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feature pooling



image ranking by CNN features
[Krizhevsky et al. 2012]

e 3-channel RGB input, 224 x 224

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



image ranking by CNN features
[Krizhevsky et al. 2012]

e 3-channel RGB input, 224 x 224

o AlexNet pre-trained on ImageNet for classification

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



image ranking by CNN features

[Krizhevsky et al. 2012]

e 3-channel RGB input, 224 x 224
o AlexNet pre-trained on ImageNet for classification

o last fully connected layer (fcg): global descriptor of dimension
k = 4096

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



image ranking by CNN features

e query images

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



image ranking by CNN features

e query images

e nearest neighbors in ImageNet according to Euclidean distance

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.



neural codes for image retrieval
[Babenko et al. 2014]

3

e 3-channel RGB input, 224 x 224

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.



neural codes for image retrieval
[Babenko et al. 2014]

H CNN  p
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e 3-channel RGB input, 224 x 224

o AlexNet last pooling layer, global descriptor of dimension
wXx hxk=6x6x256=9216
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neural codes for image retrieval
[Babenko et al. 2014]

H CNN  p fcg 1

3

e 3-channel RGB input, 224 x 224

o AlexNet last pooling layer, global descriptor of dimension
wXx hxk=6x6x256=9216

e alternatively: fully connected layers fcg, fcy, global descriptors of
dimension k' = 4096

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.



neural codes for image retrieval
[Babenko et al. 2014]

— - 1 - 1 —
H CNN- R feg 1 D ofe; 11 7 I whiten
k

3

3-channel RGB input, 224 x 224

AlexNet last pooling layer, global descriptor of dimension
wXx hxk=6x6x256=9216

alternatively: fully connected layers fcg, fcr, global descriptors of
dimension k' = 4096 (best is fcg)

e in each case: PCA-whitening, ¢ normalization

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.



neural codes for i lmage retrleval

e fine-tuning by softmax on 672 classes of 200k landmark photos

e outperforms VLAD and Fisher vectors on standard retrieval
benchmarks, but still inferior to SIFT local descriptors

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.



regional CNN features
[Razavian et al. 2015]

e 3-channel RGB input, largest square region extracted

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.
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regional CNN features
[Razavian et al. 2015]

e 3-channel RGB input, largest square region extracted

o fixed multiscale overlapping regions, warped into w x h = 227 x 227

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.



regional CNN features
[Razavian et al. 2015]
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e 3-channel RGB input, largest square region extracted
e fixed multiscale overlapping regions, warped into w x h = 227 x 227

e each region yields a w’ x b/ x k = 36 x 36 x 256 dimensional feature
at the last convolutional layer of AlexNet

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.



regional CNN features
[Razavian et al. 2015]
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3-channel RGB input, largest square region extracted

fixed multiscale overlapping regions, warped into w x h = 227 x 227

each region yields a w’ x h' x k = 36 x 36 x 256 dimensional feature
at the last convolutional layer of AlexNet

global spatial max-pooling

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.



regional CNN features

[Razavian et al. 2015]
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global spatial max-pooling
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3-channel RGB input, largest square region extracted

fo-normalization, PCA-whitening of each descriptor
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Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.
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fixed multiscale overlapping regions, warped into w x h = 227 x 227

each region yields a w’ x h' x k = 36 x 36 x 256 dimensional feature
at the last convolutional layer of AlexNet



regional CNN features
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e CNN visual representation jumps by more than 30% mAP to
outperform standard SIFT pipeline in a few months

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.



regional CNN features
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¢ Date in 2014
e CNN visual representation jumps by more than 30% mAP to
outperform standard SIFT pipeline in a few months

e however, this is based on multiple regional descriptors per image and
exhaustive pairwise matching of all descriptors of query and all dataset
images, which is not practical

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.



regional max-pooling (R-MAC)

[Tolias et al. 2016]

