
Keep It SimPool:
Who Said Supervised Transformers Suffer from Attention Deficit?

Bill Psomas1,2 Ioannis Kakogeorgiou1 Konstantinos Karantzalos1 Yannis Avrithis2

1National Technical University of Athens
2Institute of Advanced Research in Artificial Intelligence (IARAI)

input supervised supervised DINO [7] DINO [7] input supervised supervised DINO [7] DINO [7]
image CLS SimPool CLS SimPool image CLS SimPool CLS SimPool

Figure 1. We introduce SimPool, a simple attention-based pooling method at the end of network, obtaining clean attention maps under
supervision or self-supervision. Attention maps of ViT-S [14] trained on ImageNet-1k [11]. For baseline, we use the mean attention map
of the CLS token. For SimPool, we use the attention map a (15). Input image: 896× 896; patches: 16× 16; attention map: 56× 56.

Abstract

Convolutional networks and vision transformers have
different forms of pairwise interactions, pooling across lay-
ers and pooling at the end of the network. Does the latter
really need to be different? As a by-product of pooling, vi-
sion transformers provide spatial attention for free, but this
is most often of low quality unless self-supervised, which is
not well studied. Is supervision really the problem?

In this work, we develop a generic pooling framework
and then we formulate a number of existing methods as
instantiations. By discussing the properties of each group
of methods, we derive SimPool, a simple attention-based
pooling mechanism as a replacement of the default one for
both convolutional and transformer encoders. We find that,
whether supervised or self-supervised, this improves perfor-
mance on pre-training and downstream tasks and provides
attention maps delineating object boundaries in all cases.
One could thus call SimPool universal. To our knowledge,
we are the first to obtain attention maps in supervised trans-
formers of at least as good quality as self-supervised, with-
out explicit losses or modifying the architecture. Code at:
https://github.com/billpsomas/simpool.

1. Introduction

Extracting visual representations and spatial pooling
have been two interconnected processes since the study of
2D Gabor filters [10] and early convolutional networks [17].
Modern convolutional networks [20, 32] gradually perform
local pooling and downsampling throughout the architec-
ture to extract a low-resolution feature tensor, followed by
global spatial pooling. Vision transformers [14] only down-
sample at input tokenization and then preserve resolution,
but pooling takes place again throughout the architecture
via the interaction of patch tokens with a CLS token, inher-
ited from language models [13].

The pooling operation has been studied extensively in
instance-level tasks on convolutional networks [3, 42], but
less so in category-level tasks or transformers. Pooling
in transformers is based on weighted averaging, using as
weights the 2D attention map of the CLS token at the last
layer. However, this attention map is typically of low qual-
ity, unless under self-supervision [7].

In this work, we argue that vision transformers can be re-
formulated in two streams, where one is extracting a visual
representation on patch tokens and the other is performing
spatial pooling on the CLS token; whereas, convolutional
networks undergo global spatial pooling at the very last

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5350

https://github.com/billpsomas/simpool

step, before the classifier. In this sense, one can isolate the
pooling process from both kinds of networks and replace it
by a new one. This raises the following questions:

1. Can we derive a simple pooling process at the very last
step of either convolutional or transformer encoders
that improves over their default?

2. Can this process provide high-quality attention maps
that delineate object boundaries, for both networks?

3. Do these properties hold under both supervised and
self-supervised settings?

To answer these questions, we develop a generic pooling
framework, parametrized by: (a) the number of vectors in
the pooled representation; (b) whether pooling is iterative or
not; (c) mappings at every stage of the process; (d) pairwise
similarities, attention function and normalization; and (e) a
function determining the pooling operation.

We then formulate a number of existing pooling meth-
ods as instantiations of this framework, including (a) sim-
ple pooling mechanisms in convolutional networks [20, 48,
42, 40, 47], (b) iterative methods on more than one vec-
tors like k-means [34, 33], (c) feature re-weighting mech-
anisms originally desinged as network components rather
than pooling [23, 56], and (d) vision transformers [14, 49].
Finally, by discussing the properties of each group of meth-
ods, we derive a new, simple, attention-based pooling mech-
anism as a replacement of the default one for both convo-
lutional and transformer encoders. SimPool provides high-
quality attention maps that delineate object boundaries un-
der both supervised and self-supervised settings, as shown
for ViT-S [14] in Figure 1.

In summary, we make the following contributions:

1. We formulate a generic pooling framework that allows
easy inspection and qualitative comparison of a wide
range of methods.

2. We introduce a simple, attention-based, non-iterative,
universal pooling mechanism that provides a single
vector representation and answers all the above ques-
tions in the affirmative.

3. We conduct an extensive empirical study that vali-
dates the superior qualitative properties and quantita-
tive performance of the proposed mechanism on stan-
dard benchmarks and downstream tasks.

2. Related Work
We discuss the most related work to pooling in convolu-

tional networks and vision transformers. An extended ver-
sion with more background is given in the appendix.

Convolutional networks Early convolutional net-
works [17, 27] are based on learnable convolutional layers
interleaved with fixed spatial pooling layers that downsam-
ple. The same design remains until today [26, 46, 20, 32].

Apart from mapping to a new space, convolutional lay-
ers involve a form of local pooling and pooling layers
commonly take average [27] or maximum [44, 26].

Early networks end in a fully-connected layer over a fea-
ture tensor of low resolution [27, 26, 46]. This evolved into
spatial pooling, e.g. global / regional average followed by a
classifier for category-level tasks like classification [29, 20]
/ detection [18], or global maximum followed by a pairwise
loss [48] for instance-level tasks.

The spatial pooling operation at the end of the network
is widely studied in instance level-tasks [3, 48, 42], giv-
ing rise to forms of spatial attention [24, 38, 6, 47, 36],
In category-level tasks, it is more common to study feature
re-weighting as components of the architecture [23, 56, 22].
The two are closely related because e.g. the weighted aver-
age is element-wise weighting followed by sum.

