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1 Introduction

The amount of multimedia content produced and made available is constantly growing,
resulting in equally increasing needs in terms of efficient and effective ways to access
it. Enabling smooth access at a level that meets user expectations and needs however to
such content has been the holy grail in content-based retrieval for decades as it is inter-
twined with the so called semantic gap between the features that can be automatically
extracted from content and the conveyed meaning as perceived by end users. Numer-
ous efforts have been reported addressing a variety of domains and applications, and
following diverse methodologies. Among the reported literature, knowledge-based ap-
proaches utilizing explicit prior knowledge constitute a popular choice. Customized
as well as formal representations and corresponding reasoning services have been em-
ployed to enable analysis decouple from application-specific algorithmic implementa-
tions and benefit from the existence of prior knowledge about the examined problem.
Apart from the followed knowledge representation formalism, knowledge-based ap-
proaches are further characterized by the types of knowledge employed (e.g., visual,
spatial, temporal). Among these types of knowledge, contextual one is of particular
interest as it can significantly assist in disambiguation and validation of the meaning
extracted.

Following the Semantic Web (SW) vision of knowledge sharing and reuse through
machine processable metadata, ontologies have been favored in recent knowledge-
based image analysis efforts. In the works presented in (Little and Hunter 2004;
Hollink, Little and Hunter 2005), ontologies have been used to represent concepts of
the examined domain and their visual characteristics in terms of MPEG-7 descriptions.
Ontologies have been also utilized in (Maillot and Thonnat 2005) to represent domain



knowledge, visual related one in terms of qualitative descriptions, and contextual with
respect to image capturing conditions, while in (Dasiopoulou, Mezaris, Kompatsiaris,
Papastathis and Strintzis 2005), ontologies combined with rules have been proposed to
capture the processing steps required for the detection of the respective domain con-
cepts. In the approaches presented in (Schober, Hermes and Herzog 2004) and (Neu-
mann and Möller 2004), the inference services provided by DLs have been employed
to perform scene interpretation tasks based on the corresponding domain ontologies
definitions that link domain concepts with their visual characteristics.

Following the rationale of using ontologies to formally capture the semantics of
the knowledge required for semantic image analysis, we proposed in this chapter an
ontology-based framework for enhancing the descriptions resulting from typical im-
age analysis through the exploitation of topological and visual context information.
In the proposed framework, RDFS ontologies are used to capture not only the domain
concepts of interest and their corresponding visual features, but also spatial and logical
relations that constitute their context of appearance. Furthermore, the use of ontologies
for structuring the content annotations (labels) produced, ensures smooth communica-
tion among the different modules involved and facilitates interoperability with respect
to future extensions with additional modules.

As illustrated in Fig. 1, under the proposed framework the output of image analysis
is considered as the initial labelling on top of which the developed context analysis and
constraint reasoning modules are applied. The only assumption made with respect to
image analysis is that the produced labels are associated with a degree of confidence
and that more than one labels may exist for a given image region. It is easy to see that
this assumption is not restricting but instead reflects the actual case in image analysis
where due to the inherent ambiguity no certain descriptions can always be acquired and
different analysis modules can be used, thus resulting in multiple labellings. Within
such setting, the contextual information in terms of context of appearance is utilized
to refine the initially produced degrees of confidence and then the constraint reasoning
is applied to impose consistency on the labelling with respect to the provided domain
topology.

The rest of the chapter is organized as follows. Section 2 presents relevant work in
terms of utilizing context information and constraint solving approaches in semantic
image analysis. In the following section the proposed framework architecture is de-
scribed, including the specifications and design of the ontology infrastructure (Section
3.1) and the visual analysis component description (Section 3.2) respectively. Section
4 details the modelling and ontological representation of context of appearance, and
presents the methodology for readjusting the initial degrees of confidence. Section
5.1 describes the application of constraint reasoning in image labelling. Experimental
results and evaluation of the proposed framework are presented in Section 6, while
Section 7 concludes the chapter with future directions.
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Fig. 1. Ontology-based framework introducing context and constraint reasoning in image anal-
ysis.

2 Relevant Work

2.1 Context in Multimedia Analysis

In semantic content-based image search and retrieval, research has shifted beyond low-
level color, texture, and shape features in pursuit of more effective methods of content
access at the level of the meaning conveyed. Towards this goal, context plays a signif-
icant role as it allows to enhance performance by exploiting the semantic correlation
between the considered concepts. The added value of using context in image analy-
sis becomes more apparent when considering the number of analysis errors that often
occur because of the similarities in visual features such as color, texture, edge charac-
teristics and so on, of the concepts considered.

A number of interesting efforts have been reported including among other the im-
pact of exploiting co-occurrence information for the detection of natural objects in out-
door images (Vailaya and Jain 2000; Naphade, Kozintsev and Huang 2002). In (Luo,
Singhal, and Zhu 2002), a spatial context-aware object detection system is presented
that combines the output of individual object detectors into a composite belief vector
for the objects potentially present in an image. In (Murphy, Torralba, and Freeman
2003) scene context is proposed as an extra source of global information to assist in
resolving local ambiguities, while in (Boutel 2006) three types of context are explored
for the scene classification problem: spatial, temporal and image capture condition
context in the form of camera parameters, also examined in (Boutell and Luo 2005).
Context information in terms of a combination of a region index and a presence vector
has been proposed in (Le Saux and Amato 2004) for scene classification.

