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ABSTRACT
We propose a scalable logo recognition approach that ex-
tends the common bag-of-words model and incorporates lo-
cal geometry in the indexing process. Given a query image
and a large logo database, the goal is to recognize the logo
contained in the query, if any. We locally group features in
triples using multi-scale Delaunay triangulation and repre-
sent triangles by signatures capturing both visual appear-
ance and local geometry. Each class is represented by the
union of such signatures over all instances in the class. We
see large scale recognition as a sub-linear search problem
where signatures of the query image are looked up in an
inverted index structure of the class models. We evaluate
our approach on a large-scale logo recognition dataset with
more than four thousand classes.

1. INTRODUCTION
Logo or trademark recognition has been a well-studied

subject for decades since it arises in many practical sce-
narios of modern marketing, advertising and trademark reg-
istration. Most successful approaches deal with recognition
from sketches, images or video taken in an uncluttered back-
ground. This includes among others recognition and match-
ing of clear logos on white background and television station
logo recognition from videos. In the later case, prior infor-
mation can be utilized, e.g . information regarding the logo
position and size [8], [15], or the temporal correlation be-
tween frames [28].

When logos appear in natural scenes though, they are
much harder to detect and can vary in size from e.g . 20×20
pixels on a footballer’s shirt to the entire image. Although
generic object recognition and near-duplicate detection are
two related problems that have been extensively studied over
the last decades, logo recognition in natural scenes doesn’t
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necessarily fall under either category.
On one hand, logos can provide some useful prior infor-

mation to assist detection—they usually contain text and
simple geometric shapes and mostly appear on planar sur-
faces. On the other hand, they are a much broader category
than near-duplicates and can take many different forms, or
variants. A small part of the universe of the Adidas and
Coca-Cola logos can be seen in Figure 1.

Global color or shape descriptors are commonly used for
logo recognition in clean environments [32], [17], [7], [10].
However, such descriptors have not been successful when it
comes to natural images, mainly due to the fact that they
are extremely sensitive to background clutter.

The problem we study is the following: given an large
annotated database of logos associated to different classes
(or brands) and one query image (or video frame), the task
is to detect if one or more of the brands appear in the query.
The database consists of a relatively small number of logo
instances per class, however it may contain a large number
of classes. Having more than one instances per class makes
detection robust against the multiple forms or appearance
variations that a logo may take—again, see Figure 1.

Typically, the database can scale up to thousands of classes.
Such scales are not very common in generic object detection
or recognition. Detectors that operate sequentially for each
class, (e.g . Viola and Jones [27]) are impractical here, even
when sharing features [26]. To maintain fast response on
such a large corpus, recognition should be sub-linear in the
number of classes, as in [20].

We propose a novel representation whereby local features
are grouped into triplets by means multi-scale triangulation.
The latter applies Delaunay triangulation on local feature
positions guided by the scales that are available from the
feature detector. A simple signature is extracted from each
triangle and incorporates both visual appearance and local
geometry. Each class is represented by the union of sig-
natures over all instances of the class. Such a generative
model—where all training samples are present individually
during query time—has also been successfully applied re-
cently to face recognition [29].

Signatures are highly discriminative, hence sub-linear recog-
nition is accomplished by means of a simple inverted index
structure. During recognition, signatures are extracted from
the query image exactly as in the database instances and



Figure 1: Sample instances of the Adidas (above)
and Coca-Cola (below) logos, illustrating the differ-
ent forms and appearance variations that logos may
take in each class.

class models are ranked acconding to the inverted index re-
sponse. The index behaves like a visual memory with sub-
linear response. Querying a database of thousands of logo
classes typically takes milliseconds.

We compare our method against the bag-of-words model
with tf-idf weighting as baseline [25]. We conduct experi-
ments on our own logo data set collected from Flickr1, since
logo images in existing public data sets are either small or
insufficient—for instance, the challenging BelgaLogos data
set [13] focuses on retrieval and does not provide annotated
images for training. Our dataset consists of 27 annotated
classes and more than four thousand classes with only a
few clear instances each. The latter are not annotated and
play the role of distractors. We can thus simulate large-scale
recognition without the need for large scale annotation.