CNN

3

e VGG-16 last convolutional layer, k = 512

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



regional max-pooling (R-MAC)

[Tolias et al. 2016]

H CNN

3

e VGG-16 last convolutional layer, k = 512

o fixed multiscale overlapping regions

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



regional max-pooling (R-MAC)

[Tolias et al. 2016]
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e VGG-16 last convolutional layer, k = 512

o fixed multiscale overlapping regions, spatial max-pooling

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



regional max-pooling (R-MAC)

[Tolias et al. 2016]

w
w 1 1
S B Y — N —
— - —
H CNN p, | 1D ( whiten Y1C_—D
pool
| — i —
. k K

3

e VGG-16 last convolutional layer, k = 512
o fixed multiscale overlapping regions, spatial max-pooling

e {5-normalization, PCA-whitening, f2-normalization

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



regional max-pooling (R-MAC)

[Tolias et al. 2016]
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e VGG-16 last convolutional layer, k = 512
o fixed multiscale overlapping regions, spatial max-pooling
e {5-normalization, PCA-whitening, f2-normalization

e sum-pooling over all descriptors, £so-normalization

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



global max-pooling (MAC)

H CNN B

3

e VGG-16 last convolutional layer, k = 512

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



global max-pooling (MAC)

e VGG-16 last convolutional layer, k = 512

o global spatial max-pooling

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



global max-pooling (MAC)
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e VGG-16 last convolutional layer, k = 512
o global spatial max-pooling
e fo-normalization, PCA-whitening, £>-normalization

e MAC: maximum activation of convolutions

Tolias, Sicre and Jegou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.



global max-pooling: matching

o receptive fields of 5 components of MAC vectors that contribute most
to image similarity

Tolias, Sicre and Jégou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.
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global max-pooling: matching

o receptive fields of 5 components of MAC vectors that contribute most
to image similarity

Tolias, Sicre and Jégou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.
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manifold learning

e.g. Isomap: apply PCA to the geodesic (graph) distance matrix
e.g. kernel PCA: apply PCA to the Gram matrix of a nonlinear kernel

other topology-preserving methods are only focusing on distances to
nearest neighbors

many classic methods use eigenvalue decomposition and most do not
learn and explicit mapping from the input to the embedding space



siamese architecture
[Chopra et al. 2005]

X; Xj

e an input sample is a pair (x;,%;)

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.



siamese architecture
[Chopra et al. 2005]

X; X
| |
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e an input sample is a pair (x;,%;)

e both x;,x; go through the same function f with shared parameters 6

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.



siamese architecture
[Chopra et al. 2005]
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e an input sample is a pair (x;,x%;)
e both x;,x; go through the same function f with shared parameters 6

e loss ¢;; is measured on output pair (y;,y;) and target t;;

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.



contrastive loss
[Hadsell et al. 2006]
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e input samples x;, output vectors y; = f(x;;0)
e target variables ¢;; = 1[sim(x;, ;)]
e contrastive loss is a function of distance ||y; — y;|| only

tij = L((yi,y5): ti) = Llyi — y;ll, tij)

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



contrastive loss
[Hadsell et al. 2006]

()

input samples x;, output vectors y; = f(x;;60)
target variables ¢;; = 1[sim(x;, ;)]
contrastive loss is a function of distance |ly; — y;|| only

lij = L((yi,¥5) tij) = llyi =yl tis)
e similar samples are attracted

U, t) = b () [k (1= ) (2) = (1= t)[m — a2

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.




contrastive loss
[Hadsell et al. 2006]

input samples x;, output vectors y; =
target variables ¢;; = 1[sim(x;, ;)]

N
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f(xi;0)

contrastive loss is a function of distance |ly; — y;|| only

tij = L((yi,y5): ti) = Llyi — y;ll, tij)

dissimilar samples are repelled if closer than margin m

Uz, t) = tlH(x) + (1 —t) ()

