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image ranking by CNN features
[Krizhevsky et al. 2012]
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• 3-channel RGB input, 224× 224

• AlexNet pre-trained on ImageNet for classification

• last fully connected layer (fc6): global descriptor of dimension
k = 4096

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.
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image ranking by CNN features

• query images

• nearest neighbors in ImageNet according to Euclidean distance

Krizhevsky, Sutskever, Hinton. NIPS 2012. Imagenet Classification with Deep Convolutional Neural Networks.
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neural codes for image retrieval
[Babenko et al. 2014]
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• 3-channel RGB input, 224× 224

• AlexNet last pooling layer, global descriptor of dimension
w × h× k = 6× 6× 256 = 9216

• alternatively: fully connected layers fc6, fc7, global descriptors of
dimension k′ = 4096 (best is fc6)

• in each case: PCA-whitening, `2 normalization

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.
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neural codes for image retrieval592 A. Babenko et al.

Fig. 4. Sample images from the ”Leeds Castle” and ”Kiev Pechersk Lavra” classes of
the collected Landmarks dataset. The first class contains mostly “clean” outdoor images
sharing the same building while the second class contains a lot of indoor photographs
that do not share common geometry with the outdoor photos.

than to landmark photographs. To confirm this, we performed the second re-
training experiment, where we used the Multi-view RGB-D dataset [12] which
contains turntable views of 300 household objects. We treat each object as a
separate class and sample 200 images per class. We retrain the network (again,
initialized by the ILSVRC CNN) on this dataset of 60,000 images (the depth
channel was discarded). Once again, we observed (Table 1) that this retrain-
ing provides an increase in the retrieval performance on the related dataset, as
the accuracy on the UKB increased from 3.43 to 3.56. The performance on the
unrelated datasets (Oxford, Oxford-105K) dropped.

5 Compressed Neural Codes

As the neural codes in our experiments are high-dimensional (e.g. 4096 for
L6(I)), albeit less high-dimensional than other state-of-the-art holistic descrip-
tors, a question of their efficient compression arises. In this section, we evaluate
two different strategies for such compression. First, we investigate how efficiency
of neural codes degrades with the common PCA-based compression. An im-
portant finding is that this degradation is rather graceful. Second, we assess a
more sophisticated procedure based on discriminative dimensionality reduction.
We focus our evaluation on L6(I), since the performance of the neural codes

• fine-tuning by softmax on 672 classes of 200k landmark photos

• outperforms VLAD and Fisher vectors on standard retrieval
benchmarks, but still inferior to SIFT local descriptors

Babenko, Slesarev, Chigorin, Lempitsky. ECCV 2014. Neural Codes for Image Retrieval.



regional CNN features
[Razavian et al. 2015]
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• 3-channel RGB input, largest square region extracted

• fixed multiscale overlapping regions, warped into w × h = 227× 227

• each region yields a w′ × h′ × k = 36× 36× 256 dimensional feature
at the last convolutional layer of AlexNet

• global spatial max-pooling

• `2-normalization, PCA-whitening of each descriptor

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.
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Figure 1: Rapid progress of the performance of ConvNet based methods on two standard image retrieval
datasets during 2014. Each blue bar shows the publication of a result which improved the performance of a
ConvNet method. The red horizontal line marks the performance of the state-of-the-art non-ConvNet method
with representation ≤ 100k and no search refinement procedure. The rightmost bar in each figure is the result
of the performance of the medium representation presented in this paper. The jumps in performance over time
are due to the following improvements. From March to May (Razavian et al., 2014b), the ConvNet feature was
post-processed with PCA whitening (Jégou & Chum, 2012). In June, factors affecting the transferability were
listed and categorized (Azizpour et al., 2014a) and the architecture and training of our ConvNet for retrieval
were optimized w.r.t. these factors. In November (Azizpour et al., 2014b), the ConvNet representation extracted
was from the last convolutional layer instead of the first fully connected layer and also a deeper network was
employed. Finally in December, this paper, the dimension of the image input to the ConvNet was increased
from 227×227×3 to 576×576×3.

improvements in performance have been brought about by building better ConvNet representations.
Section 3 details these improvements, in particular, switching the ConvNet representation from the
first fully connected layer to the final convolutional layer. One should view this part of the paper as
the culmination of a series of papers we have written exploring the expressiveness and usefulness of
ConvNet representation, but distilled towards the task of visual image retrieval.

