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Abstract: Local feature detection has been an essential part of many methods for computer vision applications like
large scale image retrieval, object detection, or tracking. Recently, structure-guided feature detectors have been pro-
posed, exploiting image edges to accurately capture local shape. Among them, the WαASH detector [Varytimidis et
al., 2012] starts from sampling binary edges and exploits α-shapes, a computational geometry representation that de-
scribes local shape in different scales. In this work, we propose a novel image sampling method, based on dithering
smooth image functions other than intensity. Samples are extracted on image contours representing the underlying
shapes, with sampling density determined by image functions like the gradient or Hessian response, rather than being
fixed. We thoroughly evaluate the parameters of the method, and achieve state-of-the-art performance on a series of
matching and retrieval experiments.
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1. Introduction

Local features are found as a core component in many algo-
rithms solving computer vision problems like image retrieval, im-
age classification, object detection, or 3D reconstruction. They
provide a sparse representation of images while capturing salient
points or regions like corners and blobs. Local feature detectors
provide invariance to image transformations, repeatability and
computational efficiency compared to dense features, e.g., on a
regular grid. Assigning local descriptors (e.g., SIFT [8]) to de-
tected features, creates a compact and robust image representa-
tion.

Popular detectors like the Hessian-Affine [10] and SURF [2]
are based on image gradients, while others like the MSER [9] are
purely based on image intensity. All of them have been success-
fully applied to a variety of applications, but often the balance
between quality and performance remains an issue. For exam-
ple, the image coverage of the Hessian-Affine detector is lim-
ited, since—for a given threshold—multiple detections appear on
nearby spatial locations at different scales. The MSER detector
is fast, but often extracts sparse regular regions that are not repre-
sentative enough. SURF is also fast, but detections are often not
stable enough.

Although not so popular, another family of detectors is based
on image edges, which are naturally more stable than gradient,
e.g., to lighting changes. The recently introduced WαSH detec-
tor [18] belongs to this family and is based on grouping edge sam-
ples using the weighted α-shapes, a well known representation in
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computational geometry. A weakness of WαSH is that edge sam-
pling is roughly uniform along edges, with a fixed sampling in-
terval d. In an attempt to overcome this limitation, we propose a
different sampling scheme that relies directly upon smooth image
functions. We demonstrate its efficiency by common statistics on
image matching and retrieval experiments.

2. Related Work and Contribution

Edge-based local features have not become popular due to the
lack of stable edges (e.g., under varying viewpoint) and computa-
tional inefficiency. One of the earliest attempts, the edge-based

region detector (EBR), starts from corner points and exploits
nearby edges by measuring photometric quantities across them.
It is suitable for well-structured scenes (like e.g., buildings), but
not for generic matching, as shown in Ref. [11]. Mikolajczyk et
al. [12] propose an edge-based detector that starts from densely
sampled edge points combined with automatic scale selection and
use it for object recognition. Starting also from dense edge sam-
ples, Rapantzikos et al. [17] compute the binary distance trans-
form and detect regions by grouping its local maxima, guided by
the gradient strength of nearby edges.

Indirectly related to edges are the methods that exploit gradient
strength across them by avoiding the thresholding step. Zitnick
et al. [23] apply an oriented filter bank to the input image and de-
tect edge foci (EF), i.e., points that are roughly equidistant from
edgels with orientations perpendicular to the points. The idea
is quite interesting, but computationally expensive. Avrithis and
Rapantzikos [1] compute the weighted medial axis transform di-
rectly from image gradient, partition it and select associated re-
gions as medial features (MFD) by taking both contrast and shape
into account. Although those methods exploit richer image infor-
mation compared to binary edges, gradient strength is often quite
sensitive to lighting and scale variations.
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Fig. 1 Example of the different α-shapes created over an image, given a set of points. The first shape (for
α = 0) is the set of points, growing up to the full convex hull (for α→ ∞).

The recently proposed WαSH detector [18] combines edge-
sampling and grouping towards distinctive local features sup-
ported by shape-preserving regions. It is based on weighted α-
shapes on uniformly sampled edges, i.e., a representation of tri-
angulated edge samples parametrized by a single parameter α.
WαSH uses a regular triangulation, where each sample is as-
signed a weight originating from the image domain. Despite
this rich representation, WαSH is limited by its uniform sampling
scheme, which is not stable under varying viewpoint.

