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Figure 1. Part-Aware Controllable 3D Shape Generation and Editing. We address the task of part-aware 3D shape generation and
editing without explicit 3D supervision. Prior part-aware generative models [34, 40] assume 3D supervision, at training, and only allow
changing the shape of the object. In this work, we introduce PartNeRF, a generative model capable of editing the shape and appearance of
generated shapes that are parametrized as a collection of locally defined NeRFs.

Abstract

Impressive progress in generative models and implicit
representations gave rise to methods that can generate 3D
shapes of high quality. However, being able to locally con-
trol and edit shapes is another essential property that can
unlock several content creation applications. Local control
can be achieved with part-aware models, but existing meth-
ods require 3D supervision and cannot produce textures. In
this work, we devise PartNeRF, a novel part-aware gener-
ative model for editable 3D shape synthesis that does not
require any explicit 3D supervision. Our model generates
objects as a set of locally defined NeRFs, augmented with
an affine transformation. This enables several editing op-
erations such as applying transformations on parts, mixing
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parts from different objects etc. To ensure distinct, manip-
ulable parts we enforce a hard assignment of rays to parts
that makes sure that the color of each ray is only determined
by a single NeRF. As a result, altering one part does not af-
fect the appearance of the others. Evaluations on various
ShapeNet categories demonstrate the ability of our model to
generate editable 3D objects of improved fidelity, compared
to previous part-based generative approaches that require
3D supervision or models relying on NeRFs.

1. Introduction
Generating realistic and editable 3D content is a long-

standing problem in computer vision and graphics that has
recently gained more attention due to the increased demand
for 3D objects in AR/VR, robotics and gaming applications.



However, manual creation of 3D models is a laborious en-
deavor that requires technical skills from highly experi-
enced artists and product designers. On the other hand, edit-
ing 3D shapes, typically involves re-purposing existing 3D
models, by manually changing faces and vertices of a mesh
and modifying its respective UV-map [95]. To accommo-
date this process, several recent works introduced genera-
tive models that go beyond generation and allow editing the
generated instances [13,18,52,55,62,77,101,116,117,124].
Shape editing involves making local changes on the shape
and the appearance of different parts of an object. There-
fore, having a basic understanding of the decomposition of
the object into parts facilitates controlling what to edit.

While Generative Adversarial Networks (GANs) [30]
have emerged as a powerful tool for synthesizing photore-
alistic images [7, 15, 16, 47–49], scaling them to 3D data
is non-trivial as they ignore the physics of image forma-
tion process.To address this, 3D-aware GANs incorporate
3D representations such as voxel grids [38, 72, 75] or com-
bine them with differentiable renderers [57, 126]. While
they faithfully recover the geometry and appearance, they
do not allow changing specific parts of the object.

Inspired by the rapid evolution of neural implicit ren-
dering techniques [68], recent works [8, 32, 77, 96, 114]
proposed to combine them with GANs in order to allow
for multi-view-consistent generations of high quality. De-
spite their impressive performance on novel view synthe-
sis, their editing capabilities are limited. To this end,
editing operations in the latent space have been explored
[21, 42, 62, 115, 124] but these approaches lack intuitive
control over the shape. By decomposing shapes into parts,
other works facilitate structure-aware shape manipulations
[40,70,88,111]. However, they require 3D supervision dur-
ing training and can only operate on textureless shapes.

To address these limitations, we devise PartNeRF, a
novel part-aware generative model, implemented as an auto-
decoder [5]. Our model enables part-level control, which fa-
cilitates various editing operations on the shape and appear-
ance of the generated instance. These operations include
rigid and non-rigid transformations on the object parts, part
mixing from different objects, removing/adding parts and
editing the appearance of specific parts of the object.

Our key idea is to represent objects using a set of locally
defined Neural Radiance Fields (NeRFs) that are arranged
such that the object can be plausibly rendered from a novel
view. To enable part-level control, we enforce a hard as-
signment between parts and rays that ensures that altering
one part does not affect the shape and appearance of the
others. Our model does not require 3D supervision; we only
assume supervision from images and object masks captured
from known cameras. We evaluate PartNeRF on various
ShapeNet categories and demonstrate that it generates tex-
tured shapes of higher fidelity than both part-based as well

as NeRF-based generative models. Furthermore, we show-
case several editing operations, not previously possible.

