accept new
samples without recomputation or prior knowledge.

Creating a dimensionality reduction mapping using prior
knowledge has other uses. Given the success of the NORB
experiment, in which the positions of the camera were
learned from prior knowledge of the temporal connections
between images, it may be feasible to learn a robot’s posi-
tion and heading from image sequences.
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• input “anchor” xi, output vector yi = g(xi;θ)

• positive y+
i = g(x+

i ;θ), negative y−i = g(x−i ;θ)

• triplet loss
`i =

[
m+ ‖yi − y+

i ‖2 − ‖yi − y−i ‖2
]
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occur in a specific spatial configuration (if there is no spe-
cific configuration of the parts, then it is “stuff” [1]). We
present a ConvNet-based approach to learn a visual repre-
sentation from this task. We demonstrate that the resulting
visual representation is good for both object detection, pro-
viding a significant boost on PASCAL VOC 2007 compared
to learning from scratch, as well as for unsupervised object
discovery / visual data mining. This means, surprisingly,
that our representation generalizes across images, despite
being trained using an objective function that operates on a
single image at a time. That is, instance-level supervision
appears to improve performance on category-level tasks.

2. Related Work
One way to think of a good image representation is as

the latent variables of an appropriate generative model. An
ideal generative model of natural images would both gener-
ate images according to their natural distribution, and be
concise in the sense that it would seek common causes
for different images and share information between them.
However, inferring the latent structure given an image is in-
tractable for even relatively simple models. To deal with
these computational issues, a number of works, such as
the wake-sleep algorithm [25], contrastive divergence [24],
deep Boltzmann machines [48], and variational Bayesian
methods [30, 46] use sampling to perform approximate in-
ference. Generative models have shown promising per-
formance on smaller datasets such as handwritten dig-
its [25, 24, 48, 30, 46], but none have proven effective for
high-resolution natural images.

Unsupervised representation learning can also be formu-
lated as learning an embedding (i.e. a feature vector for
each image) where images that are semantically similar are
close, while semantically different ones are far apart. One
way to build such a representation is to create a supervised
“pretext” task such that an embedding which solves the task
will also be useful for other real-world tasks. For exam-
ple, denoising autoencoders [56, 4] use reconstruction from
noisy data as a pretext task: the algorithm must connect
images to other images with similar objects to tell the dif-
ference between noise and signal. Sparse autoencoders also
use reconstruction as a pretext task, along with a sparsity
penalty [42], and such autoencoders may be stacked to form
a deep representation [35, 34]. (however, only [34] was suc-
cessfully applied to full-sized images, requiring a million
CPU hours to discover just three objects). We believe that
current reconstruction-based algorithms struggle with low-
level phenomena, like stochastic textures, making it hard to
even measure whether a model is generating well.

Another pretext task is “context prediction.” A strong
tradition for this kind of task already exists in the text do-
main, where “skip-gram” [40] models have been shown to
generate useful word representations. The idea is to train a

3 2 1 

5 4 

8 7 6 

); Y = 3 , X = ( 
Figure 2. The algorithm receives two patches in one of these eight
possible spatial arrangements, without any context, and must then
classify which configuration was sampled.

model (e.g. a deep network) to predict, from a single word,
the n preceding and n succeeding words. In principle, sim-
ilar reasoning could be applied in the image domain, a kind
of visual “fill in the blank” task, but, again, one runs into the
problem of determining whether the predictions themselves
are correct [12], unless one cares about predicting only very
low-level features [14, 33, 53]. To address this, [39] predicts
the appearance of an image region by consensus voting of
the transitive nearest neighbors of its surrounding regions.
Our previous work [12] explicitly formulates a statistical
test to determine whether the data is better explained by a
prediction or by a low-level null hypothesis model.

The key problem that these approaches must address is
that predicting pixels is much harder than predicting words,
due to the huge variety of pixels that can arise from the same
semantic object. In the text domain, one interesting idea is
to switch from a pure prediction task to a discrimination
task [41, 9]. In this case, the pretext task is to discriminate
true snippets of text from the same snippets where a word
has been replaced at random. A direct extension of this to
2D might be to discriminate between real images vs. im-
ages where one patch has been replaced by a random patch
from elsewhere in the dataset. However, such a task would
be trivial, since discriminating low-level color statistics and
lighting would be enough. To make the task harder and
more high-level, in this paper, we instead classify between
multiple possible configurations of patches sampled from
the same image, which means they will share lighting and
color statistics, as shown on Figure 2.

Another line of work in unsupervised learning from im-
ages aims to discover object categories using hand-crafted
features and various forms of clustering (e.g. [51, 47]
learned a generative model over bags of visual words). Such
representations lose shape information, and will readily dis-
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cover clusters of, say, foliage. A few subsequent works have
attempted to use representations more closely tied to shape
[36, 43], but relied on contour extraction, which is difficult
in complex images. Many other approaches [22, 29, 16]
focus on defining similarity metrics which can be used in
more standard clustering algorithms; [45], for instance,
re-casts the problem as frequent itemset mining. Geom-
etry may also be used to for verifying links between im-
ages [44, 6, 23], although this can fail for deformable ob-
jects.

Video can provide another cue for representation learn-
ing. For most scenes, the identity of objects remains un-
changed even as appearance changes with time. This kind
of temporal coherence has a long history in visual learning
literature [18, 59], and contemporaneous work shows strong
improvements on modern detection datasets [57].

Finally, our work is related to a line of research on dis-
criminative patch mining [13, 50, 28, 37, 52, 11], which has
emphasized weak supervision as a means of object discov-
ery. Like the current work, they emphasize the utility of
learning representations of patches (i.e. object parts) before
learning full objects and scenes, and argue that scene-level
labels can serve as a pretext task. For example, [13] trains
detectors to be sensitive to different geographic locales, but
the actual goal is to discover specific elements of architec-
tural style.