In Ref. [19], we introduced two sampling methods that are
based on the well known Floyd-Steinberg algorithm [6]. The lat-
ter was the first of the error-diffusion dithering approaches, where
the idea is to produce a pattern of pixels such that the average in-
tensity over regions in the output bit-map is approximately the
same as the average over the same region in the original im-
age. Error-diffusion algorithms compare the pixel intensity values
with a fixed threshold and the resulting error between the output
value and the original value is distributed to neighboring pixels
according to pre-defined weights. The main advantages of these
algorithms are the simplicity combined with fairly good overall
visual quality of the produced binary images.

The Floyd-Steinberg algorithm has been extensively studied in
the literature. Indicatively, Ostromoukhov [13] and Zhuand and
Fang [22] have addressed the limitations of the initial algorithm,
like the visual artifacts in highlights/dark areas and the appear-
ance of visually unpleasant regular structures, using intensity-
dependent variable diffusion coefficients. Recently, Pang et
al. [14] proposed an iterative structure-aware image dithering al-
gorithm that preserves local texture, but involves a computation-
ally prohibitive optimization. Nevertheless, we use the initial al-
gorithm because of its computational efficiency and the nature of
our problem, which is sampling rather than halftoning. In addi-
tion, we apply dithering on functions other than image intensity,
where dithering artifacts are eliminated.

Our work is also related to the work of Gu et al. [7], who de-
tect local features as local minima and maxima of the β-stable
Laplacian. They combine the local features in order to cre-
ate a higher level representation, resembling the constellation
model [5], [7]. However, we do not detect our sample points as

features; we rather use them to initialize the WaSH feature detec-
tor.

In Ref. [19] we have introduced two sampling methods of vari-
able density, and presented evaluation results on image matching
and retrieval applications. In this work, we investigate the impact
of sampling parameters to the size of the point set, as well as the
representation quality, measured by the performance of WαSH.
We also consider the impact of using weights on samples, which
changes the form of the constructed triangulation in WαSH.

3. Background

3.1 WαSH Detector
The WαSH feature detector [18] is based on α-shapes, a rep-

resentation of a point set P in two dimensions, parametrized by
scalar α. The construction of α-shapes is based on a triangulation
R of P, exploiting geometrical properties of triangles and edges.
In fact, α-shapes are a generalization of the convex hull, and are
not convex or even connected in general. Starting from the set P

for α = 0, triangles and edges of the triangulation are added to
the shape as α increases (see Fig. 1). Finally, the shape converges
to the convex hull of the point set P as α→ ∞.

In the simplest case, α-shapes use an underlying Delaunay tri-
angulation, but weighted α-shapes in Ref. [18] use the regular

triangulation instead. The latter is a generalization of Delaunay
where each point in P is assigned a non-negative weight, hence
capturing more information from the image domain. In practice,
weight is a function of image gradient in WαASH.

The inclusion of simplices σ (edges or triangles) of the trian-
gulation R in α-shapes is controlled by assigning a size quantity
ρT ≥ 0 to every simplex σT , which is a function of the positions
and weights of its vertices T ⊆ P. The weighted α-complex of
P is the subset of triangulation R containing all simplices up to a
given size α ≥ 0,

Rα = {σT ∈ R : ρT < α}, (1)

which is neither convex nor connected, in general. Finally, the
weighted α-shape of P [3] is the union of all such simplices,

Wα =
⋃

σ∈Rα
σ. (2)
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In the evolution of α-shapes, small triangles corresponding to
fine details of the image are added first, while large triangles cor-
responding to coarse parts are added latter.

In order to select regions and extract prominent local fea-
tures [18], the WαSH detector exploits the upper α-shapes. The
latter are complementary to α-shapes, having larger triangles and
edges included first. Simplices are ordered by decreasing size in
order to form the upper α-complex

Rα = {σT ∈ R : ρT ≥ α}. (3)

For each α value and upper α-shape instance, we define as con-

nected components the disjoint parts of the α-shape. A compo-

nent tree is used to track the evolution of connected components
as simplices are added to form larger regions. Different connected
components of the α-shapes are potentially selected as features
during evolution, according to a shape-driven strength measure.
The features correspond to blob-like regions that respect local im-
age boundaries. Features are also extracted on cavities of image
objects as well as regions that are not fully bounded by edges.

