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ABSTRACT
Location recognition is commonly treated as visual instance re-
trieval on “street view” imagery. �e dataset items and queries are
panoramic views, i.e. groups of images taken at a single location.
�is work introduces a novel panorama-to-panorama matching
process, either by aggregating features of individual images in a
group or by explicitly constructing a larger panorama. In either
case, multiple views are used as queries. We reach near perfect
location recognition on a standard benchmark with only four query
views.
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1 INTRODUCTION
Location recognition has been treated as a visual instance retrieval
task for many years [1, 3, 11, 23, 25, 33]. Additional, task-speci�c
approaches include ground truth locations to �nd informative fea-
tures [25], regression for a more precise localization [18, 31], or
representation of the dataset as a graph [7]. A dense collection of
multiple views allows 3D representations are possible, e.g. struc-
tured from motion [12], searching 2D features in 3D models [19, 24],
or simultaneous visual localization and mapping [8]. However, this
does not apply to sparse “street-view” imagery [30, 32], where
dataset items and queries are groups of images taken at a single
location, in a panorama-like layout.

Several approaches on visual instance retrieval propose to jointly
represent a set of images. �ese sets of images can appear at the
query or at the database side. In the former case, these images are
di�erent views of the same object or scene [2, 27] and �nally perfor-
mance is improved. �is joint representation, which commonly is
an average query vector constructed via aggregation, is presumably
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more robust than each individual query vector. On the other hand,
when aggregating images on the database side it is be�er to group
them together by similarity [14]; images are assigned to sets, and a
joint representation is created per set.

�is work revisits location recognition by aggregating images
both on query and database sides. Our method resembles implicit
construction of a panorama, i.e. images are combined in the feature
space and not in the image space, but we also experiment with
an explicit construction. Contrary to the general case of visual
instance retrieval, it is easy to obtain multiple query images, e.g.
capturing them with a smartphone or with multiple cameras in
the case of autonomous driving. On the database side, location
provides a natural way of grouping images together. �us, contrary
to generic retrieval, the images to be aggregated on the query and
database sides, may not be similar to each other; they rather depict
whatever is visible around a particular location.

We signi�cantly outperform the state of the art without any form
of supervision other than the natural, location-based grouping of
images, and without any costly o�ine process like 3D reconstruc-
tion. Indeed we are reaching near perfect location recognition on
the Pi�sburgh dataset [32] even when we use as few as four views
on the query side.

2 BACKGROUND
�is section describes the related work on Convolutional Neural
Network (CNN) based descriptors for image retrieval and on image
set joint representations. Our approach applies these methods on
the dataset and query images.

2.1 CNN Descriptors for Retrieval
CNN-based global descriptors are becoming popular in image re-
trieval, especially for instance-level search. Existing works [4, 17,
22, 29] employ “o�-the-shelf” networks, originally trained on Im-
ageNet, to extract descriptors via various pooling strategies. �is
o�ers invariance to geometric transformation and robustness to
background clu�er. Other approaches [5, 9, 20] �ne-tune such net-
works to obtain descriptor representations speci�cally adapted for
instance search.

NetVLAD [1] is a recent work that trains a VLAD layer on top
of convolutional layers in an end-to-end manner. It is tuned for
the location recognition task. �e training images are obtained
from panoramas, fed to a triplet loss to make it more compatible
with image retrieval. As a result, their representation outperforms
existing works in standard location recognition benchmarks.

2.2 Representing Sets of Vectors
Two common scenarios aggregate a set of vectors into a single
vector representation for image retrieval. �e �rst case involves
aggregation of a large number of local descriptors, either to reduce
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Figure 1: Le�: Toy example of two vector sets X, Y on the 2D plane are shown on the le�. Middle: Pairwise similarity between
all vectors, cross-matching with sum-vectors, i.e. X>Y (3). Only for visualization purposes, and since we are dealing with
unnormalized 2D vectors, the similarity between vectors x, y is de�ned as e ‖x−y‖2 . Right: weighted pairwise-similarity between
all vectors, cross-matching with pinv-vectors, i.e. G−1

X X>YG−1
Y (4).

the number of descriptors [26, 28], or to create a global descrip-
tor [10, 16]. In the other case, which is exploited in this work,
a set of global image descriptors is aggregated into a single vec-
tor representation to construct a joint representation for a set of
images [14].

