
2

Deep Neural Network Attacks
and Defense: The Case of

Image Classification

Hanwei ZHANG, Teddy FURON,
Laurent AMSALEG and Yannis AVRITHIS
IRISA, University of Rennes, Inria, CNRS, France

Machine learning using deep neural networks applied to image recognition works

extremely well. However, it is possible to modify the images very slightly and

intentionally, with modifications almost invisible to the eye, to deceive the

classification system into misclassifying such content into the incorrect visual

category. This chapter provides an overview of these intentional attacks, as well as

the defense mechanisms used to counter them.

2.1. Introduction

Deep neural networks have made it possible to automatically recognize the visual

content of images. They are very good at recognizing what is in an image and

categorizing its content into predefined visual categories. The vast diversity of the

many images that are used to train a deep network allows it to recognize visual

content with a high degree of accuracy and a certain capacity for generalization.

From thousands of examples of images of animals, manufactured objects, places,

For a color version of all figures in this chapter, see www.iste.co.uk/puech/multimedia1.zip.

Multimedia Security 1,

coordinated by William PUECH. © ISTE Ltd 2022.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



42 Multimedia Security 1

people, elements of flora, etc., a deep neural network can almost certainly detect that

an unknown image shows a dog, a cat, an airplane.

However, it is possible to intentionally modify these images so that the network is

completely wrong in its classification. These modifications are made by an attacker

whose goal is to deceive the classification, for example to pass off inappropriate

content (child pornography) as something perfectly harmless. The big surprise is that

these modifications are very small and are almost imperceptible to our eyes. These

attacks take advantage of a certain vulnerability of deep networks, which can be quite

easy to fool, as we will show in this chapter.

Passing off one piece of visual content for another is very problematic. Putting

small pieces of paper of a particular shape and color in certain places on road signs

prevents their automatic recognition by dashboard cameras in autonomous vehicles.

Wearing a medallion decorated with a particular texture on clothing can make a person

invisible to an algorithm detecting the presence of pedestrians. The examples multiply,

and are sometimes funny, sometimes disturbing and sometimes dangerous when the

decisions of the network puts lives at stake.

Adversarial images that are capable of deceiving classifiers are defined in

section 2.2, and an overview of attacks intended to deceive a classifier whose

technology is based on deep neural networks is provided in section 2.3. In response,

many studies propose defenses, and section 2.4 aims to present them.

We will begin this chapter with a short presentation of the history of the field,

and the vocabulary that we will be using. We will also present the main features of

machine learning and image classification by deep neural networks.

2.1.1. A bit of history and vocabulary

This chapter deals with the vulnerabilities of deep neural networks, but in fact all
machine learning algorithms have flaws and are vulnerable to intentional attacks. It

was while researchers were working on automatic email classification in an attempt to

separate spam from real messages that the first flaws were revealed. It was the work

of Dalvi and his colleagues, and also Lowd and Meek in 2004, that showed that it

was possible to deceive a linear classifier trained to detect spam (Dalvi et al. 2004;

Lowd and Meek 2005). At that time, deep networks did not exist, and the techniques

to choose from for machine learning processes relied on classifiers based on support-

vector machines in particular.

Ten years later, the adversarial machine learning sector is gaining momentum,

because at the moment the incredible power of deep networks is being revealed, but

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 43

at the same time they are very vulnerable. Around 2014, researchers were working on

making images that could deceive a classifier based on a deep neural network. These

images are called “adversarial images”.

Therefore, adversarial images are images that have been manipulated so that the

network that classifies them is mistaken and assigns these images to an erroneous

class. For example, if a image of a cat is shown, the network responds that this image

is of an airplane. However, manipulation is almost invisible and by looking at the

manipulated image, it looks exactly like a cat. The network itself is very confident in

its decision that it is an airplane. Figure 2.1 illustrates this, where the American flag,

when altered intentionally, is recognized as a vending machine, or even a sandal.

(a) (b) (c)

(d) (e)

Figure 2.1. The original image and adversarial images; the
manipulations are almost invisible, the classification is incorrect

COMMENT ON FIGURE 2.1.– (a) The original image, classified correctly as a flag.
(b) An adversarial image, created using the C&W method, classified as a vending
machine by the network. (c) An adversarial image, created using the PGD2 method,
classified as a sandal by the network. (d) Distortion (greatly amplified to make it more
visible) exists in image (b) and is created using C&W, making the original adversarial
image. (e) Highly amplified distortion existing in image (c) and created using PGD2,
making the original adversarial image.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



44 Multimedia Security 1

Historically, one of the first studies into the many facets of vulnerability in

learning algorithms was carried out by Barreno et al. (2006). In this seminal article,

they discuss the vulnerability of artificial learning algorithms during the learning

phases (they discuss poisoning) and the test phases (they discuss evasion), they

distinguish between targeted attacks and non-targeted attacks, propose techniques for

evaluating the power of these attacks and mention some defense mechanisms to

avoid them. They also differentiate vulnerabilities according to the knowledge an

attacker may have of the system they want to deceive, distinguishing “white box

attacks” from “black box attacks”. We will come back to these terms in section 2.3.

A very good historical perspective can be found in the article by Biggio and Roli

(2018). Some excellent recent and complete developments are suggested by Serban

and Poll (2018). We recommend reading these two publications.

2.1.2. Machine learning

Machine learning is part of the artificial intelligence field. Machine learning is an

interdisciplinary field, with a mix of applied mathematics, statistics and algorithmics.

It enables a computer to perform a task based on the careful examination of

representative data. The set of rules that the machine must follow in order to perform

a task is often either impossible to list “manually” because it is too complex

(automatic translation for example), or defined, but leads to an exponential

combination of behaviors given all possible input data (chess, go). Machine learning

is specifically based on the analysis of huge amounts of data to estimate a model for

performing the task. The more data and the more diverse the data, the better the

model and the automatic fulfillment of the target task.

Machine learning has two phases. The learning or training phase first learns a

model from a set of training data. The second phase applies the learned model to

new data and therefore carries out the task. Sometimes, learning and application are

intertwined in an effort to continuously improve the quality of the model.

The nature of the information available during the learning phase determines two

types of approaches. Supervised learning uses data-label pairs, with the label being

the responses we want the task to produce for each data item. It is then a question

of classification of the data when the labels have discrete or categorical values, or of

regression if they are continuous. On the other hand, non-supervised learning does

not have labels. Since it is not always possible to label the large amounts of data,

intermediate approaches have been designed where the degree of supervision is more

or less high. There are so-called semi-supervised (the data are not all labeled), or

even partially supervised (only some of the labels relevant to given data are provided)

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 45

approaches. There are also other forms of learning, such as reinforcement learning

and transfer learning, but we will not go into them in detail here.

The fields of application are extremely varied, as are the tasks to be carried out:

classification tasks, recognition tasks, translation tasks, grouping tasks, analysis tasks

and prediction tasks; the list is almost endless. Learning applies to data of very

different natures: symbolic, digital data, data of a continuous or discrete nature,

graphs, trees, feature vectors, including images, sounds, texts and time series for

example.

In this chapter, we focus on a specific type of data and the particular task of

classifying images into predefined visual categories. The labels are associated with

images, for example, airplane, boat, car, table, chair, building, person, dog, cat, ball,

cutlery, daisy or tomato. We now consider a supervised learning environment. Once

the model has been learned, it is a question of classifying new unknown images,

without labels, into the right visual category or categories as best as possible.

Any machine learning process is built on a few fundamental concepts, whether

technical or theoretical, that we will detail in this section. First is the concept of an

objective function. This very generic term designates a function that reflects the

performance of the model; in other words, its ability to perform the intended task.

The training optimizes the parameters of the model in order to gradually maximize

the objective function. This function is often a decreasing function of a global error

linked to the incomplete performance of the task. The opposite of a mean squared

error or a cross-entropy are two classic examples of objective functions. These

functions are continuous with respect to the parameters of the model and make it

possible to detect whether or not a small modification of the parameters improves the

performance of the task.

The improvement of the learning is achieved by a gradual adjustment of the

parameters of the model, so that the new values of these parameters increase the

quality of the model observed through the objective function. Therefore, an

optimization process is at work which, we hope, will find the optimum parameters

without making the search for them too costly. The adjustment consists of a better

positioning of a hyper-plane separating two families of data, for example.