However, so far the investigated analysis approaches tend not to take into account
contextual knowledge, neither with respect to the entire scene nor the individual ob-
jects themselves. This constitutes a major limitation as the notion of visual context is



able to aid in the direction of natural object detection methodologies, simulating the
human approach to similar problems, one important trait of which is that the exami-
nation of all the objects in the scene before making a final decision on the identity of
the individual objects. The use of visual context knowledge as described in Section 4
of the current manuscript provides the means to introduce and benefit from contextual
knowledge, while additionally providing a formal model of its semantics.

2.2 Constraint Reasoning in Image Understanding

Constraint reasoning has a long history, starting with the system SKETCHPAD (Suther-
land 1963) in the early 60’s. The Scene Labelling Problem (Waltz 1975) followed
later, formalized the notion of constraints in order to solve the problem of deriving
a 3D-interpretation of 2D line drawings. Haralick and Shapiro formulated this prob-
lem even more generally as the labelling of image segments based on automatic low-
level processing techniques (Haralick and Shapiro 1979). However, this original work
was mainly formal, introducing the consistent labelling problem as a general set of
problems, while in the approach proposed in thsi chapter we provide a concrete in-
stantiation of the scene labelling problem, deployed in a real application setting. Only
a few other approaches exist that employ constraint reasoning to introduce explicit
knowledge about spatial arrangements of real life objects into the image interpretation
process. We will shortly discuss some of them in the following.

In (Kolbe 1998), constraint reasoning techniques is employed for the identifica-
tion of objects in aerial images. In Kolbe’s work, one main aspect is the handling of
over-constrained problems. An over constraint problem is a constraint solving problem
(CSP) in which not all constraints can be satisfied in parallel. In traditional constraint
reasoning this would mean that no solutions exists and the problem is consequently un-
solvable. Several techniques were proposed to solve such over-constrained problems,
providing solutions that are close to optimal. Kolbe specifically introduces a solving
technique based on a information theory-based evaluation measure. In addition, Kolbe
uses specialized constraints between the image parts, that are hardly applicable to more
generic domains that we consider.

In (Hotz and Neumann 2005) a configuration system is adopted to provide high-
level scene interpretations. The system is evaluated on so-called table laying scenes,
using well-defined domain models based on the spatial arrangements of the concepts
found within the given domain. The underlying interpretation of the spatial knowl-
edge is also based on the notion of constraints on variable assignments, although the
terminology of constraint reasoning is not used. The whole approach does not focus
solely on the application of spatial knowledge, but also on the inference of higher
level knowledge and the scene-specific interpretation of the image. However, again the
problem is extremely specific and relies on very well defined domain models that are
hardly to exist for domains like holiday or family images.

Finally, an interesting approach is presented in (Srihari and Zhang 2000), where
images are annotated semi-automatically and a user can manually prune the search
space by specifying hints such as “A L-shaped building in the upper left corner.” A
constraint reasoner is employed to enforce the user hints. Obviously, this approach uses



the constraints in an ad-hoc manner, and not as a domain model, such as employed in
our architecture.

3 Ontology-based Visual Analysis Framework

The proposed ontology-based framework aims to serve as a generic, easy to extend
knowledge-based framework for performing semantic image analysis through the re-
finement and consistency checking of initially produced labellings. The intended usage
purpose imposes certain requirements with respect to the knowledge infrastructure that
constitutes the framework’s backbone as well as the developed context analysis and
constraint reasoning methodology.

A first requirement refers to the need for smooth communication among the in-
volved modules while preserving the intended semantics. This practically means that
the initially produced labellings, possibly by independent analysis modules, need to
be correctly interpreted by the modules involved in the process of their further refine-
ment, namely context analysis and constraint reasoning in our application scenario.
Given that image analysis and labelling relates both to domain-specific aspects, i.e.,
the conceptualization of examined domain concepts and relations, as well as media
related ones, i.e., the structure of the labelled image, the corresponding knowledge
infrastructure needs to capture the knowledge of both aspects in an unambiguous, ma-
chine processable way. Following an ontology-based knowledge representation using
semantic web technologies meets such requirements since well-defined shareable se-
mantics are ensured.

Another important requirement relates to the need for enabling extensibility in
terms of incorporating not only additional analysis modules that are built in compliance
with the existing knowledge modelling, but also already existing modules that adhere
to possibly different conceptualizations. To enable a smooth harmonization between
such different domain or media related conceptualizations a reference point is needed
so that the involved modules intended meanings, i.e., ontological commitments, can
be disambiguated and correctly aligned. The use of a core ontology through the ax-
iomatization it provides enables avoiding terminological and conceptual ambiguities.
Furthermore, a significant aspect present not only in image but multimedia analysis in
general is the uncertainty introduced in the analysis and interpretation process. Audio-
visual information provides cues, in terms of either low or intermediate level features,
for the high-level descriptions that represent the conveyed meaning, not evidences.
Thus, a knowledge-based framework intended to serve as a generic applicable ap-
proach to image labelling refinement needs to provide support for representing and
handling such uncertainty issues.