The paper is structured as follows. Section 2 discusses ex-
isting work on several related problems. Section 3 presents
multi-scale triangulation and signature generation, while Sec-
tion 4 focuses on class model building and sub-linear recog-
nition. Section 5 presents experimental results and Section 6
draws conclusions and discusses possible future directions.

2. RELATED WORK

Logo recognition. In one of the earliest works on logo
recognition, Doermann et al . [7] use global affine shape in-
variants to prune and refine logo matching. In [10], Folkers
and Samet propose a content based logo retrieval scheme,
where logos are represented by Fourier descriptors and queries
comprise geometric shapes. In [17] and [32] the authors fo-
cus on documents and use OCR techniques to keep the logo
while discarding all text. On the contrary, in [5], regions
containing text are first detected and regarded as tentative
logo positions; logos are then recognized using color and
shape features. All the above methods require logos to be
on a clean white background.

Interest point grouping. There has been a lot of work
recently in grouping interest points [4], [9], [11], [16], [24].

1http://www.flickr.com

However, all these methods work directly on the descriptor
space after combining interest points. Therefore they are
impractical in a large scale retrieval scenario, where quanti-
zation e.g . with a visual codebook seems unavoidable.

Visual word grouping. When it comes to large scale—
usually near-duplicate—retrieval, the bag-of-words model is
the most successful one [25]. Although this model produces
sufficient results for datasets up to e.g . 105 images, retrieval
performance drops quickly as the dataset grows larger. More
recent methods extend the basic model by grouping visual
words. For instance, Yuan et al . [31] define visual phrases
as frequent co-occurring visual word groups, extracted via
frequent itemset mining. However, the authors do not use
visual phrases for indexing; they rather only use them for
top-down refinement of the visual codebook.

Indexing geometry. The need for embedding geometry
in the index has appeared recently, with datasets scaling up
to millions. The bag-of-words model fails to return a good
image shortlist and suffers from false positives in this case.
Perdoch et al . [21] discretize local feature shape (ellipses)
to save memory. On the other hand, Avrithis et al . [1] in-
corporate global geometry in the index by means of feature
map hashing. We only consider local geometry here; this
makes sense since logos typically cover only a small part of
the image.

Poullot et al . [23] group spatially neighbouring local fea-
tures and index triangles. Instead of a trained visual code-
book they use bucketing and extract a compact binary signa-
ture to represent local feature appearance. This representa-
tion is highly discriminative, but poses invariance limitations
and is very sensitive to outliers. This is not an issue when
dealing with near-duplicate detection, but in our problem
the limitations would be prohibitive.

Logo retrieval. This is a related problem where, given a
query depicting a clean logo, the task is to retrieve as many
as possible images from a general image database containing
the query logo. In [13] Joly et al . use an LSH-based approach
and query expansion. The query is a clean cropped logo
rather than an entire natural image as in our case. In [30],
Wu et al . bundle local features corresponding to MSER re-
gions and impose simple geometric constraints on the feature
bundles. In both cases instances are returned individually
and no class model is learnt.

Logo detection in natural scenes. Kleban et al . [14]
use the Apriori algorithm to identify frequent spatial con-
figurations of local features extracted on a spatial pyramid.
They construct an inverted index of such configurations,
which they look up at query time. Mining requires a large
amount of annotated training data per class and is compu-
tationally expensive. Bagdanov et al . [2] retrieve logos from
sport videos by direct matching of SIFT descriptors between
the query and a pool of instances in the database. Neither
method can scale to more than just a few logos.

3. TRIANGULATION-BASED REPRESEN-
TATION

In the following, we shall assume that local features are de-
tected in all training images and local descriptors are ex-
tracted, like SIFT [18] or SURF [3]. Further, we assume
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Figure 2: (a) A triangle with all vertices being fea-
tures of a scale s1. (b) An outlier feature of scale s2

is added. This feature will affect triangulation only
if |s1 − s2| < w, where w is the scale window size. (c)
A triangle with all vertices being features of scale s3.
This triangle will match the one in (a) if all three
visual words of the two triplets are equal.

there is a generic visual codebook, and each feature is as-
signed the closest visual word in descriptor space, as in the
bag-of-words (BoW) model [25]. We require a ground-truth
for the training images, consisting of a bounding box and
a class label for each logo instance in each image. We use
bounding boxes for training, and entire images for recogni-
tion. In either case, we represent a logo instance by the set
F of the local features it contains. For each feature f ∈ F ,
we denote by x(f), s(f) its position and scale respectively
as given by the detector.