3. Learning Visual Context Prediction
We aim to learn an image representation for our pre-

text task, i.e., predicting the relative position of patches
within an image. We employ Convolutional Neural Net-
works (ConvNets), which are well known to learn complex
image representations with minimal human feature design.
Building a ConvNet that can predict a relative offset for a
pair of patches is, in principle, straightforward: the network
must feed the two input patches through several convolu-
tion layers, and produce an output that assigns a probability
to each of the eight spatial configurations (Figure 2) that
might have been sampled (i.e. a softmax output). Note,
however, that we ultimately wish to learn a feature embed-
ding for individual patches, such that patches which are vi-
sually similar (across different images) would be close in
the embedding space.

To achieve this, we use a late-fusion architecture shown
in Figure 3: a pair of AlexNet-style architectures [32] that
process each patch separately, until a depth analogous to
fc6 in AlexNet, after which point the representations are
fused. For the layers that process only one of the patches,
weights are tied between both sides of the network, such
that the same fc6-level embedding function is computed for
both patches. Because there is limited capacity for joint
reasoning—i.e., only two layers receive input from both
patches—we expect the network to perform the bulk of the

Patch 2 Patch 1 

pool1 (3x3,96,2) pool1 (3x3,96,2) 
LRN1 LRN1 

pool2 (3x3,384,2) pool2 (3x3,384,2) 
LRN2 LRN2 

fc6 (4096) fc6 (4096) 

conv5 (3x3,256,1) conv5 (3x3,256,1) 
conv4 (3x3,384,1) conv4 (3x3,384,1) 
conv3 (3x3,384,1) conv3 (3x3,384,1) 

conv2 (5x5,384,2) conv2 (5x5,384,2) 

conv1 (11x11,96,4) conv1 (11x11,96,4) 

fc7 (4096) 

fc8 (4096) 
fc9 (8) 

pool5 (3x3,256,2) pool5 (3x3,256,2) 

Figure 3. Our architecture for pair classification. Dotted lines in-
dicate shared weights. ‘conv’ stands for a convolution layer, ‘fc’
stands for a fully-connected one, ‘pool’ is a max-pooling layer, and
‘LRN’ is a local response normalization layer. Numbers in paren-
theses are kernel size, number of outputs, and stride (fc layers have
only a number of outputs). The LRN parameters follow [32]. All
conv and fc layers are followed by ReLU nonlinearities, except fc9
which feeds into a softmax classifier.

semantic reasoning for each patch separately. When design-
ing the network, we followed AlexNet where possible.

To obtain training examples given an image, we sample
the first patch uniformly, without any reference to image
content. Given the position of the first patch, we sample the
second patch randomly from the eight possible neighboring
locations as in Figure 2.

3.1. Avoiding “trivial” solutions
When designing a pretext task, care must be taken to en-

sure that the task forces the network to extract the desired
information (high-level semantics, in our case), without tak-
ing “trivial” shortcuts. In our case, low-level cues like
boundary patterns or textures continuing between patches
could potentially serve as such a shortcut. Hence, for the
relative prediction task, it was important to include a gap
between patches (in our case, approximately half the patch
width). Even with the gap, it is possible that long lines span-
ning neighboring patches could could give away the correct
answer. Therefore, we also randomly jitter each patch loca-
tion by up to 7 pixels (see Figure 2).

However, even these precautions are not enough: we
were surprised to find that, for some images, another triv-
ial solution exists. We traced the problem to an unexpected
culprit: chromatic aberration. Chromatic aberration arises
from differences in the way the lens focuses light at differ-
ent wavelengths. In some cameras, one color channel (com-
monly green) is shrunk toward the image center relative to
the others [5, p. 76]. A ConvNet, it turns out, can learn to lo-
calize a patch relative to the lens itself (see Section 4.2) sim-
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Abstract

Is strong supervision necessary for learning a good
visual representation? Do we really need millions of
semantically-labeled images to train a ConvNet? In this
paper, we present a simple yet surprisingly powerful ap-
proach for unsupervised learning of ConvNets. Specifically,
we use hundreds of thousands of unlabeled videos from the
web to learn visual representations. Our key idea is that
we track millions of patches in these videos. Visual track-
ing provides the key supervision. That is, two patches con-
nected by a track should have similar visual representation
in deep feature space since they probably belong to same
object or object part. We design a Siamese-triplet network
with a ranking loss function to train this ConvNet represen-
tation. Without using a single image from ImageNet, just us-
ing 100K unlabeled videos and the VOC 2012 dataset, we
train an ensemble of unsupervised networks that achieves
52% mAP (no bounding box regression). This performance
comes tantalizingly close to its ImageNet-supervised coun-
terpart, an ensemble which achieves a mAP of 54.4%. We
also show that our unsupervised network can perform com-
petitive in other tasks such as surface-normal estimation.

