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Abstract. Transformers and masked language modeling are quickly be-
ing adopted and explored in computer vision as vision transformers and
masked image modeling (MIM). In this work, we argue that image to-
ken masking differs from token masking in text, due to the amount and
correlation of tokens in an image. In particular, to generate a challeng-
ing pretext task for MIM, we advocate a shift from random masking to
informed masking. We develop and exhibit this idea in the context of
distillation-based MIM, where a teacher transformer encoder generates
an attention map, which we use to guide masking for the student.
We thus introduce a novel masking strategy, called attention-guided mask-
ing (AttMask), and we demonstrate its effectiveness over random mask-
ing for dense distillation-based MIM as well as plain distillation-based
self-supervised learning on classification tokens. We confirm that AttMask
accelerates the learning process and improves the performance on a
variety of downstream tasks. We provide the implementation code at
https://github.com/gkakogeorgiou/attmask.

1 Introduction

Self-supervised learning (SSL) has attracted significant attention over the last
years. Recently, several studies are shifting towards adapting SSL to transformer
architectures. Originating in natural language processing, where self-supervised
transformers [14,59] have revolutionized the field, these architectures were intro-
duced to computer vision with the vision transformer (ViT) [16] as an alternative
to convolutional neural networks [24, 33, 55]. ViT formulates an image as a se-
quence of tokens obtained directly from raw patches and then follows a pure
transformer architecture. Despite the absence of image-specific inductive bias,
ViT shows strong image representation learning capacity.

Considering that transformers are data-hungry, many studies advocate pre-
training them on unsupervised pretext tasks, determined only by raw data. A
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prominent paradigm is to mask a portion of the input tokens—words in text or
patches in images—and train the transformer to predict these missing tokens [2,
14, 23, 66, 71]. This paradigm, called masked language modeling (MLM) in the
language domain [14], is remarkably successful and extends to the vision domain
as masked image modeling (MIM) [2,66,71].

MIM-based self-supervised methods have already shown impressive results
on images. However, an important aspect that has not been well explored so far
is how to choose which image tokens to mask. Typically, the selection is random,
as has been the norm for text data. In this work, we argue that random token
masking for image data is not as effective.

In text, random word masking is likely to hide high-level concepts that de-
scribe entire semantic entities such as objects (nouns) and actions (verbs). By
contrast, an image has much more tokens than a sentence, which are highly re-
dundant, and random masking is less likely to hide “interesting” parts; or when
it does, the remaining parts still easily reveal the identity of the visual concepts.
As shown in Figure 1(b-d), unless masking is very aggressive, this is thus less
likely to form challenging token reconstruction examples that would allow the
transformer to develop strong comprehension skills.

The question we ask is this: Can we develop a masking strategy that addresses
this limitation and makes informed decisions on which tokens to mask?

To this end, we propose to exploit the intrinsic properties of ViT and in par-
ticular its self-attention mechanism. Given an input sequence of image patches,
we forward it through the transformer encoder, thereby obtaining an attention
map in its output. We then mask the most attended tokens. As shown in Fig-
ure 1(f-g), the motivation is that highly-attended tokens form more coherent
image regions that correspond to more discriminative cues comparing with ran-
dom tokens, thus leading to a more challenging MIM task.

This strategy, which we call attention-guided masking (AttMask), is an excel-
lent fit to popular distillation-based self-supervised objectives, because it is the
teacher encoder that sees the entire image and extracts the attention map, and
the student encoder that sees the masked image and solves the reconstruction
task. AttMask thus incurs zero additional cost.

We make the following contributions:

1. We introduce a novel masking strategy for self-supervised learning, called
AttMask, that exploits the intrinsic properties of ViT by leveraging its self-
attention maps to guide token masking (subsection 3.2).

2. We show how to efficiently incorporate this above masking strategy into
teacher-student frameworks that use a MIM reconstruction objective and
demonstrate significant performance improvements over random masking.