Another issue for visual instance retrieval is the dimensionality and memory requirements of the
image representation. Usually two separate categories are considered. These are the small footprint
representations encoding each image with less than 1kbytes and the medium footprint representa-
tions which have dimensionality between 10k and 100k. The small regime is required when the
number of images is massive and memory is a bottleneck, while the medium regime is more useful
when the number of images is less than 50k.

Our representation (∼16k in dimensionality), described in section 3, falls into the medium regime
category. Its performance is sufficiently good to make us believe that it is only a matter of time
before a ConvNet based method will more-or-less solve the medium sized image datasets that exist
today with medium regime representations, see section 3.3 for our justification. We feel the next
challenge, without the introduction of massive and diverse datasets, is to solve the existing datasets
with very low memory representations that require no PCA-whitening or specialized fine-tuning on
the test dataset. Section 4 explains our approach toward this problem.

To further push this challenge and after being inspired by the recent work of Chatfield et al. (2014b),
we report the results for a tiny representation. We define a tiny image representation as one that
takes 32bytes or less to store and is learnt independently of the test dataset. Such a compressed rep-
resentation would allow large scale searches to be completed on mobile phones (Panda et al., 2013)
and massive searches on the cloud(Quack et al., 2004). In section 4 we describe a first attempt to
build small and tiny ConvNet representations - basically a streamlined version of the representation
introduced in section 3 without PCA whitening. Performance does drop as we go from the medium
to the small and then finally to the tiny representation, see figure 4. However, the drop is not as large
as one would anticipate and offers the promise that this is a solvable problem, because as this paper
reports it is amazing what performance gains can be achieved in a year.

2

• CNN visual representation jumps by more than 30% mAP to
outperform standard SIFT pipeline in a few months

• however, this is based on multiple regional descriptors per image and
exhaustive pairwise matching of all descriptors of query and all dataset
images, which is not practical

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.
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the test dataset. Section 4 explains our approach toward this problem.

To further push this challenge and after being inspired by the recent work of Chatfield et al. (2014b),
we report the results for a tiny representation. We define a tiny image representation as one that
takes 32bytes or less to store and is learnt independently of the test dataset. Such a compressed rep-
resentation would allow large scale searches to be completed on mobile phones (Panda et al., 2013)
and massive searches on the cloud(Quack et al., 2004). In section 4 we describe a first attempt to
build small and tiny ConvNet representations - basically a streamlined version of the representation
introduced in section 3 without PCA whitening. Performance does drop as we go from the medium
to the small and then finally to the tiny representation, see figure 4. However, the drop is not as large
as one would anticipate and offers the promise that this is a solvable problem, because as this paper
reports it is amazing what performance gains can be achieved in a year.

2

• CNN visual representation jumps by more than 30% mAP to
outperform standard SIFT pipeline in a few months

• however, this is based on multiple regional descriptors per image and
exhaustive pairwise matching of all descriptors of query and all dataset
images, which is not practical

Razavian, Sullivan, Maki and Carlsson 2015. Visual Instance Retrieval with Deep Convolutional Networks.



regional max-pooling (R-MAC)
[Tolias et al. 2016]
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global max-pooling (MAC)
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• VGG-16 last convolutional layer, k = 512
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• `2-normalization, PCA-whitening, `2-normalization

• MAC: maximum activation of convolutions
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global max-pooling: matching

Under review as a conference paper at ICLR 2016

• receptive fields of 5 components of MAC vectors that contribute most
to image similarity

Tolias, Sicre and Jégou. ICLR 2016. Particular Object Retrieval with Integral Max-Pooling of CNN Activations.
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manifold learning

• e.g. Isomap: apply PCA to the geodesic (graph) distance matrix

• e.g. kernel PCA: apply PCA to the Gram matrix of a nonlinear kernel

• other topology-preserving methods are only focusing on distances to
nearest neighbors

• many classic methods use eigenvalue decomposition and most do not
learn and explicit mapping from the input to the embedding space



siamese architecture
[Chopra et al. 2005]

xi xj

f θ f

L tij

`ij

yi = f(xi;θ) yj = f(xj ;θ)

• an input sample is a pair (xi,xj)