1. Introduction
What is a good visual representation and how can we

learn it? At the start of this decade, most computer vision
research focused on “what” and used hand-defined features
such as SIFT [29] and HOG [5] as the underlying visual
representation. Learning was often the last step where these
low-level feature representations were mapped to seman-
tic/3D/functional categories. However, the last three years
have seen the resurgence of learning visual representations
directly from pixels themselves using the deep learning and
ConvNets [25, 21, 20]. At the heart of ConvNets is a com-
pletely supervised learning paradigm. Often millions of ex-
amples are first labeled using Mechanical Turk followed by
data augmentation to create tens of millions of training in-
stances. ConvNets are then trained using gradient descent
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Figure 1. Overview of our approach. (a) Given unlabeled videos,
we perform unsupervised tracking on the patches in them. (b)
Triplets of patches including query patch in the initial frame of
tracking, tracked patch in the last frame, and random patch from
other videos are fed into our siamese-triplet network for train-
ing. (c) The learning objective: Distance between the query and
tracked patch in feature space should be smaller than the distance
between query and random patches.

and back propagation. But one question still remains: is
strong-supervision necessary for training these ConvNets?
Do we really need millions of semantically-labeled images
to learn a good visual representation? It seems humans can
learn visual representations using little or no semantic su-
pervision but our current learning approaches still remain
completely supervised.

In this paper, we explore the alternative: how we can ex-
ploit the unlabeled visual data on the web to train ConvNets
(e.g. AlexNet [21])? In the past, there have been several at-
tempts at unsupervised learning using millions of static im-
ages [23, 41] or frames extracted from videos [50, 44, 31].
The most common architecture used is an auto-encoder
which learns representations based on its ability to recon-
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Is strong supervision necessary for learning a good
visual representation? Do we really need millions of
semantically-labeled images to train a ConvNet? In this
paper, we present a simple yet surprisingly powerful ap-
proach for unsupervised learning of ConvNets. Specifically,
we use hundreds of thousands of unlabeled videos from the
web to learn visual representations. Our key idea is that
we track millions of patches in these videos. Visual track-
ing provides the key supervision. That is, two patches con-
nected by a track should have similar visual representation
in deep feature space since they probably belong to same
object or object part. We design a Siamese-triplet network
with a ranking loss function to train this ConvNet represen-
tation. Without using a single image from ImageNet, just us-
ing 100K unlabeled videos and the VOC 2012 dataset, we
train an ensemble of unsupervised networks that achieves
52% mAP (no bounding box regression). This performance
comes tantalizingly close to its ImageNet-supervised coun-
terpart, an ensemble which achieves a mAP of 54.4%. We
also show that our unsupervised network can perform com-
petitive in other tasks such as surface-normal estimation.

1. Introduction
What is a good visual representation and how can we

learn it? At the start of this decade, most computer vision
research focused on “what” and used hand-defined features
such as SIFT [29] and HOG [5] as the underlying visual
representation. Learning was often the last step where these
low-level feature representations were mapped to seman-
tic/3D/functional categories. However, the last three years
have seen the resurgence of learning visual representations
directly from pixels themselves using the deep learning and
ConvNets [25, 21, 20]. At the heart of ConvNets is a com-
pletely supervised learning paradigm. Often millions of ex-
amples are first labeled using Mechanical Turk followed by
data augmentation to create tens of millions of training in-
stances. ConvNets are then trained using gradient descent
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Figure 1. Overview of our approach. (a) Given unlabeled videos,
we perform unsupervised tracking on the patches in them. (b)
Triplets of patches including query patch in the initial frame of
tracking, tracked patch in the last frame, and random patch from
other videos are fed into our siamese-triplet network for train-
ing. (c) The learning objective: Distance between the query and
tracked patch in feature space should be smaller than the distance
between query and random patches.

and back propagation. But one question still remains: is
strong-supervision necessary for training these ConvNets?
Do we really need millions of semantically-labeled images
to learn a good visual representation? It seems humans can
learn visual representations using little or no semantic su-
pervision but our current learning approaches still remain
completely supervised.

In this paper, we explore the alternative: how we can ex-
ploit the unlabeled visual data on the web to train ConvNets
(e.g. AlexNet [21])? In the past, there have been several at-
tempts at unsupervised learning using millions of static im-
ages [23, 41] or frames extracted from videos [50, 44, 31].
The most common architecture used is an auto-encoder
which learns representations based on its ability to recon-
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Figure 3. Examples of patch pairs we obtain via patch mining in the videos.

noisy with a lot of camera motion, it is hard to localize
moving objects using simple optical flow magnitude vec-
tors. Thus we follow a two-step approach: in the first step,
we obtain SURF [1] interest points and use Improved Dense
Trajectories (IDT) [46] to obtain motion of each SURF
point. Note that since IDT applies a homography estimation
(video stabilization) method, it reduces the problem caused
by camera motion. Given the trajectories of SURF inter-
est points, we classify these points as moving if the flow
magnitude is more than 0.5 pixels. We also reject frames
if (a) very few (< 25%) SURF interest points are classified
as moving because it might be just noise; (b) majority of
SURF interest points (> 75%) are classified as moving as
it corresponds to moving camera. Once we have extracted
moving SURF interest points, in the second step, we find the
best bounding box such that it contains most of the moving
SURF points. The size of the bounding box is set as h×w,
and we perform sliding window with it in the frame. We
take the bounding box which contains the most number of
moving SURF interest points as the interest bounding box.
In the experiment, we set h = 227, w = 227 in the frame
with size 448× 600.
Tracking. Given the initial bounding box, we perform
tracking using the KCF tracker [16]. After tracking along 30
frames in the video, we obtain the second patch. This patch
acts as the similar patch to the query patch in the triplet.
Note that the KCF tracker does not use any supervised in-
formation except for the initial bounding box.

5. Learning Via Videos
In the previous section, we discussed how we can use

tracking to generate pairs of patches where the first patch
(query) is initialized based on motion and the second patch
is obtained after tracking the query patch for 30 frames. We
use this procedure to generate millions of such pairs (See
Figure 3 for examples of pairs of patches mined). We now
describe how we use these as training instances for our vi-
sual representation learning.