= to? 4+ (1 -t

[m — 2]
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Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.




manifold learning: MNIST

e 3k samples of each of digits 4,9

e each sample similar to its 5 Euclidean nearest neighbors, and
dissimilar to all other points

e 30k similar pairs, 18M dissimilar pairs

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning: MNIST

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning: NORB

972 images of airplane class: 18 azimuths (every 20°), 9 elevations (in
[30°,70°], every 5°), 6 lighting conditions

samples similar if taken from contiguous azimuth or elevation,
regardless of lighting

11k similar pairs, 206M dissimilar pairs

cylindrer in 3d: azimuth on circumference, elevation on height

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold Iearning: NORB
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972 images of airplane class: 18 azimuths (every 20°), 9 elevations (in
[30°,70°], every 5°), 6 lighting conditions

samples similar if taken from contiguous azimuth or elevation,
regardless of lighting

11k similar pairs, 206M dissimilar pairs

cylindrer in 3d: azimuth on circumference, elevation on height

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



triplet architecture
[Wang et al. 2014]

X; X

e an input sample is a triplet (x;,x;,x; )

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.



triplet architecture
[Wang et al. 2014]

0 X; X X

f f

e an input sample is a triplet (xi,xj,x;)
+

* X;,X; ,X; go through the same function f with shared parameters 6

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.



triplet architecture
[Wang et al. 2014]

e an input sample is a triplet (xi,xj,xi_)
o xi,xj,xi_ go through the same function f with shared parameters 6
o loss ¢; measured on output triplet (y;,y;,y;)

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.



triplet loss

e input “anchor” x;, output vector y; = f(x;;0)
o positive y;” = f(x;;0), negative y; = f(x;;0)
o triplet loss is a function of distances ||y; — y; ||, |ly: — y; || only
ti=L{y,y;,y; )=y =y |, lyi = y; 1)
Uzt z7) = [m+ (ah)® - (a:*)Q]Jr

so distance ||y; — y; || should be less than ||y; — y; || by margin m

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.



triplet loss

input “anchor” x;, output vector y; = f(x;;6)
positive y; = f(x;7;0), negative y; = f(x;;6)
triplet loss is a function of distances |ly; — yi ||, |ly: — y; || only

b= L(ys,yi,y;) =y —yi Il llyi —yi D)
Ut a7) = [m+ (2*)? = (7)]

so distance ||y; — y; || should be less than ||y; — y; || by margin m

by taking two pairs (x;,x;7) and (x;,x; ) at a time with targets 1,0
respectively, the contrastive loss can be written similarly

lzT,27) = (a:+)2 + [m — xf]i

so distance ||y; — y; || should small and ||y; — y; || larger than m

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep



unsupervised learning by context prediction
[Doersch et al. 2015]

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



unsupervised learning by context prediction
[Doersch et al. 2015]

e sample random pairs of patches in one of eight spatial configurations

e patches are randomly jittered and do not overlap

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



unsupervised learning by context prediction
[Doersch et al. 2015]

e sample random pairs of patches in one of eight spatial configurations
e patches are randomly jittered and do not overlap

o like solving a puzzle, learn to predict the relative position

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



context prediction: architecture

e network f learned by siamese architecture

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



context prediction: architecture

0 f

y; = f(xj;0)

concat

e network f learned by siamese architecture

o representations are concatenated and followed by softmax classifier,
where each spatial configuration is a class

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



context prediction: examples

4

e input image

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



context predlctlon examples

e input image

e nearest neighbors with randomly initialized network

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



context prediction: examples
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e input image
e nearest neighbors with randomly initialized network

e trained by supervised classification on ImageNet

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



context prediction: examples
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input image

e nearest neighbors with randomly initialized network

trained by supervised classification on ImageNet

e unsupervised training from scratch on the context prediction task

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.