The aforementioned knowledge structure related requirements reflect on the con-
text analysis and constraint reasoning specifications: they need to be able to read and
manipulate such knowledge, as well as output their results correspondingly. Further-
more, another principle requirement underlying the latter modules constitutes in the
need to be not application oriented but able to perform on a generic basis instead.



This practically means that both modules specifications and implementation need to
be assumption free with respect to the employed analysis modules implementation.

In the following we briefly present the adopted ontology-based knowledge infras-
tructure and the analysis approach employed to produce the initial labellings. As will
be shown in the sequel, a generic approach has been followed with respect to the em-
ployed analysis approach, a choice justified by the intended scope of the proposed con-
text analysis and constraint reasoning framework, i.e., no dedicated analysis analysis
modules with the highest possible performance are needed for the proposed framework
to be of value.

3.1 Ontology Infrastructure

In the following we briefly describe the different ontologies constituting the employed
knowledge infrastructure. For further details the reader is referred to (Bloehdorn,
Petridis, Saathoff, Simou, Tzouvaras, Avrithis, Handschuh, Kompatsiaris, Staab, and
Strintzis 2005).

Core Ontology

The role of the core ontology in this framework is threefold: i) to serve as a bridge
between existing ontologies to which the different modules may adhere to, ii) to serve
as a starting point for the construction of new ontologies, and iii) to provide a reference
point for comparisons among different ontological approaches. In our framework, we
utilize DOLCE (Gangemi, Guarino, Masolo, Oltramari and Schneider 2002), which
was explicitly designed as a core ontology. As DOLCE is minimal in the sense it
includes only the most reusable and widely applicable upper-level categories, rigorous
in terms of axiomatization, as well as extensively researched and documented.

Spatio-Temporal Extensions Ontology

In a separate ontology we have extended the dolce:Region concept branch of DOLCE
to accommodate topological and directional relations between regions. Directional
spatial relations describe how visual segments are placed and relate to each other in
2D or 3D space (e.g., left and above), while topological spatial relations describe how
the spatial boundaries of the segments relate (e.g., touches and overlaps). In a similar
way, temporal relations have been introduced.

Visual Descriptor Ontology

The Visual Descriptor Ontology (VDO) models concepts and properties that describe
visual characteristics of concepts. VDO follows the MPEG-7 visual descriptors spec-
ification (MPEG-7 Visual Part 2001), with some modification so as to translate the
XML Schema and datatype definitions into a valid RDFS representation.



Multimedia Structure Ontology

The Multimedia Structure Ontology (MSO) models basic multimedia entities from the
MPEG-7 Multimedia Description Scheme (MPEG-7 Multimedia Description Schemes
2001). More specifically, MSO covers the five MPEG-7 multimedia content types, i.e.,
Image, Video, Audio, Audiovisual and Multimedia, and their corresponding segment
and decomposition relation types.

Annotation Ontology

The Annotation Ontology (AO) provides the schema for linking multimedia content
items to the corresponding semantic descriptions, i.e., for linking image regions to do-
main concept and relation labels. Furthermore, it is the AO that models the uncertainty
with respect to the extracted labellings and allows to associate a degree of confidence
to each label produced by the analysis.

Domain Ontology

In the presented multimedia annotation framework, the domain ontologies are meant
to model the conveyed content layer of multimedia content with respect to specific
real-world domains, such as sports events like tennis. They serve a dual role: i) they
provide the vocabulary to be used in the produced annotations, and ii) they provide the
domain conceptualization utilized during retrieval. As aforementioned, each domain
ontologies is explicitly aligned to the DOLCE core ontology, ensuring thereby inter-
operability between different domain ontologies possibly used by different analysis
modules.

3.2 Visual Analysis

The overall architecture of the analysis is illustrated in Fig. 2. Initial sets of graded hy-
potheses, i.e. set of labels with associated degrees of confidence, are generated for each
of the examined image segment utilizing the provided domain knowledge prototypi-
cal visual description instances. The retrieval of the corresponding concept prototypes
and their descriptor instances is performed using the OntoBroker engine. OntoBroker
needs to load the domain ontologies where the high-level concepts are defined, the
Visual Descriptor Ontology (VDO) where the low-level visual descriptors are present,
and the prototype instance files that include the actual knowledge base and provide the
linking of domain concepts with descriptor instances. These instance files are created
using the M-OntoMat-Annotizer tool.

The analysis process starts with a pre-processing step where region-based segmen-
tation extracts the atom-regions of the examined visual content. Subsequently, the
dominant color, homogeneous texture and region shape descriptors are extracted for
each region together with the spatial relations (such as above, below, is-included-in)
between adjacent regions. The next analysis step is to compute matching distances
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Fig. 2. Ontology-based framework introducing context and constraint reasoning in image anal-
ysis.

value between each one of the atom-regions and the prototype instances of all con-
cepts in the domain ontology. This matching distance is evaluated by means of low-
level visual descriptors. The generated metadata expresses the structure and semantics
of the analyzed content, i.e. a number of segments or shots accompanied with the con-
fidence values of the supported domain concepts. Additionally, the extracted spatial
relations of each atom-region are also included. The extracted metadata are in RDFS
format following the definitions of the Multimedia Structure Ontology (MSO) and the
Annotation Ontology.

