unsupervised and semi-supervised learning on manifolds

Yannis Avrithis

Inria Rennes-Bretagne Atlantique

Rennes, March 2019

outline

ranking on manifolds ranking as smoothing mining on manifolds label propagation

ranking on manifolds

ranking on manifolds

• data points (•), query point (•), nearest neighbors (•)

ranking on manifolds: single query

• data points (•), query point (•), nearest neighbors (•)

ranking on manifolds: multiple queries

• data points (•), query points (•), nearest neighbors (•)

[Zhou et al. 2003]

- reciprocal k-nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

 $\mathcal{W} := D^{-1/2} W D^{-1/2}$

where $D = \operatorname{diag}(W\mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1-\alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

• rank data points by descending order of **f**

[Zhou et al. 2003]

- reciprocal k-nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$\mathcal{W} := D^{-1/2} W D^{-1/2}$$

where $D = \operatorname{diag}(W\mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i ext{ is query}]$
- ullet random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1-\alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

• rank data points by descending order of **f**

[Zhou et al. 2003]

- reciprocal k-nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$\mathcal{W} := D^{-1/2} W D^{-1/2}$$

where $D = \operatorname{diag}(W\mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- ullet random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1-\alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

• rank data points by descending order of **f**

[Zhou et al. 2003]

- reciprocal k-nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$\mathcal{W} := D^{-1/2} W D^{-1/2}$$

where $D = \operatorname{diag}(W\mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1-\alpha) \mathbf{y}$$

where $\alpha \in [0,1)$ (typically close to 1)

rank data points by descending order of f

[Zhou et al. 2003]

- reciprocal k-nearest neighbor graph on n data points
- non-negative, symmetric, sparse adjacency matrix $W \in \mathbb{R}^{n \times n}$, with zero diagonal (no self-loops)
- symmetrically normalized adjacency matrix

$$\mathcal{W} := D^{-1/2} W D^{-1/2}$$

where $D = \operatorname{diag}(W\mathbf{1})$ is the degree matrix

- query: vector $\mathbf{y} \in \mathbb{R}^n$ with $y_i = \mathbb{1}[i \text{ is query}]$
- random walk: starting with any $\mathbf{f}^{(0)} \in \mathbb{R}^n$, iterate

$$\mathbf{f}^{(\tau)} = \alpha \mathcal{W} \mathbf{f}^{(\tau-1)} + (1-\alpha) \mathbf{y}$$

where $\alpha \in [0, 1)$ (typically close to 1)

 $\bullet\,$ rank data points by descending order of f

ranking as solving a linear system

[Iscen et al. 2017]

regularized Laplacian

$$\mathcal{L}_{\alpha} = \frac{I - \alpha \mathcal{W}}{1 - \alpha}$$

solve linear system

$$\mathcal{L}_{\alpha}\mathbf{f} = \mathbf{y}$$

by conjugate gradient (CG) method

ranking as solving a linear system

[Iscen et al. 2017]

regularized Laplacian

$$\mathcal{L}_{\alpha} = \frac{I - \alpha \mathcal{W}}{1 - \alpha}$$

• solve linear system

$$\mathcal{L}_{\alpha}\mathbf{f} = \mathbf{y}$$

by conjugate gradient (CG) method

- data points (•), query points (•), nearest neighbors (•)
- iteration 0×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 1×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 2×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 3×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 4×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 5×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 6×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 7×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 8×2

- data points (•), query points (•), nearest neighbors (•)
- iteration 9×2

ranking as smoothing

[Iscen et al. 2018]

- exponential moving average filter
- output given by $x_i := (1 \alpha) \sum_{t=0}^{\infty} \alpha^t y_{i-t}$
- or by recurrence $x_i = \alpha x_{i-1} + (1 \alpha)y_i$
- impulse response $h_i = (1-lpha) lpha^i u_i$
- transfer function $H(z) := (1-\alpha) \sum_{t=0}^{\infty} (az^{-1})^t = (1-\alpha)/(1-\alpha z^{-1})$

[Iscen et al. 2018]