unsupervised learning on video: tracking
[Wang et al. 2015]

e estimate motion and find the region that contains most motion

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: tracking
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e estimate motion and find the region that contains most motion

e track this region for a number of frames

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: tracking
[Wang et al. 2015]

e estimate motion and find the region that contains most motion

e track this region for a number of frames

e generate a pair of matching patches on the first and last frames

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: architecture

o input query x; (first frame), tracked x;" (last frame), random x;°

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: architecture

o input query x; (first frame), tracked x;" (last frame), random x;°

° xi,xj,xi_ go through the same function f with shared parameters 6

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: architecture

i tx?‘

o input query x; (first frame), tracked x;" (last frame), random x;°
° xi,xj,xi_ go through the same function f with shared parameters 6

o triplet loss £; measured on output triplet (y;,y;,y; )

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: architecture
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* input query x; (first frame), tracked x; (last frame), random x;
o xi,xf,xi_ go through the same function f with shared parameters

e triplet loss £; measured on output triplet (yi,yj,yi_)

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: objective
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o so, the objective is that squared distance ||y; — y; || is less than
llyi — y;||2 by margin m

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: more examples

.E% %'W

e input query x; (first frame), tracked x;

II

(last frame)
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Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



fine-tuning



deep image retrieval: dataset cleaning
[Gordo et al. 2016]

start from landmark dataset (192k images) and clean it (49k images)

use it to fine-tune a network pre-trained on ImageNet for classification

prototypical, non-prototypical and incorrect images per class

only prototypical are kept to reduce intra-class variability

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: prototypical views

e pairwise match images per class by SIFT descriptors and fast spatial
matching

e connect images into a graph and compute the connected components

o keep only the largest component

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: bounding boxes

e automatically find object bounding boxes

e initialize with inlier features per image
e update such that boxes are consistent over all matching pairs

e use bounding boxes to train a region proposal network

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: network, regions, pooling

e VGG-16 or ResNet-101 feature maps

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: network, regions, pooling

e VGG-16 or ResNet-101 feature maps
e proposals detected on feature maps by RPN

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: network, regions, pooling
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e VGG-16 or ResNet-101 feature maps

e proposals detected on feature maps by RPN and max-pooled

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: network, regions, pooling
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e VGG-16 or ResNet-101 feature maps
e proposals detected on feature maps by RPN and max-pooled

o l9-normalization, PCA-whitening (FC layer), £3-normalization

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: network, regions, pooling
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VGG-16 or ResNet-101 feature maps

proposals detected on feature maps by RPN and max-pooled

lo-normalization, PCA-whitening (FC layer), f2-normalization

e sum-pooling, ¢3-normalization (as in R-MAC)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: architecture
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* query x;, relevant x;~ (same building), irrelevant x; (other building)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: architecture

* query x;, relevant x;~ (same building), irrelevant x; (other building)

° xi,xj,xi_ go through function f including features, RPN, pooling

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: architecture

* query x;, relevant x;~ (same building), irrelevant x; (other building)

° xi,xj,xi_ go through function f including features, RPN, pooling

triplet loss £; measured on output (yi,y;L,yi_)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



learning from bag-of-words: 3d reconstruction
[Radenovic et al. 2016]

o start from an independent dataset of 7.4M images, no class labels

o clustering, pairwise matching and reconstruction of 713 3d models
containing 165k unique images

e 3d models playing the same role as classes in deep image retrieval

e again, fine-tune a network pre-trained on ImageNet for classification

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
Schénberger, Radenovic, Chum and Frahm. CVPR 2015. From Single Image Query to Detailed 3D Reconstruction.