5.1. Siamese Triplet Network
Our goal is to learn a feature space such that the query

patch is closer to the tracked patch as compared to any other

randomly sampled patch. To learn this feature space we de-
sign a Siamese-triplet network. A Siamese-triplet network
consist of three base networks which share the same param-
eters (see Figure 4). For our experiments, we take the image
with size 227 × 227 as input. The base network is based
on the AlexNet architecture [21] for the convolutional lay-
ers. Then we stack two full connection layers on the pool5
outputs, whose neuron numbers are 4096 and 1024 respec-
tively. Thus the final output of each single network is 1024
dimensional feature space f(·). We define the loss function
on this feature space.

5.2. Ranking Loss Function
Given the set of patch pairs S sampled from the video,

we propose to learn an image similarity model in the form
of ConvNet. Specifically, given an image X as an input for
the network, we can obtain its feature in the final layer as
f(X). Then, we define the distance of two image patches
X1, X2 based on the cosine distance in the feature space as,

D(X1, X2) = 1− f(X1) · f(X2)

‖f(X1)‖‖f(X2)‖
. (1)

We want to train a ConvNet to obtain feature representa-
tion f(·), so that the distance between query image patch
and the tracked patch is small and the distance between
query patch and other random patches is encouraged to be
larger. Formally, given the patch set S, where Xi is the
original query patch (first patch in tracked frames), X+

i is
the tracked patch and X−

i is a random patch, we want to
enforce D(Xi, X

−
i ) > D(Xi, X

+
i ).

Given a triplet of image patches Xi, X
+
i , X

−
i as input,

where Xi, X
+
i is a tracked pair and X−

i is obtained from a
different video, the loss of our ranking model is defined by
hinge loss as,
L(Xi, X

+
i , X

−
i ) = max{0, D(Xi, X

+
i )−D(Xi, X

−
i ) +M}, (2)

where M represents the gap parameters between two dis-
tances. We set M = 0.5 in the experiment. Then our objec-
tive function for training can be represented as,

min
W

λ

2
‖W ‖22 +

N∑

i=1

max{0, D(Xi, X
+
i )−D(Xi, X

−
i ) +M}, (3)

where W is the parameter weights of the network, i.e., pa-
rameters for function f(·). N is the number of the triplets of
samples. λ is a constant representing weight decay, which
is set to λ = 0.0005.

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



ranking by CNN features
[Krizhevsky et al. 2012]

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

• use the last fully-connected layer features

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



neural codes
[Babenko et al. 2014]

Neural Codes for Image Retrieval 585

Here we interesed in establishing the quantitative performance of such features
(which we refer to as neural codes) and their variations.

We start by providing a quantitative evaluation of the image retrieval per-
formance of the features that emerge within the convolutional neural network
trained to recognize Image-Net [1] classes. We measure such performance on
four standard benchmark datasets: INRIA Holidays [8], Oxford Buildings, Ox-
ford Building 105K [19], and the University of Kentucky benchmark (UKB) [16].
Perhaps unsurprisingly, these deep features perform well, although not better
than other state-of-the-art holistic features (e.g. Fisher vectors). Interestingly,
the relative performance of different layers of the CNN varies in different re-
trieval setups, and the best performance on the standard retrieval datasets is
achieved by the features in the middle of the fully-connected layers hierarchy.

Fig. 1. The convolutional neural network architecture used on our experiments. Purple
nodes correspond to input (an RGB image of size 224 × 224) and output (1000 class
labels). Green units correspond to outputs of convolutions, red units correspond to the
outputs of max pooling, and blue units correspond to the outputs of rectified linear
(ReLU) transform. Layers 6, 7, and 8 (the output) are fully connected to the preceding
layers. The units that correspond to the neural codes used in our experiments are
shown with red arrows. Stride=4 are used in the first convolutional layer, and stride=1
in the rest.

The good performance of neural codes demonstrate their universality, since
the task the network was trained for (i.e. classifying Image-Net classes) is quite
different from the retrieval task we consider. Despite the evidence of such univer-
sality, there is an obvious possibility to improve the performance of deep features
by adapting them to the task, and such adaptation is the subject of the second
part of the paper. Towards this end, we assemble a large-scale image dataset,
where the classes correspond to landmarks (similar to [14]), and retrain the CNN
on this collection using the original image-net network parameters as initializa-
tion. After such training, we observe a considerable improvement of the retrieval
performance on the datasets with similar image statistics, such as INRIA Holi-
days and Oxford Buildings, while the performance on the unrelated UKB dataset
degrades. In the second experiment of this kind, we retrain the initial network
on the Multi-view RGB-D dataset [12] of turntable views of different objects. As

• investigate more than the last fully-connected layer

• fine-tune by softmax on 672 classes of 200k landmark photos

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.
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[Babenko et al. 2014]

592 A. Babenko et al.

Fig. 4. Sample images from the ”Leeds Castle” and ”Kiev Pechersk Lavra” classes of
the collected Landmarks dataset. The first class contains mostly “clean” outdoor images
sharing the same building while the second class contains a lot of indoor photographs
that do not share common geometry with the outdoor photos.

than to landmark photographs. To confirm this, we performed the second re-
training experiment, where we used the Multi-view RGB-D dataset [12] which
contains turntable views of 300 household objects. We treat each object as a
separate class and sample 200 images per class. We retrain the network (again,
initialized by the ILSVRC CNN) on this dataset of 60,000 images (the depth
channel was discarded). Once again, we observed (Table 1) that this retrain-
ing provides an increase in the retrieval performance on the related dataset, as
the accuracy on the UKB increased from 3.43 to 3.56. The performance on the
unrelated datasets (Oxford, Oxford-105K) dropped.

