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Abstract.  One of the most common problems in computer vision and image 
processing applications is the localization of object boundaries in a video 
frame and its tracking in the next frames. In this paper, a fully automatic 
method for fast tracking of video objects in a video sequence using affine 
invariant normalization is proposed. Initially, the detection of a video object is 
achieved using a GVF snake. Next, a vector of the affine parameters of each 
contour of the extracted video object in two successive frames is computed 
using affine-invariant normalization. Under the hypothesis that these contours 
are similar, the affine transformation between the two contours is computed in 
a very fast way. Using this transformation to predict the position of the contour 
in the next frame allows initialization of the GVF snake very close to the real 
position. Applying this technique to the following frames, a very fast tracking 
technique is achieved. Moreover, this technique can be applied on sequences 
with very fast moving objects where traditional trackers usually fail. Results 
on synthetic sequences are presented which illustrate the theoretical 
developments. 

1   Introduction 
Object tracking is a very common problem in computer vision and image processing 
applications. The localization of object boundaries in a video frame and its tracking 
in the next frames [1],[2],[8]-[13] is a crucial issue in the materialization of a 
tracking method. It is therefore important and challenging to develop an approach to 
track objects under geometric transformations. Such an approach can allow the 
tracking of fast moving objects.  

In this paper, a fully automatic method for fast tracking of video objects in a 
video sequence using affine invariant normalization is proposed. Initially, the 
detection of a video object is achieved using a GVF snake [3], [5]. Next, a vector of 
the affine parameters of each contour of the extracted video object in two successive 
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frames is computed using affine-invariant normalization [6]. Under the hypothesis 
that these contours are similar, the affine transformation between the two contours is 
computed in a very fast way.  

Using this transformation to predict the position of the contour in the next 
frame allows initialization of the GVF snake very close to the real position. Applying 
this technique to the following frames, a very fast tracking technique is achieved. 
Moreover, this technique can be applied on sequences with very fast moving objects 
where traditional trackers usually fail. Results on synthetic sequences are presented 
which illustrate the theoretical developments. 

2   Problem Statement  
The basic idea in active contour models or snakes is to evolve a curve, subject to 
constraints from a given image, in order to detect objects in that image [4]. For 
instance, starting with a curve around the object to be detected, the curve moves 
toward its interior normal and has to stop on the boundary of the object. Usually, 
using the contour of the previous frame, we can estimate the contour of the object of 
the next frame. 

However, the main drawback of the active contours methods is the position 
estimation of the object contour if it is moved very fast. If the object is fast the 
contour can not be estimated and can be lost for the rest frames of the sequence. In 
addition, active contours methods still suffer from the sensitive of initial parameters 
while the computation is an expensive process which makes difficult the 
implementation of active contours in real time applications.  

On the other hand, the active contours can also be initialized across the object 
boundary and if the initialization is closed to the real boundary, the object boundary 
is quickly localised. Our method uses this feature of active contours, having an 
initialization contour very close to the object boundary. The initialization contour 
can be acquired applying the proposed affine normalization transformation (Section 
5) to the previous contour of a video sequence, in order to compute the initialization 
of the next contour. The initialization of the next contour can be applied very 
quickly, providing an accurate estimation of the object contour of the next frame. 

 

   
a) Two successive frame of a 

sequence 
b) Apply active 
contours method 

c) Apply active contours and 
normalization affine 

transformation 

Figure 1: Finding the contour of next frame knowing the previous contour 

Figure 1a depicts two successive frames of a fast moving object of a video se-
quence. The contour is shown as dash line in Figure 1b and 1c image depicts the esti-
mation of the next contour knowing the previous contour. It is obvious (Figure 1b) 
that using only an active contour method taking as input the contour of the previous 
frame, the estimation of the object is not accurate. Figure 1c represents the 
estimation of the contour according to affine normalization transformation and it is 



Fast Video Object Tracking 
using Affine Invariant Normalization

3

 
very close to the real contour of the object. This simple example proves that the 
proposed method can be used for very fast moving video objects tracking. 

3   Active Contours and Gradient Vector Flow 
The automatic localization of objects of interest in an image or video sequence is a 
challenging task. Objects of interest are presented in many techniques with active 
contours [3]-[5]. In the proposed method, we use the GVF snake [5] in order to 
extract the objects of interest from a video sequence (Video Object) and accelerate 
the proposed VO tracking procedure. 