- exponential moving average filter
- output given by $x_i := (1 \alpha) \sum_{t=0}^{\infty} \alpha^t y_{i-t}$
- or by recurrence $x_i = \alpha x_{i-1} + (1 \alpha)y_i$
- impulse response $h_i = (1 \alpha)\alpha^i u_i$
- transfer function $H(z) := (1 \alpha) \sum_{t=0}^{\infty} (az^{-1})^t = (1 \alpha)/(1 \alpha z^{-1})$

[Iscen et al. 2018]

- using a weighted undirected graph G instead
- information "flows" in all directions, controlled by edge weights

・ロト ・得ト ・ヨト ・ヨト 三日

• express \mathcal{L}_{lpha}^{-1} using a transfer function

$$\mathcal{L}_{\alpha}^{-1} = h_{\alpha}(\mathcal{W}) = (1 - \alpha)(I - \alpha \mathcal{W})^{-1}$$

given any matrix function h, we want to compute

$$\mathbf{x} = h(\mathcal{W})\mathbf{y}$$

without computing $h(\mathcal{W})$

 which we do by eigenvalue decomposition and low-rank approximation of matrix h(W), without ever computing the matrix itself

• express \mathcal{L}_{lpha}^{-1} using a transfer function

$$\mathcal{L}_{\alpha}^{-1} = h_{\alpha}(\mathcal{W}) = (1 - \alpha)(I - \alpha \mathcal{W})^{-1}$$

• given any matrix function h, we want to compute

$$\mathbf{x} = h(\mathcal{W})\mathbf{y}$$

without computing $h(\mathcal{W})$

• which we do by eigenvalue decomposition and low-rank approximation of matrix $h(\mathcal{W})$, without ever computing the matrix itself

• express $\mathcal{L}_{\alpha}^{-1}$ using a transfer function

$$\mathcal{L}_{\alpha}^{-1} = h_{\alpha}(\mathcal{W}) = (1 - \alpha)(I - \alpha \mathcal{W})^{-1}$$

• given any matrix function h, we want to compute

$$\mathbf{x} = h(\mathcal{W})\mathbf{y}$$

without computing $h(\mathcal{W})$

• which we do by eigenvalue decomposition and low-rank approximation of matrix $h(\mathcal{W})$, without ever computing the matrix itself

interpretation: graph signal processing

- low-pass filtering in the frequency domain
- or, "soft" dimensionality reduction

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

[Iscen et al. 2018]

ロト 不得下 不良下 不良下

• data points (•), query point x (•)

[Iscen et al. 2018]

ロト 不得下 不良下 不良下

- data points (•), query point \mathbf{x} (•)
- Euclidean nearest neighbors $E(\mathbf{x})$ (•)

[Iscen et al. 2018]

ロト 不得下 不良下 不良下

- data points (•), query point \mathbf{x} (•)
- manifold nearest neighbors $M(\mathbf{x})$ (•)

[Iscen et al. 2018]

ロト 不得下 不良下 不良下

- data points (•), query point \mathbf{x} (•)
- hard positives $S^+ = M(\mathbf{x}) \setminus E(\mathbf{x})$ (•)
mining on manifolds

[Iscen et al. 2018]

ロト 不得下 不良下 不良下

- data points (•), query point \mathbf{x} (•)
- hard negatives $S^- = E(\mathbf{x}) \setminus M(\mathbf{x})$ (•)

• query (anchor) (\mathbf{x})

• positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$

• negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$

- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

- query (anchor) (\mathbf{x})
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

- query (anchor) (\mathbf{x})
- positives $S^+(\mathbf{x})$ vs. Euclidean neighbors $E(\mathbf{x})$
- negatives $S^-(\mathbf{x})$ vs. Euclidean non-neighbors $X \setminus E(\mathbf{x})$

fine-tuning with hard example mining

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss

Iscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels. イロト イラト イヨト イヨト イヨト ション マークへで

fine-tuning with hard example mining

- pre-train network
- extract descriptors on unlabeled dataset
- construct nearest neighbor graph
- sample anchors, measure Euclidean and manifold distances
- sample positives and negatives
- fine-tune using contrastive or triplet loss

fine-grained categorization results

Method	Labels	R@1	R@2	R@4	R@8	NMI
Initial	No	35.0	46.8	59.3	72.0	48.1
Triplet+semi-hard	Yes	42.3	55.0	66.4	77.2	55.4
Lifted-Structure	Yes	43.6	56.6	68.6	79.6	56.5
Triplet+	Yes	45.9	57.7	69.6	79.8	58.1
Clustering	Yes	48.2	61.4	71.8	81.9	59.2
Triplet+++	Yes	49.8	62.3	74.1	83.3	59.9
Cyclic match	No	40.8	52.8	65.1	76.0	52.6
Ours	No	45.3	57.8	68.6	78.4	55.0