• both xi,xj go through the same function f with shared parameters θ

• loss `ij is measured on output pair (yi,yj) and target tij

Chopra, Hadsell, Lecun, CVPR 2005. Learning a Similarity Metric Discriminatively, with Application to Face Verification.
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contrastive loss
[Hadsell et al. 2006]

m

x

`−(x)

m

• input samples xi, output vectors yi = f(xi;θ)
• target variables tij = 1[sim(xi,xj)]
• contrastive loss is a function of distance ‖yi − yj‖ only

`ij = L((yi,yj), tij) = `(‖yi − yj‖, tij)
• similar samples are attracted

`(x, t) = t`+(x) + (1− t)`−(x) = tx2 + (1− t)[m− x]2+

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.
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[Hadsell et al. 2006]
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`−(x)
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• input samples xi, output vectors yi = f(xi;θ)
• target variables tij = 1[sim(xi,xj)]
• contrastive loss is a function of distance ‖yi − yj‖ only

`ij = L((yi,yj), tij) = `(‖yi − yj‖, tij)
• dissimilar samples are repelled if closer than margin m

`(x, t) = t`+(x) + (1− t)`−(x) = tx2 + (1− t)[m− x]2+

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning: MNIST

used was 20 and 3 respectively. Experiments on the MNIST
dataset [9] used a convolutional network asGW (figure3).
Convolutional networks are trainable, non-linear learning
machines that operate at pixel level and learn low-level fea-
tures and high-level representations in an integrated manner.
They are trainedend-to-endto map images to outputs. Be-
cause of a structure of shared weights and multiple layers,
they can learn optimal shift-invariant local feature detectors
while maintaining invariance to geometric distortions of the
input image.

• 3k samples of each of digits 4, 9

• each sample similar to its 5 Euclidean nearest neighbors, and
dissimilar to all other points

• 30k similar pairs, 18M dissimilar pairs

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning: MNIST
used was 20 and 3 respectively. Experiments on the MNIST
dataset [9] used a convolutional network asGW (figure3).
Convolutional networks are trainable, non-linear learning
machines that operate at pixel level and learn low-level fea-
tures and high-level representations in an integrated manner.
They are trainedend-to-endto map images to outputs. Be-
cause of a structure of shared weights and multiple layers,
they can learn optimal shift-invariant local feature detectors
while maintaining invariance to geometric distortions of the
input image.

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.



manifold learning: NORB

• 972 images of airplane class: 18 azimuths (every 20◦), 9 elevations (in
[30◦, 70◦], every 5◦), 6 lighting conditions

• samples similar if taken from contiguous azimuth or elevation,
regardless of lighting

• 11k similar pairs, 206M dissimilar pairs

• cylindrer in 3d: azimuth on circumference, elevation on height

Hadsell, Chopra, Lecun. CVPR 2006. Dimensionality Reduction By Learning an Invariant Mapping.
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triplet architecture
[Wang et al. 2014]
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• loss `i measured on output triplet (yi,y
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Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.
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triplet loss

• input “anchor” xi, output vector yi = f(xi;θ)

• positive y+
i = f(x+

i ;θ), negative y−i = f(x−i ;θ)

• triplet loss is a function of distances ‖yi − y+
i ‖, ‖yi − y−i ‖ only

`i = L(yi,y
+
i ,y

−
i ) = `(‖yi − y+

i ‖, ‖yi − y−i ‖)

`(x+, x−) =
[
m+ (x+)2 − (x−)2

]
+

so distance ‖yi − y+
i ‖ should be less than ‖yi − y−i ‖ by margin m

• by taking two pairs (xi,x
+
i ) and (xi,x

−
i ) at a time with targets 1, 0

respectively, the contrastive loss can be written similarly

`(x+, x−) = (x+)2 +
[
m− x−

]2
+

so distance ‖yi − y+
i ‖ should small and ‖yi − y−i ‖ larger than m

Wang, Song, Leung, Rosenberg, Wang, Philbin, Chen, Wu. CVPR 2014. Learning Fine-Grained Image Similarity with Deep
Ranking.
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unsupervised learning by context prediction
[Doersch et al. 2015]

• sample random pairs of patches in one of eight spatial configurations

• patches are randomly jittered and do not overlap

• like solving a puzzle, learn to predict the relative position

f

(
,

)
= 3

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.
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context prediction: architecture

f θ f

concat

fc

3

yi = f(xi;θ) yj = f(xj ;θ)

• network f learned by siamese architecture

• representations are concatenated and followed by softmax classifier,
where each spatial configuration is a class

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.
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context prediction: examples