4 Context Analysis

4.1 Ontology-Based Contextual Knowledge Representation

In order to design a robust ontology-based contextual knowledge representation, we
use a set of concepts and relations between them, as the basic elements towards se-
mantic, as well as low-level, interpretation of context within the present research effort.
Amongst all possible ways to describe the domain ontologies one can be formalized
as follows:

O = {C, {Rpq}}, where Rpq : C × C → {0, 1} (1)

where O is a domain ontology, C is a subset of the set of concepts described by the
domain ontology, p and q are two concepts p, q ∈ C and, Rpq is a possible semantic
relation amongst these concepts. In general, semantic relations describe specific kinds
of links or relationships between any two concepts. In the crisp case, a semantic rela-
tion either relates (Rpq = 1) or does not relate (Rpq = 0) a pair of concepts p, q with
each other.

In addition, for a knowledge model to be highly descriptive, it must contain a large
number of distinct and diverse relations among its concepts. A major side effect of
this approach is the fact that available information will then be scattered among them,
making each one of them inadequate to describe a context in a meaningful way. Conse-
quently, relations need to be combined to provide a view of the knowledge that suffices
for context definition and estimation. In this work we utilize three types of relations,



whose semantics are defined in the MPEG-7 standard, namely the specialization rela-
tion Sp, the part relation P and the property relation Pr.

The last point to consider when designing such a knowledge model is the fact
that real-life data often differ from research data. Real-life information is in princi-
pal governed by uncertainty and fuzziness, thus herein its modelling is based on fuzzy
relations. For the problem at hand, the above set of commonly encountered crisp re-
lations can be modelled as fuzzy relations and can be combined for the generation of
a meaningful fuzzy taxonomic relation, which will assist in the determination of con-
text. Consequently, to tackle such complex types of relations we propose the following
“fuzzification” of the previous domain ontology definition:

OF = {C, {rpq}}, where rpq = F (Rpq) : C × C → [0, 1] (2)

where OF defines a “fuzzified” domain ontology, C is again a subset of all possible
concepts it describes and rpq denotes a fuzzy semantic relation amongst the two con-
cepts p, q ∈ C. In the fuzzy case, a fuzzy semantic relation relates a pair of concepts
p, q with each other to a given degree of membership, i.e. the value of r pq lies within
the [0, 1] interval. More specifically, given a universe U a crisp set C is described by
a membership function µC : U → {0, 1} (as already observed in the crisp case for
Rpq), whereas according to (Klir and Yuan 1995), a fuzzy set F on C is described by a
membership function µF : C → [0, 1]. We may describe the fuzzy set using the widely
applied sum notation (Miyamoto 1990):

F =
n∑

i=1

ci/wi = {c1/w1, c2/w2, . . . , cn/wn} (3)

where n = |C| is the cardinality of set C and concept ci ∈ C. The membership
degree wi describes the membership function µF (ci), i.e. wi = µF (ci), or for the
sake of simplicity, wi = F (ci). As in Klir et al., a fuzzy relation on C is a function
rpq : C × C → [0, 1] and its inverse relation is defined as r−1

pq = rqp. Based on the
relations rpq and, for the purpose of image analysis, we construct the following relation
T with use of the corresponding set of fuzzy relations Sp, P and Pr:

T = Trt(Sp ∪ P−1 ∪ Pr−1) (4)

Based on the roles and semantic interpretations of Sp, P and Pr, as they are defined in
the MPEG-7 standard (MPEG-7 Multimedia Description Schemes 2001), it is easy to
see that equation (4) combines them in a straightforward and meaningful way, utiliz-
ing inverse functionality where it is semantically appropriate, i.e. where the meaning
of one relation is semantically contradictory to the meaning of the rest on the same set
of concepts. The set of the above relations is either defined explicitly in the domain
ontology or is considered to be a superset of the set defined in the latter. Most com-
monly encountered, a domain ontology includes some relations between its concepts,
that are all of the SubclassOf type and consequently, we extend it by defining addi-
tional semantic relations. The transitive closure relation extension Tr t is required in
both cases, in order for T to be taxonomic, as the union of transitive relations is not
necessarily transitive, as discussed in (Akrivas, Wallace, Stamou, and Kollias 2002).



Fig. 3. Graph representation example - motorsports domain

The representation of this concept-centric contextual knowledge model follows the
Resource Description Framework (RDF) standard (Becket 2004) proposed in the con-
text of the Semantic Web. RDF is the framework in which Semantic Web metadata
statements can be expressed and represented as graphs. Relation T can be visualized
as a graph, in which every node represents a concept and each edge between two
nodes constitutes a contextual relation between the respective concepts. Additionally
each edge has an associated membership degree, which represents the fuzziness within
the context model. A sample graph derived from the motorsports domain is depicted
in Fig. 3.