3. Through extensive experimental evaluation, we confirm that AttMask of-
fers several benefits: it accelerates the learning process; it improves perfor-
mance on a data-limited regime (subsection 4.2) and on a variety of down-
stream tasks (subsection 4.3); it increases the robustness against background
changes, thus revealing that it reduces background dependency.
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(a) Input (b) Random (c) Random (d) Block (e) Attention (f) AttMask (g) AttMask
Image (30) (75) Wise Map High Low

Fig. 1. Different than random masking strategies (b-d), our attention-guided masking
(AttMask) uses the attention map arising in the encoder (e) to mask the most highly
attended by default (f), or the low-attended (g) patches. (b) is used by SimMIM [66],
(c) by MAE [23], (d) by BEiT [2] and (g) by MST [36]

2 Related Work

Vision Transformers. Transformers are based on self-attention [59] and
require pretraining on large unlabelled corpora [14]. Their adaptation to vi-
sion tasks is not straightforward. Representing pixels by tokens is impracti-
cal due to the quadratic complexity of self-attention, giving rise to approxi-
mations [10, 25, 47, 61, 63]. The idea of representing image patches by tokens is
proposed in [12], where patches are of size 2×2, and is further studied in ViT [16],
where patches are 16× 16. Despite the absence of image-specific inductive bias,
ViT is competitive to convolutional neural networks for ImageNet [13] and other
smaller benchmark datasets [32,42]. Since it is pretrained on a large and private
dataset [54], authors of DeiT [58] question its efficiency and propose an improved
data-efficient version, which however is based on a strong teacher instead [50].

Self-supervised Learning. Early self-supervised learning methods follow the
paradigm of training on an annotation-free pretext task, determined only by
raw data [1, 15, 21, 30, 34, 40, 44, 68]. This task can be e.g . the prediction of
patch orderings [44] or rotation angles [21]. Starting from instance discrimina-
tion [64] and contrastive predictive coding [46], contrastive learning has become
very popular [3, 8, 17, 28, 39, 53, 62]. These methods pull positives together and
push negatives apart, where positives are typically determined by different views
of the same example. Alternatively, contrastive learning often relies on cluster-
ing [4–6,19,35,67,72]. The requirement of negatives is eliminated in BYOL [22],
OBoW [20], SimSiam [9] and DINO [7], where the challenge is to avoid repre-
sentation collapse, most notably by a form of self-distillation [56].

Using transformers, MIM as a pretext task is proposed in BEiT [2], which
maps the images to discrete patch tokens and recovers tokens for masked patches,
according to a block-wise random strategy. Other than that, MIM methods use



4 I. Kakogeorgiou et al .

continuous representations: SimMIM [66] randomly masks large patches and pre-
dicts the corresponding pixels by direct regression; MAE [23] randomly masks a
large portion of patches and predicts the corresponding pixels using an autoen-
coder; MST [36] masks low-attended patches and reconstructs the entire input
with a decoder; iBOT [71] extends the self-distillation loss of DINO to dense fea-
tures corresponding to block-wise masked patches. Here, we advocate masking
of highly-attended patches, in a sense the opposite of MST, and we exhibit this
idea in the context of DINO and iBOT.

Regularization and Augmentation. As the complexity of a task increases,
networks with more and more parameters are introduced. But with increased
representational power comes increased need for more data or risk of overfitting.
Several regularization and data augmentation methods have been proposed in
this direction [13,27,51,52], combined with standard supervised tasks.

In this context, feature masking is introduced by Dropout [52], which ran-
domly drops hidden neuron activations. To address the strong spatial correla-
tion in convolutional feature maps, SpatialDropout [57] randomly drops entire
channels. DropBlock [18] generalizes Dropout—or constrains SpatialDropout—
by dropping features in a block, i.e., a square region of a feature map. Attention
Dropout [11] makes use of self-attention to mask the most discriminative part of
an image. Feature-space masking, guided by attention from another network or
branch, has been extensively studied as a mechanism to explore beyond the most
discriminative object parts for weakly-supervised object detection [26, 29, 69].
Our work is a natural evolution of these ideas, where attention is an intrinsic
mechanism of transformers; and the task becomes that of densely reconstructing
the masked features. This is a pretext task, without need for supervision.

3 Method

A simplified overview of the method is shown in Figure 2. We first discuss in
subsection 3.1 preliminaries and background on vision transformers and self-
supervision with distillation-based masked image modeling. In subsection 3.2,
we then detail our attention-guided token masking strategy, called AttMask,
and how we incorporate it into masked image modeling.

