Metric learning: Knowledge transfer, data augmentation, and attention

Yannis Avrithis

Athena Research Center

ICCV 2021 Tutorial: Large-Scale Visual Localization
Virtual, October 2021

context

- representation learning for instance-level tasks like visual localization often reduces to metric learning
- ideas addressed most commonly in classification, less so in metric learning
 - knowedge transfer (from teacher to student models)
 - data augmentation (mixup)
 - attention (channel/spatial, local/global)

knowledge transfer

asymmetric metric learning for knowledge transfer [CVPR 2021]

Mateusz Budnik

Yannis Avrithis

paper

https://arxiv.org/abs/2006.16331

code

https://github.com/budnikm/asymmetric_metric_learning

asymmetric metric learning (AML)

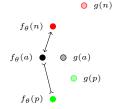
- instance-level image retrieval
- asymmetric testing: database represented by large network, queries by lightweight network on device, no re-indexing
- asymmetric metric learning: use asymmetric representations at training in teacher-student setup
- applies to both symmetric and asymmetric testing
- combines of knowledge transfer with supervised metric learning

asymmetric metric learning (AML)

- instance-level image retrieval
- asymmetric testing: database represented by large network, queries by lightweight network on device, no re-indexing
- asymmetric metric learning: use asymmetric representations at training in teacher-student setup
- applies to both symmetric and asymmetric testing
- combines of knowledge transfer with supervised metric learning

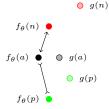
asymmetric metric learning (AML)

- instance-level image retrieval
- asymmetric testing: database represented by large network, queries by lightweight network on device, no re-indexing
- asymmetric metric learning: use asymmetric representations at training in teacher-student setup
- applies to both symmetric and asymmetric testing
- combines of knowledge transfer with supervised metric learning



symmetric

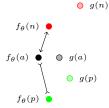
- labels used, teacher not used
- positive pairs of examples mutually attracted and negative pairs are repulsed in student space



symmetric

- labels used, teacher not used $(f_{\theta}$: student, g: teacher)
- contrastive $\ell_{\mathbf{C}}(a;\theta)$: independently, positive examples p close to anchor a, negative n farther from a by margin m in student space

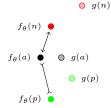
$$\sum_{p \in P(a)} -s_{\theta}(a, p) + \sum_{n \in N(a)} [s_{\theta}(a, n) - m]_{+}$$



symmetric

- labels used, teacher not used $(f_{\theta}$: student, g: teacher)
- triplet $\ell_T(a; \theta)$: positive examples p closer to the anchor a than negative n by margin m in student space

$$\sum_{(p,n)\in L(a)} [s_{\theta}(a,n) - s_{\theta}(a,p) + m]_{+}$$

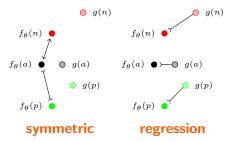


symmetric

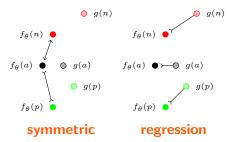
- labels used, teacher not used $(f_{\theta}$: student, g: teacher)
- multi-similarity $\ell_{\mathrm{MS}}(a;\theta)$: positives p (negatives n) farthest from (nearest to) anchor a receive the greatest relative weight

$$\frac{1}{\alpha} \log \left(1 + \sum_{p \in P(a)} e^{-\alpha(s_{\theta}(a,p)-m)} \right) + \frac{1}{\beta} \log \left(1 + \sum_{n \in N(a)} e^{\beta(s_{\theta}(a,n)-m)} \right)$$

Wang, Han, Huang, Dong, Scott. CVPR 2019. Multi-similarity loss with general pair weighting for deep metric learning. Budnik and Avrithis. CVPR 2021. Asymmetric Metric Learning for Knowledge Transfer.

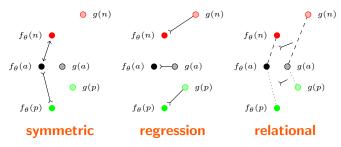


- labels not used, teacher used
- examples in student space attracted to corresponding examples in teacher space

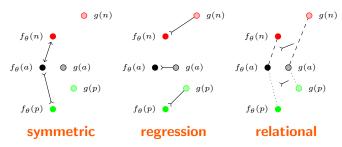


- labels not used, teacher used $(f_{\theta}$: student, g: teacher)
- regression $\ell_R(a;\theta)$: representations of same example a by two models f_{θ} , q close to each other, where q is fixed

$$-s_{\theta}^{\text{asym}}(a, a) = -\sin(f_{\theta}(a), g(a))$$



- labels not used, teacher used
- pairwise / groupwise relations like distances, angles or ranks encouraged to be compatible in both spaces



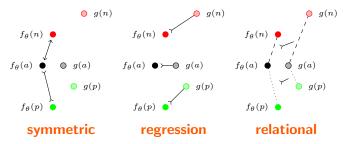
- labels not used, teacher used $(f_{\theta}$: student, g: teacher)
- relational distillation $\ell_{\text{RKD}}(a;\theta)$: measurements $\psi(\mathbf{a},\mathbf{x},\dots)$ of same examples (a,x,\dots) by two models f_{θ},g close to each other

$$\sum_{(x,\dots)\in U(a)^n} -\sin(\psi(f_{\theta}(a),f_{\theta}(x),\dots),\psi(g(a),g(x),\dots))$$

e.g. distance $\|\mathbf{a} - \mathbf{x}\|$, angle $\sin(\mathbf{a} - \mathbf{x}, \mathbf{a} - \mathbf{y})$; regression $\psi(\mathbf{a}) := \mathbf{a}$

Budnik and Avrithis. CVPR 2021. Asymmetric Metric Learning for Knowledge Transfer.

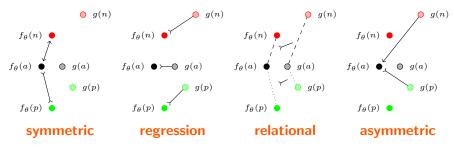
Park, Kim, Lu, Cho. CVPR 2019. Relational knowledge distillation.



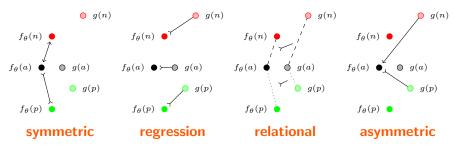
- labels not used, teacher used $(f_{\theta}$: student, g: teacher)
- DarkRank $\ell_{DR}(a;\theta)$: examples $y \in V(a,x)$ mapped farther from anchor a than x in teacher space do the same in student space:

$$-\sum_{x \in U(a)} \left(s_{\theta}^{\text{sym}}(a, x) - \log \sum_{y \in V(a, x)} e^{s_{\theta}^{\text{sym}}(a, y)} \right)$$

Chen, Wang, Zhang. AAAI 2018. DarkRank: Accelerating deep metric learning via cross sample similarities transfer. Budnik and Avrithis. CVPR 2021. Asymmetric Metric Learning for Knowledge Transfer.