Pooling can be spatial [22, 38, 6, 47, 36], over chan-
nels [23], or both [24, 56]. CBAM [56] is particularly re-
lated to our work in the sense that it includes global average
pooling followed by a form of spatial attention, although the
latter is not evident in its original formulation and although
CBAM is not a pooling mechanism.

Vision transformers Pairwise interactions between fea-
tures are forms of pooling or self-attention over the spa-
tial [55, 4, 63, 41] or channel dimensions [8, 54]. Orig-
inating in language models [51], vision transformers [14]
streamlined these approaches and dominated the architec-
ture landscape. Several variants often bring back ideas from
convolutional networks [31, 58, 19, 57, 15, 21, 61].

Transformers downsample only at the input, forming
spatial patch tokens. Pooling is based on a learnable CLS
token, which, beginning at the input space, undergoes the
same self-attention operation with patch tokens and pro-
vides a global image representation. That is, the network
ends in global weighted average pooling, using as weights
the attention of CLS over the patch tokens.

Few works that have studied beyond CLS for pooling are
mostly limited to global average pooling (GAP) [31, 62, 50,
43]. CLS offers attention maps for free, however of low
quality unless in a self-supervised setting [7], which is not
well studied. Few works that attempt to rectify this in the
supervised setting include a spatial entropy loss [39], shape
distillation from convolutional networks [35] and skipping
computation of self-attention [52].

We attempt to address these limitations and study pool-
ing in convolutional networks, vision transformers, su-
pervised and self-supervised alike. We derive a simple,
attention-based, universal pooling mechanism, improving
both performance and attention maps.

5351

3. Method
We develop a generic pooling framework that encom-

passes many simple or more complex pooling methods, iter-
ative or not, attention-based or not. We then examine a num-
ber of methods as instantiations of this framework. Finally,
we discuss their properties and make particular choices in
designing our solution.

3.1. A generic pooling framework

Preliminaries Let X ∈ Rd×W×H be the 3-dimensional
feature tensor obtained from the last layer of a network for
a given input image, where d is the number of feature chan-
nels and W,H are the width and height. We represent the
image by the feature matrix X ∈ Rd×p by flattening the
spatial dimensions of X, where p := W ×H is the number
of spatial locations. Let xi ∈ Rp denote the i-th row of X ,
that is, corresponding to the 2-dimensional feature map in
channel i, and x j ∈ Rd denote the j-th column of X , that
is, the feature vector of spatial location j.

By 1n ∈ Rn, we denote the all-ones vector. Given
an m × n matrix A ≥ 0, by η1(A) := diag(A1n)

−1A
we denote row-wise ℓ1-normalization; similarly, η2(A) :=
Adiag(1⊤

mA)−1 for column-wise.

Pooling process The objective of pooling is to represent
the image by one or more vectors, obtained by interaction
with X , either in a single step or by an iterative process. We
denote the pooling process by function π : Rd×p → Rd′×k
and the output vectors by matrix U = π(X) ∈ Rd′×k,
where d′ is the number of dimensions, possibly d′ = d, and
k is the number of vectors. In the most common case of a
single vector, k = 1, we denote U by u ∈ Rd′ . We discuss
here the general iterative process; single-step pooling is the
special case where the number of iterations is 1.

Initialization We define X0 := X and make a particular
choice for U0 ∈ Rd0×k, where d0 := d. The latter may
depend on the input X , in which case it is itself a simple
form of pooling or not; for example, it may be random or a
learnable parameter over the entire training set.

Pairwise interaction Given U t and Xt at iteration t, we
define the query and key matrices

Q = ϕtQ(U
t) ∈ Rn

t×k (1)

K = ϕtK(Xt) ∈ Rn
t×p. (2)

Here, functions ϕtQ : Rdt×k → Rnt×k and ϕtK : Rdt×p →
Rnt×p may be the identity, linear or non-linear mappings
to a space of the same (nt = dt) or different dimensions.
We let K,Q interact pairwise by defining the p × k matrix
S(K,Q) := ((s(k i,q j))

p
i=1)

k
j=1, where s : Rn×Rn → R

for any n is a similarity function. For example, s can be dot
product, cosine similarity, or a decreasing function of some

distance. In the case of dot product, s(x,y) := x⊤y for
x,y ∈ Rd, it follows that S(K,Q) = K⊤Q ∈ Rp×k.

Attention We then define the attention matrix

A = h(S(K,Q)) ∈ Rp×k. (3)

Here, h : Rp×k → [0, 1]p×k is a nonlinear function that
may be elementwise, for instance relu or exp, normaliza-
tion over rows or columns of S(K,Q), or it may yield a
form of correspondence or assignment between the columns
of K and Q, possibly optimizing a cost function.

Attention-weighted pooling We define the value matrix

V = ϕtV (X
t) ∈ Rn

t×p. (4)

Here, function ϕtV : Rdt×p → Rnt×p plays a similar role
with ϕtQ, ϕ

t
K . Attention-weighted pooling is defined by

Z = f−1(f(V)A) ∈ Rn
t×k. (5)

Here, f : R → R is a nonlinear elementwise function that
determines the pooling operation, for instance, average or
max-pooling. The product f(V)A defines k linear com-
binations over the columns of f(V), that is, the features
at different spatial locations. If the columns of A are ℓ1-
normalized, then those are convex combinations. Thus, ma-
trix A defines the weights of an averaging operation.

Output Finally, we define the output matrices corre-
sponding to image features and pooling,

Xt+1 = ϕtX(Xt) ∈ Rd
t+1×p (6)

U t+1 = ϕtU (Z) ∈ Rd
t+1×k. (7)

Functions ϕtX : Rnt×p → Rdt+1×p and ϕtU : Rnt×k →
Rdt+1×k play a similar role with ϕtQ, ϕ

t
K , ϕtV but also deter-

mine the dimensionality dt+1 for the next iteration.
At this point, we may iterate by returning to the “pair-

wise interaction” step, or terminate, yielding U t+1 as U
with d′ = dt+1. Non-iterative methods do not use ϕtX .