The basic idea in active contour models is to evolve a curve, subject to 
constraints from a given image, in order to detect objects in it. Starting with this 
curve within the image domain and moving it under the influence of internal and 
external forces derived from image data, we can acquire the boundaries of the 
objects of interest. 

A new external force for active contours, called Gradient Vector Flow, has been 
proposed in [5], trying to tackle problems that are associated, with initialization and 
poor convergence, to boundary concavities. The GVF snake begins with the calcula-
tion of a field of forces, called the GVF forces, over the image domain. The GVF 
forces are used to drive the snake, modeled as a physical object having a resistance 
to both stretching and bending, toward the boundaries of the object.  

The GVF forces are calculated by applying generalized diffusion equations to 
both components of the gradient of an image edge map. Because the GVF forces are 
derived from a diffusion operation, they tend to extend very far away from the object 
so that snakes can find objects that are quite far away from the snake's initial 
position. This same diffusion creates forces which can pull active contours into 
concave regions. 

4   Affine invariant normalization 

Normalization is a procedure that enables comparison between different images of 
the same object, as well as of different objects, since distances are always measured 
in a normalized frame [7],[7] and [12]. In the proposed method, affine-invariant 
normalization is applied to the object curves in order to make them affine invariant, 
and thus appropriate for curves matching. For this purpose, a set of transformations 
is applied to each point of the contour composing the object curve.  

For the sake of simplicity, let us assume a synthetic video sequence, the first 
frame of which is depicted in Figure 2. Figure 1 also illustrates its contour which has 
been extracted using GVF snake (section 2). 
 

Figure 2: First frame of the synthetic video sequence and its contour 
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Firstly, the obtained contour is re-sampled in order to be constituted of a fixed 
number of equidistant points without losing its original shape. Equation 1 represents 
the N points of the contour of the kth frame of the synthetic sequence: 

[ ] K2,1k,1N,1,0i,y,xc T
iik …… =−==    (Eq.1) 

For each contour, the (p-q) order moments are given by Eq. 2:  
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Moments of order up to two are used for the construction of the normalized curve. 
The orthogonalization procedure comprises a set of linear operations (translation, 
scaling, and rotation) that do not depend on the selected starting point of the closed 
curve. The orthogonalization of the curve can be acquired: 
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curve, already scaled using the factor 2σ  with [ ] πmod2)aa(r 1N12 −+=  (where 
)y,x(a 111 =  and )y,x(a 1N1N1N −−− =  the average value of Fourier phases).  

At this point we have achieved the reduction of affine transformations to 
orthogonal ones and we need a transformation invariant to rotation and reflection. 
The overall normalization (orthogonalization and normalization) is now affine 
invariant and the starting point normalization is necessary since the rotation 
normalization depends on the starting point. Thus, a standard circular shift is defined 
using the first and last Fourier phases: ( )[ ] )2N(modaa)4N()z(p 1N1 −−⋅= π  and 
the opposite shift is applied in order to normalize the curve )z(S)z(n )z(pp −= . 

The presented normalization method transforms the object contours in order to 
make them affine invariant 5. To sum up, an affine normalization of a contour can be 
achieved applying normalization after the orthogonalization of the contour:  

 
)p),Tc(ARBR(S))Tc(ARBR(S))c(n(n 1212pap −−⋅⋅⋅⋅=−⋅⋅⋅⋅= −   (Eq. 4) 
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5    Tracking VO using normalization affine transformation  

The tracking method that we propose in this section provides a fully automatic 
affine invariant method for fast tracking video object in a video sequence. Initially, a 
GVF snake is implemented in the first frame of the sequence in order to provide an 
initial estimation of the video object contours ( 1c ). Having as pattern for the GVF 
snake the contour of first frame of the video sequence, the contour 2c , of the second 
frame can then be acquired. 

In the next step, applying affine normalization (Eq. 4) to each contour, the 
))c(n(n)c(a 1ap11 = and ))c(n(n)c(a 2ap22 =  for contour 1c  and 2c  respectively, 

is obtained. Now, we can define the vector of normalized affine parameters which 
can be represented as }s,g,D{P =  where ARBRD 12 ⋅⋅⋅=  is the rotation-scaling 
deformation matrix while parameter TDg ⋅−=  represents the video object 
translation and ps −= is a shifting parameter. The overall normalization affine is: 

)s),gDc((S))c(n(n)c(a ap −+==   (Eq.5) 

After normalization of each contour of the first two sequential video objects, 
accepting that these contours are almost equal, we can assume that  
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Now, we can define the transformation: 

{ } 2121211
1

21
1

2 ass,gg,DDaa →
−− =−−=D  (Eq. 7) 

 
Eq.7 will be examined in order to verify that knowing the previous contour, the 

computation of the next contour of the video object is possible by applying this 
transformation. For this purpose, the steps of our algorithm are presented. 