- both labels and teacher used
- anchors in student space attracted to positives and repulsed from negatives in teacher space



- both labels and teacher used $(f_{\theta}$: student, g: teacher)
- Asymmetric Metric Learning (AML): simply use

$$s_{\theta}^{\text{asym}}(a, x) := \sin(f_{\theta}(a), g(x))$$

with any supervised metric learning loss like $\ell_{\rm C}$, $\ell_{\rm T}$, $\ell_{\rm MS}$

best loss functions

regression (Reg)

$$\ell_{\mathcal{R}}(a;\theta) := -s_{\theta}^{\text{asym}}(a,a) = -\sin(f_{\theta}(a), g(a))$$

• asymmetric contrastive (Contr)

$$\ell_{\rm C}(a;\theta) := \sum_{n \in N(a)} [s_{\theta}(a,n) - m]_{+} - \sum_{p \in P(a)} s_{\theta}(a,p)$$

asymmetric contrastive + regression (Contr⁺)

$$\ell_{C^+}(a;\theta) := \sum_{n \in N(a)} [s_{\theta}(a,n) - m]_+ - \sum_{p \in P(a)} s_{\theta}(a,p) - s_{\theta}(a,a)$$

best loss functions

regression (Reg)

$$\ell_{\mathbf{R}}(a;\theta) := -s_{\theta}^{\text{asym}}(a,a) = -\sin(f_{\theta}(a), g(a))$$

asymmetric contrastive (Contr)

$$\ell_{\mathcal{C}}(a;\theta) := \sum_{n \in N(a)} [s_{\theta}(a,n) - m]_{+} - \sum_{p \in P(a)} s_{\theta}(a,p)$$

asymmetric contrastive + regression (contr⁺)

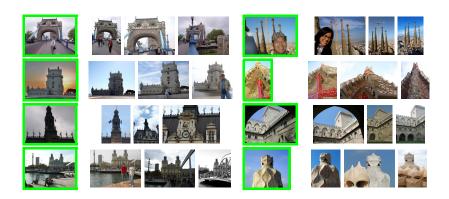
$$\ell_{C^+}(a;\theta) := \sum_{n \in N(a)} [s_{\theta}(a,n) - m]_+ - \sum_{p \in P(a)} s_{\theta}(a,p) - s_{\theta}(a,a)$$

test set: revisited Oxford and Paris

- 11 + 11 landmarks, 70 + 70 queries, 5k + 6k images, easy/hard
- 1M distractor images
- performance measured by mAP: positive ranked first

Radenovic, Iscen, Tolias, Avrithis, Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking. Budnik and Avrithis. CVPR 2021. Asymmetric Metric Learning for Knowledge Transfer.

training set: SfM120k (positives)



- camera position (closest to query)
- number of inliers (co-observed 3D points with query)
- according to SIFT descriptors

training set: SfM120k (negatives)

- k-nearest neighbors from non-matching clusters
- at most one image per cluster
- according to learned descriptors

network models

Network	Teacher	d	GFLOPS	Param(M)
ResNet101		2048	42.85	42.50
EfficientNet-B3	ResNet101	1536 2048	5.36 6.26	10.70 13.84

- teacher: ResNet101 (RN101)
- student: EfficientNet-B3 (EN-B3), dimensions d adapted to teacher
- 7× less FLOPS
- 3× less parameters

Stu	d	ТЕА	Lab	MINING	Asym	Loss	Med ROxf		HA ROxf	
RN101 EN-B3	2048 512 2048		√ √ √	hard hard hard		Contr Contr Contr	65.4 53.8 59.6	76.7 70.9 75.1	40.1 26.2 33.3	55.2 46.0 51.9
EN-B3	2048	RN101	√ √ √	hard hard hard hard	√ √ √	Contr ⁺ Contr Triplet MS	66.8 66.3 39.5 39.9	77.1 77.4 69.4 69.7	42.5 41.3 11.6 11.7	55.5 55.5 45.8 46.2
				random random	√	Reg RKD DR	64.9 56.3 40.3	74.4 73.0 69.9	40.5 30.5 11.8	52.4 50.4 46.4

Contr. Contr⁺: student beats teacher

Reg: second best, slightly below teacher

everything else fails (worse than student alone)

STU	d	Tra	LAD	Mining	Acros	Logg	Med	OIUM	На	RD
510	a	Теа	LAB	MINING	ASYM	Loss	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
RN101	2048		✓	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			√	hard	√	Contr ⁺	66.8	77.1	42.5	55.5
			\checkmark	hard	\checkmark	Contr	66.3	77.4	41.3	55.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	Triplet	39.5	69.4	11.6	45.8
			\checkmark	hard	\checkmark	MS	39.9	69.7	11.7	46.2
					√	Reg	64.9	74.4		52.4
				random		RKD	56.3	73.0	30.5	50.4
				random		DR	40.3	69.9	11.8	46.4

STU	d	Теа	LAD	Mining	A cara t	Loss	Med	OIUM	На	.RD
STU	a	1 EA	LAB	MINING	ASYM	LOSS	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
RN101	2048		✓	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			✓	hard	√	Contr ⁺	66.8	77.1	42.5	55.5
			\checkmark	hard	\checkmark	Contr	66.3	77.4	41.3	55.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	Triplet	39.5	69.4	11.6	45.8
			\checkmark	hard	\checkmark	MS	39.9	69.7	11.7	46.2
				_	✓	Reg	64.9	74.4	40.5	52.4
				random		RKD	56.3	73.0	30.5	50.4
				random		DR	40.3	69.9	11.8	46.4

- Contr, Contr⁺: student beats teacher
- Reg: second best, slightly below teacher
- everything else fails (worse than student alone)

Stu	d	Теа	Lab	MINING	Asym	Loss	MEI		HA ROxf	
							ΛΟXI	Λгаг	ΛΟXI	/CF al
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			√	hard	√	Contr ⁺	66.8	77.1	42.5	55.5
			\checkmark	hard	✓	Contr	66.3	77.4	41.3	55.5
EN-B3	2048	RN101	\checkmark	hard	✓	Triplet	39.5	69.4	11.6	45.8
			\checkmark	hard	✓	MS	39.9	69.7	11.7	46.2
				-	✓	Reg	64.9	74.4	40.5	52.4
				random		RKD	56.3	73.0	30.5	50.4
				random		DR	40.3	69.9	11.8	46.4

- Contr, Contr⁺: student beats teacher
- Reg: second best, slightly below teacher
- everything else fails (worse than student alone)

Stu	d	Теа	Lab	Mining	Asym	Loss	MEI		HA ROxf	
							KUXI	KPar	KUXI	KPar
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			√	hard	√	Contr ⁺	66.8	77.1	42.5	55.5
			\checkmark	hard	\checkmark	Contr	66.3	77.4	41.3	55.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	Triplet	39.5	69.4	11.6	45.8
			\checkmark	hard	\checkmark	MS	39.9	69.7	11.7	46.2
				_	✓	Reg	64.9	74.4	40.5	52.4
				random		RKD	56.3	73.0	30.5	50.4
				random		DR	40.3	69.9	11.8	46.4

- Contr, Contr⁺: student beats teacher
- Reg: second best, slightly below teacher
- everything else fails (worse than student alone)

STU	a	Tra	LAD	Mining	Acros	Logg	Med	OIUM	На	.RD
510	d	Теа	LAB	MINING	ASYM	Loss	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
RN101	2048		✓	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			✓	hard	√	Contr ⁺	66.8	77.1	42.5	55.5
			\checkmark	hard	\checkmark	Contr	66.3	77.4	41.3	55.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	Triplet	39.5	69.4	11.6	45.8
			√	hard	✓	MS	39.9	69.7	11.7	46.2
				_	✓	Reg	64.9	74.4	40.5	52.4
				random		RKD	56.3	73.0	30.5	50.4
				random		DR	40.3	69.9	11.8	46.4

- Contr, Contr⁺: student beats teacher
- Reg: second best, slightly below teacher
- everything else fails (worse than student alone)