learning from bag-of-words: positive pairs

e input query

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: positive pairs

e input query

e positive images found in same model by minimum MAC distance

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: positive pairs

oL 4

e input query

e positive images found in same model by minimum MAC distance,
maximum inliers

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: positive pairs

e input query

e positive images found in same model by minimum MAC distance,
maximum inliers, or drawn at random from images having at least a
given number of inliers (more challenging)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: negative pairs

e input query
e negative images found in different models

e hard negatives are most similar to query, i.e. with minimum MAC
distance

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: negative pairs

e input query

e negative images found in different models

e hard negatives are most similar to query, i.e. with minimum MAC
distance

o hardest negative

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: negative pairs

e input query

negative images found in different models

hard negatives are most similar to query, i.e. with minimum MAC
distance

hardest negative, nearest neighbors from all other models

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: negative pairs

e input query
e negative images found in different models

e hard negatives are most similar to query, i.e. with minimum MAC
distance

o hardest negative, nearest neighbors from all other models, or nearest
neighbors, one per model (higher variability)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: architecture

e input (x;,x;) of relevant or irrelevant images

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: architecture

fr—=0—f

e input (x;,x;) of relevant or irrelevant images

* both x;,x; go through function f including features and MAC pooling

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.



learning from bag-of-words: architecture

X
F

fl—0o—f

Yi = XZ) \\ / yJ

L

— Tij

1
&j

e input (x;,x;) of relevant or irrelevant images

va )

* both x;,x; go through function f including features and MAC pooling

e contrastive loss £;; measured on output (y;,y;) and target t;;

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
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ranking on manifolds: single query

Nog . %53
St W “;"' #R"% g

e data points (e)

Zhou, Weston, Gretton, Bousquet and Schélkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds: single query

¢ data points (¢), query point (¢), nearest neighbors ()
e iteration 0 x 30

Zhou, Weston, Gretton, Bousquet and Scholkopf. NIPS 2003. Ranking on Data Manifolds.
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e iteration 7 x 30
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ranking on manifolds: single query

¢ data points (¢), query point (¢), nearest neighbors ()
e iteration 8 x 30
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ranking on manifolds: single query

¢ data points (¢), query point (¢), nearest neighbors ()
e iteration 9 x 30
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ranking on manifolds: multiple queries

¢ data points (¢), query points (), nearest neighbors (e)
e iteration 0 x 30
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ranking on manifolds: multiple queries

¢ data points (¢), query points (), nearest neighbors (e)
e iteration 1 x 30
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ranking on manifolds: random walk
[Zhou et al. 2003]

e reciprocal k-nearest neighbor graph on n data points

e non-negative, symmetric, sparse adjacency matrix W € R™*™, with
zero diagonal (no self-loops)
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ranking on manifolds: random walk
[Zhou et al. 2003]

e reciprocal k-nearest neighbor graph on n data points

e non-negative, symmetric, sparse adjacency matrix W € R™*™, with
zero diagonal (no self-loops)

e symmetrically normalized adjacency matrix
W = D—I/ZWD—l/Q

where D = diag(W'1) is the degree matrix
e query: vector y € R™ with y; = 1[i is query]
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ranking on manifolds: random walk
[Zhou et al. 2003]

e reciprocal k-nearest neighbor graph on n data points

e non-negative, symmetric, sparse adjacency matrix W € R™*"  with
zero diagonal (no self-loops)

e symmetrically normalized adjacency matrix
W = D2 p-1/2

where D = diag(W'1) is the degree matrix
e query: vector y € R™ with y; = 1[i is query]
o random walk: starting with any £f(0) € R” iterate

£ = oWt 4 (1 - a)y

where a € [0,1) (typically close to 1)
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ranking on manifolds: random walk
[Zhou et al. 2003]
e reciprocal k-nearest neighbor graph on n data points

e non-negative, symmetric, sparse adjacency matrix W € R™*"  with
zero diagonal (no self-loops)

e symmetrically normalized adjacency matrix
W = D2 p-1/2

where D = diag(W'1) is the degree matrix
e query: vector y € R™ with y; = 1[i is query]
o random walk: starting with any £f(0) € R” iterate

£ = oWt 4 (1 - a)y

where a € [0,1) (typically close to 1)
e rank data points by descending order of f

