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a b s t r a c t

Local image features are routinely used in state-of-the-art methods to solve many computer vision
problems like image retrieval, classification, or 3D registration. As the applications become more
complex, the research for better visual features is still active. In this paper we present a feature detector
that exploits the inherent geometry of sampled image edges using α-shapes. We propose a novel edge
sampling scheme that exploits local shape and investigate different triangulations of sampled points. We
also introduce a novel approach to represent the anisotropy in a triangulation along with different
feature selection methods. Our detector provides a small number of distinctive features that is ideal for
large scale applications, while achieving competitive performance in a series of matching and retrieval
experiments.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Local features provide a balance between the sparseness of
global representations and the density of features extracted on a
fixed grid of locations. By ignoring non-salient image parts and
focusing on distinctive regions they provide repeatability, discri-
minative power, computational efficiency and compactness. These
properties boost computer vision applications including large-
scale recognition, retrieval or 3D reconstruction.

State-of-the-art detectors like Hessian-Affine [1], MSER [2] and
SURF [3] have been used in many computer vision applications
and are quite mature and popular. However, the speed, stability
and image coverage provided by those detectors are not ideal. The
speed and image coverage of the Hessian-Affine detector are
limited, while multiple detections often appear on nearby loca-
tions at different scales. The MSER detector is fast, but often
extracts sparse regular regions that are not representative enough.
SURF is also fast, but detections are often not stable enough.
Recent publications compare state-of-the-art detectors not only by
common statistics (e.g. repeatability/matching score), but also in
diverse applications like image classification [4] or retrieval [5–7].

In an attempt to capture the dominant structural features in an
image, we propose a detector based on a local shape representation
rather than first- or second-order image derivatives. In this direction
we employ α-shapes, a well known method in computational geo-
metry introduced by Edelsbrunner et al. [8]. An α-shape is a subset of a
triangulation of a point set in a Euclidean space, where scale-like

parameter αZ0 determines the faces of the triangulation (points,
edges or triangles) that are included in the particular subset (see
Section 3.3). Given a set of points, α-shapes involve a grouping process
guided by α, and capture the shape of structures generated by this
process. They can be thought of as a generalization of the convex hull,
being parameterized by α. Starting from the point set for α¼ 0, the
subset of the triangulation expands to the convex hull at the other
extreme α¼1 (see Fig. 1).

The set of all α-shapes (for all possible values of α) is a filtration over
a triangulation of the point set, i.e. a partial ordering of simplices
(edges and triangles in two dimensions) [9]. Delaunay triangulation is
the most common choice, but since it is only based on point
coordinates, it may be a poor representation depending on the
application, e.g. a sampled function over an image may be more
informative. Weighted α-shapes [10] on the other hand are based on a
regular triangulation and provide a more flexible representation, by
associating an additional scalar parameter per point. Teichmann and
Capps introduce the anisotropic α-shapes [11], using an even richer
representation per point. Anisotropic α-shapes are a generalization of
weighted α-shapes, defined on non-Euclidean metric spaces.

In [12] we introduceWαSH, a detector based onweighted α-shapes
that groups edge samples by exploiting location, gradient strength and
local shape. To capture local shape, we devise an efficient way to
overcome the main weakness of α-shapes, namely the automatic
selection of α value that best represents the underlying point set. We
also show how noisy points or groupings can be automatically filtered
out by a shape-based stability measure. WαSH performs quite well and
is controlled by a single and intuitive parameter.

In this paper we treat a local feature as a region delineated by a
set of points sampled from its contour, as in WαSH. However,
instead of using a uniform sampling scheme along the edges, we
explore a non-uniform scheme whose sampling density is guided
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by local edge shape. The major steps of the algorithm are
summarized in Fig 2, namely (a) edge extraction, (b) non-
uniform sampling based on local anisotropy, (c) triangulation of
the samples and α-filtration construction, and (d) local feature
extraction based on shape measures. Compared to WαSH, we
improve and extend the method by

� applying non-uniform sampling based on image edges and
local shape;

� introducing anisotropically weighted α-shapes, also adapted to
local shape;

� comparing several triangulations to build the α-shapes; and
� proposing and evaluating different measures to select domi-

nant components.