The algorithm requires, as input, the contours of the video object contained in the 
first and second frame. It can be computed applying a GVF snake to the first and 
second frame of the video sequence.  

Then, the affine normalization (Eq. 4) is applied to the first and second frame 
contour, taking ))c(n(n)c(a 1ap11 = and ))c(n(n)c(a 2ap22 =  respectively. The 

vectors of normalized affine parameters of the video object from first and second 
frame can now be computed: }s,g,D{P 1111 =  and }s,g,D{P 2222 = .  

Having the vectors 21 P,P  of normalized affine parameters, the transformation 

1
1

2 aa D−  can be computed using Eq. 7.  
Supposing that the contour of the video object of the third frame, follows 

approximately the same transformation ( 21a → ) as the first and second contour, the 
application of this transformation places the contour of the third video object close 
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enough to the real position. Then, applying a GVF snake which takes as input the 
contour that has been achieved applying the transformation to the second contour, 
the right estimation of the third contour can be achieved very quickly: 

))c(a(sc 2213 →≈  (Eq.8) 
Having the next contour 3c  the transformation )c(a 332→  is computed. Then, 

applying the GVF snake to the next video frame a very close estimation of the video 
object boundary that the fourth frame included can be achieved ))c(a(sc 3324 →≈ . 

Following the same procedure for the next frame ic , the transformation 
)c(a ii1i →−  for the video object of next frame is computed and estimation of the 

position of the next video object is calculated applying the GVF snake 
))c(a(s ii1i →− .  

Applying the proposed method to the following frames, a fast tracking technique 
can be achieved. The method discussed in this paper was tested on several video 
sequences with very fast moving objects and a series of experiments has been 
performed. Firstly, the accuracy of the affine normalization method is examined 
using a synthetic video sequence. 

Figure 3 illustrates the first five successive frames of a synthetic video sequence. 
The video object of the second frame has been rotated by °= 30ϕ  while in third 
frame it has been translated. In fourth frame the video object has been scaled by 5% 
and in the last frame it has been rotated by °−= 30'ϕ and translated. 
 

     
Figure 3: Synthetic video sequence 

 
According to the proposed method, using the GVF snake method, the contours of 

the first two frames can be extracted. Then, we compute the vectors 21 P,P  of 

normalized affine parameters as well as the transformation 1
1

221 aaa D−
→ = . In order 

to measure the similarity between curves 3i))c(a(sc 1i1i2ii ≥= −−→−  and i_realc , 

we use the Euclidean distance is used. The value of similarity of the contours 
approaches 97%.  

 

 

 
Figure 4: Fast video object tracking with or without affine invariant normalization 
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In Figure 4, )c(sc 1ii −=  is depicted with a dash-line in first line using only GVF 

snake while the estimation of ))c(a(sc 1i1i2ii −−→−=  is depicted in the second line 
with a dash-line contour too. It is obvious that the estimation of the contours which 
uses GVF snake and affine normalization is closer to thin-line i_realc  that uses only 

GVF snake. 
The result that the comparison between the proposed method and the GVF snake 

method gives is depicted in Figure 5. It can be seen that our algorithm reduces the 
number of GVF snake iteration more than 60%. In this experiment are used twenty 
successive frames of the synthetic video sequence.  

 

Figure 5: Iterations of GVF snake with and without affine normalization  

Conclusion 

In this paper, we have proposed a method for tracking using affine invariant 
normalization for very fast moving objects. The video object detection for the two 
first successive frames is achieved using a GVF snake. Next, using affine-invariant 
normalization, a vector of the affine parameters of each extracted video object is 
computed. Assuming that these contours are similar, we compute the affine 
transformation between these contours. Using this transformation to predict the 
position of the contour in the next frame allows initialization of the GVF snake very 
close to the real position. Experimental results suggest that our algorithm have great 
potential for tracking video objects with very fast moving objects where traditional 
trackers usually fail. 
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