STU	d	Tra	LAD	Mining	Acros	Logg	Med	OIUM	На	RD
510	a	Теа	LAB	MINING	ASYM	Loss	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			√	hard	√	Contr ⁺	66.8	77.1	42.5	55.5
			\checkmark	hard	\checkmark	Contr	66.3	77.4	41.3	55.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	Triplet	39.5	69.4	11.6	45.8
			√	hard	✓	MS	39.9	69.7	11.7	46.2
				_	✓	Reg	64.9	74.4	40.5	52.4
				random		RKD	56.3	73.0	30.5	50.4
				random		DR	40.3	69.9	11.8	46.4

- Contr, Contr⁺: student beats teacher
- Reg: second best, slightly below teacher
- everything else fails (worse than student alone)

STU	d	Теа	LAD	Mining	Acvar	Loss	Mei	OIUM	На	RD
510	a	1 EA	LAB	MINING	ASYM	LUSS	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			√	hard	√	Contr ⁺	66.8	77.1	42.5	55.5
			\checkmark	hard	\checkmark	Contr	66.3	77.4	41.3	55.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	Triplet	39.5	69.4	11.6	45.8
			\checkmark	hard	\checkmark	MS	39.9	69.7	11.7	46.2
				_	✓	Reg	64.9	74.4	40.5	52.4
				random		RKD	56.3	73.0	30.5	50.4
				random		DR	40.3	69.9	11.8	46.4

- Contr, Contr⁺: student beats teacher
- Reg: second best, slightly below teacher
- everything else fails (worse than student alone)

Stu	d	ТЕА	Lab	MINING	Asym	Loss	Med ROxf		HA ROxf	
RN101 EN-B3	2048 512 2048		√ √ √	hard hard hard		Contr Contr Contr	65.4 53.8 59.6	76.7 70.9 75.1	40.1 26.2 33.3	55.2 46.0 51.9
EN-B3	2048	RN101	√ √ √	hard hard hard hard	√ √ √	Contr ⁺ Contr Triplet MS	45.2 37.4 1.5 1.5	63.7 57.4 4.0 4.0	19.6 10.9 0.7 0.7	40.9 33.7 2.5 2.4
				random random	√	Reg RKD DR	52.9 1.6 1.5	65.2 3.8 4.0	27.8 0.7 0.7	42.4 2.4 2.5

Stu	d	ТЕА	Lab	MINING	Asym	Loss	Mei ROxf		HA ROxf	
RN101	2048		√	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512 2048		√	hard hard		Contr Contr	53.8 59.6	70.9 75.1	26.2 33.3	46.0 51.9
	2040		√	hard	./	Contr ⁺	45.2	63.7	19.6	40.9
			√	hard	∨ ✓	Contr	37.4	57.4	10.9	33.7
EN-B3	2048	RN101	√ √	hard hard	√	Triplet MS	1.5 1.5	4.0 4.0	0.7 0.7	2.5 2.4
				_	√	Reg	52.9	65.2	27.8	42.4
				random random		RKD DR	1.6 1.5	3.8 4.0	0.7 0.7	2.4 2.5

Reg: best, but significantly lower than student alone



Contr⁺/ Contr: second / third best, significantly lower than Reg

Stu	d	Теа	Lab	Mining	Asym	Loss	MEI		HA ROxf	
							KUXI	KPar	KUXI	KPar
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
			√	hard	√	Contr ⁺	45.2	63.7	19.6	40.9
			\checkmark	hard	\checkmark	Contr	37.4	57.4	10.9	33.7
			\checkmark	hard	\checkmark	Triplet	1.5	4.0	0.7	2.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	MS	1.5	4.0	0.7	2.4
				_	✓	Reg	52.9	65.2	27.8	42.4
				random		RKD	1.6	3.8	0.7	2.4
				random		DR	1.5	4.0	0.7	2.5

Reg: best, but significantly lower than student alone

Contr⁺/ Contr: second / third best, significantly lower than Reg

Stu	d	ТЕА	Lab	MINING	Asym	Loss	Medium		Hard	
							$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9
EN-B3	2048	RN101	✓	hard	✓	Contr ⁺	45.2	63.7	19.6	40.9
			\checkmark	hard	\checkmark	Contr	37.4	57.4	10.9	33.7
			\checkmark	hard	\checkmark	Triplet	1.5	4.0	0.7	2.5
			\checkmark	hard	\checkmark	MS	1.5	4.0	0.7	2.4
				_	✓	Reg	52.9	65.2	27.8	42.4
				random		RKD	1.6	3.8	0.7	2.4
				random		DR	1.5	4.0	0.7	2.5

- Reg: best, but significantly lower than student alone
- Contr⁺/ Contr: second / third best, significantly lower than Reg

asymmetric testing

STU	d	ТЕА	LAD	Mining	Acvm	Loss	Med	OIUM	На	.RD
510	a	IEA	LAD	WINING	лзім	LOSS	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0
	2048		✓	hard		Contr	59.6	75.1	33.3	51.9
			✓	hard	✓	$Contr^+$	45.2	63.7	19.6	40.9
			\checkmark	hard	\checkmark	Contr	37.4	57.4	10.9	33.7
			\checkmark	hard	\checkmark	Triplet	1.5	4.0	0.7	2.5
EN-B3	2048	RN101	\checkmark	hard	\checkmark	MS	1.5	4.0	0.7	2.4
				_	✓	Reg	52.9	65.2	27.8	42.4
				random		RKD	1.6	3.8	0.7	2.4
				random		DR	1.5	4.0	0.7	2.5

- Reg: best, but significantly lower than student alone
- Contr⁺/ Contr: second / third best, significantly lower than Reg

asymmetric testing

STU	d	Теа	LAD	Mining	Acvar	Loss	Mer	OIUM	На	.RD	
510	u	1 EA	LAB	MINING	ASYM	LUSS	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$	
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2	
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0	
	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9	
		3 RN101	✓	hard	✓	Contr ⁺	45.2	63.7	19.6	40.9	
				\checkmark	hard	\checkmark	Contr	37.4	57.4	10.9	33.7
			\checkmark	hard	\checkmark	Triplet	1.5	4.0	0.7	2.5	
EN-B3	2048		\checkmark	hard	\checkmark	MS	1.5	4.0	0.7	2.4	
				_	✓	Reg	52.9	65.2	27.8	42.4	
				random		RKD	1.6	3.8	0.7	2.4	
				random		DR	1.5	4.0	0.7	2.5	

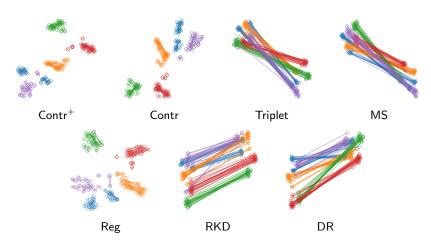
- Reg: best, but significantly lower than student alone
- Contr⁺/ Contr: second / third best, significantly lower than Reg
- RKD, DR: completely fail (expected, absolute coordinates needed)

asymmetric testing

STU	d	Теа	LAD	Mining	Aczm	Loss	Mer	OIUM	На	.RD			
510	u	1 EA	LAB	MINING	ASYM	LUSS	$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$			
RN101	2048		\checkmark	hard		Contr	65.4	76.7	40.1	55.2			
EN-B3	512		\checkmark	hard		Contr	53.8	70.9	26.2	46.0			
EIN-D3	2048		\checkmark	hard		Contr	59.6	75.1	33.3	51.9			
		RN101	✓	hard	√	Contr ⁺	45.2	63.7	19.6	40.9			
							\checkmark	hard	\checkmark	Contr	37.4	57.4	10.9
			\checkmark	hard	\checkmark	Triplet	1.5	4.0	0.7	2.5			
EN-B3	2048		\checkmark	hard	\checkmark	MS	1.5	4.0	0.7	2.4			
				_	✓	Reg	52.9	65.2	27.8	42.4			
				random		RKD	1.6	3.8	0.7	2.4			
				random		DR	1.5	4.0	0.7	2.5			