5 Compressed Neural Codes

As the neural codes in our experiments are high-dimensional (e.g. 4096 for
L6(I)), albeit less high-dimensional than other state-of-the-art holistic descrip-
tors, a question of their efficient compression arises. In this section, we evaluate
two different strategies for such compression. First, we investigate how efficiency
of neural codes degrades with the common PCA-based compression. An im-
portant finding is that this degradation is rather graceful. Second, we assess a
more sophisticated procedure based on discriminative dimensionality reduction.
We focus our evaluation on L6(I), since the performance of the neural codes

• investigate more than the last fully-connected layer

• fine-tune by softmax on 672 classes of 200k landmark photos

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.



fine-tuning
[Gordo et al. 2016]

8 A. Gordo, J. Almazán, J. Revaud, D. Larlus

Fig. 2. Left: random images from the “St Paul’s Cathedral” landmark. Green, gray and
red borders resp. denote prototypical, non-prototypical, and incorrect images. Right:
excerpt of the two largest connected components of the pairwise matching graph (cor-
responding to outside and inside pictures of the cathedral).

profiles, and a non-negligible amount of unrelated images (Fig. 2). While this
is not a problem when aiming for classification (the network can accommodate
during training for this diversity and even for noise), for instance-level matching
we need to train the network with images of the same particular object or scene.
In this case, variability comes from different viewing scales, angles, lighting con-
ditions and image clutter. We pre-process the Landmarks dataset to achieve this
as follows.

We first run a strong image matching baseline within the images of each land-
mark class. We compare each pair of images using invariant keypoint matching
and spatial verification [50]. We use the SIFT and Hessian-Affine keypoint detec-
tors [50,51] and match keypoints using the first-to-second neighbor ratio rule [50].
This is known to outperform approaches based on descriptor quantization [52].
Afterwards, we verify all matches with an affine transformation model [20]. This
heavy procedure is affordable as it is performed offline only once at training
time.

Without loss of generality, we describe the rest of the cleaning procedure for
a single landmark class. Once we have obtained a set of pairwise scores between
all image pairs, we construct a graph whose nodes are the images and edges are
pairwise matches. We prune all edges which have a low score. Then we extract
the connected components of the graph. They correspond to different profiles
of a landmark; see Fig. 2 that shows the two largest connected components
for St Paul’s Cathedral. In order to avoid any confusion, we only retain the
largest connected component and discard the rest. This cleaning process leaves
about 49,000 images (divided in 42,410 training and 6382 validation images) still
belonging to one of the 586 landmarks, referred to as Landmarks-clean.

Bounding box estimation. Our second contribution (Section 3.2) is to re-
place the uniform sampling of regions in the R-MAC descriptor by a learned
ROI selector. This selector is trained using bounding box annotations that we
automatically estimate for all landmark images. To that aim we leverage the data
obtained during the cleaning step. The position of verified keypoint matches is
a meaningful cue since the object of interest is consistently visible across the

• clean landmark images by pairwise matching

• fine-tune by triplet architecture and regional max-pooling (R-MAC)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



fine-tuning
[Gordo et al. 2016]

Learning global representations for image search 3

Fig. 1. Summary of the proposed CNN-based representation tailored for
retrieval. At training time, image triplets are sampled and simultaneously considered
by a triplet-loss that is well-suited for the task (top). A region proposal network (RPN)
learns which image regions should be pooled (bottom left). At test time (bottom right),
the query image is fed to the learned architecture to efficiently produce a compact global
image representation that can be compared with the dataset image representations with
a simple dot-product.

Finally, we would like to refer the reader to the recent work of Radenovic
et al. [18], concurrent to ours and published in these same proceedings, that
also proposes to learn representations for retrieval using a Siamese network on
a geometrically-verified landmark dataset.

The rest of the paper is organized as follows. Section 2 discusses related
works. Sections 3 and 4 present our contributions. Section 5 validates them on
five different datasets. Finally Section 6 concludes the paper.

2 Related Work

We now describe previous works most related to our approach.
Conventional image retrieval. Early techniques for instance-level retrieval
are based on bag-of-features representations with large vocabularies and inverted
files [19,20]. Numerous methods to better approximate the matching of the de-
scriptors have been proposed, see e.g. [21,22]. An advantage of these techniques is
that spatial verification can be employed to re-rank a short-list of results [20,23],
yielding a significant improvement despite a significant cost. Concurrently, meth-
ods that aggregate the local image patches have been considered. Encoding tech-
niques, such as the Fisher Vector [24], or VLAD [25], combined with compression
[26,27,28] produce global descriptors that scale to larger databases at the cost of
reduced accuracy. All these methods can be combined with other post-processing
techniques such as query expansion [29,30,31].

• clean landmark images by pairwise matching

• fine-tune by triplet architecture and regional max-pooling (R-MAC)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



unsupervised fine-tuning
[Radenovic et al. 2016]

CNN Image Retrieval Learns from BoW 7

Fig. 2. Examples of training query images (green border) and matching images selected
as positive examples by methods (from left to right) m1(q), m2(q), and m3(q).

training image pairs, where each tuple corresponds to |N (q)| + 1 pairs. For a
query image q, a pool M(q) of candidate positive images is constructed based
on the camera positions in the cluster of q. It consists of the k images with closest
camera centers to the query. Due to the wide range of camera orientations, these
do not necessarily depict the same object. We therefore propose three different
ways to sample the positive image. The positives examples are fixed during the
whole training process for all three strategies.