3.1 Multi-scale Delaunay triangulation
We capture feature geometry using Delaunay triangulation [6]
on local feature positions. Seen as a global structure repre-
sentation, a Delaunay graph is quite sensitive to outliers and
for this reason it is typically used e.g . for tracking in video
sequences, as in [12]. Local configurations are more robust
to outliers. Feature triplets are a common choice as in [23],
which in our case correspond to faces of the Delaunay graph.
To further enhance robustness, we exploit feature scale as
given by the detector and constrain triangulation to features
of similar scale.

To see how multi-scale triangulation increases the match-
ing probability of two triangles, consider the triangle of Fig-
ure 2(a) where vertices are features of scale s1. In Fig-
ure 2(b), an outlier of scale s2 has been added. In our case,
the outlier will only affect triangulation if scales are similar,
i.e. |s1− s2| is small. On the contrary, using spatial nearest
neighbors as in [23], the two triangles would never match.

Delaunay triangulation. Consider a set P of points on
a plane and their Voronoi diagram, denoted by Vor(P ). For
each point p ∈ P , let c(p) be the Voronoi cell of p. The
graph V of Vor(P ) has a vertex for every Voronoi cell and
it has an edge joining two vertices if the corresponding cells
are adjacent. Consider the straight-line embedding of V,
where each vertex c(p) is mapped to p and each edge joining
vertices c(p) and c(q) is mapped to line segment pq. This
embedding is the Delaunay graph of P , which we denote by
D. It is the dual graph of V; it is also a planar graph, i.e.
no two edges intersect.

If P is in general position2, then all vertices of V have

2We say that a set of points is in general position if it con-
tains no four points on a circle. For randomly distributed

Figure 3: Delaunay triangulation of all local features
extracted from a FedEx logo instance.

degree three, implying that all bounded faces of D are tri-
angles. Under the same assumption, the triangulation is
unique. It has the property of being angle-optimal, i.e. it
maximizes the minimum angle over all triangulations of P .
Its computation can be very efficient; see [6] for a detailed
treatment. A Delaunay triangulation of all local features
extracted from a FedEx logo instance is shown in Figure 3.

Multi-scale triangulation. Despite the uniqueness of
Delaunay graph D given a set of points P on the plane, ad-
dition of one more point as an outlier will affect at least
one triangle. Given that in practice outliers are the major-
ity of features, it is quite common that the triangulations of
two instances of the same logo may not share a single trian-
gle. For this reason we constrain triangulation to subsets of
features sharing nearby scales.

The intuition is that an outlier will only affect triangula-
tion in specific cases, as shown in the example of Figure 2
mentioned above. On the other hand, a triangle of features
detected at the same scale s1 in one logo instance as in
Figure 2(a) is still expected to be found having features at
some other scale s3 in a scaled instance of the same logo, as
in Figure 2(c).

To build a multi-scale triangle representation for each logo
instance, we take subsets of local features within a small log-
scale window and repeat triangulation by sliding the window
on the log-scale space. Log-scale makes sense because a win-
dow of size w of one image will be associated to some win-
dow of the same size w of a scaled version of the image. It
is then expected that the corresponding triangulations will
be built on the same feature subsets. By scale we shall refer
to log-scale in the sequel.

Given a specific scale σ, define the scale window or level
Lσ = [σ, σ + w), where w is the window size. Now, given a
logo instance represented by feature set F , define the level-σ
feature subset

Fσ = {f ∈ F : s(f) ∈ Lσ} (1)

as the set of all features having scale of level Lσ. Accord-
ingly, define the level-σ point subset

Pσ = {p ∈ R2 : p = x(f) for f ∈ Fσ} (2)

as the set of all corresponding feature positions on the plane.
Otherwise stated, Pσ = x(Fσ) is the image of feature subset

points, the chance that four points lie on a circle is very
small [6].