3.2. A pooling landscape

Table 1 examines a number of pooling methods as instan-
tiations of our framework. The objective is to get insight
into their basic properties. How this table was obtained is
detailed in the appendix.

Group 1 consists of simple methods with k = 1 that are
not attention-based and have been studied in category-level
tasks [20, 40] or mostly in instance-level tasks [48, 42, 47].
Here, the attention is a vector a ∈ Rp and either is uniform
or depends directly on X , by pooling over channels [47].
Most important is the choice of pooling operation by func-
tion f . Log-sum-exp [40] arises with f(x) = erx with

5352

METHOD CAT ITER k U0 ϕQ(U) ϕK(X) s(x,y) A ϕV (X) f(x) ϕX(X) ϕU (Z)

1

GAP [20] ✓ 1 1p/p X f−1(x) Z
max [48] 1 1p X f−∞(x) Z
GeM [42] 1 1p/p X fα(x) Z
LSE [40] ✓ 1 1p/p X erx Z

HOW [47] 1 diag(X⊤X) FC(avg3(X)) f−1(x) η2(Z)

2
OTK [34] ✓ k U U X −∥x − y∥2 SINKHORN(eS/ϵ) ψ(X) f−1(x) Z
k-means ✓ k random U X −∥x − y∥2 η2(argmax1(S)) X f−1(x) X Z

Slot [33]∗ ✓ ✓ k random WQU WKX x⊤y η1(σ2(S/
√
n)) WVX f−1(x) X MLP(GRU(Z))

3 SE [23] ✓ 1 πA(X) σ(MLP(U)) 1p/p diag(q)X V

CBAM [56]∗ ✓ 1 πA(X) σ(MLP(U))/d X x⊤y σ(conv7(S))/p diag(q)X V diag(a)

4 ViT [14]∗ ✓ ✓ 1 U gm(WQU) gm(WKX) x⊤y σ2(Si/
√
d′)mi=1 gm(WVX) f−1(x) MLP(MSA(X)) MLP(WUg

−1
m (Z))

CaiT [49]∗ ✓ ✓ 1 U gm(WQU) gm(WKX) x⊤y σ2(Si/
√
d′)mi=1 gm(WVX) f−1(x) X MLP(WUg

−1
m (Z))

5 SimPool ✓ 1 πA(X) WQU WKX x⊤y σ2(S/
√
d) X − minX fα(x) Z

Table 1. A landscape of pooling methods. CAT: used in category-level tasks; ITER: iterative; *: simplified. πA: GAP; σ: sigmoid; σ2:
softmax over columns; η2: column normalization; gm: partitioning in m groups (see appendix). Cyan: ours; gray: common choices with
ours; green: learnable; red: hyperparameter; blue: detailed in the appendix.

learnable scale r. For the rest, we define f = fα, where

fα(x) :=

{
x

1−α
2 , if α ̸= 1,

lnx, if α = 1.
(8)

As studied by Amari [1], function fα is defined for x ≥
0 (α ̸= 1) or x > 0 (α = 1). It reduces to the
maximum, quadratic mean (RMS), arithmetic mean, ge-
ometric mean, harmonic mean, and minimum for α =
−∞,−3,−1, 1, 3,+∞, respectively. It has been proposed
as a transition from average to max-pooling [5] and is
known as GeM [42], with γ = (1 − α)/2 > 1 being a
learnable parameter.

Group 2 incorporates iterative methods with k > 1, in-
cluding standard k-means, the soft-clustering variant Slot
Attention [33] and optimal transport between U and X [34].
The latter is not formally iterative according to our frame-
work, but the Sinkhorn algorithm is iterative internally.

Group 3 refers to methods introduced as modules within
the architecture rather than pooling mechanisms [23, 56].
An interesting aspect is initialization of U0 by global aver-
age pooling (GAP) on X:

πA(X) := X1p/p =
1

p

p∑
j=1

x j ∈ Rd, (9)

where 1p ∈ Rp is the all-ones vector. Channel attention
(ϕQ(U)) and spatial attention (A) in CBAM [56] are based
on a few layers followed by sigmoid, playing the role of
a binary classifier (e.g. foreground/background); whereas,
transformer-based attention uses directly the query and soft-
max normalization, respectively. Although not evident in
the original formulation, we show in the appendix that there
is pairwise interaction.

Group 4 refers to vision transformers [14, 49], which we
reformulate in two separate streams, one for the CLS token,

softmax

Figure 2. Overview of SimPool. Given an input tensor X ∈
Rd×W×H flattened into X ∈ Rd×p with p := W × H patches,
one stream forms the initial representation u0 = πA(X) ∈
Rd (12) by global average pooling (GAP), mapped by WQ ∈
Rd×d (13) to form the query vector q ∈ Rd. Another stream
maps X by WK ∈ Rd×d (14) to form the key K ∈ Rd×p, shown
as tensor K. Then, q and K interact to generate the attention map
a ∈ Rp (15). Finally, the pooled representation u ∈ Rd is a gener-
alized weighted average of X with a determining the weights and
scalar function fα determining the pooling operation (17).

U , and another for the patch tokens, X . We observe that,
what happens to the CLS token throughout the entire en-
coder, is an iterative pooling process. Moreover, although
U is just one vector, multi-head attention splits it into m
subvectors, where m is the number of heads. Thus, m is
similar to k in k-means. The difference of CaiT [49] from
ViT [14] is that this iteration happens only in the last couple
of layers, with the patch embeddings X being fixed.

3.3. SimPool

Group 5 of Table 1 is our method, SimPool. A schematic
overview is given in Figure 2.