After optimization, the learned model works well on the data used in training,

which is normal. However, it is important that this model has generalization

capabilities, so that, it can correctly process new and unknown data. Sometimes,

when the model over-fits, it has little or no generalization capabilities. This must be

avoided, so techniques such as cross-validation, regularization or random pruning

could be used.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



46 Multimedia Security 1

2.1.3. The classification of images by deep neural networks

This section describes what deep neural networks are and what the image

classification task is. This section only provides an overview of these concepts and

only presents the most important ones. We invite the reader to study the work by

Goodfellow et al. (2016), which presents these concepts in much more detail and

precision. In addition, this section introduces the mathematical notations needed to

describe attacks and defenses later on.

In the red, green and blue color space, an image I of L lines and C columns is

represented by a three-dimensional table in space {0,1, . . . ,255}3×L×C. The pixels

are integers between 0 and 255 (if coded on one byte). The output of the classifier

is a class, that is, categorical data. The k possible categories (for example, airplanes,

boats, cars, tables, chairs, buildings, people, dogs, cats) are ordered arbitrarily and the

output of the classifier is an integer between 1 and k, denoted by �̂.

The image classifying deep neural network here is schematically broken down into

three levels. The first layer performs preprocessing that adapts the input image to the

neural network. It often includes a sub-sampling of the image to a given size r × r
(typically 224 × 224), and mainly reduces the dynamics of the pixels to the range [0, 1]
(a historical choice, but other choices are possible, like, for example reducing toward

[−1, 1]). This can be done by dividing the pixel value by 255. More sophisticated

transfer functions, which are sometimes different from one color channel to another,

are also used. The output of this preprocessing is x = T(I), traditionally noted as a

column vector at m = 3× r × r components in [0, 1]m.

The second layer is the neural network. A neuron is a small automaton that

combines the data it receives from other neurons, and produces a value which is then

transmitted to one or more neurons, which will each combine that value with the

values received from other neurons and so on, which makes up an overall network.

Neurons are often organized in layers, connected to each other, and it is the great

multiplication of these layers that gives the term “deep”. For example, there are

networks made up of hundreds of interconnected layers, each made up of thousands

of artificial neurons.

Therefore, a neuron is a small automaton that first operates a linear combination

of the values received (from other neurons, for example), which are weighted by

synaptic weights, and then added up. The value produced is then passed to an

activation function, also called a thresholding function. Such functions introduce

nonlinearity into the behavior of the neuron, which is essential. Sigmoid activation

functions, hyperbolic tangent function, or Rectified Linear Unit (ReLU)-based

functions are often used. These nonlinear functions are continuous, non-decreasing

and are almost universally differentiable.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 47

The output of the neural network is a real vector at k components called the logit

vector: z = R(x,θ) ∈ Rk. The larger z(j), the jth logit, is, the more likely the input

data x belongs to class j. The θ symbol is a “catch-all” parameter, representing the

set of synaptic weights (of all neurons in all layers).

The third layer translates the logits into a probability vector p ∈ [0, 1]k s.t.∑k
j=1 p(k) = 1. The value p(j) is the probability that the input image is of class j.

This translation is done with the function softmax, p = S(z), defined by,

∀ 1 ≤ j ≤ k:

p(j) =
ez(j)∑k
i=1 e

z(i)
[2.1]

It is the gradual adjustment of the synaptic weights θ, parameters of the function

R(·), which forms the core of supervised learning, the first and the last layer being

non-parametric. These weights are gradually adjusted so that the final value produced

at the output of the classifier ultimately corresponds to the label associated with the

input data.

The network is used in propagation mode when the input data gradually passes

through it, and the network eventually produces the probability vector p. The error

between the output p and what should have been produced is measured. For a label �
associated with the input x, the output is ideally a probability vector p�

� where

p�� (j)= 1 and where the other components of this vector are zero. The cross-entropy

h(p,p�
� ) is a metric quantifying how p is different to p�. The loss for the input x of

the label � is the number L(x, �,θ) = h(S(R(x,θ)),p�
� ).

Backpropogation consists of tracing the error made by a neuron back through the

network, from downstream to upstream, to its synapses and therefore to the upstream

neurons. The gradient of the cross-entropy is calculated like this. This is greatly

simplified by a chain calculus because the network is a composition of functions or

layers. Therefore, the set of these weights θ is updated iteratively by a gradient

descent algorithm to decrease the cross-entropy. At iteration i:

θ(i+1) = θ(i) − η∇θL(xj(i), �j(i),θ) [2.2]

where {xj(i), �j(i)} corresponds to training data drawn at random at the ith iteration

of the stochastic descent gradient and η > 0 is the learning rate.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



48 Multimedia Security 1

It is this constant back and forth between propagation (calculated from

S(R(x,θ))) and backpropagation (calculated from ∇θh(S(R(x,θ)),p�
� )), which

ensures the convergence of the learning toward local minimum weights θ of the

cross-entropy calculated on the training datasets.

Once the learning is over, the test phase can start. During that phase, unknown data

is checked against the model, which eventually produces a probability vector p. The

class predicted for the tested data is the one associated with the greatest probability

observed in p, that is:

�̂ = f(x) := arg max
1≤i≤k

p(i) [2.3]

2.1.4. Deep Dreams

A loss L(x, �,θ) is a continuous function with respect to parameters θ of the

network, but also to the input data x. In equation [2.2], it is its gradient with respect

to θ that appears. What does the opposite of the gradient mean, with respect to x,

−∇xL(x, �,θ)? It is a three-dimensional table with the same dimension as x, which

indicates what tiny modification should be made to x to reduce the loss, that is, so

that the input data is even better classified as belonging to the category �.

This idea is at the root of Deep Dreams (Tual and Coutagne 2015; Wikipedia

2020), the psychedelic images, which are shown in Figure 2.2. They were built by

increasing the structures recognized by a network in a given image and show us what

allows it to predict the category �.

These images where the recognized structures are amplified excessively are now

part of the folklore of deep convolutional networks. However, this idea of calculating a

gradient rather than a variable x is largely used to visually understand and interpret the

decisions of neural networks. References in this field include the papers by Yosinski

et al. (2015) and Simonyan et al. (2014).

This raises questions about the quantity +∇xL(x, �,θ). Added to the variable x,

it decreases the probability p(�): this perturbation erases the typical structures of the

class � and the resulting image is not as well recognized as being in class �. In the

same way, a perturbation −∇xL(x, �′,θ) with �′ �= � increases the probability that

the image is in class �′, which can lead to a wrong classification. This is, in fact, the

basic idea for generating white box adversarial images.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 49

↓

Figure 2.2. Illustration of the Deep Dreams process applied
to the original image (a) (source: (Wikipedia 2020))

2.2. Adversarial images: definition

Let f : Rm → {1, · · · , k} be a classifier mapping a vector of pixels (forming an

image) to a discrete label, giving the class that this vector belongs to, among k possible

classes. For an image x ∈ Rm and a target label � ∈ {1, · · · , k}, an adversarial

perturbation r is produced by resolving the following optimization problem:

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



50 Multimedia Security 1

min ‖r‖p
such that f(x+ r) = �

(x+ r) is an image

[2.4]

This equation fits with targeted and non-targeted attacks, as well as white box or

black box attacks.

Targeted attacks are those where the attacker wants to see the attacked image

classified exactly in the category � (e.g. the attacker wants an image of a dog to be

classified as an image of a cat). Non-targeted attacks are those where the attacker

wants an attacked image x + r to be classified in whichever class, as long as � is

different from the class f(x) that it belongs to (e.g. the attacker wants an image of a

dog to be classified as anything, except a dog).

White box attacks consider the scenario where the attacker knows everything about

the classifier network. They can thus imitate it in their garage, assemble it and test

an attack, then once operational, they can deploy it. Black box attacks consider the

opposite, that the attacker does not know the network details. On the contrary, they

have a model of the classifier in their garage. They cannot “open” it and see how it

works, but they can use it as an oracle; in other words, submit images to it and observe

its predictions as many times as they want to. Certain articles consider “gray boxes”,

that is, contexts where the attacker only has partial knowledge of the network. We will

come back to all of this later in section 2.3.2.

Equation [2.4] contains a distortion term to be minimized. It is frequently the

magnitude of the distortion that is measured, often according to the norm

L2, L1, L∞ (Goodfellow et al. 2014a; Carlini and Wagner 2017), since they are quite

intuitive, and, when the measure gives a very weak distortion, it is then often almost

invisible to the eye. However, these metrics do not reflect our perception of images

and small distortions can sometimes be very visible. Also, it is clear that we want to

measure the distortion according to another metric, rather than one based on the way

our visual system works from a neurological and psychological point of view (Wang

et al. 2004; Sharif et al. 2018; Fezza et al. 2019). Unfortunately, this metric is much

more complex to calculate. Therefore, the Lp norms are often favored in practice.