Positive images: MAC distance. The image that has the lowest MAC dis-
tance to the query is chosen as positive, formally

m1(q) = argmin
i∈M(q)

||f̄(q)− f̄(i)||. (6)

This strategy is similar to the one followed by Arandjelovic et al. [35]. They adopt
this choice since only GPS coordinates are available and not camera orientations.
Downside of this approach is that the chosen matching examples already have
low distance, thus not forcing network to learn much out of the positive samples.

Positive images: maximum inliers. In this approach, the 3D information is
exploited to choose the positive image, independently of the CNN descriptor. In
particular, the image that has the highest number of co-observed 3D points with
the query is chosen. That is,

m2(q) = argmax
i∈M(q)

|P(q) ∩ P(i)|. (7)

This measure corresponds to the number of spatially verified features between
two images, a measure commonly used for ranking in BoW-based retrieval. As
this choice is independent of the CNN representation, it delivers more challenging
positive examples.

(positive)

• reconstruct 700 3d models with 160k images by SfM on 7M images

• fine-tune by siamese architecture and global max-pooling (MAC)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
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[Radenovic et al. 2016]

8 F. Radenović, G. Tolias, and O. Chum

. . . . . .

. . . . . .

. . . . . .
q n(q) N1(q) N2(q)

Fig. 3. Examples of training query images q (green border), hardest non-matching
images n(q) that are always selected as negative examples, and additional non-matching
images selected as negative examples by N1(q) and N2(q) methods respectively.

Positive images: relaxed inliers. Even though both previous methods choose
positive images depicting the same object as the query, the variance of viewpoints
is limited. Instead of using a pool of images with similar camera position, the
positive example is selected at random from a set of images that co-observe
enough points with the query, but do not exhibit too extreme scale change. The
positive example in this case is

m3(q) = random

{
i ∈M(q) :

|P(i) ∩ P(q)|
|P(q)| ≥ ti, scale(i, q) ≤ ts

}
, (8)

where scale(i, q) is the scale change between the two images. This method
results in selecting harder matching examples which are still guaranteed to depict
the same object. Method m3 chooses different image than m1 on 86.5% of the
queries. In Figure 2 we present examples of query images and the corresponding
positives selected with the three different methods. The relaxed method increases
the variability of viewpoints.

Negative images. Negative examples are selected from clusters different than
the cluster of the query image, as the clusters are non-overlaping. Following a
well-known procedure, we choose hard negatives [42,20], that is, non-matching
images with the most similar descriptor. Two different strategies are proposed. In
the first, N1(q), k-nearest neighbors from all non-matching images are selected.
In the other, N2(q), the same criterion is used, but at most one image per cluster
is allowed. While N1(q) often leads to multiple, and very similar, instances of
the same object, N2(q) provides higher variability of the negative examples, see
Figure 3. While positives examples are fixed during the whole training process,
hard negatives depend on the current CNN parameters and are re-mined multiple
times per epoch.

(negative)

• reconstruct 700 3d models with 160k images by SfM on 7M images

• fine-tune by siamese architecture and global max-pooling (MAC)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
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query expansion and searching on manifolds
[Iscen et al. 2017]

• now that images are represented by a global descriptor or just a few
regional descriptors, graph methods are more applicable than ever

Iscen, Tolias, Avrithis, Furon, Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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query expansion as a linear system
[Iscen et al. 2017]

• reciprocal nearest neighbor graph on images or regions

• symmetrically normalized adjacency matrix W
• regularized Laplacian

Lα =
I − αW
1− α

• initial query: sparse observation vector
yi = 1[i is query (or neighbor)]

• query expansion: solve linear system

Lαx = y

Iscen, Tolias, Avrithis, Furon, Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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searching on manifolds as smoothing
[Iscen et al. 2017]

• express L−1α using a transfer function

L−1α = hα(W) = (1− α)(I − αW)−1

• given any matrix function h, we want to compute

x = h(W)y

without computing h(W)

Iscen, Tolias, Avrithis, Furon, Chum. arXiv 2017. Fast Spectral Ranking for Similarity Search.
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• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain
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• low-pass filtering in the frequency domain
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Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.



unsupervised object discovery
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Siméoni, Iscen, Tolias, Avrithis, Chum. arXiv 2017. Unsupervised deep object discovery for instance recognition.



unsupervised object discovery
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class activation mapping (CAM)
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
∑

x,y fk(x, y) into the class score,
Sc, we obtain

Sc =
∑

k

wc
k

∑

x,y

fk(x, y) =
∑

x,y

∑

k

wc
kfk(x, y). (1)

We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
∑

k

wc
kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.

dome

chain saw

Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
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We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
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kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.

dome

chain saw

Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
∑

x,y fk(x, y) into the class score,
Sc, we obtain

Sc =
∑
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We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
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kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.
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Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.
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Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.
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Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
∑

x,y fk(x, y) into the class score,
Sc, we obtain

Sc =
∑
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∑
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We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
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kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.
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Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
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each spatial element is given by

Mc(x, y) =
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Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.
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Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
∑

x,y fk(x, y) into the class score,
Sc, we obtain

Sc =
∑
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We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
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k
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kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.

dome

chain saw

Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

Here we ignore the bias term: we explicitly set the input
bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
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We define Mc as the class activation map for class c, where
each spatial element is given by
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∑

k

wc
kfk(x, y). (2)

Thus, Sc =
∑

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [34, 30], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions
for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps
highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.
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Figure 4. Examples of the CAMs generated from the top 5 pre-
dicted categories for the given image with ground-truth as dome.
The predicted class and its score are shown above each class ac-
tivation map. We observe that the highlighted regions vary across
predicted classes e.g., dome activates the upper round part while
palace activates the lower flat part of the compound.