In summary, we make the following contributions:
We propose the first part-aware generative model that
parametrizes parts as NeRFs and can generate editable 3D
shapes. Unlike prior part-based approaches, our model
does not require explicit 3D supervision and can gener-
ate textured shapes. Compared to NeRF-based generative
models, our work is the first that reasons about parts and
hence enables operations both on the shape and the tex-
ture of the generated object. Code and data is available at
https://ktertikas.github.io/part nerf.

2. Related Work
We now discuss the most relevant literature on 3D gen-

erative models in the context of generating editable shapes.

Neural Implicit Representations: Neural Implicit Rep-
resentations [12, 66, 83] have demonstrated impressive ca-
pabilities on various tasks ranging from 3D reconstruction
with [81, 82, 93, 94] and without texture [2, 3, 12, 14, 31, 43,
66,67,83,87,92,113] to video encoding [11], 3D-aware gen-
erative modelling [8, 9, 20, 32, 65, 77, 96], inverse graphics
[78, 120] and novel view synthesis [39, 68, 91, 110, 123]. In
contrast to explicit representations i.e. point clouds, meshes
and voxels, implicit representations encode the shape’s ge-
ometry and appearance in the weights of a neural net-
work. Among the most extensively used implicit-based
models are NeRFs [68], which combine a neural network
with volumetric rendering [45] to perform novel view syn-
thesis. Due to their compelling results, numerous works
have been introduced to improve the training and render-
ing time [27, 59, 61, 71, 89, 90, 103, 122, 125], the under-
lying geometry [82, 109], to better handle lighting varia-
tions [4,6,64,99] and to encode shape priors for better gen-
eralization [39, 105, 123] and generation [9, 96]. For a thor-
ough overview on NeRF-based approaches we refer read-
ers to [104, 112]. In our work, we introduce a generative
model for editable 3D shapes with texture. Specifically, we
parametrize objects as a structured set of local NeRFs that
are trained from posed images and object masks.

3D-Aware Image Generation: Incorporating 3D represen-
tations in generative settings [20,23,32,35–38,63,65,73,74,
76, 127] has significantly improved the quality of the gen-
erated images and increased control over various aspects
of the image formation process. Likewise, radiance fields
have been combined with GANs to allow for photorealistic
image synthesis of objects [9, 96] and scenes [77]. More
recently, [8] introduced a triplane-based architecture that
leverages both implicit and explicit representations and can
generate high resolution images. Concurrently, [25] com-
bined differentiable surface modelling [24] with a differ-
entiable renderer to generate high-quality textured meshes.



Figure 2. Method Overview. Our generative model is implemented as an auto-decoder and it comprises three main components: The
Decomposition Network takes two object specific learnable embeddings {zs, zt} that represent its shape and texture and maps them to a
set of M latent codes that control the shape and texture of each part. First, we map zs and zt to M per-part embeddings {ẑsm}Mm=1 and
{ẑtm}Mm=1 using M linear projections, which are then fed to two transformer encoders: τs

θ and τ t
θ , that predict the final per-part shape

and texture embeddings, {zsm}Mm=1 and {ztm}Mm=1. Next, the Structure Network maps the per-part shape feature representation zsm to a
rotation matrix Rm, a translation vector tm and a scale vector sm that define the coordinate system of the m-th part and its spatial extent.
Finally, the Neural Rendering module takes the 3D points along each ray, transformed to the coordinate frame of its associated part, and
maps them to an occupancy and a color value. We use plate notation to denote repetition over the M parts.

Unlike [8, 9, 25, 96] that are part agnostic, our model gen-
erates objects with part-level control, hence unlocking edit-
ing operations not previously possible. Our formulation is
closely related to the compositional representation of [77]
but has two important differences. First, we enforce a hard
assignment between rays and parts ensuring that the color
of each part is only determined by one NeRF, thus enabling
local editing. Moreover, we model the shape and texture of
each part separately, hence enabling more control.

