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ranking on manifolds

• data points ( ), query point ( ), nearest neighbors ( )

Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.



ranking on manifolds: single query

• data points ( ), query point ( ), nearest neighbors ( )
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ranking on manifolds: multiple queries

• data points ( ), query points ( ), nearest neighbors ( )
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ranking on manifolds: random walk
[Zhou et al. 2003]

• reciprocal k-nearest neighbor graph on n data points

• non-negative, symmetric, sparse adjacency matrix W ∈ Rn×n, with
zero diagonal (no self-loops)

• symmetrically normalized adjacency matrix

W := D−1/2WD−1/2

where D = diag(W1) is the degree matrix

• query: vector y ∈ Rn with yi = 1[i is query]

• random walk: starting with any f (0) ∈ Rn, iterate

f (τ) = αWf (τ−1) + (1− α)y

where α ∈ [0, 1) (typically close to 1)

• rank data points by descending order of f
Zhou, Weston, Gretton, Bousquet and Schölkopf. NIPS 2003. Ranking on Data Manifolds.
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ranking as solving a linear system
[Iscen et al. 2017]

• regularized Laplacian

Lα =
I − αW
1− α

• solve linear system
Lαf = y

by conjugate gradient (CG) method

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 0× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 1× 2
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ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 2× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 3× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 4× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 5× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 6× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 7× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 8× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.



ranking by conjugate gradient (CG)

• data points ( ), query points ( ), nearest neighbors ( )

• iteration 9× 2

Iscen, Tolias, Avrithis, Furon and Chum. CVPR 2017. Efficient Diffusion on Region Manifolds: Recovering Small Objects With
Compact CNN Representations.
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ranking on manifolds as smoothing
[Iscen et al. 2018]

i

yi

G

• exponential moving average filter

• output given by xi := (1− α)
∑∞

t=0 α
tyi−t

• or by recurrence xi = αxi−1 + (1− α)yi
• impulse response hi = (1− α)αiui
• transfer function H(z) := (1− α)

∑∞
t=0(az

−1)t = (1− α)/(1− αz−1)

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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ranking on manifolds as smoothing
[Iscen et al. 2018]

i

yi

G i

xi

G

• using a weighted undirected graph G instead

• information “flows” in all directions, controlled by edge weights

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.



ranking on manifolds as smoothing

• express L−1α using a transfer function

L−1α = hα(W) = (1− α)(I − αW)−1

• given any matrix function h, we want to compute

x = h(W)y

without computing h(W)

• which we do by eigenvalue decomposition and low-rank approximation
of matrix h(W), without ever computing the matrix itself

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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interpretation: graph signal processing
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• low-pass filtering in the frequency domain

• or, “soft” dimensionality reduction

Iscen, Avrithis, Tolias, Furon, Chum. CVPR 2018. Fast Spectral Ranking for Similarity Search.
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mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

•

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• Euclidean nearest neighbors E(x) ( )

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• manifold nearest neighbors M(x) ( )

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• hard positives S+ =M(x) \ E(x) ( )

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



mining on manifolds
[Iscen et al. 2018]

• data points ( ), query point x ( )

• hard negatives S− = E(x) \M(x) ( )

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

7

• query (anchor) (x)

• positives S+(x) vs. Euclidean neighbors E(x)

• negatives S−(x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

7

• query (anchor) (x)

• positives S+(x) vs. Euclidean neighbors E(x)

• negatives S−(x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

7

• query (anchor) (x)

• positives S+(x) vs. Euclidean neighbors E(x)

• negatives S−(x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

7

• query (anchor) (x)

• positives S+(x) vs. Euclidean neighbors E(x)

• negatives S−(x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



hard positive/negative examples

7

• query (anchor) (x)

• positives S+(x) vs. Euclidean neighbors E(x)

• negatives S−(x) vs. Euclidean non-neighbors X \ E(x)

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



fine-tuning with hard example mining

• pre-train network

• extract descriptors on unlabeled dataset

• construct nearest neighbor graph

• sample anchors, measure Euclidean and manifold distances

• sample positives and negatives

• fine-tune using contrastive or triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.
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fine-grained categorization results

Method Labels R@1 R@2 R@4 R@8 NMI

Initial No 35.0 46.8 59.3 72.0 48.1

Triplet+semi-hard Yes 42.3 55.0 66.4 77.2 55.4
Lifted-Structure Yes 43.6 56.6 68.6 79.6 56.5
Triplet+ Yes 45.9 57.7 69.6 79.8 58.1
Clustering Yes 48.2 61.4 71.8 81.9 59.2
Triplet+++ Yes 49.8 62.3 74.1 83.3 59.9

Cyclic match No 40.8 52.8 65.1 76.0 52.6
Ours No 45.3 57.8 68.6 78.4 55.0

• CUB200-2011 dataset, 200 bird species, 100 training / 100 testing

• GoogLeNet pre-trained on ImageNet, then fine-tuned with triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



particular object retrieval results

Model Pooling Labels Oxf5k Oxf105k Par6k Par106k Hol Instre

ImageNet
MAC

Human 58.5 50.3 73.0 59.0 79.4 48.5
From BoW SfM 79.7 73.9 82.4 74.6 81.4 48.5
Ours — 78.7 74.3 83.1 75.6 82.6 55.5
ImageNet

R-MAC
Human 68.0 61.0 76.6 72.1 87.0 55.6

From BoW SfM 77.8 70.1 84.1 76.8 84.4 47.7
Ours — 78.2 72.6 85.1 78.0 87.5 57.7

• VGG-16 pre-trained on ImageNet, then fine-tuned with constrastive
loss on a 1M unlabeled dataset with MAC representation

• at test time, either MAC or R-MAC used

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels.