3.1 Preliminaries and Background

Vision Transformer [16]. We are given an input image X ∈ Rh×w×c, where
h×w is the spatial resolution and c is the number of channels. The first step is
to tokenize it, i.e., convert it to a sequence of token embeddings. The image is
divided into n = hw/p2 non-overlapping patches Pi ∈ Rp×p×c for i = 1, . . . , n,

where p× p is the patch resolution. Each patch is flattened into a vector in Rp2c

and projected to an embedding vector zi ∈ Rd using a linear layer, where d is the
embedding dimension. A learnable embedding z[cls] ∈ Rd of a “classification”
token [cls] is then prepended to form the tokenized image

Z = (z[cls]; z1; . . . ; zn) ∈ R(n+1)×d, (1)
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Fig. 2. Simplified overview of AttMask as incorporated in the masked image modelling
(MIM) objective of iBOT [71]. A tokenized image Z (1) is given as input to a teacher
encoder fθ′ , generating target features fθ′(Z) and an attention map a[cls] (7). We then
generate a mask mH (9) on the most attended tokens and accordingly a masked version

Z̃ (10) of the image, which is given as input to a student encoder fθ to generate the

predicted features fθ(Z̃). Using mH , loss LMIM (3) is a dense distillation loss between
predicted and target features of the masked tokens. Additionally, a global loss Lg (4)
between [cls] tokens is applied (not shown here)

where “;” denotes row-wise stacking. The role of this special token is to represent
the image at the output. A sequence of position embeddings is added to Z to
retain positional information. The resulting sequence is the input to the trans-
former encoder. Each layer of the encoder consists of a multi-head self-attention
(MSA) block followed by a multi-layer perceptron (MLP) block. Through all of
its layers, the encoder uses a sequence of fixed length n+1 of token embeddings
of fixed dimension d, represented by a (n+1)× d matrix. The embedding of the
[cls] token at the output layer serves as the image representation.

An MSA block consists of a number H of heads, each computing a scaled
dot-product self-attention [59], i.e., the relevance of each image patch to others,
encoded as an (n+1)× (n+1) attention matrix. As discussed in subsection 3.2,
we average attention matrices over all the heads of the last encoder layer and
we use the row corresponding to the [cls] token to generate token masks.

Distillation-based Masked Image Modeling. Self-distillation, using a mov-
ing average of the student as teacher [56], is studied for self-supervision in
BYOL [22] and extended to vision transformers in DINO [7], which applies the
distillation loss globally on the [cls] token. iBOT [71] turns this task intomasked
image modeling (MIM) by applying the loss densely on masked tokens.

Given an input image X tokenized as Z = (z[cls]; z1; . . . ; zn), a mask vector
m = (m1, . . . ,mn) ∈ {0, 1}n is generated, giving rise to a masked tokenized

image Z̃ = (z[cls]; z̃1; . . . ; z̃n), with

z̃i = (1−mi) · zi +mi · z[mask] (2)
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for i = 1, . . . , n, where z[mask] ∈ Rd is a learnable embedding of a “mask” token
[mask]. Following the strategy of BEiT [2], the mask vector is generated with
random block-wise token sampling, that is, defined in terms of random rectangles
in the 2D layout of the n tokens as a (h/p)× (w/p) matrix.

Following DINO [7], the transformer encoder is followed by a head that in-
cludes an MLP and scaled softmax, such that output token embeddings can be
interpreted as probabilities. We denote by fθ the mapping that includes the ad-
dition of the position embeddings, the encoder and the head, while θ is the set
of learnable parameters. Given a tokenized image Z, masked or not, we denote
by fθ(Z) ∈ R(n+1)×d the output token sequence and by fθ(Z)i, fθ(Z)[cls] ∈ Rd

the embedding of the i-th and [cls] token respectively. The teacher parameters
θ′ are obtained from the student parameters θ by exponential moving average
(EMA) according to θ′ ← αθ′ + (1− α)θ.

For each input image, two standard resolution augmented global views are
generated, with tokenized images Za, Zb and mask vectorsma,mb. For each view
v in V = {a, b} and for each masked token, the MIM objective is to minimize

the reconstruction loss between the student fθ output for the masked input Z̃v

and the teacher fθ′ output for the non-masked input Zv:

Lmim = −
∑
v∈V

n∑
i=1

mv
i fθ′(Zv)i log(fθ(Z̃

v)i). (3)

Following DINO [7], a similar loss is applied globally on the [cls] tokens between

the student output for one masked view Z̃v and the teacher output for the other
non-masked view Zu:

Lg = −
∑

(u,v)∈V 2

1u ̸=vfθ′(Zu)[cls] log(fθ(Z̃
v)[cls]). (4)

Finally, as detailed in the supplementary, a multi-crop strategy applies, giv-
ing rise to a loss Llc between local crops and global views. The overall loss of
iBOT [71] is a weighted sum of Lmim (3) and Lg (4) + Llc. DINO itself uses the
sum Lg (4) + Llc without masking.