Equation [2.4] defines adversial images via an optimization problem. The attack

is the process implemented to find the solution to this problem. The variable x
existing in a space of a very large dimension m. Finding this solution is difficult

since the function f(·) has no explicit form. It is likely that an attack actually finds an

approximate solution; in other words, it finds a perturbation r of greater distortion

than the bare minimum, given by the solution of equation [2.4]. So a first criterion to
evaluate the quality of an attack is the distortion it produces.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 51

A second criterion is given by the second line of equation [2.4]. An attack achieves

its goal (targeted or non-targeted) if f(x + r) = �. But this problem is so difficult to

resolve that an attack can sometimes fail, failing to produce an adversial image (x+r).
So the second criterion to evaluate the quality of an attack is the probability of its
success.

These two criteria are deeply linked by a trade-off. It is easy to develop an attack

that always succeeds: this attack replaces x by a whole other image x′, whose

predicted class is �, but the distortion ‖x′ − x‖p is huge and is clearly visible to the

naked eye. It is easy to develop a zero distortion attack: it is the attack which uses the

untouched x, but the probability of success is zero (unless x is immediately

misclassified by the network). These two extreme attacks are pointless, but they

illustrate this trade-off. The probability of success is an increasing function of

distortion.

The third criterion is the complexity of the algorithm, measured by its memory

consumption or by the required computation time. The algorithms listed below are

often iterative, and counting the number of iterations that are needed to make an

adversarial image of good visual quality is a valuable indicator. The lower the

complexity, the faster the attack, but then the probability of success is often very low

or the distortion is very high.

Before presenting different algorithms attacking networks by producing

adversarial images, let us come back to the last term of equation [2.4]. It is said that

(x+ r) is an image. Let us see what this means and what it involves.

This definition, which is based on x = T(I) and not on image I, is historical. It

reflects the fact that the community working on computer vision and those working on

neural networks are not interested in the preprocessing layer because there is nothing

to learn or train. So the condition (x + r) is an image simply means that x + r ∈
[0, 1]m, just like x. It would be possible to come to a “real” digital image (with values

of pixels between 0 and 255) by simply applying the inverse preprocessing T−1(·).
In reality, from our point of view, things are not that simple. We have described

the preprocessing as being part of the classifier. So x is an internal variable that the

classifier does not have access to. However, the aim of the attacker is to attack the input

image I, and not x. In addition, the method of first finding x + r, and then applying

the inverse preprocessing to form an image is sometimes not possible, because there

is no such image such that its preprocessing gives x + r. We will come back to this

later in this chapter.

2.3. Attacks: making adversarial images

This section gives a quick overview of techniques used to produce adversarial

images. We are not exhaustive, we will describe attacks which are, in a way, exemplary

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



52 Multimedia Security 1

of what the literature offers, very vast literature that is rapidly expanding. All of the

techniques presented here are based on equation [2.4], which they enrich in a number

of ways.

We mainly describe the case where the network is perfectly known to the attacker

(white box attack) and the attacks are not targeted (untargetted attacks). We will extend

this framework at a later stage.

2.3.1. About white box

2.3.1.1. The attacker’s objective function
In this scenario, the attacker has access to the probability vector p, calculated by

the network. With the original image being from class �g, the vector p must move

away from p�
�g

(the image is less recognized as being from class �g). In an attack

targeting the class �, p must get closer to p�
� . Like supervised learning, the attacker

also works with an objective function defined via cross-entropy:

J (x, �) = h(p,p�
� )− h(p,p�

�g ) [2.5]

= log(p(�g))− log(p(�)) [2.6]

Decreasing the objective function amounts to increasing the predicted probability

for the class � and decreasing that of the original class �g. Note that a perturbation

makes the image adversarial if J (x+ r, �) < 0.

The definition of the objective function is more difficult for non-targeted attacks.

Decreasing only h(p,p�
�g
) is not enough. The first trick is to target the most probable

class, other than �g. Hence an objective function:

J (x) = log(p(�g))−max
� �=�g

log(p(�)) [2.7]

There are other objective functions in the literature. We will see, for example, the

DeepFool attack, which detects that a predicted high probability class is not

necessarily an easier class to reach.

2.3.1.2. Two big families
The core of equation [2.4] is formed by minimizing a distortion and successfully

deceiving the system. Also, the algorithms producing adversarial images are divided

into two families, according to whether they set themselves the objective of never

exceeding a distortion whose maximum value is specified, or the objective of

succeeding in producing adversarial images that will all be able to deceive the

system, without limiting the distortion (although the minimum is sought). Let us

characterize these two families before listing the algorithms.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 53

2.3.1.2.1. Distortion objective
All of the algorithms producing adversarial images included in this family aim

to maximize the probability of success while not exceeding a fixed distortion. This

distortion is not necessarily an explicit parameter of the attack, but it is determined by

some of its parameters. This is generally expressed by:

min J (x+ r)

such that ‖r‖p ≤ ε
[2.8]

where J is the lossy function of the attacker and ε is the maximum distortion allowed.

The performance of this type of attack is measured by their probability of success

Psuc = P(f(x + r) �= �g), which of course depends on the value given to ε. If the

attack does not succeed for a given value of ε, then this value can be increased and the

algorithm starts again with this new, larger ε. Note that the ε, having finally made it

possible to create an adversarial image, is not necessarily minimal.

2.3.1.2.2. Success target
In this family, algorithms aim for success and always produce an adversarial image

at the cost of arbitrary, but minimal, distortion. This is expressed by:

min ‖r‖p
such that J (x+ r) < 0

[2.9]

It is the minimum distortion expectation that characterizes the performance of

these algorithms once the network is fooled.

These two families of attacks use a development limited to the first order of the

objective function as a basic principle:

J (x+ r) = J (x) + r�∇xJ (x) + o(‖r‖) [2.10]

The distortions r which decrease the objective function are therefore positioned

toward the opposite of the gradient −∇xJ (x). This approximation, being local, is

only valid for the distortions of low amplitude.

From the value of the objective function, a backpropagation process is initiated,

which goes back to the vector representing the image while keeping the synaptic

weights unchanged. Then, it is this vector that modifies the original image so that the

system is eventually fooled. The perturbation is, therefore, a function of the gradient.

It is worth noting that because of auto-differentiation (Goodfellow et al. 2016), the

calculation of the gradient is automatic. On the other hand, the complexity of this

calculation is just double that of the propagation. Let us now list the main algorithms

belonging to these two families.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



54 Multimedia Security 1

2.3.1.3. Distortion objective: main attacks

2.3.1.3.1. FGSM

The first algorithm that uses the gradient to create a perturbation and produces an

adversarial image is the one proposed by Goodfellow et al. (2014a). It is FGSM, which

stands for the Fast Gradient Sign Method. This method is very simple and depends on

a perturbation calculated as:

y = x+ r = x− ε sign∇xJ (x) [2.11]

It is this perturbation that minimizes the objective function to the first order for the

constraint ‖r‖∞ = ε.

The characteristic elements of attacks whose objective is distortion are found here

(see equation [2.8]). By studying the gradient of the objective function J , and by

calculating the opposite, it is then possible to determine how to modify the vector at

the input of the network to decrease J and hopefully lead to its misclassification.

The value of ε controls the maximum distortion allowed. This method is very simple

and very quickly creates adversarial images that can sometimes mislead the classifier.

However, it is a bit rough, since it only uses one observation of the gradient to

determine which perturbation to apply.

2.3.1.3.2. I-FGSM

It is simple to refine FGSM by having it observe the gradient multiple times as

the perturbation is created. So I-FGSM (Kurakin et al. 2016) is the iterative version

of FGSM. Contrary to what equation [2.11] allows, the perturbation is not directly

calculated. I-FGSM initializes y0 := x and then iterates by increasing the inverse of

the gradient each time by α. The recurrence is therefore:

yi+1 := projB∞[x;ε](yi − α sign∇xJ (yi)) [2.12]

where projA is the estimation on the region A (in the minimum sense of the Euclidean

space) followed by a term-to-term threshold to stay in the Hypercube [0, 1].

Here, the region A is the ball B∞[x; ε] of L∞ norm, center x and radius ε > α.