- Reg: best, but significantly lower than student alone
- Contr⁺/ Contr: second / third best, significantly lower than Reg
- Triplet, MS: completely fail (unexpected)

asymmetric testing: T-SNE embeddings



- 5 Oxford classes, 20 "easy" examples per class
- Triplet, MS, RKD, DR fail completely

data augmentation

mixup for deep metric learning

Shashanka Venkataramanan

Ewa Kijak

Laurent Amsaleg

Yannis Avrithis

paper

https://arxiv.org/abs/2106.04990

code upon publication

data augmentation and mixup

- data augmentation increases the amount and diversity of data, improving the generalization performance at almost no cost
- operates on one image at a time, limited to label-preserving transformations: hard to explore beyond the image manifold
- mixup operates on two or more examples at a time, interpolating examples and labels
- in classification, smooths decision boundaries far away from training data and reduces overly confident predictions
- how about metric learning?

data augmentation and mixup

- data augmentation increases the amount and diversity of data, improving the generalization performance at almost no cost
- operates on one image at a time, limited to label-preserving transformations: hard to explore beyond the image manifold
- mixup operates on two or more examples at a time, interpolating examples and labels
- in classification, smooths decision boundaries far away from training data and reduces overly confident predictions
- how about metric learning?

input mixup and manifold mixup

standard mixup operation: linear interpolation

$$mix_{\lambda}(x, x') := \lambda x + (1 - \lambda)x'$$

where $\lambda \in [0,1]$: interpolation factor, drawn from Beta distribution

• interpolation of examples: decomposing model as $f = f_m \circ g_m$,

$$f_{\lambda}(x,x') := \begin{cases} f(\text{mix}_{\lambda}(x,x')), & \text{input mixup} \\ f_{m}(\text{mix}_{\lambda}(g_{m}(x),g_{m}(x'))), & \text{feature mixup} \\ \text{mix}_{\lambda}(f(x),f(x')), & \text{embedding mixup} \end{cases}$$

- interpolation of labels: $mix_{\lambda}(y,y')$
- classification: one-hot encoded class label $y \in \{0,1\}^C$ per example
- metric learning: labels refer to pairs of examples

Zhang, Cisse, Dauphin and Lopez-Paz. ICLR 2018. mixup: Beyond empirical risk minimization. Verma, Lamb, Beckham, Najafi, Mitliagkas, Lopez-Paz and Bengio. ICML 2019. Manifold mixup: Better representations by interpolating hidden states.

input mixup and manifold mixup

standard mixup operation: linear interpolation

$$\min_{\lambda}(x, x') := \lambda x + (1 - \lambda)x'$$

where $\lambda \in [0,1]$: interpolation factor, drawn from Beta distribution

• interpolation of examples: decomposing model as $f = f_m \circ g_m$,

$$f_{\lambda}(x,x') := \begin{cases} f(\text{mix}_{\lambda}(x,x')), & \text{input mixup} \\ f_{m}(\text{mix}_{\lambda}(g_{m}(x),g_{m}(x'))), & \text{feature mixup} \\ \text{mix}_{\lambda}(f(x),f(x')), & \text{embedding mixup} \end{cases}$$

- interpolation of labels: $mix_{\lambda}(y, y')$
- classification: one-hot encoded class label $y \in \{0,1\}^C$ per example
- metric learning: labels refer to pairs of examples

Zhang, Cisse, Dauphin and Lopez-Paz. ICLR 2018. mixup: Beyond empirical risk minimization. Verma, Lamb, Beckham, Najafi, Mitliagkas, Lopez-Paz and Bengio. ICML 2019. Manifold mixup: Better representations by interpolating hidden states.

input mixup and manifold mixup

standard mixup operation: linear interpolation

$$\min_{\lambda}(x, x') := \lambda x + (1 - \lambda)x'$$

where $\lambda \in [0,1]$: interpolation factor, drawn from Beta distribution

• interpolation of examples: decomposing model as $f = f_m \circ g_m$,

$$f_{\lambda}(x,x') := \begin{cases} f(\min_{\lambda}(x,x')), & \text{input mixup} \\ f_m(\min_{\lambda}(g_m(x),g_m(x'))), & \text{feature mixup} \\ \min_{\lambda}(f(x),f(x')), & \text{embedding mixup} \end{cases}$$

- interpolation of labels: $mix_{\lambda}(y, y')$
- ullet classification: one-hot encoded class label $y \in \{0,1\}^C$ per example
- metric learning: labels refer to pairs of examples

Zhang, Cisse, Dauphin and Lopez-Paz. ICLR 2018. mixup: Beyond empirical risk minimization. Verma, Lamb, Beckham, Najafi, Mitliagkas, Lopez-Paz and Bengio. ICML 2019. Manifold mixup: Better representations by interpolating hidden states.

Метнор	DML	Ѕтосн	Pairs	Proxy	LA: > 1	BELS MIX	Anc-Neg
Hardness-Aware DML Embedding Expansion Symmetrical Synthesis Proxy Synthesis	√ √ √	√	√ √ √	√	√		√
MoCHi i-Mix MixCo		√ √ √	√ √ √		√ √ √	√ √	√
Metrix (ours)	√	√	√	√	√	√	√

Zheng, Chen, Lu and Zhou. CVPR 2019. Hardness-Aware Deep Metric Learning.

Ko and Gu. CVPR 2020. Embedding Expansion. Augmentation in Embedding Space for Deep Metric Learning.

Gu and Ko. 2020. Symmetrical Synthesis for Deep Metric Learning.

Gu, Ko and Kim. AAAI 2021. Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning.

Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurlPS 2020. Hard negative mixing for contrastive learning.

Lee, Zhu, Sohn, Li, Shin, and Lee. ICLR, 2021. I-Mix: A domain-agnostic strategy for contrastive representation learning.

Метнор	DML	Sтосн	Pairs	Proxy	LA > 1	BELS Mix	Anc-Neg
Hardness-Aware DML	✓		√				
Embedding Expansion	\checkmark		\checkmark				
Symmetrical Synthesis	\checkmark		\checkmark				
Proxy Synthesis	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
MoCHi		√	√		√		√
i-Mix		\checkmark	\checkmark		\checkmark	\checkmark	
MixCo		\checkmark	\checkmark		\checkmark	\checkmark	
Metrix (ours)	✓	✓	✓	✓	✓	✓	✓

Zheng, Chen, Lu and Zhou. CVPR 2019. Hardness-Aware Deep Metric Learning.

Ko and Gu. CVPR 2020. Embedding Expansion. Augmentation in Embedding Space for Deep Metric Learning.

Gu and Ko. 2020. Symmetrical Synthesis for Deep Metric Learning.

Gu, Ko and Kim. AAAI 2021. Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning.

Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurIPS 2020. Hard negative mixing for contrastive learning.

Lee, Zhu, Sohn, Li, Shin, and Lee. ICLR, 2021. I-Mix: A domain-agnostic strategy for contrastive representation learning.

Kim, Lee, Bae, and Yun. NeurIPS Workshops 2020. MixCup Contrastive learning for visual representation.

Метнор	DML	Sтосн	Pairs	Proxy	LA1 > 1	BELS Mix	Anc-Neg
Hardness-Aware DML Embedding Expansion Symmetrical Synthesis Proxy Synthesis	√ √ √	√	✓ ✓ ✓	√	✓		√
MoCHi i-Mix MixCo		√ √ √	√ √ √		√ √ √	√	✓
Metrix (ours)	✓	✓	✓	✓	✓	✓	✓

Zheng, Chen, Lu and Zhou. CVPR 2019. Hardness-Aware Deep Metric Learning.