Pooling process We are striving for a simple design.
While pooling into k > 1 vectors would yield a more dis-
criminative representation, either these would have to be
concatenated, as is the case of multi-head attention, or a
particular similarity kernel would be needed beyond dot
product, which we consider to be beyond the scope of this

5353

work. We rather argue that it is the task of the encoder to
learn a single vector representation of objects, even if those
are composed of different parts. This argument is stronger
when pre-training is performed on images mostly depicting
one object, like ImageNet-1k.

We observe in Table 1 that only methods explicitly pool-
ing into k > 1 vectors or implicitly using m > 1 heads are
iterative. We explain why in the next paragraph. Following
this insight, we perform pooling in a single step.

In summary, our solution is limited to a single vector
u ∈ Rd for pooling, that is, k = 1, and is non-iterative.

Initialization We observe in Table 1 that single-step
attention-based methods in Group 3 initialize u0 by GAP.
We hypothesize that, since attention is based on pairwise
similarities, it is essential that u0 is chosen such that
its similarities with X are maximized on average, which
would help to better discriminate between foreground (high
similarity) and background (low similarity). Indeed, for
s(x,y) = −∥x − y∥2, the sum of squared Euclidean dis-
tances of each column x i of X to u ∈ Rd

J(u) =
1

2

p∑
i=1

∥x i − u∥2 (10)

is a convex distortion measure with unique minimum the
average of vectors {x i}

u∗ := arg min
u∈Rd

J(u) =
1

p

p∑
i=1

x i = πA(X), (11)

which can be found in closed form. By contrast, for k > 1
vectors, distortion can only be minimized iteratively, e.g. by
k-means. We therefore choose:

u0 = πA(X) = X1p/p. (12)

Pairwise interaction, attention We follow the attention
mechanism of transformers, in its simplest possible form.
In particular, we use a single head, m = 1, like Slot At-
tention [33] (which however uses k vectors). We find that
the query and key mappings are essential in learning where
to attend as a separate task from learning the representation
for the given task at hand. In particular, we use linear map-
pings ϕQ, ϕK with learnable parameters WQ,WK ∈ Rd×d
respectively:

q = ϕQ(u
0) = WQu

0 ∈ Rd (13)

K = ϕK(X) = WKX ∈ Rd×p. (14)

As in transformers, we define pairwise similarities as dot
product, that is, S(K,q) = K⊤q ∈ Rp×k, and attention
as scaled softmax over columns (spatial locations), that is,
h(S) := σ2(S/

√
d):

a = σ2

(
K⊤q/

√
d
)
∈ Rp, (15)

where σ2(S) := η2(exp(S)) and exp is taken elementwise.

Attention-weighted pooling As shown in Table 1, the
average pooling operation (f = f−1) is by far the most
common. However, the more general function fα (8) has
shown improved performance in instance-level tasks [42].
For α < −1 (γ > 1) in particular, it yields an intermediate
operation between average and max-pooling. The latter is
clearly beneficial when feature maps are sparse, because it
better preserves the non-zero elements.

We adopt f = fα for its genericity: the only opera-
tion that is not included as a special case in Table 1 is log-
sum-exp [40]. This choice assumes X ≥ 0. This is com-
mon in networks ending in relu, like ResNet [20], which
is also what makes feature maps sparse. However, vision
transformers and modern convolutional networks like Con-
vNeXt [32] do not end in relu; hence X has negative ele-
ments and is not necessarily sparse. We therefore define

V = ϕV (X) = X −minX ∈ Rd×p, (16)

where the minimum is taken over all elements of X , such
that fα operates only on non-negative numbers.

We also define u = ϕU (z) = z and the output dimension
is d′ = d. Thus, the mappings ϕV , ϕU are parameter-free.
The argument is that, for average pooling for example (f =
f−1 in (5)), any linear layers before or after pooling would
commute with pooling, thus they would form part of the
encoder rather than the pooling process. Moreover, Table 1
shows that ϕU is non-identity only for iterative methods.

In summary, we define SimPool (SP) as

u = πSP(X) := f−1
α (fα(V)a) ∈ Rd, (17)

where V ∈ Rd×p is the value (16) and a ∈ Rp is the atten-
tion map (15). Parameter α is learned in GeM [42], but we
find that treating it as a hyperparameter better controls the
quality of the attention maps.

4. Experiments

4.1. Datasets, networks and evaluation protocols

Supervised pre-training We train ResNet-18, ResNet-
50 [20], ConvNeXt-S [32], ViT-S and ViT-B [14] for im-
age classification on ImageNet-1k. For the analysis subsec-
tion 4.2 and ablation subsection 4.4, we train ResNet-18 on
the first 20% of training examples per class of ImageNet-
1k [11] (called ImageNet-20%) for 100 epochs. For the
benchmark of subsection 4.3, we train ResNet-50 for 100
and 200 epochs, ConvNeXt-S and ViT-S for 100 and 300
epochs and ViT-B for 100 epochs, all on the 100% of
ImageNet-1k. We evaluate on the full validation set in all
cases and measure top-1 classification accuracy. The base-
line is the default per network, i.e. GAP for convolutional
networks and CLS token for transformers.

5354

m
ax

[48
]

G+m
[28

]

HOW
[47

]

GAP [20
]

LSE
[40

]

GeM
[42

]

k-
mea

ns

OTK
[34

]

Slot
[33

]

CBAM
[56

]

SE
[23

]

GE
[22

]

ViT
[14

]

CaiT
[49

]

Sim
Poo

l
53

54

55

56

57

group 1 group 2 group 3 group 4

53.9

54.6
54.8

55
55.3

55.9

55.4

55.9

56.7

55.655.7
55.9

56.1

56.7
57.1

to
p-

1
ac

cu
ra

cy
%

Figure 3. Image classification on ImageNet-20. Supervised train-
ing of ResNet-18 for 100 epochs.