Therefore, the first iterations remain inside the ball and the projection is not active,

then the iterations calculate perturbations that get out of the hyper ball and the

projection brings them back to its surface. This iterative approach is also known as

the Basic Iterative Method (BIM) (Papernot et al. 2018).

I-FGSM and BIM carry out targeted or non-targeted attacks, and it all depends on

the definition of the objective function.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 55

2.3.1.3.3. PGD2

Projected Gradient Descent is also an iterative method, but it projects the gradient

on a ball of norm L2, and not on ball of norm L∞ (Madry et al. 2017). Therefore:

yi+1 := projB2[x;ε](yi − αη(∇xJ (yi))) [2.13]

where η(x) := x/ ‖x‖, which is a normalization, according to the norm L2.

The ball L2 used for the projection is B2[x; ε], center x and radius ε. Once again,

the attack does not end when yi touches the ball B2[x; ε] for the first time. It continues

and seeks to minimize the objective function while remaining on the ball.

2.3.1.3.4. M-IFGSM

Iterative approaches progress along the gradient at a fixed pace, symbolized by

α (see equations [2.12] and [2.13]). Adjusting this value is difficult: if it is too small

the algorithms will not progress and find an adversarial image because the number of

iterations is limited; if it is too large the algorithms will progress quickly, but then the

gradient cannot be followed finely, which can create fluctuations.

Approaches such as M-IFGSM (Dong et al. 2018) incorporate a progressive

adaptation mechanism for the pace: during the first iterations, it is an advantage to

progress rapidly along the gradient. On the other hand, later, it is better to progress in

small steps to better follow the gradient and reach a local minimum.

2.3.1.4. Success goal: main attacks

Techniques in this family are typically more expensive. The discovery of a near

adversarial image is guaranteed if the complexity is not limited.

2.3.1.4.1. L-BFGS

Szegedy et al. (2013) discuss the problem of creating adversarial images using a

Lagrangian formulation. Distortion is no longer a constraint, but is integrated into the

objective function:

�(r) := J (x+ r) + λ ∗ ‖r‖2 [2.14]

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



56 Multimedia Security 1

For a given value of λ > 0, the minimization of the objective function
without constraint is carried out using the numerical method BFGS
(Broyden– Fletcher–Goldfarb–Shanno). It is an iterative gradient descent method.

A strong value for λ means that the minimum r� of the objective function is not an
adverse perturbation, because it has given too much weight to the Euclidean distortion.
On the contrary, a value that is too low gives a minimum r�, making J (x + r) very
negative and causing a big distortion. This is illustrated by Figure 2.3. Therefore, it is
necessary to do a binary search to find an adequate Lagrange multiplier. This means
that the program carrying out the attack has two layered iterative loops, which explains
its great complexity.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 2.3. Illustration of L-BFGS in 1D

COMMENT ON FIGURE 2.3.– The perturbation r is collinear with the gradient of the
objective function. The abscissa is the norm of r. The objective function J (x + r) is
given in red. It disappears and becomes negative when r is strong enough to be
adverse. The distortion ‖r‖2 is given as black dotted lines, and the function
J (x+ r) + λ ∗ ‖r‖2 is given in blue and magenta for two values of λ. The first
value is too small (in blue): the minimum is “far after” the red asterisk; the

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 57

perturbation is adverse, but of great distortion. The second value is too big (in
magenta): the minimum is before the red asterisk; the perturbation is not adverse.

2.3.1.4.2. C&W

The very well-known attack by Carlini and Wagner (2017), noted as C&W later,

follows this idea. However, it also deals with the constraint that x+ r must remain in

[0, 1]m by a change of variable replacing x + r by σ(w), where w ∈ Rn and σ(·) :
R → [0, 1] is the sigmoid function applied component by component. In addition, for

a given λ, C&W uses the numerical method Adam (Kingma and Ba 2015), to find the

minimum of an objective function in Rm:

�(w) := [J (σ(w)) + μ]+ − μλ ‖σ(w)− x‖2 [2.15]

where μ > 0 is a margin and [x]+ := x if x > 0, 0 if not.

When J (σ(w)) < −μ, the first term becomes zero and the distortion takes σ(w)
back toward x, as illustrated by Figure 2.4. This can cause fluctuations around the

margin. Again, a binary search is needed to find a good value of λ, hence great

complexity.

2.3.1.4.3. DDN

Decoupling Direction and Norm (Rony et al. 2019) is an iterative attack, very

similar to PGD2, seen here before. The formulation of DDN is:

yi+1 := projS2[x;ρi](yi + αη(∇xJ (yi))) [2.16]

Here, the projection is carried out on the sphere S2[x; ρi] of radius ρi and center x,

even though yi+1 is inside. The main difference with the PGD2 formulation given by

equation [2.13] is that the radius of this sphere changes from one iteration to another.

This radius at iteration i is obtained by calculating ρi = (1−γ)‖yi−x‖ when yi is an

adverse vector. When this is not the case, then ρi = (1+ γ)‖yi −x‖, with γ ∈ (0, 1).

2.3.1.5. Other attacks

Other attacks are in the same style, but with variations, either on the definition of

the objective function, or on the definition of the distortion. Finally, this overview of

attacks ends with the description of a few techniques that take quite different paths to

achieve their goals. They are separate because it is not easy to arrange them in one of

the two families presented above.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



58 Multimedia Security 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 2.4. Illustration of C&W in 1D. The perturbation r is collinear to the gradient

of the objective function. This is the same configuration as in Figure 2.3, except the

margin μ = 0.5 for the threshold of equation [2.15]. Notice its effect: the blue minimum

is closer to the red asterisk

Figure 2.5. Illustration, in two dimensions, of adverse attacks on a binary classifier

COMMENT ON FIGURE 2.5.– From left to right: PGD2, C&W, DDN. The regions
associated with the two classes are in red and blue. The level lines indicate the
predicted probabilities. The objective is to find an adverse point in the red area,

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 59

which is as close as possible to the starting point x. In gray (respectively black), are
the paths taken for PGD2 (Kurakin et al. 2016) (radius of the green circle) or for a
parameter λ for C&W (Carlini and Wagner 2017).

2.3.1.5.1. DeepFool

It is a non-targeted white box attack that uses a more sophisticated objective

function. In equation [2.7], a non-targeted attack uses the objective function in order

to assign the most likely class for the classifier to the adversarial image under

construction, apart from the original class �g . So, the objective function has a

positive, but low, value in x. It seems easier to make it negative.

With DeepFool, Moosavi-Dezfooli shows that this reasoning is incorrect. The ease

of making the objective function negative certainly depends on its initial value, but

also on its gradient. At the first order, according to equation [2.10], the minimum

distortion necessary in the L2 norm is achieved when r ∝ −∇xJ (x, �) with:

‖r‖ =
J (x, �)

‖∇xJ (x, �)‖ [2.17]

It is best to target the � class that requires the least distortion. This is illustrated by

Figure 2.6. But this formula is only an approximation at the first order. In addition, it

must be estimated for all (or part of) the classes, except for the original class �g.

2.3.1.5.2. ILC

The Iterative Least-likely Class (ILC) (Papernot et al. 2018) proposes another

alternative objective function. It is possible that the class assigned to the attacked

image is sometimes semantically close to the original class �g. An image of a

swallow taken for an image of a sparrow seems more insignificant to us than if this

same image of a swallow is taken for an image of a car. Thus, ILC prefers to target

the least likely class for the original image.

2.3.1.5.3. JSMA

Papernot et al. (2016b) propose a targeted attack for low distortions in norm L0.

The attack finds out which pixels play an important role in the classification. This

approach, called the Jacobian-based Saliency Map Attack (JSMA), estimates the

Jacobian matrix of the function x → p. This calculation determines which elements

of x have the most influence, not only to increase the predicted probability of the

targeted class p(�), but also to decrease the predicted probabilities of all of the other

classes.

Few pixels have this property, but modifying them is extremely effective in

deceiving the classifier. However, they must be modified with a large amplitude,

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



60 Multimedia Security 1

which produces “salt and pepper noise” in the image. This modification is often very
visible, but can pass for an error in the coding of the photo.

-3

-2

-1

0

1

2

3

Figure 2.6. Illustration of DeepFool

COMMENT ON FIGURE 2.6.– The blue and red curves correspond to the objective
function J (x, �) for two classes �1 and �2, which are different when the perturbation
r is collinear with their gradient. The abscissa corresponds to the r norm. Notice that
p(�g) = 0.8, p(�1) = 0.1, p(�2) = 0.05. As p(�1) > p(�2), it seems interesting to
target the class �1: the blue objective function starts from lower down. This is an
error because this one is canceled “later” than that of the class �2 in red. To find
out, DeepFool calculates the gradient in x, which amounts here to approaching the
objective function by its tangent in ‖r‖ = 0 (dotted).