Figure 4: Triangulations of local features at multiple
scale space levels.

Fσ under position map x. Similarly, define by S = s(F )
the set of all scales, as the image of the entire feature set F
under scale map s, and let smin = min(S), smax = max(S).

Algorithm 1 Multi-scale triangulation

1: Input: Feature set F , window size w, step t
2: Output: Triangle collection T
3: T ← ∅
4: σ ← smin

5: while σ < smax do
6: Fσ ← {f ∈ F : σ ≤ s(f) < σ + w}
7: Dσ ← Delaunay(x(Fσ))
8: T ← T ∪ Tα(Dσ)
9: σ ← σ + t

10: end while

All we do then is triangulate Pσ and construct a corre-
sponding level-σ Delaulay graph Dσ for a number of differ-
ent scales σ. We iterate by sliding the scale window Lσ, i.e.
linearly incrementing σ in the log-scale space by step t. For
each scale σ, we keep all detected triangles Tα(Dσ) in level-σ
Delaunay graph Dσ having area above α, typically set to 10
square pixels. Finally, we construct the triangle collection

T =
⋃
σ∈Σ

Tα(Dσ) (3)

as the union of all such triangles over all levels Σ used in our
sliding window scheme. Algorithm 3.1 outlines our multi-
scale triangulation process. In our experiments we typically
use parameter values w = 2.5 and t = 2. Figure 4 shows
the triangulations at multiple scale space levels for the local
features of the image shown in Figure 3.

3.2 Triangle representation
Each triangle consists of three local features corresponding
to three visual words. To represent, index and match a tri-
angle, a signature is generated as an ordered triple of the

[123]

[456]

[1234]

signature:
012304561234

Figure 5: Left: A triangle with the visual word la-
bels of its features in brackets. Right: extracted
signature.

three visual word labels of the triangle features, in lexico-
graphically ascending order. Two triangles match if their
signatures are identical, i.e. if all three visual words are iden-
tical.

In practice, the three label ids are encoded into a long in-
teger, each taking up a small number of bits. For instance,
consider the triangle shown in Figure 5, assuming vocabu-
lary size 104. It is assigned to visual words 1234, 123 and
456, hence its signature is ordered triple (0123, 0456, 1234),
or equivalently integer 012304561234.

The proposed representation has a number of important
properties. It is highly discriminative, since all three visual
words must be identical in order to match a single triangle.
It is robust against appearance variation because we use a
relatively small visual codebook and let the triangle repre-
sentation compensate for the loss in discriminative power.

It encodes local geometry in terms of nearby feature triples
arising from Delaunay graphs. It is robust against varia-
tion in spatial configuration because the relative position of
features in a triangle is discarded and because multi-scale
triangulation is largely insensitive to outliers.

4. CLASS MODELS AND RECOGNITION
We follow an offline, supervised process to produce a gener-
ative model for each logo class. Given all training images of
a class, triangles are extracted from each logo instance and
all signatures are accumulated into the class model. Such
an accumulation makes sense, since it allows recognition of
any variant of the logo, provided that it appears in at least
one of the training images. In certain cases, recognition is
possible even if parts of a variant appear in different training
images. Keeping only frequent signatures, as in [31] or [14],
would not allow this.

4.1 Class model building
Each class model associated to a logo brand consists of the
signatures of all triangles extracted from all instances of the
class, along with their frequency of appearance. Frequency
is defined as the number of logo instances in which each tri-
angle appears, normalized by the total number of instances
in the class. This assumes that signatures in an instance are
unique, which is typically the case because signatures are
highly discriminative. We use frequency to weigh database
matches during inverted index queries as in the bag-of-words
model.

Our signatures contain local geometry information apart
from appearance. Relative positions are discarded but spa-
tial proximity is taken into account because the spatial con-



figuration of three features appearing in a triangle satisfies
the Delaunay triangulation properties. We are thus implicit
indexing local geometry in our logo class models.

Indexing signatures in an inverted file is straightforward,
since they are represented by integers. Tf-idf weighting is
applicable to signatures exactly as visual words. In fact,
since the training set is annotated, even relative frequency
weighting could be used [19]. In this case index atoms—the
equivalent of images in the baseline bag-of-words model—
would correspond to our classes.