In particular, we follow the two memory vector construction
strategies proposed by Iscen et al. [14]. �e �rst method simply
computes the sum of all vectors in a set. Given a set of vectors
represented as the columns of a d ×n matrix X = [x1, . . . , xn] with
xi ∈ Rd , the sum memory vector is de�ned as

m(X) = X1n . (1)

Assuming linearly independent columns (n < d), the second method
is based on the Moore-Penrose pseudo-inverse X+ [21], given by

m+ (X) = (X+)>1n = X(X>X)−11n . (2)

It is theoretically optimized for high dimensional spaces and per-
forms be�er in practice. �is paper refers to the sum memory
vector (1) as sum-vector, and to the pseudo-inverse memory vec-
tor (2) as pinv-vector.
Aggregating Dataset Images. �e main purpose of aggregating
dataset images is to reduce the computation cost of similarity search
at query time [14]. Dataset vectors are assigned to sets in an o�-
line process, and each set is represented by a single (memory)
vector. At query time, the similarity between the query vector and
each memory vector is computed, and memory vectors are ranked
accordingly. �en the query is only compared to the database
vectors belonging to the top ranked sets. �is strategy eliminates
the exhaustive computation of the similarities query vs. dataset
vectors. Existing works use random assignments to create the
sets, or weakly-supervised assignment based on k-means or kd-
tree [13, 14].
Aggregating �ery Images. Aggregation of query images has
been also studied for instance-level object retrieval. Multiple im-
ages depicting the query object allow to be�er handle the problems
of occlusion, view-point change, scale change and other variations.
Arandjelovic et al. [2] investigate various scenarios, such as aver-
age or max pooling on query vectors and creating SVM models.
Recently, Sicre and Jégou [27] have shown that aggregating query
vectors with pinv-vector improves the search quality.

Aggregation of dataset images o�ers speed and memory im-
provements at the cost of performance loss. On the other hand,
aggregation of query images is only applicable in the particular

case of multiple available query images and o�ers performance
improvements at no extra cost. Our approach adopts aggregation
on both sides for the �rst time while enjoying speed, memory and
performance improvements.

3 PANORAMA TO PANORAMAMATCHING
�is section describes our contribution for location recognition.
We assume that for each possible location we are given a set of
images covering a full 360 degree view while consecutive images
have an overlap (see Figure 2). We propose two ways to construct
a panoramic representation of each location: an implicit way by
vector aggregation and an explicit way by image stitching into a
panorama and extraction of a single descriptor.

3.1 Implicit Panorama Construction
We form a panoramic representation by aggregating the descriptors
of images from the same location. In this way, we implicitly con-
struct a panorama in the descriptor space. In order to achieve this,
we employ two approaches for creating memory vectors, i.e. sum-
vector (1) and pinv-vector (2).

In contrast to previous works that aggregate the image vectors
only on the dataset side [14] or only on the query side [27], we
rather do it for both. �is requires that the query is also de�ned by
a set of images which o�er a 360 degree view. A realistic scenario
of this context is autonomous driving and auto-localization where
the query is de�ned by such a set of images.