This technique is remarkable since it is quite fascinating to note that changing the
value of a few pixels, or even a single pixel, is enough to lead to a misclassification.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 61

2.3.1.5.4. Universal attacks

Moosavi-Dezfooli et al. (2017) have shown that it is possible to create a unique

adversarial perturbation that works whatever the image proposed to the network. To do

this, they repeatedly apply the DeepFool algorithm (see section 2.3.1.5.1) to all of the

images in the training set until a particular perturbation causes the misclassification of

a large part of these images. More formally, their approach looks for the perturbation r,

bounded by ε, such that:

min ‖r‖p ≤ ε

such that Px∼Pdata
(f(x+ r) �= lg) ≥ 1− δ

[2.18]

where δ indicates the proportion of images from the training set that have become

adversarial images and belong to the sample Pdata of all of the images.

Generally, the algorithm succeeds in finding multiple adversarial samples, which

are often visually very different from each other, thus facilitating universal attacks.

2.3.1.5.5. Geometric attacks

So far, attacks change pixels’ value additively: y = x + r. They are sometimes

called value-metric attacks. Geometric attacks do not change the value of the pixels

but their position, by slight rotations and local translations. An optical flow applies

a displacement field to the pixels of the original image: the pixel at position (k, l) is

moved to position (k, l) + Δ(k, l) in the adversarial image.

Xiao et al. (2018) sought to optimize this optical flow by observing the variations

in classification probabilities. The objective function integrates J (x, �) and a part

regularizing the optical flow so that it generates small continuous movements. Again,

a BFGS-type numerical method is used. The adversarial images often seem perfect.

2.3.1.5.6. Generative Adversarial Network attacks

Generative Adversarial Networks (GAN) (Goodfellow et al. 2014b) form a class

of machine learning algorithms that learn to estimate a probability distribution from

samples submitted to them. The learned distribution forms a model that the network

can then use to generate new samples that are completely synthesized, but that will

belong to this same distribution. By consuming a very large collection of images of

the faces of existing people, a generative network can then synthesize new artificial,

but realistic, faces.

GAN are made of two distinct parts, a generator that learns the distribution and

generates a new sample, and a discriminator that estimates whether the sample it

observes comes from the generator or directly from the learning set, and then notifies

the generator. These two parts compete against each other, in that the generator tries

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



62 Multimedia Security 1

to create an artificial sample that the discriminator will not be able to distinguish from

a real sample. The discriminator, therefore, forces the generator to improve the quality

of the synthesis.

From this general idea, it then seems natural to use these GAN to produce

adversarial images. The generator creates adversarial images that nevertheless appear

normal to our eyes. Baluja and Fischer (2017), for example, trained a generator to

create images, which mislead a particular network by modifying them via a residual

network (He et al. 2016).

We are, therefore, very far from the gradient calculation mechanism of the first

attacks. The advantage of that generative approach is the almost instantaneous speed

to produce an adversarial image. But there are many drawbacks. The learning time

is very long. This approach therefore only makes sense if the attacker has a large

number of adversarial images to create. In addition, a learned network only targets a

given class and is only valid against a particular classifier.

2.3.2. Black or gray box

The black box model is much more strict than the white box model. The attacker

does not know anything about the targeted network. At this point, it is impossible to

calculate gradients and therefore impossible to apply the techniques mentioned so far.

Nevertheless, the attacker can use the targeted network as an oracle and observe the

way in which it labels an image that is proposed.

The gray box and black box models assume that the attacker has much less

information at their disposal. For the gray box model, we suppose that the attacker

knows some elements of the targeted network. For example, that the network uses a

pre-trained model made available off the shelf, but with defense mechanisms that are

secret. The attacker can then partly reproduce the behavior of the targeted network to

set up their attacks.

2.3.2.1. Two concepts about the black box

If the “black box” means observing the inputs/outputs of a system, what are these

outputs? Some believe that the output that the attacker has access to is the predicted

probability vector p. Others believe that the output is the predicted class � = f(x).

The nature of these outputs makes a big difference, as noted in the article by Ilyas

et al. (2018). The predicted class f(x) is a constant piecewise function. Almost

certainly, the attacker does not see if a small amplitude perturbation r is going in the

right direction, since it does not necessarily change the output. This is not the case

for the predicted probability vector.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 63

2.3.2.2. Output = probability vector

In this case, there is no big difference with white box attacks. The attacker

calculates an objective function, like in section 2.3.2.1, and seeks a perturbation that

minimizes it. The only difference is that unfortunately, the gradient is no longer

available. The attacker then uses so-called zero order numerical methods, such as

differential evolution algorithms (Storn and Price 1997), sometimes called genetic

algorithms. These algorithms randomly take distortions, calculate their objective

functions, select the distortions which have obtained the lowest values and recombine

them with random mutations. This selection–recombination–mutation cycle is

repeated.

In this way, the One pixel attack (Su et al. 2017) is the counterpart of the JSMA

attack, where the pixels (even the pixel) to be modified are found thanks to the

genetic algorithm. Likewise, Engstrom’s work (Engstrom et al. 2017) is the black

box counterpart of the geometric attacks by Xiao et al. (2018) in white box.

Likewise, Zhao et al. (2017) involve generators of adversarial distortions, like in

Baluja and Fischer (2017), where the discriminator is a black box classifier.

An alternative to genetic algorithms is estimating the gradient of the objective

function in certain directions:

∂J (x)

∂x(i)
≈ J (x+ hei)− J (x− hei)

2h
[2.19]

To estimate the gradient, we have to calculate this deviation for all of the pixels

1 ≤ i ≤ m, which is costly. Chen et al. (2017) show that this is not necessary. They

apply a stochastic gradient descent where the directions ei are iteratively drawn at

random. This attack is called zeroth-order optimization (ZOO). Let us quote another

attack belonging to this category, designed by Narodytska and Kasiviswanathan

(2017).

2.3.2.3. Output = predicted class

Szegedy et al. (2013) are among the first to realize that adversarial images

designed to attack one specific network are also adversarial for another network. But

it was Papernot et al. (2016a) who first explored the transfer properties of attacks by

studying gray box and black box attacks. Let us also cite the work of Liu et al. (2016)

as a notable article on this subject. A similar phenomenon, traditional in machine

learning, is well known: it is possible, to a certain extent, to transfer what has been

learned by one network to another.

Papernot et al. (2016) rely on the observation of the proportion of adversarial

images deceiving the first system, which also succeed in deceiving the second. To be

more precise, they distinguish transfers between learning systems built on the same

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



64 Multimedia Security 1

fundamental principle from transfers between systems built on different principles (a

transfer between a deep network and an SVM-based system for example).

The results of their study (Papernot et al. 2016a) show that the transfers are

possible and easy between neural systems. On the other hand, although always

possible, the transfer of attacks is more difficult between systems built on models that

cannot be derived, mathematically speaking, like those built from SVMs, nearest

neighbors or decision trees (this is opposed, for example, to neural networks, for

which it is easy to calculate the gradient).

This observation then makes it possible to attack black box learning systems. By

multiplying the requests to the targeted classifier, the attacker can build a model: a

new classifier is trained to imitate the black box in the sense that the outputs of this

surrogate classifier must ultimately be identical to those of the targeted black box.

Then, the attacker uses this new model, but in a white box, to forge adversarial images,

with the hope that they also deceive the black box network because of the transfer

property.

2.4. Defenses

There are just as many defenses as there are attacks. This section provides an

overview. Schematically, we can distinguish three families of defenses:

– Reactive techniques: these strategies are based on preprocessing, carried out

before feeding the network. These block the images if adversarial content is detected

or filter and clean the images, hoping to remove the adversarial perturbation.

– Proactive techniques: these strategies build networks that are inherently stronger

to adversarial attacks. This category includes, for example, approaches which

incorporate many adversarial images into the learning phase.

– Obfuscation techniques: these strategies hide or obfuscate the important

parameters that an attacker needs to produce adversarial images.

Another viable view distinguishes whether the defense is an add-on module

connected to the network (and therefore the classifier works with or without defense),

or whether the defense is an integral part of the network resulting in a radical

transformation of the classifier.