Shape Editing using NeRFs: Our work falls into the cat-
egory of shape editing approaches that operate on the radi-
ance field [62,115,124]. Recent methods [115,124] extract
meshes from a pre-trained NeRF and rely on deformation
techniques [22, 44, 60, 98] to guide the rendering process.
Unlike our approach, these models are scene specific and
cannot capture shape and texture variations across an object
class. An alternative line of research explored using sep-
arate embeddings for capturing the shape and texture vari-
ations of 3D shapes [42, 62]. They demonstrated various
editing operations such as color modifications and region
removal. However, as they do not consider parts, they rely
on heuristics for controlling what needs to be changed. In-
stead, our part-aware model provides more intuitive control,
when editing a 3D shape. Also similar to our work, [80]
uses multi-view videos and decomposes the object using
a set of ellipsoids. However, [80] is scene-specific and
cannot generate novel shapes. In the context of face edit-
ing [46,100,102], different models require video sequences
and partial semantic masks [46], or posed images along with
full semantic masks [100, 102]. In contrast, our work only
requires posed images and 2D object masks at training.

Primitive-based Representations: Shape abstraction tech-
niques represent 3D shapes using semantically consistent
primitive arrangements across different instances in a class.
This most often requires 3D supervision [17, 19, 26, 29, 50,

53, 54, 56, 69, 79, 85, 86, 97, 106, 128], although [118, 119]
demonstrate that it is possible to learn only from images.
Unlike our parts, geometric primitives are typically simple
shapes such as cuboids [106], spheres [34] or superquadrics
[85, 86]. Due to their simple shape parametrization these
primitives cannot capture complex geometries. To address
this, recent works propose to increase the number of primi-
tives [17, 50] or represent shapes using a family of homeo-
morphic mappings [84], or a structured set of implicit func-
tions [28]. Similar to [84] our parts can capture complex
geometries, but as we parametrize them with locally defined
NeRFs, we do not require explicit 3D supervision.

Part-based Shape Editing: Part-based generative mod-
els [34, 40, 55, 88, 111] can generate plausible 3D shapes
[69,70,117] and perform various editing operations such as
part mixing [58, 88, 121] and shape manipulation [34, 40].
Closely related to our work are [34,40] which employ prim-
itives, such as spheres [34] and 3D Gaussians [41], to enable
shape editing by explicitly [34] or implicitly [40] transform-
ing them. However, both require 3D supervision and can
only alter attributes related to the shape of the object.

3. Method

Our goal is to design a 3D part-aware generative model
that can be trained without explicit 3D supervision. More-
over, we want our generated shapes to be editable, namely
to be able to make local changes on the shape and texture of
specific parts of the object. To this end, we represent objects
using M locally defined parts that are parametrized with a
NeRF [68]. Defining NeRFs locally, i.e. in their own co-
ordinate system, enables direct part-level control simply by
applying transformations on the per-part coordinate system.

However, to achieve distinct, manipulable parts, we rep-
resent each part with a single NeRF. To enforce this, we in-
troduce a hard assignment between rays and parts by asso-



ciating a ray with the first part it intersects (Fig. 3). Namely,
the color of each ray is predicted from a single NeRF, thus
preventing combinations of parts reasoning about the color
of a ray. This ensures that editing one part, does not change
the shape and appearance of the others (Fig. 1).

3.1. Neural Radiance Fields

Given a set of posed images of objects in a semantic
class, each accompanied by an object mask, which is sim-
ply a binary image indicating whether each pixel is inside
the object or not, we define R, the complete set of rays from
all views. For each ray r = {xr

0 + tdr : t ≥ 0} with ori-
gin xr

0 and viewing direction dr, we denote C(r) ∈ R3

and I(r) ∈ {0, 1} the color value of the RGB image
and the binary value of the mask, respectively, at the cor-
responding pixel. Finally, we sample a set of N points
Xr = {xr

1, . . . ,x
r
N} along r, which are ordered by in-

creasing distance from the origin xr
0, used for estimating

the color along this ray using numerical quadrature [108].