One important limitation of WαSH is the sampling process,
which is restricted to points sampled uniformly along binary im-
age edges. Even though binary edges often coincide with object
contours, noisy edges can lead to sampling on both object bound-
aries and textured regions. In addition, sampling is uniform, us-
ing a fixed sampling step d along edges that corresponds to dis-
tance between samples measured in pixels, hence the represen-
tation scale is fixed. In a single image, objects of diverse scales
have different representations: too dense on large objects, and too
sparse on small ones. Though this may be partially compensated
for by subsequent processes, the sampling step parameter d is
still needed to control the density of samples along edges. Fur-
ther, uniform sampling naturally leads to severe undersampling
of highly curved paths, so important details of prominent shapes
may be lost.

Using weights on the sampled points brings more information
from the image domain to the triangulation. This is expected to
provide a more accurate representation of the boundaries, lead-
ing to well fitted local features. In the experimental section,
we will also evaluate the impact on performance when using ei-
ther weighted points with the regular triangulation, or unweighted
points with a Delaunay triangulation.

In Section 4 we introduce the alternative methods for sampling
that apply to smooth functions of the image rather than binary
edge maps and provide variable density samples. For the remain-
ing process including the component tree and feature selection,
we keep the same choices as in Ref. [18].

3.2 Image Dithering
Dithering is a common method used for image binarization.

It has been extensively used to compress images, or display
grayscale images in binary monitors. Color image dithering is
also possible, where high color depth images are converted to
low depth. It is used by monitors capable of displaying a limited
number of different colors, or by older image file formats. Image
dithering is equivalent to halftoning, a technique used in black
and white or color printers in order to accomplish high quality

Fig. 2 Error diffusion coefficients used by the Floyd-Steinberg algorithm,
when parsing pixels in (a) left-to-right, or (b) right-to-left order.

results, despite printing a limited number of different colors.
Image dithering consists of a thresholding step, followed by

error diffusion of each thresholded pixel. Each pixel at position
p = (x, y) is visited at least once in a specific order and its inten-
sity value I(x, y) is compared to a threshold θ, such that

I′(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if I(x, y) > θ,

0 otherwise.
(4)

The error e(x, y) = I(x, y) − I′(x, y) between the output I′ and the
input I is diffused to a neighborhood of pixel (x, y).

The most commonly used algorithm for image dithering is the
one introduced by Floyd and Steinberg [6]. Image pixels are vis-
ited only once, in a serpentine order, left-to-right and right-to-
left alternatively. The error e(x, y) is diffused to the 4-connected
neighborhood of pixel p = (x, y) that is not yet visited, using the
coefficients shown in Fig. 2. As discussed in Section 2, we use
this algorithm for its simplicity and computational efficiency.

4. Dithering-based Sampling

In this section we propose two image sampling methods based
on error-diffusion. The goal is to adapt the spatial density of sam-
ples over the image and achieve a sparse representation without
compromising structure preservation. Removing the limitation
of samples belonging to binary edges, we expect to get a trian-
gulated set of sparse samples that fits well with the underlying
image structure.

In our framework, the Floyd-Steinberg algorithm is not applied
directly to the image intensity, but to a scalar function s(x, y) over
the image domain. The two methods we introduce are based on
two different choices for s(x, y). In both cases, the extracted sam-
ples are the nonzero points of the binary output of the Floyd-
Steinberg algorithm.

Each sample point (x, y) is assigned a weight that is propor-
tional to the sampled function s(x, y). These weights are used in
the remaining steps of the WαSH detector, in order to create the
regular triangulation and weighted α-shapes. In the special case
when weights are zero, the triangulation reduces to Delaunay.

4.1 Gradient-based Dithering
The gradient strength G of an image I is obtained by convolv-

ing with the gradient of a Gaussian kernel g(σ) of standard devi-
ation σ,

G = |∇g(σ) ∗ I|. (5)

Then, similar to Ref. [21], if Ĝ(x, y) is the gradient strength at
point (x, y) normalized to [0, 1], we use the non-linear function

s(x, y) = Ĝ(x, y)γ (6)
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Fig. 3 Dithering-based sampling. (a) Input image and (d) Floyd-Steinberg dithering on (a). (b) Normal-
ized gradient strength Ĝ and (e) sampling on Ĝ. (c) Hessian response λ̂1 and (f) sampling on λ̂1.
Figure is optimized for screen viewing.

to represent image boundaries, where γ is a positive constant.
Error-diffusion is performed using the Floyd-Steinberg algorithm
on s(x, y) rather than image intensity I(x, y). Increasing the value
of γ results in sparser sampling.