2.4.1. Reactive defenses

This family groups together the techniques which detect the adversarial nature of

an image and/or apply a preprocessing to the images submitted to the network, to

eliminate what makes them adversarial from their content.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 65

Detection techniques introduce an additional class. This class is not necessarily

labeled “adversarial images”, but simply “unknown class”. The fundamental theory

is that the goal of the attacker is not to target this class. The attack fails if this class

is the result of classification. The detection is sometimes justified as follows: (1) the

images are points in a large-dimensional space Rm concentrated along manifolds;

(2) attacks push these images out of their manifold. The detectors learn to distinguish

these manifolds by collecting statistics, calculated either in the image domain, or in

the hidden layers.

The preprocessings filter the images in order to remove the adversarial distortion,

without altering the visual content. Here, the images are never rejected, we hope they

are cleaned and therefore harmless. In theory, filtering amounts to projecting an

image onto the manifolds of the natural images mentioned above. Once again, some

techniques filter the images before classification, others filter the representations that

travel in the networks.

In reality, reactive techniques mix preprocessing and detection. It is possible to

build a detector from preprocessing by thresholding the quantity of the filtered noise of

the image. Therefore, we list examples of reactive defenses without clear distinction.

2.4.1.1. Learn about the manifold of natural images

This is the issue for many defenses. The advantage is that this learning only

consumes original images. Thus, the defense is not biased toward one or more

specific attacks. MagNet (Meng and Chen 2017) employs autoencoders to project the

image and bring it closer to the manifold of natural images. Variants use sparse

representations of image patches like D3 (Moosavi-Dezfooli et al. 2018), estimates

based on mixtures of Gaussians (Ghosh et al. 2018), or deep generator networks like

PixelDefend (Song et al. 2017) or Defense-GAN (Samangouei et al. 2018). More

uncommon, Dubey et al. (2019) search the Internet for the images most similar to the

query, then decide on its class by a majority vote on the predictions of the similar

images.

2.4.1.2. Interaction with the classifier

A simple method of detection is feature squeezing (Xu et al. 2017). Many simple

filters are applied to degrade or simplify the image, hence the name “squeezer”

(compression, slight blur filter), before submitting it to the network. Then, the

deviations at the output of the network are observed with respect to the predicted

probability vector p given for the original image. Any significant deviation suggests

that the tested image is adversarial. Guo et al. (2017) and Liang et al. (2018)

developed approaches that are very close one another. SafetyNet (Lu et al. 2017) is

based on the analysis of active neurons in the classifier. They encode typical

activation patterns of a deep layer of a network processing clean images, and

compare this description to the current one when an unknown image is processed.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



66 Multimedia Security 1

This comparison is made via a radial kernel support vector machine. Bypassing this

defense forces the attacker to integrate the response of all of the rectification units in

the network into their attack, which is difficult in practice. This defense works well,

even when the network is big. A more recent version of this defense idea is called

Network Invariance Checking (Ma et al. 2019).

2.4.2. Proactive defenses

Proactive defenses aim to improve the intrinsic strength of models.

2.4.2.1. Reducing the amplitude of gradients

If the network function experiences strong gradients, then a very small perturbation

is needed to greatly modify the output of the network. This explains the vulnerability

of the network to attacks. Reducing the amplitude of the gradients makes the network

stronger.

One of the very first approaches is “distillation”, which is originally a technique

for transferring what has been learned by a large network to a smaller

network (Hinton et al. 2015). In very broad terms, the distillation trains the small

network, not with the labels of the images, but with the probability vectors predicted

by the large network, which are more informative than simple labels. Papernot et al.
(2016c) rely on distillation, but apply this transfer on the same network architecture.

Therefore, the first version of the network is trained on labels, and the second is

trained on the knowledge learned from the first. This “autotransfer” is made at a high

temperature in the softmax function, which reduces the amplitude of the gradients of

the network function. Nevertheless, Carlini and Wagner designed attacks that made

the distillation defenses fail (see the C&W attack, in section 2.3.1.4).

Gu and Rigazio (2014) suggest training networks with a new constraint: each

layer must be “contracting”, in the sense of a Lipschitzian function (Tsuzuku et al.
2018). This is incorporated during the training by a penalty, which aims to reduce the

variation of its response to perturbations it receives as an input. Overall, this

increases the strength of the network and requires the applied distortion to be

significantly stronger for an attack to be successful.

2.4.2.2. Adversarial training

Learning with more data allows a network to generalize better, to refine the

boundaries between classes in the representation space. This classic trick is done by

adding quasi copies of images that have undergone small translations or rotations.

The idea is the same here, by improving learning with adversarial images. The

network therefore learns that, despite the perturbation, such-and-such an image is

indeed in such-and-such a category. The principle is simple, but the implementation

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 67

is difficult. An attack targets a network, which during the learning process is, by

definition, unpredictable. Each time the synaptic weights are updated, the adversarial

versions of the training images must be recalculated. The attack must therefore be

super fast. This is how Goodfellow et al. (2014a) proceed thanks to the simplest of

attacks: FGSM.

This idea leads to the concept of robust optimization by a min–max formulation,

where the learning process has an objective:

min
θ

∑
j

max
rj |‖rj‖<ε

L(xj + rj , �j ,θ) [2.20]

with {xj , �j} training data.

In a way, the training tries to get all of the images in the ball with center xj and

radius ε to be classified as xj . We can also cite various works exploring these same

ideas (Huang et al. 2015; Madry et al. 2017; Tramèr et al. 2017). Let us quote the

approach by Lee et al. (2017) again, where a generative network creates adversarial

images, which feed a classifier carrying out adversarial learning.

Many gray areas remain in adversarial training. The robustness provided is

sometimes disputed. The network is more robust against simple attacks, but still just

as vulnerable to more complex attacks. The robustness is obvious on the training

images, but it does not generalize well. There is a price to pay: the network is more

robust against attacks but less precise on the original images. The consensus is not

yet established with certainty because the adversarial training is difficult to carry out.

Many variations exist, gradually increasing the quantity of adversarial images, while

increasing the strength of the attacks from a very large number of original images.

All of this is costly, with the benefits not always outweighing the extra costs.

2.4.3. Obfuscation technique

Creating adversarial images in white box relies most often on the utilization of

the gradient of the differentiable objective function. Introducing strong nonlinearities

makes the network non-differentiable and prevents the calculation of a gradient. This

family of techniques was explored by Goodfellow et al. (2014a) (see Buckman et al.
(2018)). Athalye et al. (2018) have explored this subject and show the ineffectiveness

of this approach: in white box, nothing forces the attacker to use the gradient of the

objective function. It can modify the network and replace any nonlinearity with a

smoother function.

Obfuscation becomes more serious when it is based on the insertion of a secret

key in the classifier, like in cryptography. This is the only way to prevent white box

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



68 Multimedia Security 1

analysis. The attacker knows all of the details of the network except one secret high

entropy parameter. This is difficult to combine with machine learning and often

requires re-training the whole network, or part of it, each time a secret key is

taken (Shumailov et al. 2018; Taran et al. 2020).

Another possibility is to make the classifier random. For each call to the network,

the final prediction depends on a random value that the attacker cannot know. This

could be a slight modification to the input image, or modifications within the network:

Dhillon et al. (2018) suggest randomly suppressing certain neurons (those which react

weakly) and to increase, in proportion, the importance of the reaction of the conserved

neurons.

2.4.4. Defenses: conclusion

We have mentioned several defenses; there are many others, sometimes simple

variations, and sometimes more original contributions too. In general, the evaluation

of their effectiveness leaves a lot to be desired. Many of them are evaluated on very

small sets of tests, can only withstand a particular class of attacks without being clearly

perceptible, or are even too expensive to be usable in practice. There is not yet a

rigorous protocol to assess the quality of a defense technique making a network more

robust to adversarial attacks. It is very difficult to compare the respective merits of

different defensive strategies.

The addition of defense strategies sometimes leads to a reduction in the quality of

the networks: the classification performance on the natural images (not attacked) of

a network with defense is worse than without a defense. This observation is disputed

because nothing completely implies such tension (although some theoretical papers

claim otherwise).