Neural Radiance Fields: NeRFs [68] represent a scene as a
continuous function, parametrized with an MLP, that maps
a 3D point x ∈ R3 and a viewing direction d ∈ S2 into
a color c ∈ R3 and a volume density σ ∈ R+. Before
passing the inputs x and d to the MLP, they are projected to
a higher dimensional space by applying a fixed positional
encoding [107] to each one of their elements. Given the
predicted color and densities {cri , σr

i }Ni=1 for theN sampled
points Xr along ray r, its rendered color can be derived from

Ĉ(r) =

N∑
i=1

exp
(
−
∑
j<i

σr
j δ

r
j

)
(1− exp(−σr

i δ
r
i ))c

r
i , (1)

where δri is the distance between two adjacent samples
along r. At training, the MLP is optimized by minimizing
the error between observed and rendered images.

Alternatively, [82] propose predicting occupancies in-
stead of densities, hence their rendering equation becomes

Ĉ(r) =

N∑
i=1

ori
∏
j<i

(
1− orj

)
cri , (2)

where ori = 1−exp(−σr
i δ

r
i ) is the occupancy value at point

xr
i and cri its color. Similar to [82] we also predict occu-

pancy values, as this facilitates associating rays with parts,
hence enabling part-level control, as discussed in Sec. 3.2.

3.2. Parts as Neural Radiance Fields

We represent a 3D object usingM parts, where each part
is parametrized as a NeRF. Note that we assume a fixed
number of parts across all objects, namely the generated ob-
jects cannot have a variable number of parts. To learn the
latent space of each NeRF, we follow [62] and condition

it on two part-specific learnable latent codes: one for the
shape and one for the texture, zsm, z

t
m. These codes are ob-

tained from a per-object specific learnable embedding (see
Sec. 3.3). Disentangling the shape from the texture allows
modifying one property without affecting the other.

Moreover, as we are interested in editing specific parts
of the object, we want to be able to modify the pose, size,
and appearance of each part independently. This can be
enforced by making sure that each NeRF receives geomet-
ric inputs in its own local coordinate system. To this end,
we augment each part with: (i) an affine transformation
Tm(x) = Rm(x + tm) that maps a 3D point x to the lo-
cal coordinate system of the m-th part, where tm ∈ R3 is
the translation vector and Rm ∈ SO(3) is the rotation ma-
trix and (ii) a scale vector sm ∈ R3, representing its spatial
extent. All are obtained from the per-part shape code zsm.

Part Representation: Each part is represented as a con-
tinuous function that maps a 3D point x ∈ R3, a viewing
direction d ∈ S2, a shape code zs ∈ RLs and a texture
code zt ∈ RLt into a color c ∈ R3 and an occupancy value
o ∈ [0, 1]. Similar to [82], we employ two separate net-
works: a color network cθ and an occupancy network oθ
to predict the color and the occupancy value. Note that the
occupancy value o is constrained to [0, 1] with a sigmoid.
More formally, each NeRF maps a 3D point x along a view-
ing direction d to a color c and an occupancy o as:

cmθ (x,d) = cθ(Tm(x),Rmd, zsm, z
t
m) (3)

omθ (x) = oθ(Tm(x), zsm). (4)

Note that while we apply positional encoding on the inputs,
we omit it from (3)+(4) to avoid notation clutter.

To enforce that each part only captures continuous re-
gions of the object, we multiply its occupancy function
with the occupancy function of an axis-aligned 3D ellip-
soid centered at the origin of the coordinate system, with
axis lengths given by the scale vector sm. This results in
the following joint occupancy function for the m-th part

hmθ (x) = omθ (x)gmθ (x), (5)

where gmθ (x) = g(Tm(x), sm) denotes the occupancy func-
tion of the m-th ellipsoid that is simply

g(x, s) = σ
(
β
(
1−

∥∥diag(s)−1x
∥∥2)) , (6)

where σ(·) is the sigmoid function and β controls the sharp-
ness of the transition. To estimate gmθ (x), we first transform
x to the coordinate frame of them-th part. This ensures that
any transformation of the part, also transforms its ellipsoid.