3.2 AttMask: Attention-guided Token Masking

Prior MIM-based self-supervised methods use random or block-wise random to-
ken masking. In this section we describe our attention-guided token masking
strategy, which hides tokens that correspond to the salient regions of an image
and thus define a more challenging MIM objective.

Attention Map Generation. Given an input sequence Y ∈ R(n+1)×d, a
multi-head self-attention (MSA) layer uses three linear layers to map Y to the
query Qj , key Kj and value Vj sequences for j = 1, . . . ,H, where H is the

number of heads, Qj ,Kj , Vj ∈ R(n+1)×d′
and d′ = d/H. Then, it forms the

(n+ 1)× (n+ 1) attention matrix, where softmax is row-wise:

Aj = softmax
(
QjK

⊤
j /
√
d′
)
. (5)
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To generate token masks from any layer of the transformer encoder, we average
the attention matrices over all heads:

A =
1

H

H∑
j=1

Aj . (6)

Now, each row of an attention matrix is a vector in Rn+1, that corresponds to
one token and, excluding the diagonal elements, determines an attention vector
in Rn over all other tokens. We focus on the attention vector of the [cls] token,
which comprises all but the first elements of the first row of A:

a[cls] = (a1,2, a1,3, . . . , a1,n+1) , (7)

where ai,j is the element i, j of A. This vector can be reshaped to (h/p)× (w/p)
attention map, to be visualized as a 2D image, indicating the regions of the input
image that the [cls] token is attending.

Mask Generation: Highly-attended Tokens. There is a permutation σ↓ :

{1, . . . , n} → {1, . . . , n} that brings the elements of a[cls] in descending order,

such that a
[cls]
σ↓(i)

≥ a
[cls]
σ↓(j)

for i < j, where a
[cls]
i is the i-th element of a[cls].

Choosing a number k = ⌊rn⌋ that is proportional to the total number n of
tokens with mask ratio r ∈ [0, 1], we define

MH := {σ↓(i), . . . , σ↓(k)} (8)

as the set of indices of the top-k most attended tokens. We thus define the
high-attention mask vector mH with elements

mH
i := 1MH (i) =

{
1 if i ∈MH

0 otherwise
(9)

for i = 1, . . . , n. This masking strategy, which we call AttMask-High, essentially
hides the patches that correspond to the most discriminative or salient regions
of an image. By AttMask we shall refer to this strategy as default.

Low-attended Tokens. We also examine the opposite approach of AttMask-
High that masks the least attended tokens. In particular, we define the set of
indices of the bottom-k least attended tokens ML = {σ↑(i), . . . , σ↑(k)} and the
low-attention mask vector mL with mL

i := 1ML(i) based on the permutation σ↑

that brings the elements of a[cls] in ascending order, that is, a
[cls]
σ↓(i)

≤ a
[cls]
σ↓(j)

for

i < j. This strategy, which we call AttMask-Low and is similar to the masking
strategy of MST [36], hides patches of the image background. Our experiments
show that AttMask-Low does not work well with the considered MIM-based loss.

Highly-attended with Hints. Finally, because AttMask-High may be overly
aggressive in hiding the foreground object of an image, especially when the mask
ratio r is high, we also examine an alternative strategy that we call AttMask-
Hint: While still masking highly attended tokens, we allow a small number of the
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(a) Input Image (b) Attention Map (c) AttMask-High (d) AttMask-Hint

Fig. 3. Given image (a), the mean attention map (b) is averaged over heads (6),(7).
The AttMask-High strategy (c) masks the most attended patches, while AttMask-Hint
(d) reveals few of them to leave hints about the identity of the masked object

most highly attended ones to be revealed, so as to leave hints about the identity
of the masked object. In particular, we remove from the initial set MH a small
number m = ⌊sn⌋ of tokens with show ratio s < r. These m tokens are randomly
selected from the ⌊smaxn⌋ most attended tokens in MH , where smax > s. An
example comparing AttMask-Hint with AttMask-High is illustrated in Figure 3.