Representing the graph in RDF is a straight forward task, since RDF structure it-
self is based on a similar graph model. Additionally, the reification technique (Brickley
and Guha 2004) was used in order to achieve the desired expressiveness and obtain the
enhanced functionality introduced by fuzziness. Representing the membership degree
associated with each relation is carried out by making a statement about the statement,
which contains the degree information. Representing fuzziness with such reified state-
ments is a novel but acceptable way, since the reified statement should not be asserted
automatically. For instance, having a statement such as: “BeachScene part Sky”, which
means that sky is part of a beach scene, and a membership degree of 0.75 for this
statement, does obviously not entail that sky is always a part of a beach scene. A small
illustrative example is provided in the following Table 1 for an instance of the special-
ization relation Sp. As defined in the MPEG-7 standard Sp (x, y) > 0 means that the
meaning of x “includes” the meaning of y; the most common forms of specialization
are sub-classing, i.e. x is a generalization of y, and thematic categorization, i.e. x is
the thematic category of y. In the example, the RDF subject wrc (World Rally Cham-
pionship) has specializationOf as an RDF predicate and rally forms the RDF object.
Additionally, the proposed reification process introduces a statement about the former
statement on the specializationOf resource, by stating that 0.90 is the membership
degree to this relation.

4.2 Visual Context Analysis

The idea behind the use of visual context information responds to the fact that not all
human acts are relevant in all situations and this holds also when dealing with multi-



Table 1. Fuzzy relation representation: RDF reification.

<rdf:Description rdf:about=”#s1”>

<rdf:subject rdf:resource=”&dom;wrc”/>

<rdf:predicate rdf:resource=”&dom;specializationOf”/>

<rdf:object> rdf:resource=”&dom;rally”</rdf:object>

<rdf:type rdf:resource=”http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement”/>

<context:specializationOf rdf:datatype=”http://www.w3.org/2001/XMLSchema#float”>0.90</context:specializationOf>

</rdf:Description>

media analysis problems. Since visual context is acknowledged to be a difficult notion
to grasp and capture (Mylonas and Avrithis 2005), we restrict it herein to the notion
of ontological context. The latter is defined on the “fuzzified” version of traditional
ontologies presented in 4.1.

In a more formal manner, the problem that this work attempts to address is sum-
marized in the following statement: the visual context analysis algorithm readjusts in a
meaningful way the initial label confidence values produced by the prior steps of mul-
timedia analysis, described in detail in Section 3.2. In designing such an algorithm,
contextual information residing in the aforementioned domain ontology is utilized. In
general, the notion of context is strongly related to the notion of ontologies since an on-
tology can be seen as an attempt for modelling real-world (fuzzy) entities and context
determines the intended meaning of each concept, i.e. a concept used in different con-
text may have different meanings. In this section the problems to be addressed include
how to meaningfully readjust the initial membership degrees and how to use visual
context to influence the overall results of knowledge-assisted image analysis towards
higher performance.

Based on the mathematical background described in detail in the previous subsec-
tions, we introduce the algorithm used to readjust the degree of membership µ a(c) of

each concept c in the fuzzy set of candidate labels La =
|C|∑
i=1

ci/µa(ci) associated to

a region a of an image in an image scene and extracted in the process described in
Section 3.2. Each specific concept k ∈ C present in the application-domain’s ontology
is stored together with its relationship degrees rkl to any other related concept l ∈ C.

Another important point to consider is the fact that each concept has a different
probability to appear in the scene. A flat context model (i.e., relating concepts only
to the respective scene type) would not be sufficient in this case. We model a more
detailed graph where ideally concepts are all related to each other, implying that the
graph relations used are in fact transitive. As can be observed in Fig. 3, every concept
participating in the contextualized ontology has at least one link to the root element.
Additional degrees of confidence exist between any possible connections of nodes in
the graph, whereas the root beach element could be related either directly or indi-
rectly with any other concept. To tackle cases that more than one concept is related
to multiple concepts, the term context relevance crdm(k) is introduced, which refers
to the overall relevance of concept k to the root element characterizing each domain
dm. For instance the root element of beach and motorsports domains are concepts and



Fig. 4. Graph representation example - Compatibility indicator estimation.

respectively. All possible routes in the graph are taken into consideration forming an
exhaustive approach to the domain, with respect to the fact that all routes between
concepts are reciprocal.

Estimation of each concept’s value is derived from direct and indirect relationships
of the concept with other concepts, using a meaningful compatibility indicator or dis-
tance metric. Depending on the nature of the domains provided in the domain ontology,
the best indicator could be selected using the max or the min operator, respectively. Of
course the ideal distance metric for two concepts is again one that quantifies their se-
mantic correlation. For the problem at hand the max value is a meaningful measure of
correlation for both of them. A simplified example derived again from the motorsports
domain ontology, assuming that the only available concepts are motorsports (the root
element - denoted as m), asphalt (a), grass (g) and car (c) is presented in Fig. 4 and
summarized in the following: let concept a be related to concepts m, g and c directly
with: ram, rag and rac, while concept g is related to concept m with rgm and concept
c is related to concept m with rcm. Additionally, c is related to g with rcg . Then, we
calculate the value for crdm(a):

crdm(a) = max{ram, ragrgm, racrcm, ragrcgrcm, racrcgrgm} (5)

The general structure of the degree of membership re-evaluation algorithm is as
follows:

1. Identify an optimal normalization parameter np to use within the algorithm’s steps,
according to the considered domain(s). The np is also referred to as domain simi-
larity, or dissimilarity, measure and np ∈ [0, 1].