Global average pooling (GAP) vs global max pool-
ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
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cross-dimensional weighting (CroW)
[Kalantidis et al. 2016]
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Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.
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cross-dimensional weighting (CroW)
[Kalantidis et al. 2016]

8 Kalantidis, Mellina & Osindero

Fig. 3: Visualization of spatial weighting by aggregate response. On the left we show original
images in the Paris dataset along with their spatial weights. On the right we visualize the receptive
fields of the 7 highest weighted locations and the 7 lowest weighted locations for each image. The
top two images are of Notre Dame and the bottom two are of the Panthéon.

4.3 Discussion

Using the framework described in Section 3, we can explain different approaches in
terms of their pooling, weighting and aggregation steps; we illustrate some interesting
cases in Table 1. For example, approaches that aggregate the output of a max-pooling
layer of the convolutional neural network are essentially performing max-pooling in
Step 1.

In terms of novelty, it is noteworty to restate that the spatial weighting presented in
Section 4.1 corresponds to a well known principle, and approaches like [8, 17, 23] have
addressed similar ideas. Our spatial weighting is notable as a simple and strong baseline.
Together with the channel weighting, the CroW features are able to deliver state-of-the-
art results at practically the same computational cost as off-the-self features.
Uniform weighting. If we further uniformly set both spatial and channel weights and
then perform sum-pooling per channel we end up with a simpler version of CroW fea-
tures, that we denote as uniform CroW or uCroW .
Relation to SPoC [4] features. SPoC [4] can be described in terms of our framework
as illustrated in Table 1. CroW and SPoC features differ in their spatial pooling, spatial
weighting, and channel weighting. For the first spatially-local pooling step, CroW (and
uCroW ) max-pool (we are essentially using the outputs of the last pooling layer of the
deep convolutional network rather than the last convolutional one as in SpoC). SPoC

Kalantidis, Mellina, Osindero. ECCVW 2016. Cross-Dimensional Weighting for Aggregated Deep Convolutional Features.
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region detection with EGM
[Avrithis and Kalantidis 2012]

• expanding Gaussian mixtures (EGM)

• generalized from points to 2d functions (images)
Avrithis and Kalantidis. ECCV 2012. Approximate Gaussian Mixtures for Large Scale Vocabularies.
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graph centrality

• construct graph from detected regions

• local search
Lαx = y

where yi = 1[i is query]

• global centrality (Katz)
Lαg = 1

Katz. Psychometrika 1953. A New Status Index Derived From Sociometric Analysis.
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FS versus OS (Oxford 5k)

image FS OS



FS versus OS (INSTRE)

image FS OS



what does OS find?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

saliency precision

FS

OS

• precision: sum of saliency over ground truth regions, normalized by
the sum over the entire image



global image representation

• fine-tuned VGG features [Radenovic et al. 2016]

• compute FS, detect regions with EGM and construct graph

• compute OS for each image in the dataset

• re-detect regions with EGM

• max-pool over regions, sum-pool globally as in R-MAC



global versus regional

Method QE Instre Oxford Oxford105k

MAC - 48.5 79.7 73.9
Uniform [39] - 47.7 77.7 70.1
FS.EGM ? - 48.4 77.5 70.2
OS.EGM ? - 50.1 79.6 71.8
OS.EGM-4? - 53.7 79.8 71.4

MAC X 71.8 87.4 86.0
Uniform [39] X 70.3 85.7 82.7
FS.EGM ? X 71.2 89.8 87.9
OS.EGM ? X 72.7 90.4 88.0
OS.EGM-4? X 75.4 90.1 84.3

Table 1. mAP comparison of our methods marked with ? against
baselines on all tested datasets. QE refers to query expansion by
diffusion [12].

OS.EGM, where further uniform region sampling at 2 scales
is performed within each detected region. We refer to this
as OS.EGM-4. All methods are tested with k-NN search
and global diffusion [12], which is a method for query ex-
pansion or manifold search and is known to significantly
improve performance. Results are given in Table 1.

FS.EGM improves performance compared to uniform
sampling by focusing on salient objects. However, salient
objects are not necessarily relevant for the particular dataset.
This is what OS.EGM captures and boosts the search perfor-
mance, especially on Instre. On all datasets, MAC is better
than uniform sampling (R-MAC). This is known to be due
to the fact that the network used [29] is directly fine-tuned to
optimize MAC. However, when using diffusion, we outper-
form it on all datasets. This can be explained by the fact that
diffusion boosts any items that are similar to the top-ranking
ones according to the original similarity [12], so it is essen-
tial that these items are reliable. A global descriptor is af-
fected by clutter in general. By contrast, our representation
is global yet clutter-free. Our improvements are larger on
Instre, which is more challenging due to small objects and
severe background clutter. This is exactly where our detec-
tion is essential. Most Instre images are also quite different
than the building images which the network is fine-tuned
on. This is probably why our representations outperform
MAC even without diffusion on this dataset.

There are several other previous approaches that deal
with region detection or saliency masks, which are not di-
rectly comparable, so they are not included in Table 1. Nev-
ertheless, we outperform their reported results. Salvador
et al. [31] use the off-the-shelf VGG and fine-tune RPN in
the test set. When not using query expansion, they obtain
71.0 in Oxford5k. Similarly, Jimenez et al. [15] learn class
weights and apply them on the activation maps of off-the-
shelf VGG and achieve 73.6 in Oxford5k. Song et al. [36]
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Figure 10. mAP comparison of our global OS.EGM (?) to R-Match
with uniformly sampled regional descriptors, with and without dif-
fusion on Oxford5k. Text labels refer to query time.

train on different datasets, and achieve 78.3 in Oxford5k.
The results obtained by learning a saliency mask are not
comparable since spatial verification with local features is
always applied in the end [24]. Finally, Zheng et al. [43]
achieve 83.4 with regional representation on Oxford5k .
They employ both CNN and local features, while we only
rely on CNN and much more compact representation. Fi-
nally, no work other than [12] evaluates on Instre which is
rather challenging due to small objects.