Zhou, Weston, Gretton, Bousquet and Schélkopf. NIPS 2003. Ranking on Data Manifolds.



ranking as solving a linear system
[Iscen et al. 2017]

e query: sparse vector y € R™ with nearest neighbor similarities

yi =Y s(a,x;) x Llx; € NN (q)]
qeqQ

where @, X C R query/data points, x; € X, s similarity function

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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e query: sparse vector y € R™ with nearest neighbor similarities

yi =Y s(a,x;) x Llx; € NN (q)]
qeqQ

where @, X C R query/data points, x; € X, s similarity function

e regularized Laplacian
I—aW
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ranking as solving a linear system
[Iscen et al. 2017]

e query: sparse vector y € R™ with nearest neighbor similarities

yi =Y s(a,x;) x Llx; € NN (q)]
qeqQ

where @, X C R query/data points, x; € X, s similarity function
e regularized Laplacian

e solve linear system

by conjugate gradient method

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 0 x 2
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Compact CNN Representations.
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e iteration 1 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 2 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 3 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 4 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 5 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 6 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 7 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 8 x 2
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ranking by conjugate gradient

e data points (¢), query points (e), nearest neighbors (e)
e iteration 9 x 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking as solving a linear system

e represent image by global descriptor or multiple regional descriptors

e perform initial query based on Euclidean nearest neighbors

re-rank by solving linear system
ResNet-101 fine-tuned by BoW + R-MAC + re-ranking:

e mAP 87.1 (95.8) on Oxford5k, 96.5 (96.9) on Paris6k
e 1 (21) descriptors/image x 2048 dimensions

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



dependence on neighbors, i (Oxford5k)
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k

“small patterns appear more frequently than entire images”

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



global — regional
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Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



small objects (INSTRE)
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Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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faster than CG?

want to solve L,x =y
could invert L, offline, but it wouldn't be sparse
could approximate £ ! by ®"® where ® is a (sparse) r x n matrix
with r < n; then
X & <I>T<I>y
but how to compute ® without ever inverting L£,?

still, there is no generalization; even « is given in advance



searching on manifolds as smoothing
[Iscen et al. 2018]

G 0>0->0->0>0>0>0>0 | G 0->0->0->0->0>0->0->0

e exponential moving average filter
e output given by z; := (1 — @) Y72, &'yiy

e or by recurrence z; = az;—1 + (1 — a)y;

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing
[Iscen et al. 2018]

G 0>0->0->0>0>0>0>0 | G 0—>0->0->0->0>0->0->0 |

e exponential moving average filter

e output given by z; := (1 — @) Y72, &'yiy

e or by recurrence z; = az;—1 + (1 — a)y;

e impulse response h; = (1 — a)a’y;

o transfer function H(z) := (1 —a) > 2 (az" ) = (1—a)/(1 —az™t)

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing
[Iscen et al. 2018]

e using a weighted undirected graph G instead

e information “flows" in all directions, controlled by edge weights

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

o express £-! using a transfer function
o

L' =heW)=(10—a)I —aW)!

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

o express L' using a transfer function
L' =heW)=(10—a)I —aW)!
e given any matrix function h, we want to compute
x=h(W)y

without computing h(W)

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing
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searching on manifolds as smoothing

o eigenvalue decomposition of W

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

e low-rank approximation

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

wah(A) ur |y

e (under conditions on h and A)

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

wah(A) ur |y

diagonal sparse

e dot-product search

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

xwf—lh(A> F y

e linear graph filter in frequency domain

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: graph signal processing

e in discrete signal processing, a signal of period n is a vector s € R™
where s; 1= S(; modn)+1 fort €1,...,n

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: graph signal processing

e in discrete signal processing, a signal of period n is a vector s € R"
where s; 1= S(; modn)+1 fort €1,...,n

e a shift of s is the mapping s; — s;—; also represented by s — C),s
where C), is an n X n circulant zero-one matrix, e.g. for n =5