Part Rendering: The rendering equation of the m-th part,
given a set of N sampled points along ray r now becomes

Ĉm(r) =

N∑
i=1

hmθ (xr
i )
∏
j<i

(1− hmθ (xr
i )) c

m
θ (xr

i ,d
r). (7)



Figure 3. Ray-Part Association. We illustrate the hard assign-
ment between rays and parts in a 2D example with 3 parts and two
rays r and r′. Since the association between rays and parts is de-
termined based on the first part that a ray interests, the associations
that emerge from (9) are R1 = {r},R2 = {∅} and R3 = {r′}.

Object Rendering: To ensure distinct, manipulable parts,
we introduce a hard assignment between rays and parts, by
associating a ray with the first part it intersects. Given the
ordered set of points Xr sampled along ray r, we define the
index of the first point inside the part that r intersects as

ψr(m) = min {i ∈ {1, . . . , N} : hmθ (xr
i ) ≥ τ} , (8)

where τ is a threshold used to determine whether a point is
inside the m-th part or not. This is illustrated in Fig. 3. We
can now define the set of rays Rm associated with the m-th
part, as the set of rays that first intersect with it, namely:

Rm =
{
r ∈ R : m = argmin

k∈{0...M}
ψr(k)

}
. (9)

Using the assignment of rays to parts, we define the render-
ing equation for the entire object as

Ĉ(r) =

M∑
m=1

1r∈RmĈm(r). (10)

Namely, we use the m-th NeRF to render ray r if it is as-
signed to the m-th part. If a ray is not associated with any
part its color is black. The hard ray-part assignment is an
essential property that ensures that editing one part does not
alter the appearance of other parts (see Fig. 5).

3.3. Network Architecture

We implement PartNeRF using an auto-decoder [5, 83].
The input to our model is two learnable embeddings zs, zt,
per training sample, that represent its shape and texture. Our
network consists of three components: (i) the decomposi-
tion network that maps zs and zt to M latent codes that
control the per-part shape and texture, (ii) the structure net-
work that predicts the per-part pose and scale and (iii) the
neural rendering network that renders an image using M
NeRFs. The overall architecture is illustrated in Fig. 2.

No Editing Rotation Translation Scaling Color

Figure 4. Scene-Specific Editing. We show renderings (top row)
and part-based geometries (bottom row) for a tractor from novel
views across various editing operations: rotating the bucket down-
wards, translating the cockpit to the floor , performing isotropic
scaling of the cockpit and coloring the bucket red.

Decomposition Network: The decomposition network
takes the two object specific embeddings zs, zt ∈ RLd

and maps them to M per-part embeddings of the same di-
mensionality, Ld, using M linear projections fθ(·). Subse-
quently, these embeddings are mapped to part-specific la-
tent codes using two multi-head attention transformers, τsθ
and τ tθ without positional encoding [107] as follows

{zsm}Mm=1 = τsθ (fθ(z
s)) (11)

{ztm}Mm=1 = τ tθ(fθ(z
t)). (12)

{zsm}Mm=1 and {ztm}Mm=1 are the latent codes that control
the shape and texture of each part respectively.

Structure Network: The structure network sθ maps the
shape latent code zsm to a translation vector tm, a rotation
matrix Rm and a scale vector sm with

{tm,Rm, sm} = sθ(z
s
m) (13)

an MLP shared across parts. Similar to [85], we parametrize
Rm using quaternions [33]. As discussed in Sec. 3.2, we
determine the set of rays Rm that are assigned to each part
m from (9) and transform them to its coordinate system.

Neural Rendering: Given the transformed points to the
per-part coordinate system, we predict colors and occupan-
cies with (5)+(3). Next, we perform volumetric rendering
using (7) and render the object using M NeRFs with (10).