In smooth regions of the image, e.g., in the interior of objects
or on smooth background, G is low and samples are sparse, re-
sulting in large triangles. Near image edges or corners on the
other hand, G is high, samples are dense, and a finer tessellation
is generated that captures important details. Variable sample den-
sity offers a computational advantage without compromising the
descriptive power of the triangulation.

4.2 Hessian-based Dithering
Instead of using the gradient strength as the input to error-

diffusion, Yang et al. [21] use the largest eigenvalue of the
Hessian matrix at each point. We also explore this option for
our sampling.

If H(x, y) is the Hessian matrix at point (x, y), again after fil-
tering with Gaussian kernel g(σ), let λ1(x, y) be its largest eigen-
value. It is known that λ1 is the largest second order directional
derivative of I. Similarly to Eq. (6), if λ̂1(x, y) is the largest eigen-
value normalized to [0, 1], we use function

s(x, y) = λ̂1(x, y)γ (7)

to represent image boundaries, again performing error-diffusion
on s(x, y).

The magnitude of the second order derivatives increases near
image edges, so the error-diffusion algorithm will favour dense
sampling at these regions. However, samples will now appear
more scattered at both sides of an edge, making the triangulation
more complex. At smooth areas, sampling is sparse, but since
the Hessian is more sensitive to noise a grid-like sampling can
occur (see Fig. 3 (f)). Compared to the gradient-based sampling,
the number of detected features is often lower (see Section 5).

4.3 Examples – Discussion
A visual example of the sampling methods is shown in Fig. 3.

Figures 3 (b), (e) depict the normalized gradient strength Ĝ and
the resulting gradient-based sampling. Notice the sparsity of the
samples in smooth areas and the density in structured ones. Fig-
ures 3 (c), (f) depict the Hessian response λ̂1 and the resulting
sampling. Few weak edges are lost within the background noise
in this case. For all examples we set γ = 1.

Figure 4 shows an example on a detail of an image along with
different sampling methods and the resulting triangulations. The
uniformly sampled edges are sparse and well distributed along
the edges, but lose details at the corners and highly curved edge
parts. On the other hand, the dithering-based methods are denser,
but preserve the underlying structure better. In the Hessian-based
approach, points are located around edges that—depending on the
application—may prove useful at better reconstructing the under-
lying image, using only information from the samples. On the
other hand, for the gradient-based approach, points are sampled
on strong gradients, corresponding to object boundaries. The
gradient-based sampling is expected to fit better with WαSH,
given that WαSH is biased towards blob-like regions surrounded
by object boundaries.

Examples of the features detected using either the baseline
sampling of WαSH or the proposed sampling methods are de-
picted in Figs. 5, 6. In each example, the number of detected fea-
tures for each method is approximately the same (around 350 for
Fig. 5 and 50 for Fig. 6). In Fig. 5 we present the matched features
between two images of the graffiti dataset of Ref. [11], using SIFT
descriptors. Using the gradient-based sampling method, more de-
tailed regions of the image are captured and matched, while us-
ing the Hessian-based sampling results in more matches between
bigger blobs. In Fig. 6, the input image comes from the PASCAL
VOC 2007 test set [4], a dataset heavily used for evaluating object
recognition algorithms. Again the dithering-based variants cap-
ture finer details of the image that can boost the performance in
recognition tasks (see the ceiling lamp and the chairs).

5. Experiments

We evaluate the proposed sampling methods and compare to
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Fig. 4 Example of the different sampling methods and the corresponding triangulations. (a) Input image,
a detail of the first image of the boat sequence of Ref. [11] (see Section 5.2.1). (b) Binary edge
map and (e) uniform sampling on (b). (c) Normalized gradient strength and (f) error-diffusion on
(c). (d) Hessian response and (g) error-diffusion on (d). (b, c, d) are shown in negative for better
viewing and printing.

the state-of-the-art using two different experimental setups. The
first is the matching experiment proposed by Mikolajczyk et
al. [11] on the corresponding well-known dataset. We measure
the repeatability and matching score of WαSH when using the
proposed sampling methods, and also compare to other state-of-
the-art detectors.