00001
100 00
Cs=|( 01000
00100
00010

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: graph signal processing

e a linear, shift invariant, causal filter is the mapping s — Hs where

H:=h(Cp)=> mC}
t=0
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interpretation: graph signal processing

e a linear, shift invariant, causal filter is the mapping s — Hs where
[e.o]
H:=h(Cp) =) hC}
t=0

 matrix C,, has the eigenvalue decomposition UAU " where U " is the
n X n discrete Fourier transform matrix F

o if the series h(C),) converges, filtering s — H's is written as

s F 'h(A)Fs

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: graph signal processing

a linear, shift invariant, causal filter is the mapping s — H's where

H:=h(Cp) =) hC}
t=0

matrix C,, has the eigenvalue decomposition UAU " where U " is the
n X n discrete Fourier transform matrix F

if the series h(C),) converges, filtering s — Hs is written as
s F 'h(A)Fs

e graph signal processing generalizes the above by replacing C,, with a
matrix determined by a graph

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: graph signal processing

—a=0.99
—a=0.9
— a=0.7

o low-pass filtering in the frequency domain
e or, “soft” dimensionality reduction

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: random fields

e a Gaussian Markov random field (GMRF) with precision A and mean
p can be parametrized as

p(x) = N(x|p, A1) oc e Zxib-A)

where E(x|b, A) := Ix" Ax — b"x is a quadratic energy
e its expectation pt = A~ 'b is the minimizer of this energy

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: random fields

e a Gaussian Markov random field (GMRF) with precision A and mean
{1 can be parametrized as

p(x) = N (x|, A7) x e~ ExIbA)

where E(x|b, A) := Ix" Ax — b"x is a quadratic energy
o its expectation u = A~'b is the minimizer of this energy

e our solution x* = L'y is the expectation of a GMRF with energy

1
fa(x) = E(X|y7£a) = ixT[’aX - yTX

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: random fields

e a Gaussian Markov random field (GMRF) with precision A and mean
{1 can be parametrized as

p(x) = N (x|, A7) x e~ ExIbA)

where E(x|b, A) := Ix" Ax — b"x is a quadratic energy

its expectation p = A~ 'b is the minimizer of this energy

our solution x* = £y is the expectation of a GMRF with energy

1
fa(x) = E(X|y7£a) = ix—r[’ax - yTX

o if X := D~1/2x, this energy has the same minimizer as

A a2 2
@y w2 —&;]* + (1 —a) |x —yl
1]

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



small scale (21 descriptors/image)

0.3ms ‘ 4mhs I T 2Ims  700ms

100 | 0.3ms dms 21ms 600ms |
% 80 I 42ms— 3000ms]

= —e— Paris6k
60 |- —e— Oxfordsk ||
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40 | P ms | | | 1 |

100 500 1k 2k 5k
Rank r

e in summary: same performance as CG, two orders of magnitude
faster, but 3x space needed

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



Oxford105k (5 descriptors/image)
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80 B
[
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\ \ : —
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rank r

e in summary: same performance as CG, two orders of magnitude

faster, but 3x space needed

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



hard examples?

ﬁmu%i

(AP: 92. 1) #5 #32 #51 #70

(AP: 02.7)  #2 #8 #61

e red: drift

e blue: incorrect annotations

Radenovic, Iscen, Tolias, Avrithis, Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking.
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embeddings for manifold similarity

the n x n kernel matrix
K =h(W)=Uh(MNU"T

expresses the pairwise manifold similarity of all data points
if h(x) > 0 for x € R, which holds for h,, then K is positive-definite
and there is an n x n matrix ® such that K = &' ®
a particular choice is

® = h(N)V2UT
if we choose a rank-r approximation instead, then ® is » x n and
defines a low-dimensional embedding onto R"

so why not learn an embedding on a training set such that it
generalizes manifold similarity to other data sets?