3.4. Training

Our optimization objective L is the sum over six terms
combined with two regularizers on the shape and texture
embeddings zs, zt, namely

L = Lrgb(R) + Lmask(R) + Locc(R) + Lcov(R) +

Loverlap(R) + Lcontrol + ∥zs∥2 +
∥∥zt∥∥

2
. (14)

As supervision, we use the observed RGB color C(r) ∈ R3

and the object mask I(r) ∈ {0, 1} for each ray r ∈ R. We
also associate r with a binary label ℓr = I(r). Namely, we
label a ray r as inside, if ℓr = 1 and outside if ℓr = 0.
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Figure 5. Soft Ray-Part Assignment. We demonstrate that en-
forcing a soft ray-part assignment results in parts that do not pre-
serve their texture across transformations.

Reconstruction Loss: We measure the error between the
observed C(r) and the rendered Ĉ(r) color for the ray r as

Lrgb(R) =
∑
r∈R

∥Ĉ(r)− C(r)∥22. (15)

Mask Loss: Likewise, we measure the squared error be-
tween the observed I(r) and the rendered Î(r) pixel value
of the object mask for ray r as

Lmask(R) =
∑
r∈R

∥Î(r)− I(r)∥22. (16)

Note that Î(r) can be derived from (10)+(7) simply by
omitting the multiplication with the predicted color, namely

Î(r) =

M∑
m=1

1r∈Rm

N∑
i=1

hmθ (xr
i )
∏
j<i

(
1− hmθ (xr

j)
)
. (17)

Occupancy Loss: This loss makes sure that the generated
parts do not occupy empty space. To this end, we employ
a binary cross-entropy classification loss Lce(·; ·) between
the predicted and the target labels for all rays

Locc(R) =
1

|R|
∑
r∈R

(
Lce(ℓ̂r, ℓr) + Lce(ℓ̃r, ℓr)

)
, (18)

where ℓ̂r and ℓ̃r are the predicted labels along ray r based
on the predicted occupancies and ellipsoid occupancies re-
spectively. Intuitively, we consider a ray r to be inside the
object if it is inside at least one part. In turn, in order for r
to be inside a part it suffices if at least one point along the
ray Xr is inside this part. This can be expressed as

ℓ̂r = max
m∈{1...M}

max
xr
i∈Xr

hmθ (xr
i ) (19)

ℓ̃r = max
m∈{1...M}

max
xr
i∈Xr

gmθ (xr
i ). (20)

Coverage Loss: This loss ensures that the parts cover the
object, thus preventing degenerate arrangements with small
parts or parts outside the object. To implement this, we en-
courage parts to contain at least k inside rays. This can be
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Figure 6. Shape Generation. We show two randomly generated
samples per category using our model and 3D generative models
that are part agnostic but can generate textured meshes.

Method Rendering MMD-CD (↓) COV-CD (%, ↑)

Motorbike Car Chair Motorbike Car Chair

GET3D Differentiable 1.72 0.71 3.72 67.12 58.39 69.91

Pi-GAN Volumetric 21.80 25.54 6.65 6.85 0.55 39.65
GRAF Volumetric 2.40 10.63 6.80 50.68 1.57 39.28
EG3D Volumetric 2.21 0.72 4.72 34.25 49.52 50.14

Ours Volumetric 1.68 1.74 4.42 56.06 21.10 67.20

Table 1. Comparison with 3D Generative Models. We measure
MMD-CD (↓) and COV-CD (↑). Note that none of these baselines
considers parts nor allows any part-level shape editing.

expressed as a binary cross-entropy loss between the pre-
dicted per-part and target labels for all rays in Rk

m,

Lcov(R) =
1

M

M∑
m=1

∑
r∈Rk

m

Lce(ℓ̂
m
r , ℓr), (21)

where ℓ̂mr = max
xr
i∈Xr

hmθ (xr
i ) the predicted label for ray r

w.r.t. part m and Rk
m the set of the k inside rays with the

greatest predicted occupancy values for this part.