2. For each concept k in the fuzzy set La associated to a region in a scene with a
degree of membership µa(k), obtain the particular contextual information in the
form of its relations to the set of any other concepts: {rkl : l ∈ C, l �= k}.

3. Calculate the new degree of membership µa(k) associated to region, based on
np and the context’s relevance value. In the case of multiple concept relations in
the ontology, relating concept k to more than one concepts, rather than relating k
solely to the ”root element” re, an intermediate aggregation step should be applied
for k: crk = max {rkre , . . . , rkm}. We express the calculation of µa(k) with the
recursive formula:

µn
a(k) = µn−1

a (k) − np(µn−1
a (k) − crk) (6)

where n denotes the iteration used. Equivalently, for an arbitrary iteration n:
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Fig. 5. A simple constraint satisfaction problem.

µn
a(k) = (1 − np)n · µ0

a(k) + (1 − (1 − np)n) · crk (7)

where µ0
a(k) represents the original degree of membership.

In practise, typical values for n reside between 3 and 5. Interpretation of the above
equations implies that the proposed contextual approach will favor confident degrees
of membership for a region’s concept in conjunction to non-confident or misleading
degrees of membership. It will amplify their differences, while on the other hand it
will diminish confidence in clearly misleading concepts for a specific region. Further,
based on the supplied ontological knowledge it will clarify and solve ambiguities in
cases of similar concepts or difficult-to-analyze regions.

Key point in this approach remains the definition of a meaningful normalization
parameter np. When re-evaluating this value, the ideal np is always defined with re-
spect to the particular domain of knowledge and is the one that quantifies its semantic
correlation to the domain. Application of a series of experiments on a training set of
images for every application domain results in the definition of a np corresponding
to the best overall evaluation score values for each domain. Thus, the proposed algo-
rithm readjusts in a meaningful manner the initial degrees of membership, utilizing
semantics in the form of the contextual information that resides in the constructed
“fuzzified”ontology.

5 Constraint Reasoning to Eliminate Ambiguities in Labelled
Images

5.1 Constraint Satisfaction Problems

Informally, a constraint satisfaction problem (CSP) consists of a number of variables
and a number of constraints. A variable is defined by its domain, i.e. the set of val-
ues that can be assigned to the variable, and a constraint relates several variables and
thereby restricts the legal assignments of values to each of the involved variables. Con-
straint Reasoning is the process of computing a solution to the given CSP, i.e. an as-
signment of values to the variables that satisfy all the given constraints on the variable.

In Fig. 5 a simple CSP is depicted, containing three variables x, y, and z and three
constraints. The domains of x, y and z are D(x) = {1, 2, 3}, D(y) = {2, 3, 4} and
D(z) = {2, 3}. The constraints are x = y, x = z and y = z, so that in a solution to
the problem, the values of x, y and z must be equal.



Formally, a CSP consists of a set of variables V = {v1, . . . , vk} and a set of
constraints C = {c1, . . . , cl}. Each variable vi has an associated domain D(vi) =
{l1, . . . , lm}, which contains all values that can be assigned to vi. Each constraint cj

is a relation on the domains of a set of variables, v1, . . . , vr ∈ V , such that a constraint
cj is defined as cj ⊆ D(v1)× · · ·×D(vr). The constraint is said to be solved, iff both
and cj = D(v1) × · · · × D(vr) and cj is non-empty. A CSP is solved, iff both all of
its constraints are solved and no domain is empty, and failed, iff it contains either an
empty domain or an empty constraint.

A variety of techniques have been proposed to solve constraint satisfaction prob-
lem, and they are usually collected under the name Constraint Reasoning. One can
distinguish between two major types of solving techniques: consistency techniques
and search methods. Consistency techniques try to simplify subproblems of a given
CSP. However, a CSP that is locally consistent, i.e. where each relevant subproblem is
consistent, is not necessarily (and in fact usually not) globally consistent. As an exam-
ple consider arc consistency. Arc consistency only considers one constraint at a time.
The constraint is said to be arc consistent, if for each assignment of a domain value to
a variable of the constraint, assignments to all other related variables exist, that satisfy
the constraint. This variable is said to have support in the other domains. A CSP is arc
consistent if each of it’s constraints are arc consistent.

Now, in the example of Fig. 5, the domain of x, y and z would all be reduced to
{2, 3} by an arc consistency algorithm. One can easily verify this, since an assignment
of 1 to x would in every case violate the constraint x = y, since 1 is not a member
of D(y), and the same is true for an assignment y = 4, which neither has support in
D(x), nor in D(z).

Local consistency can remove values from the domains of variables that will never
take part in a solution. This can already be useful in some scenarios, but usually one
searches for a concrete solution to a given CSP, i.e an unique assignment of values
to variables that satisfy all the given constraints. As we can see from the example,
an arc consistent CSP does not provide this solution directly. Obviously, assigning an
arbitrary value from the remaining domains will not yield a valid solution. For instance,
the assignment x = 2, y = 2, z = 3 only uses values from the arc consistent domains,
but it is not a solution.