..

label propagation



semi-supervised learning
[Zhou et al. 2003]

• labeled points ( ), unlabeled points x ( )

Zhou, Bousquet, Lal, Weston, Schölkopf. NIPS2003. Learning with Local and Global Consistency.
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label propagation (transductive)

• same graph representation as in manifold ranking

W := D−1/2WD−1/2

• given labeled examples L and unlabeled examples U

• label matrix Y with elements

yij :=

{
1, if i ∈ L ∧ yi = j
0, otherwise,

• label propagation, again by CG

Z := (I − αW)−1Y

• prediction for unlabelled example xi

ŷi := argmax
j
zij

Zhou, Bousquet, Lal, Weston, Schölkopf. NIPS2003. Learning with Local and Global Consistency.
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label propagation (transductive)

• labeled points ( ), unlabeled points x ( )

• propagated labels ( ), certainty of prediction

Zhou, Bousquet, Lal, Weston, Schölkopf. NIPS2003. Learning with Local and Global Consistency.
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label propagation (inductive)
[Iscen et al. 2019]

• given labeled examples XL, unlabeled examples XU with xi ∈ X , and
labels YL with yi ∈ C = {1, . . . , c}

• we now want to learn

• an explicit feature map φθ : X → Rd
• a classifier fθ : X → Rc, consisting of φθ followed by a

fully-connected (FC) layer and softmax

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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label propagation (inductive)

feature map
φθ

F
C

+
so

ftm
a

x

classifier fθ

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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label propagation (inductive)

feature map
φθ

F
C

+
so

ftm
a

x

classifier fθ

train with
Ls(XL, YL; θ)
for T epochs

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.



label propagation (inductive)

feature map
φθ

F
C

+
so

ftm
a

x

classifier fθ

train with
Ls(XL, YL; θ)
for T epochs

features φθ(X)

affinity A

W ← A+A>

W ← D−1/2WD−1/2

use φθ

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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label propagation (inductive)

feature map
φθ

F
C

+
so

ftm
a

x

classifier fθ

train with
Ls(XL, YL; θ)
for T epochs

train with
Ls(XL, YL; θ)+

Lw(XU , ŶU ; θ)
for 1 epoch

features φθ(X)

affinity A

W ← A+A>

W ← D−1/2WD−1/2

use φθ

label
prop
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label propagation (inductive)

feature map
φθ

F
C

+
so

ftm
a

x

classifier fθ

train with
Ls(XL, YL; θ)
for T epochs

train with
Ls(XL, YL; θ)+

Lw(XU , ŶU ; θ)
for 1 epoch

features φθ(X)

affinity A

W ← A+A>

W ← D−1/2WD−1/2

use φθ

label
prop

iterate
T ′ times

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.



loss functions
• supervised loss

Ls(XL, YL; θ) :=
∑
i∈L

`s (fθ(xi), yj)

where `s(s, y) := − log sy is cross-entropy loss

• weighted pseudo-label loss

Lw(XU , ŶU ; θ) :=
∑
i∈U

ωiζŷi`s (fθ(xi), ŷi)

• certainty of the prediction for example xi

ωi := 1− H(ẑi)

log c

• class weight for class j, balancing class contribution

ζj := (|Lj |+ |Uj |)−1

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.
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certainty weight distribution (epoch 00)
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certainty weight distribution (epoch 90)
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classification error on CIFAR10

Dataset CIFAR-10

Nb. labeled images 500 1000 2000 4000

Fully supervised 49.08± 0.83 40.03± 1.11 29.58± 0.93 21.63± 0.38

TDCNN [33]† - 32.67± 1.93 22.99± 0.79 16.17± 0.37
Ours–(1) 35.17± 2.46 23.79± 1.31 16.64± 0.48 13.21± 0.61
Ours 32.40± 1.80 22.02± 0.88 15.66± 0.35 12.69± 0.29

VAT [23]† - - - 11.36

Π model [20]† - - - 12.36± 0.31

Temporal Ensemble [20]† - - - 12.16± 0.24

MT [35]† - 27.36± 1.30 15.73± 0.31 12.31± 0.28
MT [35] 27.45± 2.64 19.04± 0.51 14.35± 0.31 11.41± 0.25
MT + Ours 24.02± 2.44 16.93± 0.70 13.22± 0.29 10.61± 0.28

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.



classification error on CIFAR100/miniImageNet

Dataset CIFAR-100 Mini-ImageNet-top1 Mini-ImageNet-top5

Nb. labeled images 4000 10000 4000 10000 4000 10000

Fully supervised 55.43± 0.11 40.67± 0.49 74.78± 0.33 60.25± 0.29 53.07± 0.68 38.28± 0.38

Ours 46.20± 0.76 38.43± 1.88 70.29± 0.81 57.58± 1.47 47.58± 0.94 36.14± 2.19
MT [35] 45.36± 0.49 36.08± 0.51 72.51± 0.22 57.55± 1.11 49.35± 0.22 32.51± 1.31
MT + Ours 43.73± 0.20 35.92± 0.47 72.78± 0.15 57.35± 1.66 50.52± 0.39 31.99± 0.55

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.



summary

• now that images are represented by a global descriptor or just a few
regional descriptors, graph methods are more applicable than ever

• modeling the manifold explicitly allows unsupervised fine-tuning
without labels, auxiliary systems (e.g. SIFT pipeline), or other
information (e.g. temporal neighborhood in video)

• updating a graph while training and using it to provide “smooth”
pseudo-labels boosts semi-supervised learning
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thank you!
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