Ko and Gu. CVPR 2020. Embedding Expansion. Augmentation in Embedding Space for Deep Metric Learning.

Gu and Ko. 2020. Symmetrical Synthesis for Deep Metric Learning.

Gu, Ko and Kim. AAAI 2021. Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning.

Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurIPS 2020. Hard negative mixing for contrastive learning.

Lee, Zhu, Sohn, Li, Shin, and Lee. ICLR, 2021. I-Mix: A domain-agnostic strategy for contrastive representation learning.

Kim, Lee, Bae, and Yun. NeurIPS Workshops 2020. Mix-cp contrastive learning for visual representation.

Метнор	DML	Ѕтосн	Pairs	Proxy	LA > 1	BELS Mix	ANC-NEG
Hardness-Aware DML Embedding Expansion Symmetrical Synthesis Proxy Synthesis	√ √ √	√	√ √ √	√	✓		√
MoCHi i-Mix MixCo		√ √ √	√ √ √		√ √ √	√	✓
Metrix (ours)	✓	✓	✓	✓	✓	✓	✓

Zheng, Chen, Lu and Zhou. CVPR 2019. Hardness-Aware Deep Metric Learning.

Ko and Gu. CVPR 2020. Embedding Expansion. Augmentation in Embedding Space for Deep Metric Learning.

Gu and Ko. 2020. Symmetrical Synthesis for Deep Metric Learning.

Gu, Ko and Kim. AAAI 2021. Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning.

Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurIPS 2020. Hard negative mixing for contrastive learning.

Lee, Zhu, Sohn, Li, Shin, and Lee. ICLR, 2021. I-Mix: A domain-agnostic strategy for contrastive representation learning.

Kim, Lee, Bae, and Yun. NeurIPS Workshops 2020. MixCo: Mix-up contrastive learning for visual representation.

Метнор	DML	Sтосн	Pairs	Proxy	LA1 > 1	BELS Mix	Anc-Neg
Hardness-Aware DML Embedding Expansion Symmetrical Synthesis Proxy Synthesis	√ √ √	√	√ √ √	√	✓		√
MoCHi i-Mix MixCo		√ √ √	√ √ √		√ √ √	√	✓
Metrix (ours)	✓	✓	✓	✓	✓	✓	✓

Zheng, Chen, Lu and Zhou. CVPR 2019. Hardness-Aware Deep Metric Learning.

Ko and Gu. CVPR 2020. Embedding Expansion. Augmentation in Embedding Space for Deep Metric Learning.

Gu and Ko. 2020. Symmetrical Synthesis for Deep Metric Learning.

Gu, Ko and Kim. AAAI 2021. Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning.

Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurlPS 2020. Hard negative mixing for contrastive learning.

Lee, Zhu, Sohn, Li, Shin, and Lee. ICLR, 2021. I-Mix: A domain-agnostic strategy for contrastive representation learning.

Kim, Lee, Bae, and Yun. NeurIPS Workshops 2020. MixCo: Mix-up contrastive learning for visual representation.

Метнор	DML	Sтосн	Pairs	Proxy	LA1 > 1	BELS Mix	Anc-Neg
Hardness-Aware DML Embedding Expansion Symmetrical Synthesis Proxy Synthesis	√ √ √	√	√ √ √	√	√		√
MoCHi i-Mix MixCo		√ √ √	√ √ √		√ √ √	√	✓
Metrix (ours)	✓	✓	✓	✓	✓	✓	✓

Zheng, Chen, Lu and Zhou. CVPR 2019. Hardness-Aware Deep Metric Learning.

Ko and Gu. CVPR 2020. Embedding Expansion. Augmentation in Embedding Space for Deep Metric Learning.

Gu and Ko. 2020. Symmetrical Synthesis for Deep Metric Learning.

Gu, Ko and Kim. AAAI 2021. Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning.

Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurIPS 2020. Hard negative mixing for contrastive learning.

Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurIPS 2020. Hard negative mixing for contrastive learning. Lee, Zhu, Sohn, Li, Shin, and Lee. ICLR, 2021. I-Mix: A domain-agnostic strategy for contrastive representation learning. Kim, Lee, Bae, and Yun. NeurIPS Workshops 2020. MixCo: Mix-up contrastive learning for visual representation.

Метнор	DML	Sтосн	Pairs	Proxy	LA1 > 1	BELS Mix	Anc-Neg
Hardness-Aware DML Embedding Expansion Symmetrical Synthesis	√ √ √		√ √ √				
Proxy Synthesis	\checkmark	\checkmark		\checkmark	\checkmark		✓
MoCHi i-Mix MixCo		√ √ √	√ √ √		√ √ √	√	✓
Metrix (ours)	✓	✓	√	✓	✓	✓	✓

Zheng, Chen, Lu and Zhou. CVPR 2019. Hardness-Aware Deep Metric Learning.

Ko and Gu. CVPR 2020. Embedding Expansion. Augmentation in Embedding Space for Deep Metric Learning.

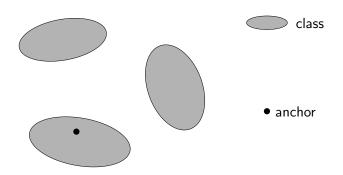
Gu and Ko. 2020. Symmetrical Synthesis for Deep Metric Learning.

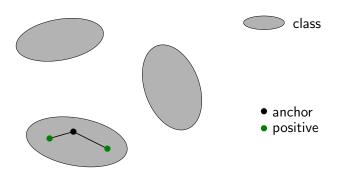
Gu, Ko and Kim. AAAI 2021. Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning.

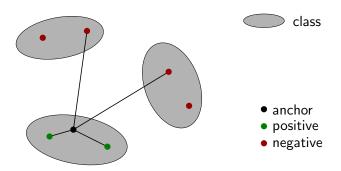
Kalantidis, Sariyildiz, Pion, Weinzaepfel and Larlus. NeurIPS 2020. Hard negative mixing for contrastive learning.

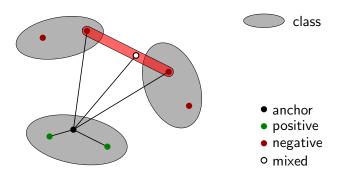
Lee, Zhu, Sohn, Li, Shin, and Lee. ICLR, 2021. I-Mix: A domain-agnostic strategy for contrastive representation learning.

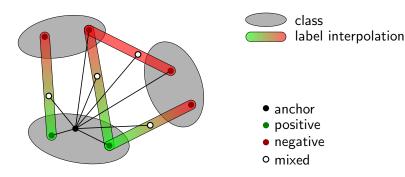
Kim, Lee, Bae, and Yun. NeurIPS Workshops 2020. MixCo: Mix-up contrastive learning for visual representation.