Assume that n images in a dataset location are represented by
d × n matrix X and that k images in the query location by d × k
matrix Y. Analyzing the similarity between the two sum-vectors is
straightforward. Panorama similarity is given by the inner product

s (X,Y) =m(X)>m(Y) = 1>nX>Y1k . (3)
Similarly, panorama similarity for pinv-vectors is given by

s+ (X,Y) =m+ (X)>m+ (Y) = 1>nG−1
X X>YG−1

Y 1k , (4)

where GX = X>X is the Gram matrix for X. Compared to (3),
the sum a�er cross-matching is weighted now, and the weights
are given by G−1

X and G−1
Y . �is is interpreted as “democratizing”

the result of cross-matching; the contribution of vectors that are
similar within the same set are down-weighted, just as in handling
the burstiness phenomenon for local descriptors [16]. We visualize
this with a toy example in Figure 1. Unweighted cross-matching is
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Figure 2: Example of all images assigned to a single location (�rst two rows) and the corresponding panorama (last row)
covering a full 360 degree view, constructed by automatic stitching.

�ery:

Rank-1:

�ery:

Rank-1:
Figure 3: Two examples of failures with pan2pan/net. We
show the query and the top ranked image from the dataset.

dominated by “bursty” vectors in the same cluster. Democratization
down-weights these contributions.

3.2 Explicit Panorama Construction
Our second approach explicitly creates a panoramic image. �e
descriptors are then extracted from the panorama. Given that
images of a location are overlapping, we construct a panoramic
image using an existing stitching method. In particular, we use the
work of Brown and Lowe [6], which aligns, stitches, and blends
images automatically based on their local SIFT descriptors and
inlier correspondences. Figure 2 shows a stitched panoramic image.
Once stitching is complete, we extract a single global descriptor
from the panorama image, capturing the entire scene.

4 EXPERIMENTS
In this section, we describe our experimental setup, and compare
our method to a number of baselines using the state-of-the-art
NetVLAD network in a popular location recognition benchmark.

4.1 Experimental Setup
�e methods are evaluated on the Pi�sburgh dataset [32] referred
to as Pi�250k. It contains 250k database and 24k query images from

Google Street View. It is split into training, validation, and test
sets [1]. We evaluate our approach on the test set, which consists of
83,952 dataset images and 8,280 query images. Each image is associ-
ated with a GPS location and 24 images are associated with the same
GPS location. �erefore, each panoramic representation aggregates
24 images. �ere is a total of 345 query locations and 3,498 dataset
locations. We use NetVLAD for our descriptor representation in
all experiments. While the original representation is d = 4,096
dimensional, we also experiment with reducing dimensionality to
d = 256 by PCA.

�e standard evaluation metric is Recall@N . It is de�ned to equal
1 if at least one of the top N retrieved dataset images is within 25
meters from the spatial location of the query. Average is reported
over all queries. We follow this protocol for the baseline and other
cases where the query images are used individually.

Aggregating on the query side implies that there is a single query
per location: the number of queries decreases from 8,280 to 345. We
report the average recall@N from these 345 panorama queries. Sec-
tion 4.3 also experiments with a larger number of random queries,
each capturing only a fraction of the panoramic view. In this case,
recall@N is averaged over those random queries. Aggregating on
the dataset side does not a�ect the standard evaluation.

4.2 Panorama Matching
We refer to our proposed method as panorama to panorama or
pan2pan matching, in particular pan2pan/sum and pan2pan/pinv
when aggregating descriptors with sum-vector and pinv-vector
respectively; and as pan2pan/net when using a NetVLAD descrip-
tor from an explicit panorama. We compare against the following
baselines: image to image matching (im2im) as in the work by
Arandjelovic et al. [1], image to panorama matching (im2pan) cor-
responding to dataset-side aggregation as in the work by Iscen et
al. [14], and panorama to image matching (pan2im) corresponding
to query-side aggregation as in the work by Sicre and Jégou [27].