Incorporating AttMask into Self-supervised Methods. Because the em-
bedding of the [cls] token at the output layer of the transformer encoder serves
as the image representation, we generate token masks based on the attention
vector precisely of the [cls] token of the output layer. In particular, given a
global view tokenized as Zv = (z[cls]; z1; . . . ; zn), we obtain the attention vector
a[cls] (7) and the corresponding high-attention mask vector mH (9) at the out-
put layer of the teacher. Then, similarly to (2), we give as input to the student

the masked version Z̃v = (z[cls]; z̃1; . . . ; z̃n) with

z̃i = (1−mH
i ) · zi +mH

i · z[mask]. (10)

We argue that masking highly attended regions using mH helps in learning
powerful representations. In section 4, we also experiment with low-attended
regions using mL, supporting further our argument.

AttMask can be incorporated into different methods to either replace the
block-wise strategy of BEiT [2] or introduce masking. For iBOT [71], we use Z̃v

in Lmim (3) and Lg (4). For DINO [7], we introduce masking by using Z̃v for
global views in Lg (4), but not for local crops in the Llc loss (see supplementary).

4 Experiments

4.1 Setup

Datasets and Evaluation Protocol. We pretrain iBOT and DINO on 20%
and 100% of the ImageNet-1k [13] training set. For 20%, we select the first 20%
of training samples per class. We evaluate on ImageNet-1k validation set by k-
NN or linear probing. For linear probing, we train a linear classifier on top of
features using the same training protocol as in DINO [7]. With linear probing, we
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also validate robustness against background changes on ImageNet-9 (IN-9) [65].
For k-NN [64], we freeze the pretrained model and extract features of training
images, then use a k-nearest neighbor classifier with k = 20. We also perform
the same k-NN experiment, now extracting features only from ν ∈ {1, 5, 10, 20}
examples per class. This task is more challenging and is similar to few-shot
classification, only the test classes are the same as in representation learning.

We downstream to other tasks either with or without finetuning. We finetune
on CIFAR10 [32], CIFAR100 [32] and Oxford Flowers [43] for image classification
measuring accuracy; on COCO [37] for object detection and instance segmenta-
tion measuring mean average precision (mAP); and on ADE20K [70] for semantic
segmentation measuring mean Intersection over Union (mIoU). Without finetun-
ing, we extract features as with k-NN and we evaluate using dataset-specific eval-
uation protocol and metrics. We test on revisited ROxford and RParis [49] for
image retrieval measuring mAP [49]; on Caltech-UCSD Birds (CUB200) [60],
Stanford Cars (CARS196) [31], Stanford Online Products (SOP) [45] and In-
Shop Clothing Retrieval (In-Shop) [38] for fine-grained classification measuring
Recall@k [41]; and on DAVIS 2017 [48] for video object segmentation measuring
mean region similarity Jm and contour-based accuracy Fm [48].

In supplementary, we provide more benchmarks, visualizations and ablations.

Implementation Details. As transformer encoder, we use ViT-S/16 [16].
The attention map (7) is generated from the last layer of the teacher encoder by
default, i.e., layer 12. We mask the input with probability p = 0.5, while the mask
ratio r is sampled uniformly as r ∼ U(a, b) with [a, b] = [0.1, 0.5] by default. For
AttMask-Hint, we set smax = 0.1 and the show ratio s is sampled uniformly from
[smaxa, smaxb] = [0.01, 0.05]. Following [7, 71], we apply multi-crop [6] scheme.
The overall loss of iBOT [71] is a weighted sum of Lmim (3), with weight λ, and
Lg (4) + Llc (DINO [7]), with weight 1, where Llc is the multi-crop loss. By
default, λ = 1. Hyperparameters are ablated in subsection 4.4. Training details
are given in the supplementary.

4.2 Experimental Analysis

We provide an analysis on 20% of ImageNet-1k training samples, incorporating
AttMask into distillation-based MIM [71] or self-distillation only [7]. We also
provide results on robustness against background changes.

Masking Strategies: Distillation-based MIM. We explore a number of
masking strategies using distillation-based MIM, by incorporating AttMask into
iBOT [71]. We compare AttMask with random block-wise masking [2], which
is the default in iBOT, random patch masking with the same ratio, as well as
with a more aggressive ratio, following MAE [23]. AttMask masks the most at-
tended tokens (AttMask-High) by default, but we also consider the least attended
(AttMask-Low) and the most attended with hints (AttMask-Hint).