The remaining of the paper is organized as follows: In Section 2 we
discuss related work, followed by the description of our method. In
Section 3.1 we describe different sampling strategies and in Section 3.2
we provide an overview of the triangulations used. In Section 3.3 we
introduce anisotropically weighted α-shapes. In Section 4.1 we
describe the component trees used to track evolving shapes and in
Section 4.2 we propose different measures to select dominant
components as features, followed by an overview of our algorithm
in Section 4.3. In Section 4.4 we show visual examples and discuss the
qualities of our detector. The performance of our detector is experi-
mentally evaluated and compared to the state-of-the-art in Section 5,
followed by conclusions and discussion in Section 6.

2. Related work

Early region detectors were based on extending ideas found in
corner detectors like Beaudet [13] and Harris and Stevens [14],
which were based on the Hessian and the second moment matrix
respectively. In his inspiring work, Lindeberg et al. [15] studied scale-
invariant detectors and established the theoretical foundations for
making them affine-invariant [16]. Based on these foundations,
Lowe [17] introduced the scale invariant feature transform (SIFT), still
one of the most popular detectors, which achieves invariance to
scale and rotation based on the Difference-of-Gaussian (DoG)
operator. Mikolajczyk et al. [1] extended the Harris–Laplace and
Hessian–Laplace operators towards affine invariance using the
Laplacian-of-Gaussian (LoG) operator in affine scale space.

More recently, Alcantarilla et al. [7] introduce the KAZE
operator, which detects maxima of the Hessian in a nonlinear
scale space built by diffusion filtering. Although the statistics are
comparable to the state-of-the-art, the creation of the nonlinear
scale-space is computationally expensive and the number of
features is high. The fast variant of KAZE in [18] is still slower
than the state-of-the-art, while not providing better performance.

The maximally stable extremal regions (MSER) of Matas et al. [2],
one of the best performing region detectors in [19], detect regions of
stable intensity and therefore avoid common problems of gradient-
based methods like localization accuracy and noise. The idea is to
compute a watershed-like segmentation and to select those regions
that remain stable over a predefined set of thresholds. MSER are

Fig. 1. Example of the α-filtration. Different instances of the filtration for different values of α: starting from the point set for α¼ 0 (top left) and adding triangles and edges,
we end up to the convex hull for α¼1 (bottom right). Observe how the cavities of the α-shapes correspond to cavities of the objects and blob-like regions.

Fig. 2. Overview of our detector. (a) Edges of the input image are (b) non-uniformly sampled. (c) We create the α-filtration of a triangulation over the samples and track the
evolution of connected components. (d) We extract features by selecting stable and prominent components.
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widely adopted due to their high performance, especially on images
with planar structures. Most importantly, MSER are arbitrarily shaped
areas with explicitly represented boundaries, giving rise to more
descriptor alternatives than e.g. elliptical regions.

The recent trend of achieving a good balance between effi-
ciency and performance has led to a group of computationally
efficient detectors like SURF [3], an approximate version of SIFT, as
well as FAST along with its variants (FAST-9, FAST-ER) [20],
introducing fast corner detection based on an intensity compar-
ison test in a small neighborhood. BRISK [21] and ORB [22]
detectors build on FAST and provide real-time detection and
description of local features with matching performance being
comparable to SIFT and SURF. Most of these detectors are invariant
to scale and rotation, but not affine invariant.

Although image edges are naturally related to object bound-
aries and therefore to distinct regions, they have attracted less
attention, mainly due to instability and computational cost. One of
the earliest attempts, edge-based region detector (EBR) [23], starts
from corner points and expands along nearby edges by measuring
photometric quantities. It is suitable for scenes containing inter-
secting edges (e.g. man-made structures like buildings), but not for
generic matching, as shown in [19]. Mikolajczyk et al. [24] propose
an edge-based detector that combines Canny edge detection with
automatic scale selection and use it for object recognition. For
efficiency, they start from densely sampled edge points. Starting
also from Canny edges, Rapantzikos et al. [25] compute the binary
distance transform and detect regions by a grouping process that
is initialized by local maxima of the distance transform and guided
by the gradient strength of nearby edges.