Some approaches take a more formal point of view and try to guarantee the

robustness of the network, as long as the distortion remains below a boundary, whose

value must be calculated. Still at an early stage, we nevertheless cite the promising

studies (Huang et al. 2017; Katz et al. 2017; Sinha et al. 2017; Wong and Kolter

2017; Raghunathan et al. 2018; Ruan et al. 2018). Another contribution, written in

French, tackles the same topic (Bazille et al. 2019)

2.5. Conclusion

This chapter has provided an overview of attack and defense techniques, involving

the vulnerabilities of machine learning systems based on deep neural networks for

image recognition tasks. This field of research is very active and the work is increasing

every day.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 69

They aim to make attacks more and more imperceptible (Zhang et al to appear),

even when examined through sophisticated psycho-visual metrics (Fezza et al. 2019).

They also aim to be faster in order to make defenses based on robust learning (Zhang

et al. 2019).

Some works aim to better understand the causes of attacks and the reasons for the

success or failure of defenses. Instead, these works explore problems linked to the

distribution of data in high-dimensional spaces, the effects of thresholding functions

and the theoretical guarantees that a network can offer.

Of course, attacks and defenses are not limited to just images, and some work

explores the creation of adversarial videos (Jiang et al. 2019; Wei et al. 2019),

audio (Carlini and Wagner 2018; Qin et al. 2019), texts (Behjati et al. 2019) and time

series (Fawaz et al. 2019), in an attempt to understand the relationships between

vulnerabilities and multimodal data (Park et al. 2019), or even explore the problems

of deceiving malware (Martins et al. 2020).

Additionally, other works consider different tasks, such as similarity

search (Amsaleg et al. 2017), clustering, feature selection, embedding, hashing,

similarity learning and outlier detection.

Much remains to be understood, it is very encouraging.

2.6. References

Amsaleg, L., Bailey, J., Barbe, D., Erfani, S.M., Houle, M.E., Nguyen, V.,

Radovanovic, M. (2017). The vulnerability of learning to adversarial perturbation

increases with intrinsic dimensionality. In Workshop on Information Forensics and
Security. IEEE, Rennes, 1–6.

Athalye, A., Carlini, N., Wagner, D. (2018). Obfuscated gradients give a false sense

of security: Circumventing defenses to adversarial examples [Online]. Available at:

https://arxiv.org/abs/1802.00420.

Baluja, S. and Fischer, I. (2017). Adversarial transformation networks: Learning

to generate adversarial examples [Online]. Available at: https://arxiv.org/abs/

1703.09387.

Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D. (2006). Can machine

learning be secure? In AsiaCCS. ACM, Taipei, 16–25.

Bazille, H., Fabre, E., Genest, B. (2019). Certification formelle des réseaux neuronaux

profonds : un état de l’art en 2019. AI and Defense 2019 – Artificial Intelligence
and Defense, 1–10 [Online]. Available at: https://hal.archives-ouvertes.fr/hal-

02350253.

Behjati, M., Moosavi-Dezfooli, S., Baghshah, M.S., Frossard, P. (2019). Universal

adversarial attacks on text classifiers. In ICASSP. IEEE, Brighton, 7345–7349.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



70 Multimedia Security 1

Biggio, B. and Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial

machine learning. Pattern Recognition, 84, 317–331.

Buckman, J., Roy, A., Raffel, C., Goodfellow, I. (2018). Thermometer encoding: One

hot way to resist adversarial examples. In International Conference on Learning
Representations. ICLR, Vancouver.

Carlini, N. and Wagner, D.A. (2017). Towards evaluating the robustness of neural

networks. In Symposium on Security and Privacy. IEEE, San Jose.

Carlini, N. and Wagner, D.A. (2018). Audio adversarial examples: Targeted attacks

on speech-to-text. In IEEE Symposium on Security and Privacy Workshops. IEEE,

San Francisco, 1–7.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.-J. (2017). ZOO: Zeroth order

optimization based black-box attacks to deep neural networks without training

substitute models. In Workshop on Artificial Intelligence and Security. ACM,

New York, 15–26.

Dalvi, N.N., Domingos, P.M., Mausam, Sanghai, S.K., Verma, D. (2004). Adversarial

classification. In KDD. ACM, Seattle, 99–108.

Dhillon, G.S., Azizzadenesheli, K., Lipton, Z.C., Bernstein, J., Kossaifi, J.,

Khanna, A., Anandkumar, A. (2018). Stochastic activation pruning for robust

adversarial defense [Online]. Available at: https://arxiv.org/abs/1803.01442.

Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J. (2018). Boosting

adversarial attacks with momentum. In Conference on Computer Vision and Pattern
Recognition. IEEE, Salt Lake City, 9185–9193.

Dubey, A., van der Maaten, L., Yalniz, Z., Li, Y., Mahajan, D. (2019). Defense

against adversarial images using web-scale nearest-neighbor search. In Conference
on Computer Vision and Pattern Recognition. IEEE, Long Beach, 8767–8776.

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A. (2017). A rotation and a

translation suffice: Fooling CNNs with simple transformations [Online]. Available

at: https://arxiv.org/abs/1712.02779.

Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P. (2019). Adversarial

attacks on deep neural networks for time series classification. In IJCNN. IEEE,

Budapest, 1–8.

Fezza, S.A., Bakhti, Y., Hamidouche, W., Déforges, O. (2019). Perceptual evaluation

of adversarial attacks for CNN-based image classification. In Eleventh International
Conference on Quality of Multimedia Experience. QoMEX, Berlin, 1–6.

Ghosh, P., Losalka, A., Black, M.J. (2018). Resisting adversarial attacks

using Gaussian mixture variational autoencoders [Online]. Available at:

https://arxiv.org/abs/1806.00081.

Goodfellow, I.J., Shlens, J., Szegedy, C. (2014a). Explaining and harnessing

adversarial examples [Online]. Available at: https://arxiv.org/abs/1412.6572.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 71

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., Bengio, Y. (2014b). Generative adversarial nets. Advances in Neural
Information Processing Systems, 27, 2672–2680.

Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press [Online].

Available at: http://www.deeplearningbook.org.

Gu, S. and Rigazio, L. (2014). Towards deep neural network architectures robust to

adversarial examples. In International Conference on Learning Representations.
ICLR, Banff.

Guo, C., Rana, M., Cisse, M., van der Maaten, L. (2017). Countering

adversarial images using input transformations [Online]. Available at:

https://arxiv.org/abs/1711.00117.

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image

recognition. In Conference on Computer Vision and Pattern Recognition. IEEE,

Las Vegas, 770–778.

Hinton, G., Vinyals, O., Dean, J. (2015). Distilling the knowledge in a neural network

[Online]. Available at: https://arxiv.org/abs/1503.02531.

Huang, R., Xu, B., Schuurmans, D., Szepesvári, C. (2015). Learning with a strong

adversary [Online]. Available at: https://arxiv.org/abs/1511.03034.

Huang, X., Kwiatkowska, M., Wang, S., Wu, M. (2017). Safety verification of deep

neural networks. In International Conference on Computer Aided Verification. CAV,

Heidelberg, 3–29.

Ilyas, A., Engstrom, L., Athalye, A., Lin, J. (2018). Black-box adversarial attacks

with limited queries and information. Proceedings of Machine Learning Research,

80, 2142–2151.

Jiang, L., Ma, X., Chen, S., Bailey, J., Jiang, Y. (2019). Black-box adversarial attacks

on video recognition models. In ACM Multimedia. ACM, Nice, 864–872

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J. (2017). Reluplex:

An efficient SMT solver for verifying deep neural networks. In International
Conference on Computer Aided Verification. CAV, Heidelberg, 97–117.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization [Online].

Available at: https://arxiv.org/abs/1412.6980.

Kurakin, A., Goodfellow, I., Bengio, S. (2016). Adversarial examples in the physical

world [Online]. Available at: https://arxiv.org/abs/1607.02533.

Lee, H., Han, S., Lee, J. (2017). Generative adversarial trainer: Defense to adversarial

perturbations with GAN [Online]. Available at: https://arxiv.org/abs/1705.03387.

Liang, B., Li, H., Su, M., Li, X., Shi, W., Wang, X. (2018). Detecting adversarial

image examples in deep neural networks with adaptive noise reduction. IEEE
Transactions on Dependable and Secure Computing, 18(1), 72–85.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



72 Multimedia Security 1

Liu, Y., Chen, X., Liu, C., Song, D. (2016). Delving into transferable

adversarial examples and black-box attacks [Online]. Available at: https://arxiv.

org/abs/1611.02770.

Lowd, D. and Meek, C. (2005). Adversarial learning. In KDD. ACM, Chicago,

641–647.

Lu, J., Issaranon, T., Forsyth, D. (2017). Safetynet: Detecting and rejecting adversarial

examples robustly. In International Conference on Computer Vision. IEEE, Venice,

446–454.