We evaluate performance using k-NN and linear probing evaluation protocol
on the validation set, along with a fine-tuning evaluation on CIFAR10 and CI-
FAR100. As shown in Table 1, the AttMask-High outperforms all other masking
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Table 1. Different masking strategies for iBOT [71] pre-training on 20% of ImageNet.
Top-1 accuracy for k-NN, linear probing on ImageNet validation set; fine-tuning on
CIFAR10/100. †: default iBOT masking strategy from BEiT [2]. ‡: aggressive random
masking strategy from MAE [23]

iBOT Masking Ratio (%)
ImageNet-1k CIFAR10 CIFAR100

k-NN Linear Fine-tuning

Random Block-Wise† 10-50 46.7 56.4 98.0 86.0

Random‡ 75 47.3 55.5 97.7 85.5
Random 10-50 47.8 56.7 98.0 86.1

AttMask-Low (ours) 10-50 44.0 53.4 97.6 84.6
AttMask-Hint (ours) 10-50 49.5 57.5 98.1 86.6
AttMask-High (ours) 10-50 49.7 57.9 98.2 86.6

Table 2. Top-1 k-NN accuracy on
ImageNet-1k validation for iBOT pre-
training on different percentage (%) of
ImageNet-1k. †: default iBOT masking
strategy from BEiT [2]

% ImageNet-1k 5 10 20 100

Random Block-Wise† 15.7 31.9 46.7 71.5
AttMask-High (ours) 17.5 33.8 49.7 72.5

0 20 40 60 80 100

0

10

20

30

40

50

42% fewer
epochs

epoch

k
-N

N

Random Block-Wise†

AttMask-High (ours)

Fig. 4. Top-1 k-NN accuracy on
ImageNet-1k validation for iBOT
training vs. training epoch on 20%
ImageNet training set. †: default iBOT
masking strategy from BEiT [2]

strategies on all the evaluation metrics. In particular, AttMask-High achieves an
improvement of +3.0% on k-NN and +1.5% on linear probing compared with
the default iBOT strategy (random block-wise).

Interestingly, random patch masking outperforms the default iBOT strat-
egy, while the more aggressive MAE-like strategy is inferior and AttMask-Low
performs the lowest. Intuitively, this means that masking and reconstruction of
non-salient regions does not provide a strong supervisory signal under a MIM
objective. By contrast, our AttMask creates the more aggressive task of recon-
structing the most salient regions and guides the model to explore the other
regions. In this setup, AttMask-Hint is slightly lower than AttMask-High.

Data and Training Efficiency. Self-supervised methods on vision transform-
ers typically require millions of images, which is very demanding in computa-
tional resources. We advocate that being effective on less data and fast training
are good properties for a self-supervised method. In this direction, we assess
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Table 3. Top-1 k-NN accuracy on ImageNet-1k validation for DINO [7] pre-training
on 20% of the ImageNet-1k training set using mask ratio of 10-50%. †: default DINO

No Masking† Random AttMask-Low AttMask-Hint AttMask-High

43.0 43.4 42.7 43.6 43.5

Table 4. Background robustness: Linear probing of iBOT model on IN-9 [65] and its
variations, when pre-trained on 20% ImageNet-1k under different masking strategies.
†: default iBOT masking strategy from BEiT [2]. ‡: aggressive random masking

iBOT Masking Ratio (%) OF MS MR MN NF OBB OBT IN-9

Random Block-wise† 10-50 72.4 74.3 59.4 56.8 36.3 14.4 15.0 89.1

Random‡ 75 73.1 73.8 58.8 55.9 35.6 13.7 14.5 87.9
Random 10-50 72.8 75.3 60.4 57.5 34.9 10.3 14.4 89.3

AttMask-Low (ours) 10-50 66.0 71.1 55.2 52.2 32.4 12.5 14.0 86.6
AttMask-Hint (ours) 10-50 74.4 75.9 61.7 58.3 39.6 16.7 15.7 89.6
AttMask-High (ours) 10-50 75.2 76.2 62.3 59.4 40.6 15.2 15.3 89.8

efficiency on less data and training time, still with iBOT training. In Table 2
we observe that our AttMask-High consistently outperforms the default random
block-wise masking strategy of iBOT at lower percentage of ImageNet-1k train-
ing set. In addition, in Figure 4, AttMask-High achieves the same performance
as random block-wise with 42% fewer training epochs.