Several recent methods are indirectly related to edges by exploit-
ing gradient strength without thresholding. Zitnick et al. [5] apply an
oriented filter bank to the input image and detect edge foci (EF), i.e.
points that are roughly equidistant from edges with orientations
perpendicular to the points. This takes region shape into account, but
is computationally expensive. Avrithis and Rapantzikos [6] compute
the weighted medial axis transform directly from image gradient,
partition it in a way similar to topological watershed, and hierarchi-
cally detect medial features (MFD) taking both contrast and shape
into account. Although those methods exploit richer image informa-
tion, the gradient strength is often quite sensitive to lighting and
scale variations. Certain of the above edge-based detectors like [25,6]
yield arbitrarily shaped regions like MSER.

Computational geometry is rich in applications based on α-shapes,
as opposed to computer vision. One of the earliest applications has
been to surface reconstruction from an unorganized set of points
[8,10]. α-shapes have also been used for studying pockets, defined as
regions with limited accessibility from the outside, measuring the
surface area and volume of macromolecules, and the packing density

of proteins [10]. Meine et al. [26] use them for reconstructing
boundaries of noisy edge maps. Starting from binary edge samples
they construct the Delaunay triangulation and select a subset of its
edges to complete the object boundaries. Their main criteria are
triangle size and average color.

Teichmann and Capps [11] introduce the anisotropic α-shapes in an
attempt to overcome limitations mainly related to discontinuities of
the shape, as well as neighboring surfaces that tend to merge. They do
not explicitly create an anisotropic triangulation; they rather use
Delaunay triangulation and then anisotropically reshape the space
covered by each triangle and flip edges when necessary. On the other
hand, Labelle and Shewchuk [27] create an anisotropic triangulation
via an anisotropic Voronoi diagram that is always well defined, i.e.
there are no orphan regions that do not contain their generating point.

Related is the work of Cazals et al. [28], introducing the
conformal α-shapes and the corresponding filtration. Conformal
α-shapes are based on a global scale parameter α̂ and two local
ones, adjusted to some neighborhood of each point. This repre-
sentation is applied to surface reconstruction of non-uniformly
sampled surfaces. Along the same direction, Zomorodian et al. [9]
predict protein structure by employing α-shapes to detect inter-
acting atoms in a protein molecule.

Building on edge-based methods, we start from sampled edges
like [24,23]. We then create a 2D triangulation of the points and
construct the α-filtration like [8,29,11,27], experimenting with
different triangulations. We employ the component tree, which
is a hierarchical representation of nested sets, similar to MSER [2].
However, we apply this representation on the α-filtration rather
than the level sets of image intensity. To select image features we
use shape-based criteria, a choice that bears similarities to [6],
although our geometrical representation is entirely different.

Our method is able to detect regions that are adjacent to both
brighter and darker ones, as opposed to MSER that can only detect
bright or dark extremal regions. Furthermore, the proposed
detector can handle regions determined by cavities of the bound-
ary shape, bearing similarities to the pockets [10], and regions that
are not enclosed by complete boundaries. Example detections are
shown in Fig. 3.

3. Building α-shapes from images

3.1. Image sampling

In this section we discuss our sampling methods, following our
visual representation and edge detection. We introduce two alter-
native sampling methods. By uniform sampling, points are sampled
uniformly along edges with a fixed sampling interval s. On the other

Fig. 3. Features extracted by our detector, using anisotropically weighted α-shapes and non-uniform sampling.
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hand, non-uniform sampling is controlled by a measure of local
anisotropy. Samples typically do not correspond to key-points like
maxima of curvature. Instead, the goal is to capture the shape of the
detected boundaries while keeping samples as sparse as possible.