Ma, S., Liu, Y., Tao, G., Lee, W., Zhang, X. (2019). NIC: Detecting adversarial

samples with neural network invariant checking. In 26th Annual Network and
Distributed System Security Symposium. NDSS, San Diego.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A. (2017). Towards

deep learning models resistant to adversarial attacks [Online]. Available at:

https://arxiv.org/abs/1706.06083.

Martins, N., Cruz, J.M., Cruz, T., Abreu, P.H. (2020). Adversarial machine learning

applied to intrusion and malware scenarios: A systematic review. IEEE Access,
8, 35403–35419.

Meng, D. and Chen, H. (2017). Magnet: A two-pronged defense against adversarial

examples. In SIGSAC Conference on Computer and Communications Security.
ACM, Dallas, 135–147.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P. (2017). Universal

adversarial perturbations. In CVPR. IEEE, Hawaii, 86–94.

Moosavi-Dezfooli, S.-M., Shrivastava, A., Tuzel, O. (2018). Divide, denoise,

and defend against adversarial attacks [Online]. Available at: https://arxiv.

org/abs/1802.06806.

Narodytska, N. and Kasiviswanathan, S. (2017). Simple black-box adversarial

attacks on deep neural networks. In Conference on Computer Vision and Pattern
Recognition Workshops. IEEE, Honolulu, 1310–1318.

Papernot, N., McDaniel, P., Goodfellow, I. (2016a). Transferability in machine

learning: From phenomena to black-box attacks using adversarial samples [Online].

Available at: https://arxiv.org/abs/1605.07277.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A. (2016b).

The limitations of deep learning in adversarial settings. In European Symposium on
Security and Privacy. IEEE, Saarbrücken.

Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A. (2016c). Distillation as a

defense to adversarial perturbations against deep neural networks. In European
Symposium on Security and Privacy. IEEE, Saarbrücken.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 73

Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin, A., Xie, C.,

Sharma, Y., Brown, T., Roy, A., Matyasko, A., Behzadan, V., Hambardzumyan, K.,

Zhang, Z., Juang, Y.-L., Li, Z., Sheatsley, R., Garg, A., Uesato, J., Gierke, W.,

Dong, Y., Berthelot, D., Hendricks, P., Rauber, J., Long, R. (2018). Technical

report on the CleverHans v2.1.0 adversarial examples library [Online]. Available

at: https://arxiv.org/abs/1610.00768.

Park, J.S., Rohrbach, M., Darrell, T., Rohrbach, A. (2019). Adversarial inference

for multi-sentence video description. In CVPR. Computer Vision Foundation/IEEE.

Long Beach, 6598–6608.

Qin, Y., Carlini, N., Cottrell, G.W., Goodfellow, I.J., Raffel, C. (2019). Imperceptible,

robust, and targeted adversarial examples for automatic speech recognition.

Proceedings of Machine Learning Research, 97, 5231–5240.

Raghunathan, A., Steinhardt, J., Liang, P. (2018). Certified defenses against

adversarial examples [Online]. Available at: https://arxiv.org/abs/1801.09344.

Rony, J., Hafemann, L.G., Oliveira, L.S., Ayed, I.B., Sabourin, R., Granger, E. (2019).

Decoupling direction and norm for efficient gradient-based l2 adversarial attacks

and defenses. In Conference on Computer Vision and Pattern Recognition. IEEE,

Long Beach, 4322–4330.

Ruan, W., Huang, X., Kwiatkowska, M. (2018). Reachability analysis of

deep neural networks with provable guarantees [Online]. Available at:

https://arxiv.org/abs/1805.02242.

Samangouei, P., Kabkab, M., Chellappa, R. (2018). Defense-gan: Protecting

classifiers against adversarial attacks using generative models [Online]. Available

at: https://arxiv.org/abs/1805.06605.

Serban, A.C. and Poll, E. (2018). Adversarial examples: A complete

characterisation of the phenomenon. CoRR [Online]. Available at: https://dblp.org/

rec/journals/corr/abs-1810-01185.bib.

Sharif, M., Bauer, L., Reiter, M.K. (2018). On the suitability of lp-norms

for creating and preventing adversarial examples [Online]. Available at:

https://arxiv.org/abs/1802.09653.

Shumailov, I., Zhao, Y., Mullins, R.D., Anderson, R. (2018). The taboo trap:

Behavioural detection of adversarial samples. CoRR [Online]. Available at:

http://arxiv.org/abs/1811.07375.

Simonyan, K., Vedaldi, A., Zisserman, A. (2014). Deep inside convolutional

networks: Visualising image classification models and saliency maps. In

International Conference on Learning Representations. ICLR, Banff.

Sinha, A., Namkoong, H., Duchi, J. (2017). Certifying some distributional

robustness with principled adversarial training [Online]. Available at:

https://arxiv.org/abs/1710.10571.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



74 Multimedia Security 1

Song, Y., Kim, T., Nowozin, S., Ermon, S., Kushman, N. (2017). Pixeldefend:

Leveraging generative models to understand and defend against adversarial

examples [Online]. Available at: https://arxiv.org/abs/1710.10766.

Storn, R. and Price, K.V. (1997). Differential evolution: A simple and efficient

heuristic for global optimization over continuous spaces. J. Global Optimization,

11, 342–359 [Online]. Available at: https://doi.org/10.1023/A:1008202821328.

Su, J., Vargas, D.V., Kouichi, S. (2017). One pixel attack for fooling deep neural

networks [Online]. Available at: https://arxiv.org/abs/1710.08864.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,

Fergus, R. (2013). Intriguing properties of neural networks [Online]. Available at:

https://arxiv.org/abs/1312.6199.

Taran, O., Rezaeifar, S., Holotyak, T., Voloshynovskiy, S. (2020). Machine learning

through cryptographic glasses: Combating adversarial attacks by key-based

diversified aggregation. EURASIP Journal on Information Security 2020, 10.

Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P. (2017).

Ensemble adversarial training: Attacks and defenses [Online]. Available at: https://

arxiv.org/abs/1705.07204.

Tsuzuku, Y., Sato, I., Sugiyama, M. (2018). Lipschitz-margin training: Scalable

certification of perturbation invariance for deep neural networks. Advances in
Neural Information Processing Systems. Curran Associates Inc., New York,

6541–6550.

Tual, M. and Coutagne, G. (2015). On a testé pour vous deep dream, la

machine à “rêves” psychédéliques de Google [Online]. Available at: https://

www.lemonde.fr/pixels/article/2015/07/09/on-a-teste-pour-vous-deep-dream-la-

machine-a-reves-psychedeliques-de-google_4675562_4408996.html.

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. (2004). Image quality

assessment: From error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4), 600–612.

Wei, X., Liang, S., Chen, N., Cao, X. (2019). Transferable adversarial attacks for

image and video object detection. In IJCAI. Macao, 954–960.

Wikipedia (2020). DeepDream [Online]. Available at: https://fr.wikipe-dia.org/ wiki/

DeepDream.

Wong, E. and Kolter, J.Z. (2017). Provable defenses against adversarial

examples via the convex outer adversarial polytope [Online]. Available at:

https://arxiv.org/abs/1711.00851.

Xiao, C., Zhu, J.-Y., Li, B., He, W., Liu, M., Song, D. (2018). Spatially transformed

adversarial examples [Online]. Available at: https://arxiv. org/abs/1801.02612.

Xu, W., Evans, D., Qi, Y. (2017). Feature squeezing: Detecting adversarial examples

in deep neural networks [Online]. Available at: https://arxiv.org/abs/ 1704.01155.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only



Deep Neural Network Attacks and Defense 75

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H. (2015). Understanding neural

networks through deep visualization. In Deep Learning Workshop, International
Conference on Machine Learning. ICML, Beijing.

Zhang, H., Avrithis, Y., Furon, T., Amsaleg, L. (2019). Walking on the edge: Fast,

low-distortion adversarial examples. IEEE Transactions on Information Forensics
and Security, 16, 701–713.

Zhang, H., Avrithis, Y., Furon, T., Amsaleg, L. (2020). Smooth adversarial

examples. EURASIP Journal on Information Security, 15 [Online]. Available at:

https://doi.org/10.1186/s13635-020-00112-z.

Zhao, Z., Dua, D., Singh, S. (2017). Generating natural adversarial examples [Online].

Available at: http://arxiv.org/abs/1710.11342.

Copyright Iste 2022 / File for personal use of Hanwei Zhang only