4

• input image

• nearest neighbors with randomly initialized network

• trained by supervised classification on ImageNet

• unsupervised training from scratch on the context prediction task

Doersch, Gupta, Efros. ICCV 2015. Unsupervised Visual Representation Learning By Context Prediction.
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unsupervised learning on video: tracking
[Wang et al. 2015]

• estimate motion and find the region that contains most motion

• track this region for a number of frames

• generate a pair of matching patches on the first and last frames

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.
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unsupervised learning on video: architecture
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• input query xi (first frame), tracked x+
i (last frame), random x−i

• xi,x
+
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−
i go through the same function f with shared parameters θ

• triplet loss `i measured on output triplet (yi,y
+
i ,y

−
i )
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unsupervised learning on video: objective
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• so, the objective is that squared distance ‖yi − y+
i ‖2 is less than

‖yi − y−i ‖2 by margin m

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.



unsupervised learning on video: more examples
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Figure 3. Examples of patch pairs we obtain via patch mining in the videos.

noisy with a lot of camera motion, it is hard to localize
moving objects using simple optical flow magnitude vec-
tors. Thus we follow a two-step approach: in the first step,
we obtain SURF [1] interest points and use Improved Dense
Trajectories (IDT) [46] to obtain motion of each SURF
point. Note that since IDT applies a homography estimation
(video stabilization) method, it reduces the problem caused
by camera motion. Given the trajectories of SURF inter-
est points, we classify these points as moving if the flow
magnitude is more than 0.5 pixels. We also reject frames
if (a) very few (< 25%) SURF interest points are classified
as moving because it might be just noise; (b) majority of
SURF interest points (> 75%) are classified as moving as
it corresponds to moving camera. Once we have extracted
moving SURF interest points, in the second step, we find the
best bounding box such that it contains most of the moving
SURF points. The size of the bounding box is set as h×w,
and we perform sliding window with it in the frame. We
take the bounding box which contains the most number of
moving SURF interest points as the interest bounding box.
In the experiment, we set h = 227, w = 227 in the frame
with size 448× 600.
Tracking. Given the initial bounding box, we perform
tracking using the KCF tracker [16]. After tracking along 30
frames in the video, we obtain the second patch. This patch
acts as the similar patch to the query patch in the triplet.
Note that the KCF tracker does not use any supervised in-
formation except for the initial bounding box.

5. Learning Via Videos
In the previous section, we discussed how we can use

tracking to generate pairs of patches where the first patch
(query) is initialized based on motion and the second patch
is obtained after tracking the query patch for 30 frames. We
use this procedure to generate millions of such pairs (See
Figure 3 for examples of pairs of patches mined). We now
describe how we use these as training instances for our vi-
sual representation learning.

5.1. Siamese Triplet Network
Our goal is to learn a feature space such that the query

patch is closer to the tracked patch as compared to any other

randomly sampled patch. To learn this feature space we de-
sign a Siamese-triplet network. A Siamese-triplet network
consist of three base networks which share the same param-
eters (see Figure 4). For our experiments, we take the image
with size 227 × 227 as input. The base network is based
on the AlexNet architecture [21] for the convolutional lay-
ers. Then we stack two full connection layers on the pool5
outputs, whose neuron numbers are 4096 and 1024 respec-
tively. Thus the final output of each single network is 1024
dimensional feature space f(·). We define the loss function
on this feature space.

5.2. Ranking Loss Function
Given the set of patch pairs S sampled from the video,

we propose to learn an image similarity model in the form
of ConvNet. Specifically, given an image X as an input for
the network, we can obtain its feature in the final layer as
f(X). Then, we define the distance of two image patches
X1, X2 based on the cosine distance in the feature space as,

D(X1, X2) = 1− f(X1) · f(X2)

‖f(X1)‖‖f(X2)‖
. (1)

We want to train a ConvNet to obtain feature representa-
tion f(·), so that the distance between query image patch
and the tracked patch is small and the distance between
query patch and other random patches is encouraged to be
larger. Formally, given the patch set S, where Xi is the
original query patch (first patch in tracked frames), X+

i is
the tracked patch and X−

i is a random patch, we want to
enforce D(Xi, X

−
i ) > D(Xi, X

+
i ).