Self-supervised pre-training On the 100% of ImageNet-
1k, we train DINO [7] with ResNet-50, ConvNeXt-S and
ViT-S for 100 epochs. We evaluate on the validation set
by k-NN and linear probing on the training set. For linear
probing, we train a linear classifier on top of features as in
DINO [7]. For k-NN [59], we freeze the model and extract
features, then use a k-nearest neighbor classifier with k =
10.

Downstream tasks We fine-tune supervised and self-
supervised ViT-S on CIFAR-10 [25], CIFAR-100 [25]
and Oxford Flowers [37] for image classification, measur-
ing top-1 classification accuracy. We perform object lo-
calization without fine-tuning using supervised and self-
supervised ViT-S on CUB [53] and ImageNet-1k, measur-
ing MaxBoxAccV2 [9]. We perform object discovery with-
out fine-tuning using self-supervised ViT-S with DINO-
SEG [7] and LOST [45] on VOC07 [16], VOC12 [16] and
COCO [30], measuring CorLoc [12]. We validate robust-
ness against background changes using ViT-S on ImageNet-
9 [60] and its variations. We use the linear head and lin-
ear probe for supervised and self-supervised ViT-S, respec-
tively, measuring top-1 classification accuracy.

In the appendix, we provide implementation details,
more benchmarks, ablations and visualizations.

4.2. Experimental Analysis

Figure 3 evaluates different methods in groups following
Table 1, regardless of their original design for (a) pooling or
not, (b) different tasks, e.g. instance-level or category-level,
(c) different networks, e.g. convolutional or transformers.

Group 1 consists of simple pooling methods with: (a)
no parameters: GAP [29], max [48], GAP+max [28]; and
(b) scalar parameter: GeM [42] and LSE [40]. HOW [47]
is the only method to use (parameter-free) attention. GeM
is performing the best, with LSE following second. These
methods are inferior to those in other groups.

Group 2 incorporates methods with k > 1 vectors. We

METHOD EP RESNET-50 CONVNEXT-S VIT-S VIT-B

Baseline 100 77.4 81.1 72.7 74.1
CaiT [49] 100 77.3 81.2 72.6 -
Slot [33] 100 77.3 80.9 72.9 -
GE [22] 100 77.6 81.3 72.6 -
SimPool 100 78.0 81.7 74.3 75.1

Baseline 300 78.1† 83.1 77.9 -
SimPool 300 78.7† 83.5 78.7 -

Table 2. Image classification top-1 accuracy (%) on ImageNet-1k.
Supervised pre-training for 100 and 300 epochs. Best competitors
selected per group from Figure 3. Baseline: GAP for convolu-
tional, CLS for transformers; EP: epochs; †: 200 epochs.

set k = 3 and take the maximum of the 3 logits per class.
OTK and Slot use attention. Slot attention [33] works best,
outperforming k-means by 1.3%.

Group 3 refers to parametric attention-based meth-
ods, weighting features based on their importance for the
task: CBAM [56], Squeeze-Excitation [23] and Gather-
Excite [22]. While originally designed as components
within the architecture, we adapt them to pooling by GAP
at the end. Gather-Excite [22] performs best.

Group 4 refers to parametric attention-based methods
found in vision transformers. ViT [14] refers to multi-head
self-attention learnable CLS and four heads, which we incor-
porate as a single layer at the end of the model. CaiT [49]
is the same but using only cross-attention between CLS and
patch embeddings. CaiT performs the best.

SimPool outperforms all other methods. Seeing this ex-
periment as a tournament, we select the best performing
method of each group and qualify it for the benchmark of
subsection 4.3.

4.3. Benchmark

Image Classification Table 2 compares SimPool with
baseline and tournament winners per group of subsec-
tion 4.2 on supervised pre-training for classification. For
100 epochs, SimPool outperforms all methods, consistently
improving the baseline by 0.6% using convolutional net-
works, 1.6% using ViT-S and 1.0% using ViT-B. Gather-
Excite [22] improves over the baseline only on convolu-
tional networks, while Slot [33] only on ViT-S. CaiT im-
proves over the baseline only for ConvNeXt-S. By contrast,
SimPool improves everywhere. For more than 100 epochs,
SimPool improves the baseline by 0.5% using ResNet-50,
0.4% using ConvNeXt-S and 0.8% using ViT-S.

Table 3 evaluates self-supervised pre-training for 100
epochs. SimPool improves over the baseline by 2.0% k-
NN and 1.4% linear probing on ResNet-50; 3.7% k-NN and
4.0% linear probing on ConvNeXt-S; and 0.9% k-NN and
1.3% linear probing on ViT-S.

5355

METHOD EP
RESNET-50 CONVNEXT-S VIT-S

k-NN PROB k-NN PROB k-NN PROB

Baseline 100 61.8 63.0 65.1 68.2 68.9 71.5
SimPool 100 63.8 64.4 68.8 72.2 69.8 72.8

Table 3. Image classification top-1 accuracy (%) on ImageNet-1k.
Self-supervised pre-training with DINO [7] for 100 epochs. Base-
line: GAP for convolutional, CLS for transformers.

METHOD
SUPERVISED SELF-SUPERVISED

CF-10 CF-100 FL CF-10 CF-100 FL

Baseline 98.1 86.0 97.1 98.7 89.8 98.3
SimPool 98.4 86.2 97.4 98.9 89.9 98.4

Table 4. Image classification accuracy (%) with fine-tuning for
classification for 1000 epochs. ViT-S pre-trained on ImageNet-1k
for 100 epochs. Self-supervision with DINO [7]. CF-10: CIFAR-
10 [25], CF-100: CIFAR-100 [25], FL: Flowers[37].

METHOD
SUPERVISED SELF-SUPERVISED

CUB IMAGENET CUB IMAGENET

Baseline 63.1 53.6 82.7 62.0
SimPool 77.9 64.4 86.1 66.1

Baseline@20 62.4 50.5 65.5 52.5
SimPool@20 74.0 62.6 72.5 58.7

Table 5. Localization accuracy MaxBoxAccV2 on CUB test and
ImageNet-1k validation set. ViT-S pre-trained on ImageNet-1k for
100 epochs. Self-supervision with DINO [7]. @20: at epoch 20.