Therefore, in order to compute a concrete solution, search techniques are em-
ployed, such as backtracking. Often local consistency checks and search are integrated
in hybrid algorithms, that prune the search space during search using local consistency
notions and thus perform better. However, solving CSPs efficiently is highly problem
specific, and a method that performs well for a specific problem, might have a much
worse performance in another problem.

We will not further elaborate on local consistency notions and search techniques,
since they are out of the scope of the paper. We assume that standard methods are
employed to solve the constraint satisfaction problems we generate and that runtime
performance is of lower priority. In general a good introduction to constraint reason-
ing is given in (Apt 2003). An overview of recent research in the field of constraint
reasoning can be found in the survey presented in (Bartak 1999).



5.2 Image Labelling as a Constraint Satisfaction Problem

In order to disambiguate the region labels using a constraint reasoning approach, we
have to

1. represent the employed knowledge as constraints, and
2. transform a segmented image into a CSP.

As we already mentioned in Section 3, spatial relations provide an important means to
interpret images and to disambiguate region labels. Although heuristic, they give very
valuable hints on what kind of object is depicted in a specific location. So, one would
never expect a car depicted in the sky, or in the context of our framework, one would
not expect the sky to be depicted below the sea in a beach image. Obviously, in order
to use spatial knowledge for this kind of multimedia reasoning, the core elements are
the spatial relations between the regions and the knowledge about the expected spatial
arrangements of objects (i.e. labels) in a given domain.

It is obvious that, projected on the terminology of CSPs, the regions will become
variables of the resulting CSP, and that the spatial relations will be modelled as con-
straints on those variables. In the following section we will first discuss how to define
spatial constraints, and then, in the subsequent section, introduce the transformation of
a initially labelled image into a CSP.

Spatial Constraints

The purpose of a spatial constraint is to reduce the number of labellings for a number
of segments that are arranged in a specific spatial relationship. In other words, if a
segment is above another segment, we want to make sure, that the lower segment only
gets the label Sky if the upper one has a compatible label, such as Sky or Cloud. We
will therefore define for each spatial relation that we want to consider a corresponding
spatial constraint type that encodes the valid labellings as tuples of allowed labels.
We will also call this set of tuples the domain of the constraint type. The concrete
spatial constraint that is instantiated between a set of variables will then be formed
by the intersection of the constraint type domain and the cross-product of the relevant
variable domains.

Let SR now be the set of spatial relations under consideration and r t ∈ SR be a
spatial relation of type t. Further, O is the set of all possible labels of a given applica-
tion domain. We then define the domain of a spatial constraint type t to be D(t) ⊆ O n,
with n being the arity of the spatial relation. Obviously, each tuple in the domain of the
constraint type, is supposed to be a valid arrangement of labels for the spatial relation
of type t.

Now, let V := {v1, . . . , vn} be a set of variables related by a spatial relation rt ∈
SR, and D(t) the corresponding domain for the spatial relation. A constraint c t

V of
type t on the set of variables V is now defined as ct

V := D(t)∩(D(v1)×· · ·×D(vn)).
Apparently, ct

V now is a relation on the variable domains containing only those tuples
that are allowed for the spatial relation rt.



Transformation

In order to describe the transformation of an initially segmented and labelled image,
we will shortly introduce some formal notions. Let a labelled image be a tuple I =
(S, SR), where S is the set of segments produced by the initial segmentation and SR is
the set of spatial relations extracted by the spatial extraction module. For each segment
s ∈ S the hypothesis set of initial labels is denoted as ls(s). The set of all possible
labels is named O and ls(s) ∈ O must hold. Each spatial relationship r t ∈ SR is of
type t and has an associated domain of D(t).

Transforming a labelled image into a CSP is now a straight forward process. For
each segment a variable is created and a corresponding constraint is added for each spa-
tial relation extracted. Obviously, the hypotheses sets become the domains of the vari-
ables. Currently we only consider two types of spatial relations: relative and absolute.
Relative spatial relations are binary and derived from spatial relations that describe
the relative position of one segment with respect to another one, such as contained-
in or above-of. Absolute spatial constraints are derived from the absolute positions of
segments on the image, like above-all and which are apparently unary constraints.

Let I = (S, SR) be an labelled image as introduced above, then the algorithm to
transform I into a corresponding CSP is as follows:

1. For each segment s ∈ S create a variable vs.
2. Set for newly created variable vs the domain to D(vs) = ls(s).
3. Let SR be the set of all spatial relations defined in the domain knowledge, then

a) add for each spatial relation rt ∈ SR between a number of segments
s1, . . . , sn ∈ S a constraint ct

{v1,...,vn} to the CSP, where v1, . . . , vn are the
variables created from s1, . . . , sn.

The result is a CSP conforming to what was introduced in Section 5.1. Standard
constraint reasoning techniques can be used to solve the CSP, and because of the finite-
ness of the problem, all solutions can be computed. The latter property is quite useful,
since the degree of confidence produced during the initial labelling, which is currently
not employed during the constraint reasoning directly, can afterwards be used to rank
the solutions according to the labels degrees. If only one solution would be computed,
one would have to accept the first one found.