The number of triangles per class model varies a lot, and
depends on image resolution, logo complexity and scale in
the training instances. However, our signature index is so
sparse that both memory and recognition speed remain largely
unaffected in all our experiments, even in cases of highly
populated models.

4.2 Recognition as sub-linear search
Our intuition for logo recognition is that if a logo is present
in a query image, at any size or position, its local feature
configuration will match the configuration of a number of
training instances. Hence Delaunay triangulation over the
logo region will produce a number of similar triangles. Our
multi-scale triangulation makes this matching robust to out-
liers.

Although the scale (or orientation) of a logo in a query
image may differ from all training instances, it is expected
that triangles of features of equal scale will be repeatable in
images of different scales.

Recognition is seen as a sub-linear search process. The
idea is similar to the visual memory of [20] but we use the
inverted index instead of a decision tree. This approach is
very scalable, exactly as the bag-of-words model. We have
scaled to thousands of class models in our experiments, with
recognition times in the order of a few seconds.

At query time, the triangulation-based representation de-
scribed in Section 3.1 is repeated for the query image. This
time all features are taken into account. We generate signa-
tures for all query triangles and look them up in the index.
The response is the number of identical signatures found per
class model; we use this number as a score to rank models.
A class model is verified if a minimum number of signatures
is found.

Spatial matching and verification per training instance
could naturally follow as in the bag-of-words model. How-
ever, our discriminative signature representation and the
sparsity of the index alone are enough to yield high pre-
cision. Spatial matching would increase query time without
a significant benefit in terms of precision. Matching trian-
gles between two instances of the same class are shown in
Figure 6.

5. EXPERIMENTS
We compare our method against the bag-of-words model
with tf-idf weighting as baseline [25]. Since the proposed
approach shares the basic feature representation with the
baseline, i.e. visual codebook of local features, the differ-
ence in performance comes mainly from the indexing stage
where in our case local geometry is included. In order to
evaluate properly on a large-scale scenario, we created our
own logo dataset collected from Flickr3, which is described

3http://www.flickr.com

Figure 6: Matching triangles between two instances
of the same class.

below.

5.1 Dataset
A total of 27 classes were chosen for the dataset4, each

one corresponding to a brand, according to the following
criteria: (i) To be able to find enough test images in natural
environments, (ii) to have a variety of topics (not just car
brands, for instance). We then manually selected 40 images
per class from Flickr, such that every selected image effec-
tively contained at least one instance of the brand’s logo.
Once the initial collection was built, all 1080 images were
annotated with bounding boxes of the logo instances in the
image. We allowed multiple logo instances per class image.

This annotated collection of logos was then split in a test
set and a train set. From the 40 images per brand, 30 were
randomly selected to be part of the training set, while the
rest were the test set.

The query set was then formed with a subset of the test set
(5 images times 27 classes = 135 query images). The other
half of the test set was used for parameter estimation. To
complete this set with negative examples, i.e. images that
do not contain any logo, we manually gathered 135 more
images taken in natural environments, ensuring that they
did not contain any class instance.

Finally, the distractor set was built: 4397 images from
Flickr were selected, all coming from the group ”Identity +
Logo Design”. After visual inspection, we saw that almost
all images in this group contain clear logo images, so there
was no need for a bounding box annotation.

Sample images from the dataset are presented in Figure
7. The first two rows consist of images containing logos, the
third row consists of images that contain no logo, while the
last row depicts some of the distractor logo set.

5.2 Evaluation Protocol
We have used SURF [3] local features and descriptors in

all experiments. In order to be robust against appearance
variations, a small visual codebook of 3K visual words is
used for our method, denoted as msDT in the result fig-
ures. The performance of the bag-of-words model typically
increases with vocabulary size [22] when the problem at hand
is near-duplicate detection. However, this is not always true
for logo retrieval. Many logo instances found in natural im-
ages are far from near-duplicates as shown e.g . in Figure 1.
We therefore found a vocabulary of 5K visual words to be
a good choice for the baseline.

4We will publish this dataset online at the time of final copy
if our paper gets accepted.