- CUB200-2011 dataset, 200 bird species, 100 training / 100 testing
- GoogLeNet pre-trained on ImageNet, then fine-tuned with triplet loss

particular object retrieval results

Model	Pooling	Labels	Oxf5k	Oxf105k	Par6k	Par106k	Hol	Instre
ImageNet		Human	58.5	50.3	73.0	59.0	79.4	48.5
From BoW	MAC	SfM	79.7	73.9	82.4	74.6	81.4	48.5
Ours		—	78.7	74.3	83.1	75.6	82.6	55.5
ImageNet		Human	68.0	61.0	76.6	72.1	87.0	55.6
From BoW	R-MAC	SfM	77.8	70.1	84.1	76.8	84.4	47.7
Ours			78.2	72.6	85.1	78.0	87.5	57.7

- VGG-16 pre-trained on ImageNet, then fine-tuned with constrastive loss on a 1M unlabeled dataset with MAC representation
- at test time, either MAC or R-MAC used

lscen, Tolias, Avrithis and Chum. CVPR 2018. Mining on Manifolds: Metric Learning without Labels. イロト イラト イミト イミト ミー シックへで

label propagation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

semi-supervised learning

[Zhou et al. 2003]

labeled points (▲), unlabeled points x (●)

semi-supervised learning

[Zhou et al. 2003]

• labeled points (\blacktriangle), unlabeled points \mathbf{x} (\odot)

same graph representation as in manifold ranking

 $\mathcal{W} := D^{-1/2} W D^{-1/2}$

- given labeled examples L and unlabeled examples U
- label matrix Y with elements

$$y_{ij} := \begin{cases} 1, & \text{if } i \in L \land y_i = j \\ 0, & \text{otherwise,} \end{cases}$$

• label propagation, again by CG

$$Z := (I - \alpha \mathcal{W})^{-1} Y$$

• prediction for unlabelled example x_i

$$\hat{y}_i := \arg\max_j z_{ij}$$

same graph representation as in manifold ranking

$$\mathcal{W} := D^{-1/2} W D^{-1/2}$$

- given labeled examples L and unlabeled examples U
- label matrix Y with elements

$$y_{ij} := \begin{cases} 1, & \text{if } i \in L \land y_i = j \\ 0, & \text{otherwise,} \end{cases}$$

• label propagation, again by CG

$$Z := (I - \alpha \mathcal{W})^{-1} Y$$

prediction for unlabelled example x_i

$$\hat{y}_i := \arg\max_j z_{ij}$$

same graph representation as in manifold ranking

$$\mathcal{W} := D^{-1/2} W D^{-1/2}$$

- given labeled examples L and unlabeled examples U
- label matrix Y with elements

$$y_{ij} := \begin{cases} 1, & \text{if } i \in L \land y_i = j \\ 0, & \text{otherwise,} \end{cases}$$

• label propagation, again by CG

$$Z := (I - \alpha \mathcal{W})^{-1} Y$$

prediction for unlabelled example x_i

$$\hat{y}_i := \arg\max_j z_{ij}$$

same graph representation as in manifold ranking

$$\mathcal{W} := D^{-1/2} W D^{-1/2}$$

- given labeled examples L and unlabeled examples U
- label matrix Y with elements

$$y_{ij} := \begin{cases} 1, & \text{if } i \in L \land y_i = j \\ 0, & \text{otherwise,} \end{cases}$$

• label propagation, again by CG

$$Z := (I - \alpha \mathcal{W})^{-1} Y$$

prediction for unlabelled example x_i

$$\hat{y}_i := \arg\max_j z_{ij}$$

Zhou, Bousquet, Lal, Weston, Schölkopf. NIPS2003. Learning with Local and Global Consistency. イロト (周) (ヨ) (ヨ) (ヨ) ヨー のくぐ