• contrastive loss $\ell_{\rm C}(a;\theta)$

$$\sum_{p \in P(a)} -s(a, p) + \sum_{n \in N(a)} [s(a, n) - m]_{+}$$

• multi-similarity loss $\ell_{MS}(a;\theta)$

$$\frac{1}{\alpha} \log \left(1 + \sum_{p \in P(a)} e^{-\alpha(s(a,p)-m)} \right) + \frac{1}{\beta} \log \left(1 + \sum_{n \in N(a)} e^{\beta(s(a,n)-m)} \right)$$

• generic loss $\ell(a;\theta)$

$$\sigma^{+}\left(\sum_{p\in P(a)} \rho^{+}(s(a,p))\right) + \sigma^{-}\left(\sum_{n\in N(a)} \rho^{-}(s(a,n))\right)$$

• contrastive loss $\ell_{\rm C}(a;\theta)$

$$\sum_{p \in P(a)} -s(a,p) + \sum_{n \in N(a)} [s(a,n) - m]_{+}$$

• multi-similarity loss $\ell_{\mathrm{MS}}(a;\theta)$

$$\frac{1}{\alpha} \log \left(1 + \sum_{p \in P(a)} e^{-\alpha(s(a,p)-m)} \right) + \frac{1}{\beta} \log \left(1 + \sum_{n \in N(a)} e^{\beta(s(a,n)-m)} \right)$$

• generic loss $\ell(a;\theta)$

$$\sigma^{+} \left(\sum_{p \in P(a)} \rho^{+}(s(a,p)) \right) + \sigma^{-} \left(\sum_{n \in N(a)} \rho^{-}(s(a,n)) \right)$$

• contrastive loss $\ell_{\rm C}(a;\theta)$

$$\sum_{p \in P(a)} -s(a,p) + \sum_{n \in N(a)} [s(a,n) - m]_{+}$$

• multi-similarity loss $\ell_{\mathrm{MS}}(a;\theta)$

$$\frac{1}{\alpha} \log \left(1 + \sum_{p \in P(a)} e^{-\alpha(s(a,p)-m)} \right) + \frac{1}{\beta} \log \left(1 + \sum_{n \in N(a)} e^{\beta(s(a,n)-m)} \right)$$

• generic loss $\ell(a;\theta)$

$$\sigma^{+} \left(\sum_{p \in P(a)} \rho^{+}(s(a,p)) \right) + \sigma^{-} \left(\sum_{n \in N(a)} \rho^{-}(s(a,n)) \right)$$

different loss functions in the generic formulation

Loss	Anchor	Pos/Neg	$\sigma^+(x)$	$\sigma^{-}(x)$	$\rho^+(x)$	$\rho^-(x)$
Contrastive	X	X	x	x	-x	$[x - m]_{+}$
Binomial deviance	X	X	$\log(1+x)$	$\log(1+x)$	$e^{-\beta(x-m)}$	$e^{\gamma(x-m)}$
Multi-similarity	X	X	$\frac{1}{\beta}\log(1+x)$	$\frac{1}{2}\log(1+x)$	$e^{-\beta(x-m)}$	$e^{\gamma(x-m)}$
Proxy anchor	proxy	X	$\frac{1}{\beta}\log(1+x)$	$\frac{1}{\gamma}\log(1+x)$	$e^{-\beta(x-m)}$	$e^{\gamma(x-m)}$
NCA	X	X	$-\log(x)$	$\log(x)$	e^x	e^x
ProxyNCA	X	proxy	$-\log(x)$	$\log(x)$	e^x	e^x
$ProxyNCA{+}{+}$	X	proxy	$-\log(x)$	$\log(x)$	$e^{x/T}$	$e^{x/T}$

mixing examples and labels

• generic loss $\ell(a;\theta)$

$$\sigma^{+} \left(\sum_{p \in P(a)} \rho^{+}(s(a,p)) \right) + \sigma^{-} \left(\sum_{n \in N(a)} \rho^{-}(s(a,n)) \right)$$

• defining $U(a) := \{ (p, 1) : p \in P(a) \} \cup \{ (n, 0) : n \in N(a) \}$,

$$\sigma^{+}\left(\sum_{(x,y)\in U(a)} y\rho^{+}(s(a,x))\right) + \sigma^{-}\left(\sum_{(x,y)\in U(a)} (1-y)\rho^{-}(s(a,x))\right)$$

• defining $V(a) := \{(f_{\lambda}(x,x'), \max_{\lambda}(y,y')) : ((x,y),(x',y')) \in U(a)^2\},$

$$\sigma^{+} \left(\sum_{(v,y) \in V(a)} y \rho^{+}(s(a,v)) \right) + \sigma^{-} \left(\sum_{(v,y) \in V(a)} (1-y) \rho^{-}(s(a,v)) \right)$$

mixing examples and labels

• generic loss $\ell(a;\theta)$

$$\sigma^{+}\left(\sum_{p\in P(a)}\rho^{+}(s(a,p))\right) + \sigma^{-}\left(\sum_{n\in N(a)}\rho^{-}(s(a,n))\right)$$

• defining $U(a) := \{ (p, 1) : p \in P(a) \} \cup \{ (n, 0) : n \in N(a) \}$,

$$\sigma^{+}\left(\sum_{(\boldsymbol{x},\boldsymbol{y})\in U(\boldsymbol{a})} \boldsymbol{y}\rho^{+}(s(\boldsymbol{a},\boldsymbol{x}))\right) + \sigma^{-}\left(\sum_{(\boldsymbol{x},\boldsymbol{y})\in U(\boldsymbol{a})} (1-\boldsymbol{y})\rho^{-}(s(\boldsymbol{a},\boldsymbol{x}))\right)$$

• defining $V(a) := \{(f_{\lambda}(x,x'), \min_{\lambda}(y,y')) : ((x,y),(x',y')) \in U(a)^2\},\$

$$\sigma^{+} \left(\sum_{(v,y) \in V(a)} y \rho^{+}(s(a,v)) \right) + \sigma^{-} \left(\sum_{(v,y) \in V(a)} (1-y) \rho^{-}(s(a,v)) \right)$$

datasets

Wah, Branson, Welinder, Perona and Belongie. Caltech, 2011. The Caltech-UCSD Birds-200-2011 Dataset. Krause, Stark, Deng and Fei-Fei. ICCVW 2013. 3D object representations for fine-grained categorization. Song, Xiang, Jegelka and Savarese. CVPR 2016. Deep metric learning via lifted structured feature embedding. Liu, Luo, Qiu, Wang and Tang, CVPR 2016. Deepfashion: Powering robust clothes recognition and retrieval with rich annotations.

R@k results with ResNet-50, d = 512

	CUI	3200	Car	s196	S	OP	In-S	Внор
Метнор	R@1	R@2	R@1	R@2	R@1	R@10	R@1	R@10
Contrastive +Metrix	64.7 67.4 +2.7	75.9 77.9 +2.0	81.6 85.1 +3.5	88.2 91.1 +2.9	74.9 77.5 +2.6	87.0 89.1 +2.1	86.4 89.1 +2.7	94.7 95.7 +1.0
Multi-similarity +Metrix	67.8 71.4 +3.6	77.8 80.6 +2.8	87.8 89.6 +1.8	92.7 94.2 +1.5	76.9 81.0 +4.1	89.8 92.0 +2.2	90.1 92.2 +2.1	97.6 98.5 +0.9
Proxy anchor +Metrix	69.5 71.0 +1.3	79.3 81.8 +1.8	87.6 89.1 +1.4	92.3 93.6 +0.7	79.1 81.3 +2.2	90.8 91.7 $+0.9$	90.0 91.9 +1.9	97.4 98.2 +0.8
ProxyNCA++ +Metrix	69.1 70.4 +1.3	79.5 80.6 +0.8	86.6 88.5 +1.9	92.1 93.4 +0.9	80.4 81.3 +0.6	91.7 92.7 +0.7	90.2 91.9 +1.5	97.6 98.1 +0.0
Gain over SOTA	+1.7	+1.8	+1.8	+1.3	+0.6	+0.0	+1.2	+0.4