The second experimental setup involves a large scale image re-
trieval application on the Oxford 5K [15] and Paris [16] datasets.
Both datasets consist of images of buildings, and diverse urban
images as distractors. The performance is measured by mean

average precision (mAP). For each proposed variant of WαSH
we adapt the feature selection threshold to extract approximately
7.5 × 106 features for all images of the Oxford dataset, the same
number as baseline WαSH [18]. For all different detectors we
extract 128-dimensional SIFT descriptors and create visual vo-
cabularies, using approximate k-means. We use the simple bag-
of-words (BoW) representation, as well as a spatial re-ranking of
the results, using fast spatial matching (FastSM) [15].

Initially, we perform an extensive evaluation of the parame-
ters of the proposed sampling methods. We first investigate the
impact of non-linearity γ to (a) the number of samples, (b) the
time needed for WαSH algorithm to extract features and (c) the
performance of the image retrieval experimen, using the Oxford

dataset. Given an optimal value for γ, we also evaluate the ef-
fect of threshold θ used in the error diffusion step of the proposed
sampling methods. To compare with the edge sampling used in
WαSH, we also evaluate the performance when using different
sampling steps d. Finally, in an attempt to speed up the algo-
rithm, we examine the use of unweighted samples for WαSH.

After determining the optimal values for the parameters of the
proposed methods, we compare to the state-of-the-art feature de-
tectors using both experimental setups. For the image retrieval
experiment we use both Oxford and Paris datasets. We use the
Oxford dataset to tune all parameters of the sampling methods.
Keeping the parameters and visual vocabularies fixed, we com-
pare to the state-of-the-art on the Paris dataset.

5.1 Parameter Evaluation
In order to investigate the impact of different parameters of the

proposed sampling methods described in Section 3.2, we evalu-
ate the performance of WαSH on the large scale image retrieval
experiment, using the Oxford dataset. In this setup we create vo-
cabularies of 200K visual words and represent images with the
BoW model.

Non-linearity γ in Eqs. (6), (7) affects the behavior of func-
tion s(x, y). For γ > 1, low values of s(x, y) decrease further,
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Fig. 5 Matched features on the graffiti dataset using: (a) baseline WαSH with uniform edge sampling,
(b) the gradient-based sampling and (c) the Hessian-based sampling.

Fig. 6 Example of local features detection. (a) Input image and (b) baseline WαSH results using uni-
form sampling. (c) Results using the gradient-based sampling and (d) using the Hessian-based
sampling.
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Fig. 7 Parameter evaluation of the different sampling methods. For the proposed methods, we evaluate
the impact of γ (first row) and θ (second row), while for edge sampling the sampling step d (third
row). In the last row we compare the performance and time complexity of the different sampling
methods, based on the number of sample points.

since Ĝ(x, y) and λ̂1(x, y) are normalized in [0, 1]. This makes
s(x, y) more selective and less smooth, looking rather like a bi-
nary image map. Less points are sampled for a given threshold,
concentrated near image edges. On the other hand, low values of
s(x, y) increase for γ < 1; s(x, y) is smoother and more points are

sampled over the entire image plane.
For different values of γ ∈ [0.5, 2.0], we examine the average

number of sample points extracted from the images of the dataset
(see Fig. 7 (a)), as well as the time taken by WαSH to extract lo-
cal features (see Fig. 7 (b)). We also perform an image retrieval
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Fig. 8 Examples of samplings using the proposed methods for different threshold values. For uniform
edge sampling we adjust the sampling step d.

experiment for each value of γ, in order to measure the influence
on the performance of WαSH (see Fig. 7 (c)).

The impact of γ to the number of samples, as well as the com-
putation time of WαSH, is significant, although sampling time is
not severely affected itself. Low values lead to sampling a large
number of points and creating more complex representations (tri-
angulation and α-shapes).

It turns out that the performance of WαSH as measured by
mAP in the image retrieval experiment with the Oxford dataset
is maximised for γ = 1. This is the linear case, where the sparsity
of the representation and the complexity of the detector are bal-
anced. The results of the gradient-based and the Hessian-based
sampling schemes agree in this respect. For the following ex-
periments we set γ = 1 for both. However, we keep the non-
linear term since it may be useful in boosting performance on
other datasets, or in sampling for applications other than WαSH.