Figure 4 compares all methods for di�erent descriptor dimen-
sions. Clearly, panorama to panorama matching outperforms all
other methods. �e improvement is consistent for all N and sig-
ni�cant for low N : pan2pan/net obtains 98% recall@1! �ere are
only 7 failure queries. Two of them are shown in Figure 3. One is
a challenging query depicting an indoor parking lot and the other
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Figure 4: Comparison of existing approaches (im2im [1], im2pan [14], pan2im [27]) with our methods (pan2pan/sum,
pan2pan/pinv and pan2pan/net) for the full 4096D (le�) and for reduced dimensionality to 256D (right).
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Figure 5: Recall@5 on Pitt250k, sampling l images from
each query panorama and using NetVLAD descriptors of
two di�erent dimensionalities d . We report average mea-
surements over 10 random experiments and compare our
methods pan2pan/pinv and pan2pan/net.

actually retrieves the same building, which is incorrectly marked
in the dataset’s ground truth.

�e recall is not only improved, but the search is also more
e�cient both speed-wise (242× faster) and memory-wise (24× less
memory). Instead of comparing a given query image against 83k
vectors, we only make 3.5k comparisons. Additional operations are
introduced when aggregating the set of query images, but this cost
is �xed and small compared to the savings from the dataset side.

Comparing to results in prior work, im2pan behaves as in the
work of Iscen et al. [14] when compared to the baseline im2im.
�at is, memory compression and speed up at the cost of reduced
performance. However, pan2im does not appear to be e�ective in
our case, in contrast to the work of Sicre and Jégou [27]. On the
contrary, pan2pan signi�cantly improves the performance while
enjoying both memory compression and search e�ciency.

4.3 Sparse Panorama Matching
Aggregating on the dataset side is performed o�-line. However, the
user is required to capture images and to construct a full panorama
(24 images in our case) at query time. Even though this is not a
daunting task given the advances of smartphones and tablets, we
additionally investigate a scenario where the user only captures a
partial panoramic view.

In particular, we randomly sample a subset of l images from the
query location and consider them as the query image set. Explicit
panorama construction is no longer possible because the sampled
images may not overlap and so we cannot stitch them. In this case,
we feed sampled images through the convolutional layers only,
and stack together all activations before pooling them through the
NetVLAD layer (pan2pan/net for sparse panoramas).

Figure 5 shows the results. Our methods have near-perfect per-
formance even for a small number of sampled images. When
the user only takes four random photos, we are able to locate
them up to 99% recall@5. Another interesting observation is that
pan2pan/pinv outperforms pan2pan/net for l = 2, which is ex-
pected due to the nature of pinv-vec construction. It is theoretically
shown to perform well even if all the vectors in the set are random,
as shown in the original paper [14].

4.4 Comparison to Di�usion-based Retrieval
�is work casts location recognition as a retrieval task. �ery
expansion techniques signi�cantly improve retrieval performance.
We compare to the state-of-the-art retrieval method by Iscen et
al. [15], a kind of query expansion based on graph di�usion. In this
method, an image is represented by individual region descriptors
and at query time all query regions are processed.We compare to this
method by considering that regions and images in [15] correspond
to images and panoramas respectively in our scenario.

Our pan2pan/pinv and pan2pan/net approaches achieve 96.5%
and 98% recall@1 respectively, while the approach [15] gives 91.9%.
Even though query expansion improves the baseline, it does not
help as much as our methods. �is can be expected because [15] is
based on many instances of the same object, which is not the case
for location recognition on street view imagery.

5 CONCLUSIONS
Our method is unsupervised and conceptually very simple, yet
very e�ective. Besides the performance gain, we make signi�cant
savings in space by aggregating descriptors of individual images
over each group. �e need for multiple query views is not very
demanding because only four views are enough—an entire query
panorama is de�nitely not needed.

Although our aggregation methods have been used for instance
retrieval in the past, we are the �rst to successfully aggregate on
both dataset and query-side for location recognition (which in fact
has failed for instance retrieval [26]). An interesting �nding is that
although the NetVLAD descriptor has been explicitly optimized
to aggregate CNN activations on the location recognition task, in
some cases it is preferable to aggregate individual views into a
pinv-vector rather than extracting a single NetVLAD descriptor
from an explicit panorama.
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