R@k results with ResNet-50, d = 512

	CUB200		Cars196		SOP		In-Shop	
Метнор	R@1	R@2	R@1	R@2	R@1	R@10	R@1	R@10
Contrastive +Metrix	64.7 67.4 +2.7	75.9 77.9 +2.0	81.6 85.1 +3.5	88.2 91.1 +2.9	74.9 77.5 +2.6	87.0 89.1 +2.1	86.4 89.1 +2.7	94.7 95.7 +1.0
Multi-similarity +Metrix	67.8 71.4 +3.6	77.8 80.6 +2.8	87.8 89.6 +1.8	92.7 94.2 +1.5	76.9 81.0 +4.1	89.8 92.0 +2.2	90.1 92.2 +2.1	97.6 98.5 +0.9
Proxy anchor	69.5	79.3	87.6	92.3	79.1	90.8	90.0	97.4
+Metrix	71.0 + 1.3	81.8 +1.8	89.1 +1.4	93.6 +0.7	81.3 +2.2	91.7 +0.9	$91.9 \\ +1.9$	98.2 +0.8
ProxyNCA++ +Metrix	69.1 70.4 +1.3	79.5 80.6 +0.8	86.6 88.5 +1.9	92.1 93.4 +0.9	80.4 81.3 +0.6	91.7 92.7 +0.7	90.2 91.9 +1.5	97.6 98.1 +0.0
Gain over SOTA	+1.7	+1.8	+1.8	+1.3	+0.6	+0.0	+1.2	+0.4

Kim, Kim, Cho and Kwak. CVPR 2020. Proxy anchor loss for deep metric learning. Teh, DeVries and Taylor. ECCV 2020. ProxyNCA++: Revisiting and revitalizing proxy neighborhood component analysis. Venkataramanan *et al.* 2021. It Takes Two to Tango: Mixup for Deep Metric Learning.

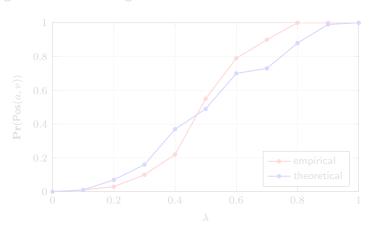
R@k results with ResNet-50, d = 512

	CUB200		Cars196		SOP		In-Shop	
Метнор	R@1	R@2	R@1	R@2	R@1	R@10	R@1	R@10
Contrastive +Metrix	64.7 67.4 +2.7	75.9 77.9 +2.0	81.6 85.1 +3.5	88.2 91.1 +2.9	74.9 77.5 +2.6	87.0 89.1 +2.1	86.4 89.1 +2.7	94.7 95.7 +1.0
Multi-similarity +Metrix	67.8 71.4 +3.6	77.8 80.6 +2.8	87.8 89.6 +1.8	92.7 94.2 +1.5	76.9 81.0 +4.1	89.8 92.0 +2.2	90.1 92.2 +2.1	97.6 98.5 +0.9
Proxy anchor +Metrix	69.5 71.0 +1.3	79.3 81.8 +1.8	87.6 89.1 +1.4	92.3 93.6 +0.7	79.1 81.3 +2.2	90.8 91.7 $+0.9$	90.0 91.9 +1.9	97.4 98.2 +0.8
ProxyNCA++ +Metrix	69.1 70.4 +1.3	79.5 80.6 +0.8	86.6 88.5 +1.9	92.1 93.4 +0.9	80.4 81.3 +0.6	91.7 92.7 +0.7	90.2 91.9 +1.5	97.6 98.1 +0.0
Gain over SOTA	+1.7	+1.8	+1.8	+1.3	+0.6	+0.0	+1.2	+0.4

Hadsell, Chopra and LeCun. CVPR 2006. Dimensionality reduction by learning an invariant mapping. Wang, Han, Huang, Dong, Scott. CVPR 2019. Multi-similarity loss with general pair weighting for deep metric learning. Venkataramanan *et al.* 2021. It Takes Two to Tango: Mixup for Deep Metric Learning.

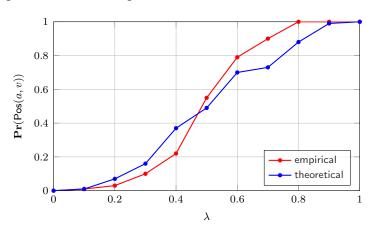
"positivity"

- Pos(a,v): a mixed embedding v behaves as "positive" for anchor a: $\partial \ell(a;\theta)/\partial s(a,v) \leq 0$
- under certain assuptions, estimate the probability of Pos(a,v) for a single mixed embedding v as a function of λ



"positivity"

- Pos(a,v): a mixed embedding v behaves as "positive" for anchor a: $\partial \ell(a;\theta)/\partial s(a,v) \leq 0$
- under certain assuptions, estimate the probability of ${\sf Pos}(a,v)$ for a single mixed embedding v as a function of λ



attention

global-local, spatial-channel attention for image retrieval [WACV 2022]

Chull Hwan Song

Hye Joo Han

Yannis Avrithis

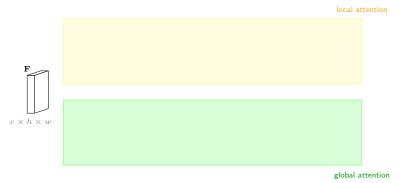
paper

https://arxiv.org/abs/2107.08000

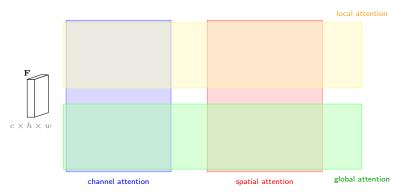
code

by WACV (January)

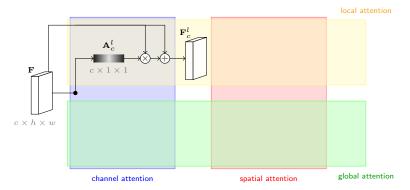
• input feature tensor: c feature maps (channels), $h \times w$ spatial resolution



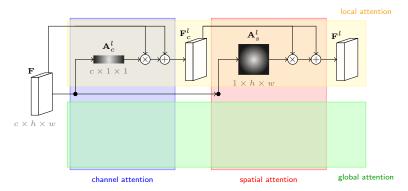
- local (1st order) attention: elements of the feature tensor (channels / spatial locations) weighted independently, by pooling or learning
- global (2nd order) attention: pairwise interaction between elements of the tensor



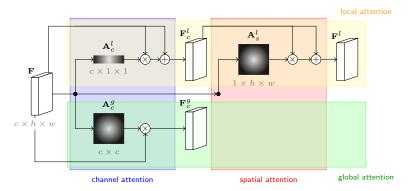
- channel attention: channels weighted independently or interact pairwise
- spatial attention: spatial locations weighted independently or interact pairwise



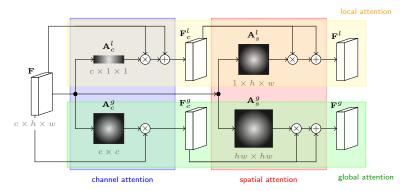
• local channel attention: pooling over locations yields $c \times 1 \times 1$ attention map



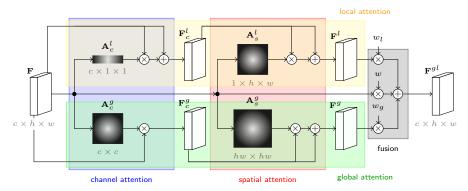
- local channel attention: pooling over locations yields $c \times 1 \times 1$ attention map
- local spatial attention: pooling over channels yields $1 \times h \times w$ attention map



• global channel attention: pairwise interaction of channels yields $c \times c$ attention map



- global channel attention: pairwise interaction of channels yields $c \times c$ attention map
- global spatial attention: pairwise interaction of locations yields $hw \times hw$ attention map



 fusion: local and global attention streams fused with original feature tensor

image retrieval study

- ResNet101 backbone, GeM pooling
- global descriptor only, d = 512
- train by Arcface loss on Google Landmarks v2 clean (1.5M images)
- mini-batch examples with similar aspect ratios resized jointly
- at inference, multi-resolution representation to queries and database
- test on Revisited Oxford ($\mathcal{R}\mathsf{Oxf}$) and Paris ($\mathcal{R}\mathsf{Par}$)
- ablate local/global, channel/spatial attention components

Radenović, Iscen, Tolias, Avrithis and Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking. Yokoo, Ozaki, Simo-Serra and Iizuka. CVPRW 2020. Two-stage Discriminative Re-ranking for Large-scale Landmark Retrieval. Weyand, Araujo, Cao and Sim. CVPR 2020. Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval.