Threshold θ of the dithering algorithm directly controls the
number of samples extracted, making sampling sparser as θ in-
creases (see Fig. 7 (d)). The sample density significantly affects
the feature detection time (see Fig. 7 (e)).

For the Hessian-based sampling, performance drops as sample
density decreases (see Fig. 7 (f)). We select θ = 0.5 in order to

maintain the high performance, despite the computational cost.
For the gradient-based method performance is not highly affected
until θ = 5, having a maximum for θ = 2, which we select for the
rest of the experiments.

Figure 8 shows different samplings in a detail of an image
of Oxford 5K dataset. For all methods, sampling density is de-
creased from left to right. Using gradient-based sampling, struc-
tures depicted in the image remain prominent even for sparse
samplings.

Comparison to edge sampling. In order to examine the im-
pact of the number of samples, we compare the proposed sam-
pling methods to the original uniform edge sampling used in
WαSH. For the latter, we let the sampling step vary in the in-
terval [1, 17].

The number of samples decreases exponentially with the sam-
pling step d (see Fig. 7 (g)), which affects the feature detec-
tion time accordingly, though not the sampling time itself (see
Fig. 7 (h)). Performance of WαSH is quite stable until d = 11
and drops after that (see Fig. 7 (i)). In order to obtain high perfor-
mance in a reasonable time, we select d = 11 for the remaining
experiments.

In order to compare all sampling methods, we examine how the
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Table 1 Results of the image retrieval experiment on the Oxford dataset, using 3 different vocabularies,
the Bag-of-Words model and spatial reranking of the results, measuring mean Average Precision.

detector
features detection Bag-of-Words (mAP) ReRanking (mAP)
(×106) time (s) 50K 100K 200K 50K 100K 200K

HessAff 29.02 6.54 0.483 0.539 0.573 0.518 0.577 0.607
MSER 13.33 0.40 0.487 0.534 0.565 0.519 0.569 0.595
SIFT 11.13 5.24 0.422 0.465 0.495 0.441 0.486 0.517
SURF 6.84 0.43 0.465 0.526 0.574 0.509 0.573 0.603

weighted
WαSH, edge 7.66 3.14 0.542 0.583 0.591 0.530 0.573 0.590
WαSH, grad 7.59 3.07 0.532 0.575 0.605 0.543 0.581 0.599
WαSH, Hess 7.30 15.14 0.507 0.559 0.582 0.515 0.555 0.570

unweighted
WαSH, edge 7.41 3.04 0.507 0.547 0.583 0.507 0.552 0.581
WαSH, grad 7.42 2.91 0.537 0.569 0.598 0.539 0.565 0.591
WαSH, Hess 7.30 14.14 0.506 0.545 0.569 0.499 0.535 0.564

Fig. 9 Comparison of our proposed sampling methods to baseline WαSH and the state-of-the-art in se-
quences boat, wall and graffiti. #features: number of features detected per image. Hess: Hessian-
based dithering; grad: gradient-based dithering.

performance and detection time of WαSH are affected by chang-
ing the number of sample points (see Fig. 7 (j), (k)). We also
examine the performance vs. feature detection time in Fig. 7 (l).
Gradient-based sampling outperforms the other two methods,
while keeping the computational cost low. On the other hand,
Hessian-based sampling is inferior and significantly slower.

Sample weights. Table 1 shows retrieval results for different
sampling methods and weighted vs. unweighted samples. The
cost of WαSH is higher when using weighted samples, as more

computations are required to constructing both the regular trian-
gulation and the α-shapes. However, the increase is not higher
than 5%. On the other hand, the additional information of the
weights yields a performance gain of up to 2% for dithering-based
sampling and up to 4% for edge-based uniform sampling.

5.2 Comparison to the State-of-the-art
In this section, we evaluate the performance of the proposed

detectors against the state-of-the-art in both experimental setups.
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Fig. 10 Comparison of our proposed sampling methods to baseline WαSH and the state-of-the-art in
sequences leuven, bikes and trees, together with the averaged values over the dataset.