An example is depicted in Fig. 6, where the input image, the initial set of hypothe-
ses, the corresponding initial labelling, and the labelling after the constraint reasoning
application are depicted. We note that for the initial labelling, the labels with the high-
est score are kept for each segment. It is easy to see that two errors were made by
the segment classification. The topmost segment was labelled as Sea instead of Sky
and one of the small segments within the sand regions was labelled with Sea. After
applying the constraint reasoning both erroneous labels have been corrected. For the
topmost segment the absolute spatial relation above-all restricts the segment to the la-
bel Sky and the second wrong label was corrected using the contained-in constraint
that does not allow a Sand segment to contain a Sea segment.



Input Image Initial Hypothesis

Initial Labelling Labelling after CSP

Fig. 6. Example of CSP application.

6 Experimental Results and Evaluation

In this section we present experimental results with respect to the enhancement
achieved by the application of the proposed context analysis and constraint reason-
ing modules. For the experimentation, a set of 150 images from the beach domain has
been assembled, 30 of which were used as the training set for estimating the parameter
values required for context analysis. The resulting 120 images have first undergone
the analysis steps presented in Section 3.2 in order to obtain the corresponding ini-
tial labellings. For each image region, the label with the highest degree of confidence
from the respective hypotheses set is kept as the analysis output. In the sequel, the two
modules have been applied. The context analysis module, exploiting the domain con-
cepts associations and the information extracted through training, re-adjust the degrees
of confidences towards more meaningful values. The constraint reasoner in the other
hand applies its rules on the initial set of labels for each region resulting in the removal
of those that were not consistent with the domain spatial topology. Again, to obtain the
labelling generated by each module, the label with the highest degree are kept for each
region respectively.

To overcome the difficulties and cost in defining generally accepted pre-annotated
segmentation masks and avoid getting into segmentation evaluation process, a grid-
based evaluation approach has been followed. This choice is justified by the given
evaluation context as well, since, contrary to applications that require very accurate
object boundaries detection, it allows certain tolerance for this kind of inaccuracies.

More specifically, in the proposed evaluation framework, ground truth construction
and comparison against the examined annotations are both performed at block level.
The grid size is selected with respect to the desired degree of evaluation precision: the



Table 2. Evaluation results for the beach domain

Analysis Context CSP
Concept Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Sky 0.77 0.69 0.73 0.85 0.69 0.76 0.78 0.91 0.84
Sea 0.66 0.59 0.62 0.64 0.67 0.65 0.73 0.53 0.62

Sand 0.75 0.94 0.84 0.81 0.94 0.87 0.85 0.97 0.90
Person 0.33 0.65 0.43 0.41 0.70 0.51 0.38 0.62 0.47

smaller the blocks size the increased the accuracy attained. To evaluate an annotation,
the corresponding annotated mask is partitioned according to the selected grid size and
the annotations within each block are compared to the ground truth ones.

To quantify the performance, we adopted the precision and recall metrics from the
information retrieval (IR) field. For each domain concept precision (p) defines the pro-
portion of correctly annotated segments cf over all the number of segments annotated
with that concept f, while recall (r) is the proportion of correctly annotated segments
over the number of segments depicting that concept in reality c. To determine the over-
all performance per concept, all c, f and cf for each of the respective concepts are
added up, and using the above formulas, overall precision and recall values are calcu-
lated. Additionally, the F-measure was used to obtain a single metric. The F-measure
is the harmonic mean of precision and recall, i.e., F = 2pr/(p + r)) and contrary
to arithmetic mean it gets large only if both precision and recall are large. In case a
concept was not depicted in an image at all, all three values are set to 0, so that they do
not influence the overall computation.

In the current experimentation, four concepts have been considered, namely Sky,
Sea, Sand and Person. In Table 2 the precision, recall and F-measure are given for the
examined test images with respect to sole analysis, and the application of the proposed
context and constraint reasoning approaches respectively. From the obtained results,
one easily notes that almost in all cases precision and recall improve. The actual per-
centage of the gained performance improvement differs with respect to the concept
considered, as each concept bears less or more semantic information. For example,
the lower improvement is observed with respect to the concept Person, as due to over-
and under-segmentation phenomena and the effects from the transition from 2D to 3D
region depicting a Person may appear almost in any topological arrangement with re-
spect to the rest of the domain concepts considered. Similar for its visual context of
appearance, with respect of course to the examined domain.

7 Conclusions and further discussions

In this chapter we have proposed an ontology-based framework for semantic image
analysis through the refinement of initially produced labellings by means of explicit
knowledge about context of appearance and spatial constraints of the examined do-
mains. Following the proposed framework one can smoothly integrate independent



analysis modules benefiting from the knowledge sharing facilities provided by the use
of ontologies and from the sole dependency of context analysis and constraint rea-
soning from the available knowledge that decouples them from the actual analysis.
Consequently, the main contributions of the proposed framework summarize in the
following: i) the introduction of context of appearance information in a formal onto-
logical way, and ii) the adoption of a constraint problem solving methodology within
the image labelling domain, and iii) the applicability and extensibility of the presented
framework to a variety of image analysis applications.

Future directions include further investigation of the proposed framework using
more concepts, thereby making available additional knowledge, i.e., more spatial con-
strains and contextual associations. Similarly experimentation with alternative analysis
modules or their combination would provide useful and concrete insight into the pro-
posed framework contribution in real applications scenarios.
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