Fine-tuning for classification Table 4 evaluates fine-
tuning for classification on different datasets of a supervised
and a self-supervised ViT-S. SimPool brings a small im-
provement over the baseline in all cases.

Object localization Accurate localization can have a sig-
nificant impact on classification accuracy, particularly under
multiple objects, complex scenes and background clutter.
Table 5 evaluates localization accuracy under both supervi-
sion settings. SimPool significantly improves the baseline
by up to 7% MaxBoxAccV2 when self-supervised and up to
14% when supervised. In the latter case, the gain is already
up to 12% at epoch 20.

Unsupervised object discovery Table 6 studies LOST
[45], which uses the raw features of a vision transformer
pre-trained using DINO [7] for unsupervised single-object
discovery, as well as the baseline DINO-seg [45, 7], which
uses the attention maps instead. SimPool significantly out-
performs the baseline on all datasets by up to 25.2% CorLoc
for DINO-seg and 5.6% for LOST on VOC12. Again, the
gain is significant already at the first 20 epochs.

Background changes We evaluate robustness to the
background changes using IN-9 [60] dataset. Table 7 shows

METHOD
DINO-SEG [45, 7] LOST [45]

VOC07 VOC12 COCO VOC07 VOC12 COCO

Baseline 30.8 31.0 36.7 55.5 59.4 46.6
SimPool 53.2 56.2 43.4 59.8 65.0 49.4

Baseline@20 14.9 14.8 19.9 50.7 56.6 40.9
SimPool@20 49.2 54.8 37.9 53.9 58.8 46.1

Table 6. Object discovery CorLoc. ViT-S pre-trained on
ImageNet-1k for 100 epochs. Self-supervision with DINO [7].
@20: at epoch 20.

METHOD OF MS MR MN NF OBB OBT IN-9

SUPERVISED

Baseline 66.4 79.1 67.4 65.5 37.2 12.9 15.2 92.0
SimPool 71.8 80.2 69.3 67.3 42.8 15.2 15.6 92.9

SELF-SUPERVISED + LINEAR PROBING

Baseline 87.3 87.9 78.5 76.7 47.9 20.0 16.9 95.3
SimPool 87.3 88.1 80.6 78.7 48.2 17.8 16.7 95.6

Table 7. Background robustness on IN-9 [60] and its variations;
more details in the appendix. ViT-S pre-trained on ImageNet-1k
for 100 epochs. Self-supervision with DINO [7].

that SimPool improves over the baseline under both su-
pervision settings with only 2 out of 8 exceptions under
DINO [7] pre-training. The latter is justified, given that
none of the foreground objects or masks are present in these
settings.

RESNET-18 RESNET-50 CONVNEXT-S VIT-S
#PAR FLO #PAR FLO #PAR FLO #PAR FLO

Baseline 11.7 1.82 25.6 4.13 50.2 8.68 22.1 4.24
CaiT 18.0 1.85 75.9 4.60 57.3 8.75 23.8 4.29
Slot 14.6 1.87 71.7 4.89 56.7 8.79 23.7 4.30
GE 11.7 1.83 26.1 4.15 50.3 8.69 22.1 4.25
SimPool 12.2 1.84 33.9 4.34 51.4 8.71 22.3 4.26

Table 8. Computation resources on Imagenet-1k, with d = 512
(ResNet-18), 2048 (ResNet-50), 768 (ConvNeXt), 384 (ViT-S).
#PAR: number of parameters, in millions; FLO: GFLOPS.

Computation resources Table 8 shows the number of pa-
rameters and floating point operations per second for the
best competitors of Figure 3. Resources depend on the em-
bedding dimension d. SimPool is higher than the baseline
but not the highest.

Performance vs. parameters Table 9 aims to answer the
question of how much the performance improvement of
SimPool is due to parameters of the query and key map-
pings. Interestingly, ViT-S works better with GAP than the
default CLS. SimPool adds 0.2M parameters to the network.
For fair comparison, we remove blocks from the network

5356

NETWORK POOLING DEPTH INIT ACCURACY #PARAMS

BASE GAP 12 12 73.3 22.1M

BASE

CLS

12 0 72.7 22.1M
BASE + 1 13 0 73.2 23.8M
BASE + 2 14 0 73.7 25.6M
BASE + 3 15 0 73.8 27.4M
BASE + 4 16 0 73.9 29.2M
BASE + 5 17 0 74.6 30.9M

BASE

SimPool

12 12 74.3 22.3M
BASE − 1 11 11 73.9 20.6M
BASE − 2 10 10 73.6 18.7M
BASE − 3 9 9 72.5 17.0M

Table 9. Trade-off between performance and parameters. Super-
vised pre-training of ViT-S on ImageNet-1k for 100 epochs. INIT:
Initial layer of pooling token. BASE: original network. BASE+b
(BASE−b): b blocks added to (removed from) the network.

(BASE) when using SimPool and add blocks when using
CLS. We find that, to exceed the accuracy of BASE Sim-
Pool, BASE CLS needs 5 extra blocks, i.e., 9M more param-
eters. Equally interestingly, removing 3 blocks from BASE
SimPool is only slightly worse than BASE CLS, having 5M
fewer parameters.

4.4. Ablation study

We ablate the design and components of SimPool. More
ablations are found in the appendix. In particular, for func-
tion fα (8), we set γ = 2 for convolutional networks and
γ = 1.25 for transformers by default, where γ = (1−α)/2
is a hyperparameter.