5.2.1 Repeatability and Matching Score
We evaluate the performance on the matching experiment us-

ing the proposed sampling methods on WαSH. We also compare
to the state-of-the-art detectors, Hessian-Affine, MSER, SIFT and
SURF, for which we use the executables provided by the corre-
sponding authors and default parameters, apart from SIFT where
we use the implementation provided by VLFeat [20]. The image
sets used, evaluate the impact of changes in viewpoint, rotation,
zoom, blur and illumination. For the matching score we use 128-
dimensional SIFT descriptors for all detectors, apart from SURF,
which performs best using the corresponding descriptor.

The results of the evaluation are depicted in Figs. 9, 10. The
last row of Fig. 10 shows the average scores for the 6 datasets.
Along with the repeatability and matching score, we also provide
the number of features detected. Overall, the gradient-based sam-
pling performs best, followed by the Hessian-based one.
5.2.2 Image Retrieval

In this experiment, we compare the proposed variants of WαSH
to the state-of-the-art, on the image retrieval application using
the Oxford 5K and Paris datasets. Similarly to the matching ex-
periment, we compare against Hessian-affine, MSER, SIFT and
SURF, using the corresponding executables with default parame-
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Table 2 Results of the image retrieval experiment, on the Paris dataset. Performance is evaluated by
mean Average Precision.

detector
features Bag-of-Words (mAP) ReRanking (mAP)
(×106) 50K 100K 200K 50K 100K 200K

HessAff 36.14 0.467 0.491 0.507 0.479 0.500 0.517
MSER 17.33 0.465 0.485 0.497 0.480 0.499 0.503
SIFT 25.54 0.476 0.492 0.492 0.457 0.457 0.476
SURF 8.56 0.458 0.479 0.487 0.471 0.486 0.493

WαSH, edge 9.01 0.454 0.459 0.457 0.449 0.455 0.455
WαSH, grad 9.35 0.497 0.509 0.511 0.498 0.506 0.510
WαSH, Hess 9.32 0.477 0.474 0.478 0.468 0.469 0.476

ters and SIFT descriptors for all detectors apart from SURF.
Similarly to the parameter tuning experiments, for the Oxford

dataset we adapt the selection thresholds for the different versions
proposed, in order to extract approximately the same number of
features as baseline WαSH. For all detectors we create 3 differ-
ent vocabularies of size 50K, 100K and 200K visual words. We
compare performance on both the bag-of-words baseline and the
spatial reranking of the results. The results are shown in Table 1.

The number of features extracted by each detector is critical for
the large scale retrieval applications, affecting the indexing time
and memory needed to store the inverted files, while using a lower
number of features typically drops performance. SURF extracted
the least number of features, followed by the baseline WαSH and
our variants. Despite the low number of features, SURF and base-
line WαSH perform comparably to Hessian-affine. Increasing the
size of the vocabulary boosted the performance of all detectors.
The gradient-based variant we propose outperformed all other de-
tectors when using the spatial verification step, a result that ver-
ifies the previous findings. Without the spatial verification step
performance is comparable with the edge-based WαSH.

Finally, we compare the same detectors using the Paris dataset.
All detector parameters as well as the feature selection thresholds
are kept fixed to the values used for the Oxford dataset. Visual
words are extracted using the vocabularies created for the Oxford
dataset. We only evaluate WαSH using weighted samples, as it
outperformed the unweighted case in the parameter evaluation.
The results are shown in Table 2 and confirm the previous find-
ings. SURF features were the least for the whole dataset, with the
number of WαSH features being very close. Using the Hessian-
based sampling outperformed the uniform sampling, while the
gradient-based method performed best, exceeding the state-of-
the-art.

6. Conclusions

In this paper we extend the recently introduced WαSH detector
by proposing different image sampling methods. Image sampling
is the first step of the algorithm and changes the qualities of the
detected features, together with the overall performance of the
detector. We propose two different image sampling methods that
build on ideas from image halftoning. In that direction, we sam-
ple points based on error diffusion of smooth image functions. We
provide a thorough parameter evaluation for the proposed meth-
ods, and compare to state-of-the-art feature detectors in a match-
ing and an image retrieval experiment.

The proposed sampling methods, combined with the α-shapes
grouping, result in a more accurate representation of the image

structures. The detected features capture finer image structures,
while keeping the high image coverage of the baseline method.
Using the gradient-based scheme, samples are extracted on strong
image gradients that capture object boundaries, boosting perfor-
mance without increasing the computational cost. The method
based on Hessian response provides competitive performance, but
is computationally more expensive.
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