Masking Strategies: Self-distillation Only. Here, we compare masking
strategies using distillation only, without MIM reconstruction loss, by incor-
porating AttMask into DINO [7]. That is, we apply only the cross-view cross-
entropy loss on the [cls] token (4). In Table 3, AttMask-High improves k-NN by
+0.5 compared with the default DINO (no masking), while AttMask-Low is in-
ferior. This reveals that AttMask is effective even without a MIM loss. Moreover,
AttMask-Hint is slightly better than AttMask-High in this setting.

Robustness Against Background Changes. Deep learning models tend
to depend on image background. However, to generalize well, they should be
robust against background changes and rather focus on foreground. To analyze
this property, we use ImageNet-9 (IN-9) dataset [65], which includes nine coarse-
grained classes with seven background/foreground variations. In four datasets,
the background is altered: Only-FG (OF), Mixed-Same (MS), Mixed-Rand (MR),
and Mixed-Next (MN). In another three, the foreground is masked: No-FG (NF),
Only-BG-B (OBB), and Only-BG-T (OBT).

In Table 4, we evaluate the impact of background changes on IN-9 and its
variations, training iBOT under different masking strategies. We observe that,
except for O.BB. and O.BT, AttMask-High is the most robust. On OBB and
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Table 5. Top-1 accuracy on ImageNet validation set. (a) k-NN and linear probing
using the full ImageNet training set; (b) k-NN using only ν ∈ {1, 5, 10, 20} examples
per class. Pre-training on 100% ImageNet-1k for 100 epochs

Method
(a) Full (b) Few Examples

k-NN Linear ν = 1 5 10 20

DINO [7] 70.9 74.6
MST [36] 72.1 75.0
iBOT [71] 71.5 74.4 32.9 47.6 52.5 56.4
iBOT+AttMask-High 72.5 75.7 37.1 51.3 55.7 59.1
iBOT+AttMask-Hint 72.8 76.1 37.6 52.2 56.4 59.6

Table 6. Fine-tuning for image classification on CIFAR10 [32], CIFAR100 [32] and
Oxford Flowers [43]; Object detection (APb, %) and instance segmentation (APm, %)
on COCO [37]; and semantic segmentation on ADE20K [70] (mIoU, %). Models pre-
trained on 100% ImageNet-1k training set for 100 epochs

Method
CIFAR10 CIFAR100 Flowers COCO ADE20K

Accuracy APb APm mIoU

iBOT 98.8 89.5 96.8 48.2 41.8 44.9
iBOT+AttMask 98.8 90.1 97.7 48.8 42.0 45.3

OBT where the foreground object is completely missing, AttMask-Hint exploits
slightly better the background correlations with the missing object.

4.3 Benchmark

We pre-train iBOT with AttMask-High and AttMask-Hint on 100% of ImageNet-
1k and compare it with baseline iBOT and other distillation-based methods.

ImageNet Classification. As shown in Table 5(a), AttMask-High brings
an improvement of 1% k-NN and 1.3% linear probing over baseline iBOT [71]
and is better than prior methods. AttMask-High is thus effective for larger
datasets too. Table 5(b) shows results of the more challenging task where only
ν ∈ {1, 5, 10, 20} training examples per class are used for the k-NN classifier. In
this case, AttMask-High is very effective, improving the baseline iBOT masking
strategy by 3-4%, demonstrating the quality of the learned representation. In this
setup, AttMask-Hint offers a further small improvement over AttMask-High. For
simplicity though, we use AttMask-High by default as AttMask.

Downstream Tasks with Fine-tuning. We fine-tune the pre-trained models
with iBOT and iBOT with AttMask for image classification on CIFAR10 [32],
CIFAR100 [32] and Oxford Flowers [43], object detection and instance segmenta-
tion on COCO [37], and semantic segmentation on ADE20K [70]. In Table 6, we
observe that AttMask brings small improvement on the baseline iBOT masking
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Table 7. Image retrieval (mAP, %) on (a) ROxford and (b) RParis [49] and video
object segmentation (mean region similarity Jm and contour-based accuracy Fm, %)
on (c) DAVIS 2017 [48], without fine-tuning. Models pre-trained on 100% ImageNet-1k
training set for 100 epochs

Method
(a) ROxford (b) RParis (c) DAVIS 2017

Medium Hard Medium Hard (J&F)m Jm Fm

iBOT 31.0 11.7 56.2 28.9 60.5 59.5 61.4
iBOT+AttMask 33.5 12.1 59.0 31.5 62.1 60.6 63.5