Figure 7: Sample images from the dataset. Rows 1
and 2: images containing logos. Row 3: images con-
taining no logo. Row 4: images from the distractors
set.

For the baseline bag-of-words, we normalized the code-
book vectors using the l1 norm and matched them using
histogram intersection. To choose the parameters of our ap-
proach, i.e. the window size w and the step t of the multi-
scale triangulation, we experimented on half of the test col-
lection, used for the parameter estimation. The best perfor-
mance was achieved using w = 2.5 and t = 2. It is worth
noting that accuracy was over the baseline for all parameter
combinations we checked, when it comes to the large-scale
experiment, i.e. using the 4K distractor logos.

To decide whether a logo is present in a query image, we
set thresholds on the similarity of both multi-scale Delau-
nay triangulation and bag-of-words. To choose the optimal
thresholds we experimented again on the parameter estima-
tion test collection. The best values were 0.15 histogram
intersection similarity for the baseline and 4 matching tri-
angles for our method.

5.3 Results
We conducted two experiments on our Flickr logo collec-

tion. For the first one, we included in the index only the 27
annotated classes, i.e. the 1080 manually annotated images.
For the second experiment, we also added the 4K distrac-
tor logos in the index, simulating a large-scale scenario. We
measure accuracy as the percentage of correctly recognized
logo plus non-logo images, over the total sum of queries.

In the first case, when no distractors are present, the
baseline performs slightly better than multi-scale Delaunay
Triangulation. Such a result confirms the state-of-the-art
performance of bag-of-words models in absence of outliers.
Performance results when varying the number of training
images are presented in Figure 8. To vary the number of
training images, we split the training set into 6 random sub-
sets of 5 images per class.

However, when we add the 4K distractor classes the fig-
ures change dramatically. As expected, the bag-of-words
model seems clearly affected by the outlier classes and shows
a big drop in performance. Accuracy in this case is on aver-
age 17% less. On the other hand, the multi-scale Delaunay
Triangulation seems to be much less affected in presence of
the distractor classes. Although its performance drops, it
just decreases for 5.5% on average. The strict nature of
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Figure 8: Performance of the proposed multi-scale
Delaunay Triangulation approach (msDT) against
the baseline Bag-of-Words, on our own Flickr logo
dataset without the distractor classes (only 27 classes
present in the index).

the triangle representation allows far less false positives to
appear and “confuse” recognition. Performance results for
recognition using all 4K classes in the index are presented
in Figure 9.

As far as query time is concerned, the proposed approach
is no slower than the baseline. Although on query time
we look up far more triangles in the index than there are
features, posting lists per signature are a much shorter for
our inverted index, due to the fact that image signature
vectors are far more sparse in the signature space of size N3

for a vocabulary of N visual words.

6. CONCLUSIONS
The contribution of this work is two-fold. First, we pro-

pose a novel discriminative triangle representation that in-
cludes local geometry information. The triangles come from
multi-scale Delaunay triangulation, a robust process that
can be reproduced in the query image. Each triangle forms
a signature that can be indexed using an inverted file struc-
ture. This allows robust recognition in less than a second, for
a logo database of thousands of classes. Second, we propose
a simple learning process that accumulates triangles of each
class, while preserving the appearance frequency as well. Ex-
periments on a large dataset show that multi-scale triangu-
lation outperforms bag-of-words. The latter performs really
well for a few dosen logos, but is very prone to errors as the
number of logos grows. Finally, we introduce a large and
challenging annotated logo dataset.

In the future, optimizations for RANSAC based on the
multi-scale Delaunay triangulation signatures could be in-
vestigated in order to detect the exact position and bound-
ing box inside the query image. Each matching triangle de-
fines a unique affine transformation that can guide RANSAC
efficiently. Advantages of using a more sophisticated scale-
space could also be investigated and lead to a further in-
crease in performance. Finally, we intent to exploit the
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Figure 9: Performance of the proposed multi-scale
Delaunay Triangulation approach (msDT) against
the baseline Bag-of-Words on our own Flickr logo
dataset with the distractor classes (more than 4K
classes in total in the index).

speed and scalability of the proposed approach for automatic
large-scale logo detection and apply it in videos.
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