Given a triplet of image patches Xi, X
+
i , X

−
i as input,

where Xi, X
+
i is a tracked pair and X−

i is obtained from a
different video, the loss of our ranking model is defined by
hinge loss as,
L(Xi, X

+
i , X

−
i ) = max{0, D(Xi, X

+
i )−D(Xi, X

−
i ) +M}, (2)

where M represents the gap parameters between two dis-
tances. We set M = 0.5 in the experiment. Then our objec-
tive function for training can be represented as,

min
W

λ

2
‖W ‖22 +

N∑

i=1

max{0, D(Xi, X
+
i )−D(Xi, X

−
i ) +M}, (3)

where W is the parameter weights of the network, i.e., pa-
rameters for function f(·). N is the number of the triplets of
samples. λ is a constant representing weight decay, which
is set to λ = 0.0005.

• input query xi (first frame), tracked x+
i (last frame)

Wang and Gupta. ICCV 2015. Unsupervised Learning of Visual Representations Using Videos.
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fine-tuning



deep image retrieval: dataset cleaning
[Gordo et al. 2016]

• start from landmark dataset (192k images) and clean it (49k images)

• use it to fine-tune a network pre-trained on ImageNet for classification

• prototypical, non-prototypical and incorrect images per class

• only prototypical are kept to reduce intra-class variability

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: prototypical views

• pairwise match images per class by SIFT descriptors and fast spatial
matching

• connect images into a graph and compute the connected components

• keep only the largest component

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: bounding boxes

• automatically find object bounding boxes

• initialize with inlier features per image
• update such that boxes are consistent over all matching pairs

• use bounding boxes to train a region proposal network

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.



deep image retrieval: network, regions, pooling
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• VGG-16 or ResNet-101 feature maps

• proposals detected on feature maps by RPN and max-pooled

• `2-normalization, PCA-whitening (FC layer), `2-normalization

• sum-pooling, `2-normalization (as in R-MAC)

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.
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deep image retrieval: architecture

xi x+
i x−i

θ

f f f

L

`i

yi y+
i y−i

• query xi, relevant x+
i (same building), irrelevant x−i (other building)

• xi,x
+
i ,x

−
i go through function f including features, RPN, pooling

• triplet loss `i measured on output (yi,y
+
i ,y

−
i )

Gordo, Almazan, Revaud, Larlus. ECCV 2016. Deep Image Retrieval: Learning Global Representations for Image Search.
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learning from bag-of-words: 3d reconstruction
[Radenovic et al. 2016]

• start from an independent dataset of 7.4M images, no class labels

• clustering, pairwise matching and reconstruction of 713 3d models
containing 165k unique images

• 3d models playing the same role as classes in deep image retrieval

• again, fine-tune a network pre-trained on ImageNet for classification

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
Schönberger, Radenovic, Chum and Frahm. CVPR 2015. From Single Image Query to Detailed 3D Reconstruction.



learning from bag-of-words: positive pairs

• input query

• positive images found in same model by minimum MAC distance,
maximum inliers, or drawn at random from images having at least a
given number of inliers (more challenging)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
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learning from bag-of-words: negative pairs

• input query

• negative images found in different models

• hard negatives are most similar to query, i.e. with minimum MAC
distance

• hardest negative, nearest neighbors from all other models, or nearest
neighbors, one per model (higher variability)

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
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learning from bag-of-words: architecture

xi xj

f θ f

L tij

`ij

yi = f(xi;θ) yj = f(xj ;θ)

• input (xi,xj) of relevant or irrelevant images

• both xi,xj go through function f including features and MAC pooling

• contrastive loss `ij measured on output (yi,yj) and target tij

Radenovic, Tolias, Chum. ECCV 2016. CNN Image Retrieval Learns From BoW: Unsupervised Fine-Tuning with Hard Examples.
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ranking on manifolds



ranking on manifolds: single query

• data points ( ), query point ( ), nearest neighbors ( )

• iteration × 30

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking on manifolds: random walk
[Zhou et al. 2003]

• reciprocal k-nearest neighbor graph on n data points

• non-negative, symmetric, sparse adjacency matrix W ∈ Rn×n, with
zero diagonal (no self-loops)

• symmetrically normalized adjacency matrix

W := D−1/2WD−1/2

where D = diag(W1) is the degree matrix

• query: vector y ∈ Rn with yi = 1[i is query]

• random walk: starting with any f (0) ∈ Rn, iterate

f (τ) = αWf (τ−1) + (1− α)y

where α ∈ [0, 1) (typically close to 1)

• rank data points by descending order of f
Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking as solving a linear system
[Iscen et al. 2017]

• query: sparse vector y ∈ Rn with nearest neighbor similarities

yi =
∑
q∈Q

s(q,xi)× 1[xi ∈ NNk
X(q)]

where Q,X ⊂ Rd query/data points, xi ∈ X, s similarity function

• regularized Laplacian

Lα =
I − αW
1− α

• solve linear system
Lαf = y

by conjugate gradient method

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 0× 2
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Compact CNN Representations.



ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 1× 2
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ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 2× 2
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ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 3× 2
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ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 4× 2
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ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 5× 2
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ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 6× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 7× 2
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ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 8× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 9× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking as solving a linear system

• represent image by global descriptor or multiple regional descriptors

• perform initial query based on Euclidean nearest neighbors

• re-rank by solving linear system

• ResNet-101 fine-tuned by BoW + R-MAC + re-ranking:

• mAP 87.1 (95.8) on Oxford5k, 96.5 (96.9) on Paris6k
• 1 (21) descriptors/image × 2048 dimensions

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



dependence on neighbors, k (Oxford5k)
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“small patterns appear more frequently than entire images”
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global → regional
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small objects (INSTRE)

0.2 0.4 0.6 0.8 1

40

60

80

Relative object size

Pr
ec

is
io

n

Regional
Global

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



..

fast spectral ranking



faster than CG?

• want to solve Lαx = y

• could invert Lα offline, but it wouldn’t be sparse

• could approximate L−1
α by Φ>Φ where Φ is a (sparse) r × n matrix

with r � n; then
x ≈ Φ>Φy

• but how to compute Φ without ever inverting Lα?

• still, there is no generalization; even α is given in advance
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searching on manifolds as smoothing
[Iscen et al. 2018]

i

yi

G i

xi

G

• exponential moving average filter

• output given by xi := (1− α)
∑∞

t=0 α
tyi−t

• or by recurrence xi = αxi−1 + (1− α)yi

• impulse response hi = (1− α)αiui

• transfer function H(z) := (1− α)
∑∞

t=0(az−1)t = (1− α)/(1− αz−1)

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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searching on manifolds as smoothing
[Iscen et al. 2018]

i

yi

G i

xi

G

• using a weighted undirected graph G instead

• information “flows” in all directions, controlled by edge weights

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

• express L−1
α using a transfer function

L−1
α = hα(W) = (1− α)(I − αW)−1

• given any matrix function h, we want to compute

x = h(W)y

without computing h(W)

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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searching on manifolds as smoothing

x = h

 W

 y

• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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searching on manifolds as smoothing
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searching on manifolds as smoothing

x ≈ U h

(
Λ

)
U> y

• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain
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searching on manifolds as smoothing

x ≈ U h

(
Λ

)
U> y

diagonal sparse

• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



searching on manifolds as smoothing

x ≈ F−1 h

(
Λ

)
F y

• eigenvalue decomposition of W
• low-rank approximation

• (under conditions on h and Λ)

• dot-product search

• linear graph filter in frequency domain

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: graph signal processing

• in discrete signal processing, a signal of period n is a vector s ∈ Rn
where sī := s(i mod n)+1 for i ∈ 1, . . . , n

• a shift of s is the mapping sī 7→ si−1; also represented by s 7→ Cns
where Cn is an n× n circulant zero-one matrix, e.g. for n = 5

C5 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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interpretation: graph signal processing

• a linear, shift invariant, causal filter is the mapping s 7→ Hs where

H := h(Cn) =

∞∑
t=0

htC
t
n

• matrix Cn has the eigenvalue decomposition UΛU> where U> is the
n× n discrete Fourier transform matrix F

• if the series h(Cn) converges, filtering s 7→ Hs is written as

s 7→ F−1h(Λ)Fs

• graph signal processing generalizes the above by replacing Cn with a
matrix determined by a graph

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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interpretation: graph signal processing
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hα(x) =
1− α

1− αx

1− x

h
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(x
)