Table 8. Fine-grained classification (R@k: Recall@k, %) [41] without fine-tuning. Mod-
els pre-trained on 100% ImageNet-1k training set for 100 epochs

Method
CUB200 CARS196 SOP In-Shop

R@1 2 4 R@1 2 4 R@1 10 100 R@1 10 20

iBOT 51.4 63.8 75.0 35.6 46.0 56.3 57.4 72.2 84.0 39.1 61.9 68.2
iBOT+AttMask 57.2 69.4 80.3 39.8 50.4 61.4 59.0 73.9 85.4 40.7 63.7 70.3

strategy on image classification fine-tuning in all cases. Furthermore, we observe
that AttMask improves clearly the scores by 0.6% APb on object detection and
0.4% mIoU on semantic segmentation.

Downstream Tasks without Fine-tuning. Without finetuning, we use the
pretrained models with iBOT and iBOT with AttMask to extract features as
with k-NN and we evaluate using dataset-specific evaluation protocol and met-
rics. As shown in Table 7(a,b), AttMask is very effective on image retrieval,
improving by 1-3% mAP the baseline iBOT masking strategy on ROxford and
RParis [49], on both medium and hard protocols. More impressive the perfor-
mance on fine-grained classification, improving by 2-6% R@1 on all datasets, as
shown in Table 8. Finally, AttMask improves on video object segmentation on
DAVIS 2017 [48] on all metrics, as shown in Table 7(c). These experiments are
very important because they evaluate the quality of the pretrained features as
they are, without fine-tuning and without even an additional layer, on datasets
of different distribution than the pretraining set. AttMask improves performance
by a larger margin in this type of tasks, compared with ImageNet.

4.4 Ablation Study

We provide an ablation for the main choices and hyperparameters of our mask-
ing strategy and loss function, incorporating AttMask into iBOT [71] and pre-
training on 20% of ImageNet-1k training samples.

Layer for Attention Map Generation. The attention map (7) is gener-
ated from the last layer of the teacher encoder by default, that is, layer 12 of
ViT-S. In Table 9(a), we aim to understand the impact of other layer choices on
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Table 9. AttMask k-NN top-1 accuracy on ImageNet-1k validation for iBOT pre-
training on 20% of ImageNet-1k vs. (a) layer from which the attention map (7) is
generated; (b) masking probability p (using batch size 180); and (c) mask ratio r

(a) Layer (b) Masking Prob p (c) Mask Ratio r (%)

6 9 11 12 0 0.25 0.50 0.75 1 10-30 10-50 10-70 30

48.1 48.1 49.8 49.7 43.4 47.3 49.4 49.4 44.2 49.5 49.7 48.5 49.1

AttMask. We observe that the deeper layers achieve the highest k-NN perfor-
mance. Although layer 11 works slightly better, we keep the choice of layer 12
for simplicity, since layer 12 embeddings are used anyway in the loss function.

Masking Probability and Mask Ratio. We mask the global views with
probability p = 0.5 by default. Table 9(b) reports on other choices and confirms
that this choice is indeed best. Therefore, it is useful that student network sees
both masked and non-masked images.

The mask ratio r is sampled uniformly as r ∼ U(a, b) with [a, b] = [0.1, 0.5]
by default. Table 9(c) shows the sensitivity of AttMask with respect to the upper
bound b, along with a fixed ratio r = 0.3. AttMask is relatively stable, with the
default interval [0.1, 0.5] working best and the more aggressive choice [0.1, 0.7]
worst. This is possibly due to the foreground objects being completely masked
and confirms that masking the most attended patches is an effective strategy.
The added variation around the fixed ratio r = 0.3 is beneficial.

5 Conclusion

By leveraging the self-attention maps of ViT for guiding token masking, our
AttMask is able to hide from the student network discriminative image cues
and thus lead to more challenging self-supervised objectives. We empirically
demonstrate that AttMask offers several benefits over random masking when
used in self-supervised pre-training with masked image modeling. Notably, it
accelerates the learning process, achieves superior performance on a variety of
downstream tasks, and it increases the robustness against background changes,
thus revealing that it reduces background dependency. The improvement is most
pronounced in more challenging downstream settings, like using the pretrained
features without any additional learning or finetuning, or working with limited
data. This reveals the superior quality of the learned representation.
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