Design In Table 10 (left), we ablate (a) the attention func-
tion h (3); (b) the number of iterations with shared param-
eters at every iteration (LAYERS) or not (ITER); (c) the ini-
tialization U0; (d) the pairwise similarity function s; (e) the
number k of pooled vectors, obtained by k-means instead of
GAP. We also consider queries and keys sharing the same
mapping, WQ = WK . We observe that multi-head, few it-
erations and initialization by diag(X⊤X) perform slightly
worse, without adding any extra parameters, while setting
WQ = WK performs slightly worse, having 50% less pa-
rameters.

Linear and LayerNorm layers In Table 10 (right), we
systematically ablate linear and LayerNorm (LN) [2] layers
on query q, key k and value v. We strive for performance
and quality while at the same time having a small number
of components and parameters. In this sense, we choose
the setup that includes linear layers on q, k and LN on k, v,
yielding 56.6 accuracy. We observe that having linear and
LN layers everywhere performs best under classification ac-
curacy. However, this setup has attention maps of lower
quality and more parameters.

ABLATION OPTIONS ACC LINEAR LN ACC

h(S)
σ2(Si/

√
d)mi=1 56.6 Q K V Q K V

η2(σ1(S/
√
d)) 55.6 ✓ ✓ ✓ ✓ ✓ ✓ 57.0

LAYERS
3 56.8 ✓ ✓ ✓ ✓ ✓ 56.6
5 55.9 ✓ ✓ ✓ ✓ 56.5

ITER
3 56.5 ✓ ✓ ✓ ✓ 56.4
5 56.4 ✓ ✓ ✓ 55.6

U0 U 56.3 ✓ ✓ ✓ ✓ 56.3
diag(X⊤X) 56.6 ✓ ✓ ✓ 56.0

s(x,y)
−∥x− y∥2 56.5 ✓ ✓ ✓ 56.2

cosine 56.3 ✓ ✓ ✓ ✓ 56.6

k (max)
2 56.5 ✓ ✓ ✓ 56.4
5 56.4 ✓ ✓ ✓ ✓ 56.2

k (concat)
2 56.5 ✓ ✓ 56.2
5 55.9 ✓ ✓ 54.4

ϕQ, ϕK WQ = WK 56.4 54.5

SimPool 57.1 GAP 55.0

Table 10. SimPool ablation on ImageNet-20% using ResNet-18
trained for 100 epochs. Ablation of (left) design; (right) lin-
ear and LayerNorm (LN) [2] layers. q, k, v: query, key, value.
σ2(Si/

√
d)mi=1: same as our default, but with multi-head atte-

nion, m = 4 heads; k (max): maximum taken over output logits;
k (concat): concatenation and projection to the same output di-
mensions d′. Green: learnable parameter; blue: winning choice
per group of experiments; Cyan: Our chosen default. Using pool-
ing operation f = fα (8) (left); f = f−1 (right).

5. Conclusion
We have introduced SimPool, a simple, attention-based

pooling mechanism that acts at the very last step of either
convolutional or transformer encoders, delivering highly su-
perior quantitative results on several benchmarks and down-
stream tasks. In addition, SimPool delivers decent attention
maps in both convolutional and transformer networks under
both supervision and self-supervision with remarkable im-
provement in delineating object boundaries for supervised
transformers. Despite this progress, we believe that inves-
tigating why the standard CLS-based attention fails under
supervision deserves further study.

Acknowledgements This work was supported by the
Hellenic Foundation for Research and Innovation (HFRI)
under the BiCUBES project (grant: 03943). It was also par-
tially supported by the RAMONES and iToBos EU Horizon
2020 projects, under grants 101017808 and 965221, respec-
tively. NTUA thanks NVIDIA for the support with the do-
nation of GPU hardware.

5357

References
[1] Shun-ichi Amari. Integration of stochastic models by min-

imizing α-divergence. Neural computation, 19(10):2780–
2796, 2007. 4

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 8

[3] Artem Babenko and Victor Lempitsky. Aggregating local
deep features for image retrieval. In International Confer-
ence on Computer Vision, 2015. 1, 2

[4] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,
and Quoc V Le. Attention augmented convolutional net-
works. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 3286–3295, 2019. 2

[5] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical
analysis of feature pooling in visual recognition. In Proceed-
ings of the 27th international conference on machine learn-
ing (ICML-10), pages 111–118, 2010. 4

[6] Bingyi Cao, Andre Araujo, and Jack Sim. Unifying deep
local and global features for image search. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XX 16, pages
726–743. Springer, 2020. 2

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 1, 2, 6, 7

[8] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng
Yan, and Jiashi Feng. Aˆ 2-nets: Double attention net-
works. Advances in neural information processing systems,
31, 2018. 2

[9] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk
Chun, Zeynep Akata, and Hyunjung Shim. Evaluating
weakly supervised object localization methods right. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3133–3142, 2020. 6

[10] John G Daugman. Uncertainty relation for resolution in
space, spatial frequency, and orientation optimized by two-
dimensional visual cortical filters. Journal of Optical Society
of America, 2(7):1160–1169, 1985. 1

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 248–255. Ieee, 2009. 1, 5

[12] Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. Lo-
calizing objects while learning their appearance. In Com-
puter Vision–ECCV 2010: 11th European Conference on
Computer Vision, Heraklion, Crete, Greece, September 5-
11, 2010, Proceedings, Part IV 11, pages 452–466. Springer,
2010. 6

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 1, 2, 4, 5, 6

[15] Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S
Morcos, Giulio Biroli, and Levent Sagun. Convit: Improv-
ing vision transformers with soft convolutional inductive bi-
ases. In International Conference on Machine Learning,
pages 2286–2296. PMLR, 2021. 2

[16] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88:303–308, 2009. 6

[17] Kunihiko Fukushima. Neocognitron: A self-organizing
neural network model for a mechanism of pattern recogni-
tion unaffected by shift in position. Biological cybernetics,
36(4):193–202, 1980. 1, 2

[18] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE
international conference on computer vision, 2015. 2