mining on manifolds
[Iscen et al. 2018]
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e data points (e), query point x ()

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]
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e data points (e), query point x ()
o Euclidean nearest neighbors F(x) (e)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]
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e data points (e), query point x ()
» manifold nearest neighbors M (x) ()

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]
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e data points (e), query point x ()
e hard positives ST = M(x) \ E(x) (°)
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mining on manifolds
[Iscen et al. 2018]
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e data points (e), query point x ()
e hard negatives ST = E(x) \ M (x) (*)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples
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e query (anchor) (x)
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hard positive/negative examples

e query (anchor) (x)
e positives St (x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples
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e query (anchor) (x)

e positives S*(x) vs. Euclidean neighbors E(x)
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hard positive/negative examples
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e query (anchor) (x)

e positives S*(x) vs. Euclidean neighbors E(x)
* negatives S™(x)
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hard positive/negative examples

D o 373

e query (anchor) (x)
e positives S*(x) vs. Euclidean neighbors E(x)
¢ negatives S (x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



fine-tuning with hard example mining

e pre-train network
e extract descriptors on unlabeled dataset

e construct nearest neighbor graph
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fine-tuning with hard example mining

e pre-train network

e extract descriptors on unlabeled dataset

e construct nearest neighbor graph

e sample anchors, measure Euclidean and manifold distances
e sample positives and negatives

o fine-tune using contrastive or triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



fine-grained categorization results

Method [ Labels [ RO1 [ RO2 [ RO4 | RG8 | NMI |

Initial No 35.0 | 46.8 | 59.3 | 72.0 | 48.1
Triplet+semi-hard Yes 423 | 55.0 | 66.4 | 77.2 | 55.4
Lifted-Structure Yes 43.6 | 56.6 | 68.6 | 79.6 | 56.5

Triplet+ Yes 45.9 | 57.7 | 69.6 | 79.8 | 58.1
Clustering Yes 482 | 61.4 | 71.8 | 81.9 | 59.2
Triplet+++ Yes | 49.8 | 62.3 | 74.1 | 83.3 | 59.9
Cyclic match No 40.8 | 52.8 | 65.1 | 76.0 | 52.6
Ours No 453 | 57.8 | 68.6 | 78.4 | 55.0

e CUB200-2011 dataset, 200 bird species, 100 training / 100 testing
e GooglLeNet pre-trained on ImageNet, then fine-tuned with triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



particular object retrieval results

l Model \ Pooling \ Labels \ Oxf5k \ Oxf105k \ Par6k \ Par106k \ Hol \ Instre ‘
ImageNet Human | 585 50.3 73.0 59.0 79.4 | 485
From BoW | MAC StM 79.7 73.9 82.4 74.6 81.4 | 485
Ours — 78.7 74.3 83.1 75.6 82.6 | 55.5
ImageNet Human | 68.0 61.0 76.6 72.1 87.0 | 55.6
From BoW | R-MAC | SfM 77.8 70.1 84.1 76.8 84.4 | 47.7
Ours — 78.2 72.6 85.1 78.0 87.5 | 57.7

e VGG-16 pre-trained on ImageNet, then fine-tuned with constrastive
loss on a 1M unlabeled dataset with MAC representation

e at test time, either MAC or R-MAC used

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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summary

pooling CNN representations is best at last convolutional layers

fine-tuning with constrastive or triplet loss allows transferring to a new
domain and learning to rank as opposed to classify

now that images are represented by a global descriptor or just a few
regional descriptors, graph methods are more applicable than ever

it turns out that query expansion is not just “post processing” but at
the core of ranking on manifolds

there is at least one low-dimensional embedding of manifold similarity,
but is dataset-specific

modeling the manifold explicitly allows unsupervised fine-tuning

without labels, auxiliary systems (e.g. SIFT pipeline), or other
information (e.g. temporal neighborhood in video)
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