Overlapping Loss: To encourage the generated parts to
capture different regions of the object, we penalize rays that
are inside of more than λ parts as follows

Loverlap(R) =
1

|R|
∑
r∈R

max
(
0,

M∑
m=1

ℓ̂mr − λ
)
. (22)

Control Loss: To ensure uniform control across the shape,
we want parts with comparable volumes. We implement
this loss on the volumes V(·) of the ellipsoids, as follows:

Lcontrol =
1

M(M − 1)

M∑
i=1

i∑
j=1

|V(si)− V(sj)|. (23)



Tables Airplanes

SPAGHETTI [40]

Ours

Ours with Parts

Figure 7. Shape Generation. We compare our model with [40]
and show three randomly generated samples per category.

Method Supervision MMD-CD (↓) COV-CD (%, ↑)

Airplane Table Airplane Table

DualSDF 3D Shapes 4.20 12.30 25.00 36.30
SPAGHETTI 3D Shapes 2.40 5.90 35.00 47.80

Ours Multi-view 1.37 4.48 37.90 40.60

Table 2. Comparison with Part-based Generative Models. We
measure MMD-CD (↓) and the COV-CD (↑). Unlike our model,
both [34, 40] require 3D supervision during training.

4. Experimental Evaluation

We provide an extensive evaluation of PartNeRF com-
paring it to relevant baselines in terms of the realism and
diversity of the generated shapes. We also showcase sev-
eral editing operations of our model on multiple object cat-
egories. Additional results, ablations and implementation
details are provided in the supplementary.

Datasets: We use five ShapeNet [10] categories: Motor-
bike, Chair, Table, Airplane and Car. To render our train-
ing data, we randomly sample camera poses from the upper
hemisphere of each shape and render images at 2562 resolu-
tion as in [25]. For the Car, Table, Airplane and Chair, we
use 24 random views, while for Motorbike we use 100. To
ensure fair comparison, we use the train-test splits of [25]
for the Motorbike, Car, Chair object categories and the
train-test splits of [40] for the Airplane, Table category. In
all experiments, we perform category specific training and
set M = 16. Finally, we showcase the scene-specific edit-
ing capabilities of our model on the Lego tractor [68].

Baselines: We compare our model with several NeRF-
based models: GRAF [96], Pi-GAN [9], EG3D [8] and the
concurrent GET3D [25] that relies on differentiable render-
ing. Unlike our model, none of the above considers parts.
We also compare with the part-based DualSDF [34] and
SPAGHETTI [40] that require 3D supervision.

Metrics: We report the Coverage (COV) and the Minimum
Matching Distance (MMD) [1] using Chamfer-L2 distance.
MMD measures how likely it is that a generated shape looks

Figure 8. Shape Interpolation. From left to right, we interpolate
between the geometry and texture latent codes of the two shapes.

like a test shape. COV measures how many shape variations
are covered by the generated shapes.

4.1. Scene-Specific Shape Editing

We train PartNeRF on the tractor scene [68], using 200
training views. The results are shown in Fig. 4. Initially, we
select the part that corresponds to the bucket of the tractor
and apply a rotation, such that the bucket is facing down-
wards. Similarly, we select the cockpit and move it to a new
location on the floor, by adding a displacement to the part’s
translation vector. We then apply a non-rigid transformation
on the cockpit, scaling it uniformly across all axes, by mul-
tiplying the part’s rotation with an isometric scale matrix.
Note that during all transformations the rest of the shape
(geometry, parts and texture) does not alter. Finally, we al-
ter the color of the bucket by explicitly setting the predicted
color of its associated NeRF to red.

Soft Ray-Part Assignment: To investigate the impact of
our hard ray-part assignment, we train a variant of our
model without, namely the color of a ray can be determined
from multiple NeRFs. We note that when we apply a trans-
formation on a part of the object, also the color of other
parts changes, as illustrated in Fig. 5. Moreover, note that
with this variant of our model it is not possible to change the
color of specific parts of the generated object, as in Fig. 4.