•

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

• labeled points ($ildsymbol{\Delta}$), unlabeled points \mathbf{x} ($ildsymbol{\circ}$)

propagated labels (●), certainty of prediction

< ロ > < 同 > < 回 > < 回 >

- labeled points ($ildsymbol{\Delta}$), unlabeled points \mathbf{x} ($oldsymbol{\circ}$)
- propagated labels (●), certainty of prediction

- labeled points ($ildsymbol{\Delta}$), unlabeled points \mathbf{x} ($oldsymbol{O}$)
- propagated labels (●), certainty of prediction

[Iscen et al. 2019]

- given labeled examples X_L , unlabeled examples X_U with $x_i \in \mathcal{X}$, and labels Y_L with $y_i \in C = \{1, \ldots, c\}$
- we now want to learn
 - an explicit feature map $\phi_{\theta}: \mathcal{X} \to \mathbb{R}^d$
 - a classifier $f_{\theta} : \mathcal{X} \to \mathbb{R}^c$, consisting of ϕ_{θ} followed by a fully-connected (FC) layer and softmax

[Iscen et al. 2019]

- given labeled examples X_L , unlabeled examples X_U with $x_i \in \mathcal{X}$, and labels Y_L with $y_i \in C = \{1, \ldots, c\}$
- we now want to learn
 - an explicit feature map $\phi_{\theta} : \mathcal{X} \to \mathbb{R}^d$
 - a classifier $f_{\theta} : \mathcal{X} \to \mathbb{R}^c$, consisting of ϕ_{θ} followed by a fully-connected (FC) layer and softmax

classifier f_{θ}

classifier f_{θ}

classifier f_{θ}

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

classifier f_{θ}

< ロ > < 同 > < 回 > < 回 >

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

supervised loss

$$L_s(X_L, Y_L; \theta) := \sum_{i \in L} \ell_s \left(f_{\theta}(x_i), y_j \right)$$

where $\ell_s(\mathbf{s}, y) := -\log \mathbf{s}_y$ is cross-entropy loss weighted pseudo-label loss

$$L_w(X_U, \hat{Y}_U; \theta) := \sum_{i \in U} \omega_i \zeta_{\hat{y}_i} \ell_s \left(f_\theta(x_i), \hat{y}_i \right)$$

• certainty of the prediction for example x_i

$$\omega_i := 1 - \frac{H(\hat{\mathbf{z}}_i)}{\log c}$$

• class weight for class *j*, balancing class contribution

$$\zeta_j := (|L_j| + |U_j|)^{-1}$$

supervised loss

$$L_s(X_L, Y_L; \theta) := \sum_{i \in L} \ell_s \left(f_{\theta}(x_i), y_j \right)$$

where $\ell_s(\mathbf{s},y) := -\log \mathbf{s}_y$ is cross-entropy loss

weighted pseudo-label loss

$$L_w(X_U, \hat{Y}_U; \theta) := \sum_{i \in U} \omega_i \zeta_{\hat{y}_i} \ell_s \left(f_\theta(x_i), \hat{y}_i \right)$$

• certainty of the prediction for example x_i

$$\omega_i := 1 - \frac{H(\hat{\mathbf{z}}_i)}{\log c}$$

• class weight for class j, balancing class contribution

$$\zeta_j := (|L_j| + |U_j|)^{-1}$$

supervised loss

$$L_s(X_L, Y_L; \theta) := \sum_{i \in L} \ell_s \left(f_{\theta}(x_i), y_j \right)$$

where $\ell_s(\mathbf{s}, y) := -\log \mathbf{s}_y$ is cross-entropy loss

weighted pseudo-label loss

$$L_w(X_U, \hat{Y}_U; \theta) := \sum_{i \in U} \omega_i \zeta_{\hat{y}_i} \ell_s \left(f_\theta(x_i), \hat{y}_i \right)$$

• certainty of the prediction for example x_i

$$\omega_i := 1 - \frac{H(\hat{\mathbf{z}}_i)}{\log c}$$

class weight for class j, balancing class contribution

$$\zeta_j := (|L_j| + |U_j|)^{-1}$$

supervised loss

$$L_s(X_L, Y_L; \theta) := \sum_{i \in L} \ell_s \left(f_{\theta}(x_i), y_j \right)$$

where $\ell_s(\mathbf{s},y) := -\log \mathbf{s}_y$ is cross-entropy loss

weighted pseudo-label loss

$$L_w(X_U, \hat{Y}_U; \theta) := \sum_{i \in U} \omega_i \zeta_{\hat{y}_i} \ell_s \left(f_\theta(x_i), \hat{y}_i \right)$$