Deng, Guo, Xue and Zafeiriou. CVPR 2019. ArcFace: Additive Angular Margin Loss for Deep Face Recognition

Radenović, Tolias and Chum. TPAMI, 2019. Fine-Tuning CNN Image Retrieval with No Human Annotation.

Song, Han and Avrithis. WACV 2022. All the attention you need: Global-local, spatial-channel attention for image retrieval.

image retrieval study

- ResNet101 backbone, GeM pooling
- global descriptor only, d = 512
- train by Arcface loss on Google Landmarks v2 clean (1.5M images)
- mini-batch examples with similar aspect ratios resized jointly
- at inference, multi-resolution representation to queries and database
- test on Revisited Oxford (\mathcal{R} Oxf) and Paris (\mathcal{R} Par)
- ablate local/global, channel/spatial attention components

Radenović, Iscen, Tolias, Avrithis and Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Yokoo, Ozaki, Simo-Serra and lizuka. CVPRW 2020. Two-stage Discriminative Re-ranking for Large-scale Landmark Retrieval. Weyand, Araujo, Cao and Sim. CVPR 2020. Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval.

Deng, Guo, Xue and Zafeiriou. CVPR 2019. ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
Radenović, Tolias and Chum. TPAMI, 2019. Fine-Tuning CNN Image Retrieval with No Human Annotation.
Song, Han and Avrithis. WACV 2022. All the attention you need: Global-local, spatial-channel attention for image retrieval.

image retrieval study

- ResNet101 backbone, GeM pooling
- global descriptor only, d = 512
- train by Arcface loss on Google Landmarks v2 clean (1.5M images)
- mini-batch examples with similar aspect ratios resized jointly
- at inference, multi-resolution representation to queries and database
- test on Revisited Oxford ($\mathcal{R}Oxf$) and Paris ($\mathcal{R}Par$)
- ablate local/global, channel/spatial attention components

Radenović, Iscen, Tolias, Avrithis and Chum. CVPR 2018. Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking. Yokoo, Ozaki, Simo-Serra and Iizuka. CVPRW 2020. Two-stage Discriminative Re-ranking for Large-scale Landmark Retrieval. Weyand, Araujo, Cao and Sim. CVPR 2020. Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level Recognition and Retrieval.

Deng, Guo, Xue and Zafeiriou. CVPR 2019. ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
Radenović, Tolias and Chum. TPAMI, 2019. Fine-Tuning CNN Image Retrieval with No Human Annotation.
Song, Han and Avrithis. WACV 2022. All the attention you need: Global-local, spatial-channel attention for image retrieval.

Метнор	Охғ5к	Par6k	\mathcal{R} Medium		\mathcal{R} Hard	
			$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
GLAM baseline	91.9	94.5	72.8	84.2	49.9	69.7
+local-channel +local-spatial +local	91.3 91.0 91.2	95.3 95.1 95.4	72.2 72.1 73.7	85.8 85.3 86.5	48.3 48.3 52.6	73.1 71.9 75.0
+global-channel +global-spatial +global	92.5 92.4 92.3	94.4 95.1 95.3	73.3 73.2 77.2	84.4 86.3 86.7	49.8 50.0 57.4	70.1 72.7 75.0
	94.2	95.6	78.6	88.5	60.2	76.8

channel/spatial attention: may be harmful when used alone, but complementary and surprisingly beneficial when used together

local/global attention: clearly complementary, their gain nearly additive

Метнор	Охғ5к	Par6k	\mathcal{R} Medium		\mathcal{R} Hard	
			$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
GLAM baseline	91.9	94.5	72.8	84.2	49.9	69.7
+local-channel +local-spatial +local	91.3 91.0 91.2	95.3 95.1 95.4	72.2 72.1 73.7	85.8 85.3 86.5	48.3 48.3 52.6	73.1 71.9 75.0
+global-channel +global-spatial +global	92.5 92.4 92.3	94.4 95.1 95.3	73.3 73.2 77.2	84.4 86.3 86.7	49.8 50.0 57.4	70.1 72.7 75.0
+global+local	94.2	95.6	78.6	88.5	60.2	76.8

channel/spatial attention: may be harmful when used alone, but complementary and surprisingly beneficial when used together

local/global attention: clearly complementary, their gain nearly additive

Метнор	Oxf5k	Par6k	\mathcal{R} Medium		\mathcal{R} Hard	
			$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
GLAM baseline	91.9	94.5	72.8	84.2	49.9	69.7
+local-channel +local-spatial +local	91.3 91.0 91.2	95.3 95.1 95.4	72.2 72.1 73.7	85.8 85.3 86.5	48.3 48.3 52.6	73.1 71.9 75.0
+global-channel +global-spatial +global	92.5 92.4 92.3	94.4 95.1 95.3	73.3 73.2 77.2	84.4 86.3 86.7	49.8 50.0 57.4	70.1 72.7 75.0
+global+local	94.2	95.6	78.6	88.5	60.2	76.8

- channel/spatial attention: may be harmful when used alone, but complementary and surprisingly beneficial when used together
- local/global attention: clearly complementary, their gain nearly additive

Метнор	Охғ5к	Par6k	\mathcal{R} MEDIUM		\mathcal{R} Hard	
			$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
GLAM baseline	91.9	94.5	72.8	84.2	49.9	69.7
+local-channel	91.3	95.3	72.2	85.8	48.3	73.1
+local-spatial	91.0	95.1	72.1	85.3	48.3	71.9
+local	91.2	95.4	73.7	86.5	52.6	75.0
+global-channel	92.5	94.4	73.3	84.4	49.8	70.1
+global-spatial	92.4	95.1	73.2	86.3	50.0	72.7
+global	92.3	95.3	77.2	86.7	57.4	75.0
+global+local	94.2	95.6	78.6	88.5	60.2	76.8

- channel/spatial attention: may be harmful when used alone, but complementary and surprisingly beneficial when used together
- local/global attention: clearly complementary, their gain nearly additive

Метнор	Охғ5к	Par6k	\mathcal{R} Medium		\mathcal{R} Hard	
			$\mathcal{R}Oxf$	$\mathcal{R}Par$	$\mathcal{R}Oxf$	$\mathcal{R}Par$
GLAM baseline	91.9	94.5	72.8	84.2	49.9	69.7
+local-channel +local-spatial +local	91.3 91.0 91.2	95.3 95.1 95.4	72.2 72.1 73.7	85.8 85.3 86.5	48.3 48.3 52.6	73.1 71.9 75.0
+global-channel +global-spatial +global	92.5 92.4 92.3	94.4 95.1 95.3	73.3 73.2 77.2	84.4 86.3 86.7	49.8 50.0 57.4	70.1 72.7 75.0
+global+local	94.2	95.6	78.6	88.5	60.2	76.8

- channel/spatial attention: may be harmful when used alone, but complementary and surprisingly beneficial when used together
- local/global attention: clearly complementary, their gain nearly additive

thank you!

more

https://avrithis.net