[19] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. LeViT: a vision transformer in convnet’s clothing
for faster inference. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, 2021. 2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016. 1, 2, 3, 4, 5, 6

[21] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk
Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spa-
tial dimensions of vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 2021. 2

[22] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea
Vedaldi. Gather-excite: Exploiting feature context in con-
volutional neural networks. Advances in neural information
processing systems, 31, 2018. 2, 6

[23] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 2, 4, 6

[24] Yannis Kalantidis, Clayton Mellina, and Simon Osindero.
Cross-dimensional weighting for aggregated deep convolu-
tional features. In European Conference on Computer Vision
Workshops, 2016. 2

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6, 7

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems 25. 2012. 2

[27] Yann LeCun, Bernhard Boser, John Denker, Donnie Hen-
derson, Richard Howard, Wayne Hubbard, and Lawrence
Jackel. Handwritten digit recognition with a back-
propagation network. Advances in neural information pro-
cessing systems, 1989. 2

[28] Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Gen-
eralizing pooling functions in convolutional neural networks:

5358

Mixed, gated, and tree. In Artificial intelligence and statis-
tics, pages 464–472. PMLR, 2016. 6

[29] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. arXiv preprint arXiv:1312.4400, 2013. 2, 6

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, pages 740–755.
Springer, 2014. 6

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 2

[32] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022. 1, 2, 5

[33] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. Advances in Neural In-
formation Processing Systems, 33, 2020. 2, 4, 5, 6

[34] Grégoire Mialon, Dexiong Chen, Alexandre d’Aspremont,
and Julien Mairal. A trainable optimal transport embedding
for feature aggregation and its relationship to attention. arXiv
preprint arXiv:2006.12065, 2020. 2, 4, 6

[35] Muhammad Muzammal Naseer, Kanchana Ranasinghe,
Salman H Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Intriguing properties of vision transform-
ers. Advances in Neural Information Processing Systems,
34:23296–23308, 2021. 2

[36] Tony Ng, Vassileios Balntas, Yurun Tian, and Krystian
Mikolajczyk. Solar: second-order loss and attention for im-
age retrieval. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part XXV 16, pages 253–270. Springer, 2020. 2

[37] M-E. Nilsback and A. Zisserman. Automated flower classi-
fication over a large number of classes. In Proceedings of the
Indian Conference on Computer Vision, Graphics and Image
Processing, Dec 2008. 6, 7

[38] Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand,
and Bohyung Han. Large-scale image retrieval with attentive
deep local features. In Proceedings of the IEEE international
conference on computer vision, pages 3456–3465, 2017. 2

[39] Elia Peruzzo, Enver Sangineto, Yahui Liu, Marco De Nadai,
Wei Bi, Bruno Lepri, and Nicu Sebe. Spatial entropy
regularization for vision transformers. arXiv preprint
arXiv:2206.04636, 2022. 2

[40] Pedro O Pinheiro and Ronan Collobert. From image-level
to pixel-level labeling with convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1713–1721, 2015. 2, 3, 4, 5, 6

[41] Tobias Plötz and Stefan Roth. Neural nearest neighbors net-
works. Advances in Neural information processing systems,
31, 2018. 2

[42] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-
Tuning CNN Image Retrieval with No Human Annotation.

IEEE transactions on pattern analysis and machine intelli-
gence, 41(7):1655–1668, 2018. 1, 2, 3, 4, 5, 6

[43] Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. Do vision trans-
formers see like convolutional neural networks? Advances
in Neural Information Processing Systems, 34:12116–12128,
2021. 2

[44] T. Serre, L. Wolf, and T. Poggio. Object recognition with
features inspired by visual cortex. In Computer Vision and
Pattern Recognition, 2005. 2

[45] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spy-
ros Gidaris, Andrei Bursuc, Patrick Pérez, Renaud Marlet,
and Jean Ponce. Localizing objects with self-supervised
transformers and no labels. In BMVC-British Machine Vi-
sion Conference, 2021. 6, 7

[46] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations, 2015.
2

[47] Giorgos Tolias, Tomas Jenicek, and Ondřej Chum. Learn-
ing and aggregating deep local descriptors for instance-level
recognition. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part I 16, pages 460–477. Springer, 2020. 2, 3, 4,
6

[48] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular
object retrieval with integral max-pooling of CNN activa-
tions. In 4th International Conference on Learning Repre-
sentations, 2016. 2, 3, 4, 6

[49] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 32–42. IEEE, 2021.
2, 4, 6

[50] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas,
Niki Parmar, Blake Hechtman, and Jonathon Shlens. Scaling
local self-attention for parameter efficient visual backbones.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12894–12904, 2021.
2

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 5998–6008, 2017. 2

[52] Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano,
Fatih Porikli, and Amirhossein Habibian. Skip-attention:
Improving vision transformers by paying less attention.
arXiv preprint arXiv:2301.02240, 2023. 2

[53] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The Caltech-UCSD Birds-200-
2011 Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology, 2011. 6

[54] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wang-
meng Zuo, and Qinghua Hu. ECA-Net: Efficient Chan-
nel Attention for Deep Convolutional Neural Networks. In
CVPR, 2020. 2

[55] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the

5359

IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 2

[56] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 2, 4, 6

[57] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. CvT: Introducing
convolutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2021. 2

[58] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and
Hongyang Chao. Rethinking and improving relative posi-
tion encoding for vision transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2021. 2

[59] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733–3742,
2018. 6

[60] Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander
Madry. Noise or signal: The role of image backgrounds in
object recognition. In International Conference on Learning
Representations, 2021. 6, 7

[61] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10819–10829, 2022. 2

[62] Qinglong Zhang and Yu-Bin Yang. Rest: An efficient trans-
former for visual recognition. Advances in Neural Informa-
tion Processing Systems, 34:15475–15485, 2021. 2

[63] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Explor-
ing self-attention for image recognition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10076–10085, 2020. 2

5360