• certainty of the prediction for example x_i

$$\omega_i := 1 - \frac{H(\hat{\mathbf{z}}_i)}{\log c}$$

• class weight for class j, balancing class contribution

$$\zeta_j := (|L_j| + |U_j|)^{-1}$$

certainty weight distribution (epoch 00)

certainty weight distribution (epoch 90)

classification error on CIFAR10

Dataset	CIFAR-10				
Nb. labeled images	500	1000	2000	4000	
Fully supervised	49.08 ± 0.83	40.03 ± 1.11	29.58 ± 0.93	21.63 ± 0.38	
TDCNN [33] [†] Ours–(1) Ours	-35.17 ± 2.46 32.40 ± 1.80	$\begin{array}{c} 32.67 \pm 1.93 \\ 23.79 \pm 1.31 \\ 22.02 \pm 0.88 \end{array}$	$\begin{array}{c} 22.99 \pm 0.79 \\ 16.64 \pm 0.48 \\ 15.66 \pm 0.35 \end{array}$	$\begin{array}{c} 16.17 \pm 0.37 \\ 13.21 \pm 0.61 \\ 12.69 \pm 0.29 \end{array}$	
VAT [23] [†] II model [20] [†] Temporal Ensemble [20] [†] MT [35] [†] MT [35] MT + Ours	- - 27.45 ± 2.64 24.02 ± 2.44	- - 27.36 \pm 1.30 19.04 \pm 0.51 16.93 \pm 0.70	- - 15.73 \pm 0.31 14.35 \pm 0.31 13.22 \pm 0.29	$\begin{array}{c} 11.36\\ 12.36\pm 0.31\\ 12.16\pm 0.24\\ 12.31\pm 0.28\\ 11.41\pm 0.25\\ \textbf{10.61}\pm \textbf{0.28} \end{array}$	

lscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning. イロト イラト イミト イミト ミークへぐ

classification error on CIFAR100/minilmageNet

Dataset	CIFAR-100		Mini-ImageNet-top1	
Nb. labeled images	4000	10000	4000	10000
Fully supervised	55.43 ± 0.11	40.67 ± 0.49	74.78 ± 0.33	60.25 ± 0.29
Ours MT [35] MT + Ours	$\begin{array}{c} 46.20 \pm 0.76 \\ 45.36 \pm 0.49 \\ \textbf{43.73} \pm \textbf{0.20} \end{array}$	$\begin{array}{c} 38.43 \pm 1.88 \\ 36.08 \pm 0.51 \\ \textbf{35.92} \pm \textbf{0.47} \end{array}$	$\begin{array}{c} \textbf{70.29} \pm \textbf{0.81} \\ 72.51 \pm 0.22 \\ 72.78 \pm 0.15 \end{array}$	$57.58 \pm 1.47 \\ 57.55 \pm 1.11 \\ 57.35 \pm 1.66$

Iscen, Tolias, Avrithis and Chum. CVPR 2019. Label Propagation for Deep Semi-supervised Learning.

summary

- now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever
- modeling the manifold explicitly allows unsupervised fine-tuning without labels, auxiliary systems (*e.g.* SIFT pipeline), or other information (*e.g.* temporal neighborhood in video)
- updating a graph while training and using it to provide "smooth" pseudo-labels boosts semi-supervised learning

summary

- now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever
- modeling the manifold explicitly allows unsupervised fine-tuning without labels, auxiliary systems (*e.g.* SIFT pipeline), or other information (*e.g.* temporal neighborhood in video)
- updating a graph while training and using it to provide "smooth" pseudo-labels boosts semi-supervised learning

summary

- now that images are represented by a global descriptor or just a few regional descriptors, graph methods are more applicable than ever
- modeling the manifold explicitly allows unsupervised fine-tuning without labels, auxiliary systems (*e.g.* SIFT pipeline), or other information (*e.g.* temporal neighborhood in video)
- updating a graph while training and using it to provide "smooth" pseudo-labels boosts semi-supervised learning

thank you!