α = 0.99

α = 0.9

α = 0.7

• low-pass filtering in the frequency domain

• or, “soft” dimensionality reduction

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



interpretation: random fields

• a Gaussian Markov random field (GMRF) with precision A and mean
µ can be parametrized as

p(x) := N (x|µ, A−1) ∝ e−E(x|b,A)

where E(x|b, A) := 1
2x
>Ax− b>x is a quadratic energy

• its expectation µ = A−1b is the minimizer of this energy

• our solution x∗ = L−1
α y is the expectation of a GMRF with energy

fα(x) := E(x|y,Lα) =
1

2
x>Lαx− y>x

• if x̂ := D−1/2x, this energy has the same minimizer as

α
∑
i,j

wij ‖x̂i − x̂j‖2 + (1− α) ‖x− y‖2

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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small scale (21 descriptors/image)
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• in summary: same performance as CG, two orders of magnitude
faster, but 3× space needed

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



Oxford105k (5 descriptors/image)
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• in summary: same performance as CG, two orders of magnitude
faster, but 3× space needed

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



hard examples?

(AP: 92.1) #5 #32 #51 #70 #71 #76 #79 #126

(AP: 92.7) #2 #4 #8 #61 #68 #72 #75 #108

• red: drift

• blue: incorrect annotations

Radenovic, Iscen, Tolias, Avrithis, Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking.



..

mining on manifolds



embeddings for manifold similarity

• the n× n kernel matrix

K = h(W) = Uh(Λ)U>

expresses the pairwise manifold similarity of all data points

• if h(x) > 0 for x ∈ R, which holds for hα, then K is positive-definite
and there is an n× n matrix Φ such that K = Φ>Φ

• a particular choice is
Φ = h(Λ)1/2U>

• if we choose a rank-r approximation instead, then Φ is r × n and
defines a low-dimensional embedding onto Rr

• so why not learn an embedding on a training set such that it
generalizes manifold similarity to other data sets?
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mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

•

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• Euclidean nearest neighbors E(x) ( )
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mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• manifold nearest neighbors M(x) ( )
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mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• hard positives S+ = M(x) \ E(x) ( )

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• hard negatives S− = E(x) \M(x) ( )

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

7

• query (anchor) (x)

• positives S+(x) vs. Euclidean neighbors E(x)

• negatives S−(x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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fine-tuning with hard example mining

• pre-train network

• extract descriptors on unlabeled dataset

• construct nearest neighbor graph

• sample anchors, measure Euclidean and manifold distances

• sample positives and negatives

• fine-tune using contrastive or triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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fine-grained categorization results

Method Labels R@1 R@2 R@4 R@8 NMI

Initial No 35.0 46.8 59.3 72.0 48.1

Triplet+semi-hard Yes 42.3 55.0 66.4 77.2 55.4
Lifted-Structure Yes 43.6 56.6 68.6 79.6 56.5
Triplet+ Yes 45.9 57.7 69.6 79.8 58.1
Clustering Yes 48.2 61.4 71.8 81.9 59.2
Triplet+++ Yes 49.8 62.3 74.1 83.3 59.9

Cyclic match No 40.8 52.8 65.1 76.0 52.6
Ours No 45.3 57.8 68.6 78.4 55.0

• CUB200-2011 dataset, 200 bird species, 100 training / 100 testing

• GoogLeNet pre-trained on ImageNet, then fine-tuned with triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



particular object retrieval results

Model Pooling Labels Oxf5k Oxf105k Par6k Par106k Hol Instre

ImageNet
MAC

Human 58.5 50.3 73.0 59.0 79.4 48.5
From BoW SfM 79.7 73.9 82.4 74.6 81.4 48.5
Ours — 78.7 74.3 83.1 75.6 82.6 55.5
ImageNet

R-MAC
Human 68.0 61.0 76.6 72.1 87.0 55.6

From BoW SfM 77.8 70.1 84.1 76.8 84.4 47.7
Ours — 78.2 72.6 85.1 78.0 87.5 57.7

• VGG-16 pre-trained on ImageNet, then fine-tuned with constrastive
loss on a 1M unlabeled dataset with MAC representation

• at test time, either MAC or R-MAC used

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



summary

• pooling CNN representations is best at last convolutional layers

• fine-tuning with constrastive or triplet loss allows transferring to a new
domain and learning to rank as opposed to classify

• now that images are represented by a global descriptor or just a few
regional descriptors, graph methods are more applicable than ever

• it turns out that query expansion is not just “post processing” but at
the core of ranking on manifolds

• there is at least one low-dimensional embedding of manifold similarity,
but is dataset-specific

• modeling the manifold explicitly allows unsupervised fine-tuning
without labels, auxiliary systems (e.g. SIFT pipeline), or other
information (e.g. temporal neighborhood in video)
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