Region cross-matching methods [30] represent an image
with multiple vectors, sacrificing memory footprint and
complexity for accuracy. In particular, the memory is linear
in the number of regions, while the complexity is quadratic.
We compare our global representation with region cross-
matching (R-Match) and regional diffusion [12] in Fig-
ure 10. Different numbers of regions are obtained by GMM
reduction, exactly as in [12].

Compared to regional descriptors, we require about 4
times less memory to achieve the same performance. The
runtime complexity gain is in the order of 42, which holds
for the case of R-Match and also for the first part of dif-
fusion where Euclidean nearest neighbors are found. The
diffusion complexity is O(m), where m is the number of
non-zero entries of the graph. We found that m is 3.7 times
smaller in our case and our measurements of actual query
timings agree with this ratio.

5. Conclusions
We propose a region detection approach that is dataset

specific but requires no supervision. It captures not only
salient objects by considering each image individually but
also frequently appearing ones by considering the dataset
as a whole. As a result, we avoid separate indexing of re-
gional descriptors and construct a global descriptor by pool-
ing over data-dependent regions, which performs well under
background clutter and severe occlusions. We demonstrate
that this approach is effective in particular object retrieval
where background clutter is a common problem.

• regional search: O(n) space and O(n2) query time, where n is the
number of regions (descriptors) per image

• same performance with 5 times less memory and ≈ 4 times faster
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Method QE Instre Oxford Oxford105k

MAC - 48.5 79.7 73.9
R-MAC - 47.7 77.7 70.1
FS.EGM ? - 48.4 77.5 70.2
OS.EGM ? - 50.1 79.6 71.8
OS.EGM-4? - 53.7 79.8 71.4

MAC X 71.8 87.4 86.0
R-MAC X 70.3 85.7 82.7
FS.EGM ? X 71.2 89.8 87.9
OS.EGM ? X 72.7 90.4 88.0
OS.EGM-4? X 75.4 90.1 84.3

Table 1. mAP comparison of our methods marked with ? against
baselines on all tested datasets. QE refers to query expansion by
diffusion [1].

OS.EGM, where further uniform region sampling at 2 scales
is performed within each detected region. We refer to this as
OS.EGM-4. All methods are tested with k-NN search and
global diffusion [1], which is a method for query expansion
or manifold search and is known to significantly improve
performance. Results are given in Table 1.

FS.EGM improves performance compared to uniform
sampling by focusing on salient objects. However, salient
objects are not necessarily relevant for the particular dataset.
This is what OS.EGM captures and boosts the search perfor-
mance, especially on Instre. On all datasets, MAC is better
than uniform sampling (R-MAC). This is because the net-
work used [5] is directly fine-tuned to optimize MAC. How-
ever, when using diffusion, we outperform it on all datasets.
This can be explained by the fact that diffusion boosts any
items that are similar to the top-ranking ones according
to the original similarity [1], so it is essential that these
items are reliable. A global descriptor is affected by clut-
ter in general. By contrast, our representation is global yet
clutter-free. Our improvements are larger on Instre, which
is more challenging due to small objects and severe back-
ground clutter. This is exactly where our detection is es-
sential. Most Instre images are also quite different than the
building images which the network is fine-tuned on. This
is probably why our representations outperform MAC even
without diffusion on this dataset.

There are several other previous approaches that deal
with region detection or saliency masks, which are not di-
rectly comparable, so they are not included in Table 1. Nev-
ertheless, we outperform their reported results. Salvador et
al. [7] use the off-the-shelf VGG and fine-tune RPN in the
test set. Without using query expansion, they obtain 71.0 in
Oxford5k. Similarly, Jimenez et al. [2] learn class weights
and apply them on the activation maps of off-the-shelf VGG
and achieve 73.6 in Oxford5k. Song et al. [9] train on dif-
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Figure 6. mAP comparison of our global OS.EGM (?) to R-Match
with uniformly sampled regional descriptors, with and without dif-
fusion on Oxford5k. Text labels refer to query time.

ferent datasets, and achieve 78.3 in Oxford5k. The results
obtained by learning a saliency mask are not comparable
since spatial verification with local features is always ap-
plied in the end [3]. Finally, Zheng et al. [12] achieve 83.4
with regional representation on Oxford5k . They employ
both CNN and local features, while we only rely on CNN
and much more compact representation. Finally, no work
other than [1] evaluates on Instre which is rather challeng-
ing due to small objects.

Region cross-matching methods [6] represent an image
with multiple vectors, sacrificing memory footprint and
complexity for accuracy. In particular, the memory is linear
in the number of regions, while the complexity is quadratic.
We compare our global representation with region cross-
matching (R-Match) and regional diffusion [1] in Figure 6.
Different numbers of regions are obtained by GMM reduc-
tion, exactly as in [1].

Compared to regional descriptors, we require about 4
times less memory to achieve the same performance. The
runtime complexity gain is in the order of 42, which holds
for the case of R-Match and also for the first part of dif-
fusion where Euclidean nearest neighbors are found. The
diffusion complexity is O(m), where m is the number of
non-zero entries of the graph. We found that m is 3.7 times
smaller in our case and our measurements of actual query
timings agree with this ratio.
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• always better than R-MAC, up to 6% at large scale

• compete MAC, even though network was optimized for that

• most gain with QE



summary

• let’s go and learn with as little supervision as possible!
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