4.2. Shape Generation

In Tab. 1, we compare the quality of our generations with
NeRF-based generative models and observe that it outper-
forms existing approaches in terms of MMD and COV on
Motorbikes and Chairs, while being better than [9, 96] also
for Cars. Furthermore, it performs on par with the con-
current work of [25] that relies on a highly optimized dif-
ferentiable graphics renderer [51] and requires training for
approximately 16 GPU days (8 A100 for 2 days). Instead
our model employs a simpler volumetric renderer and train-
ing takes approximately 5 GPU days (1 RTX 3090). Com-
pared to [9,96], our generations are sharper with more crisp
colors (see Fig. 6). However, compared to [8, 25] that em-
ploy tri-plane representations and hence can generate high-
resolution textures, our textures are less detailed.
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Figure 9. Part-Level Interpolation. From left to right, we show
interpolations for the motorbike’s saddle and the airplane’s right
wing (colored in green). In the 3rd and 4th columns, we interpolate
between the shape codes of the two parts, whereas in the 5th and
6th we interpolate between the texture codes of the two parts.

We also compare PartNeRF with state-of-the-art part-
based approaches that require 3D supervision. While our
model is trained with posed images and object masks, it
consistently generates plausible 3D geometries (see Fig. 7).
This is also validated quantitatively in Tab. 2, where we ob-
serve that our model outperforms both [34,40] on Airplanes
while being better in terms of MMD for Tables.

Shape Interpolation: In Fig. 8, we show interpolations be-
tween the shape and texture codes of two cars. We observe
that our model smoothly interpolates between two shapes,
while preserving the shape and the part-based structure.

Part-level Interpolation: Fig. 9 shows part-level interpola-
tions, where we select the saddle part for the motorbikes and
the right wing for the airplanes and linearly interpolate its
shape and texture codes. We note that when we interpolate
the shape codes, the geometry changes, while the texture
remains the same. In contrast, when we interpolate the tex-
ture codes, the geometry remains unchanged and only the
part texture changes smoothly. Across all interpolations our
model consistently generates realistic shapes.

4.3. Shape and Texture Editing

Shape Mixing: Starting from two shapes, the task is to se-
lect and combine parts in a meaningful way. As shown in
Fig. 10, we consider two types of mixing operations: ge-
ometry and texture mixing. In geometry mixing, we com-
bine parts from two objects and generate a new one, whose
texture is determined by the texture codes from one of the
two, while shape codes are taken from different parts of the
two objects (third column). In texture mixing, we mix the
shapes only in terms of texture, while the shape is deter-
mined by the shape codes of one object (fourth column). We
also combine both mixing modes. PartNeRF consistently
generates plausible shapes across all editing operations.

Shape 1 Shape 2 Geometry Mixing Texture Mixing Combined

Figure 10. Shape Mixing. We mix parts (colored in green) from
two shapes and show geometry (3rd column), texture (4th column),
and combined geometry and texture mixing (5th column).

Shape Editing: Our method allows several shape editing
operations on the part level, such as applying rigid and non-
rigid transformations and inserting or removing parts (see
Fig. 1). Affine transformations are directly applied on the
rotation and translation vectors that define the per-part co-
ordinate frame. To remove a part, it suffices to ignore its as-
sociated NeRF in the rendering process. Likewise, adding a
part amounts to incorporating its NeRF during rendering.

5. Conclusion
In this paper, we introduce PartNeRF, the first part-aware

generative model that parametrizes parts as NeRFs. As our
work considers the decomposition of objects into parts, it
enables intuitive part-level control and several editing op-
erations not previously possible. Furthermore, it is trained
without explicit 3D supervision, using only posed images
and object masks. Our experiments showcase the ability
of our model to generate plausible 3D shapes with texture.
Moreover, we demonstrate several editing operations both
on the texture and the shape of the generated object. In fu-
ture work, we plan to investigate incorporating more com-
plex representations such as triplanes [8], or using differen-
tiable rendering techniques [25] in order to better represent
the object’s texture. Another exciting direction for future
research is extending our model to moving objects.
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