3.1.1. Image representation
We assume that a grayscale input image is given as a function f

on the plane and that g is its gradient magnitude J∇f J normalized
in ½0;1�. We apply a binary edge detector on g and sample the
resulting edge map E to obtain a discrete set of edge points PDR2.
The domain and range of functions f, g are both bounded and
discrete, and P is finite.

The binary edge map is obtained by the Canny edge detector
[30]. After the non-maxima suppression stage of the algorithm, we
follow all candidate edge pixels and apply the hysteresis thresh-
olds. We do not rely on a clear edge map and therefore the high
and low hysteresis thresholds of the detector are kept fixed. We
start from a random image pixel that is an edge candidate
(maximum from the previous stage) and sample points along the
edge based on an 8-connected neighborhood. The first point
visited in an edge is automatically considered a sample.

3.1.2. Uniform sampling
Using a fixed sampling interval s, we count the steps taken

from the initial sample while moving along an edge using an 8-
connected neighborhood. When the number of steps reaches s, we
sample a new point at the current location and reset the counter.
This implies that the Euclidean distance between two adjacent
samples will be greater than or equal to s.

For each sample point pAP, we define its weight wðpÞZ0 to be
proportional to its gradient strength gðpÞ

wðpÞ ¼ gðpÞ s
2

� �2
; ð1Þ

with gðpÞA ½0;1�. The reason for this choice of weight w will be
made clear at the end of Section 3.3.1.

3.1.3. Non-uniform sampling
To adapt the sampling interval to local edge shape, we capture

the local affine shape at the current sample, measure a number of
properties and determine the sampling interval for the following
sample.

The local affine shape adaptation scheme we use is based on
Lindeberg's shape adaptation [31,32]. Given a sample point p, we

follow an iterative process whereby at each iteration iwemeasure the
local shape UðiÞ of a shape-adapted neighborhood p of p, where UðiÞ is
modeled by a 2� 2 transformation matrix. We initialize local shape to
isotropic of unity scale, i.e. Uð0Þ is the identity matrix I. At iteration i, we
transform neighborhood p to p̂ ¼ UðiÞp, resample image intensity on
p̂, and compute the average second-moment matrix

μ¼
μ11 μ12
μ12 μ22

" #
¼

L2x LxLy

LxLy L2y

2
4

3
5 ð2Þ

over p̂, where Lx and Ly are the first order derivatives. The transformed
neighborhood p̂ is resampled at the same size as the initial neighbor-
hood p, which is fixed (see Section 5.2). In order to prevent overfitting
in case of straight lines in the small neighborhood of p, we set an
upper bound k on the eccentricity of the ellipse associated to μ.
Following [32], we measure the following quantities for μ:

B¼ μ11þμ22 ð3Þ

C ¼ μ11�μ22 ð4Þ

S¼ 2μ12 ð5Þ

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2þS2

q
ð6Þ

Here Q measures the degree of anisotropy, while Q̂ ¼ Q=B is normal-
ized in ½0;1�. The eccentricity of the associated ellipse of μ is then
ð1þQ̂ Þ=ð1�Q̂ Þ. It is thus shown in [32] that the regularized diffusion
matrix

Σ ¼ ðμþϵIÞ�1 ð7Þ
with ϵ¼ Q=ðk�1Þ, has an associated ellipse of the same orientation as
that of μ, but not too elongated—its eccentricity is upper bounded by k.

We compute a square root of Σ and normalize its eigenvalues
λmin, λmax, so that

λmin λmax ¼ 1: ð8Þ
Finally, we concatenate transformation matrices by applying Σ�1=2

to UðiÞ so that

Uðiþ1Þ ¼ Σ�1=2UðiÞ: ð9Þ
The ratio of the eigenvalues is considered for convergence. If it is
close to 1, we assume to have reached convergence, at which point
we measure the final local shape matrix U. Convergence typically
occurs in 3–5 iterations.

Fig. 4. Sample points using variable density sampling. Increasing the upper bound of eccentricity k of the regions results in sparser samplings.
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The largest eigenvalue is used to compute the scale of the
adapted neighborhood p. Since the shape of p is described by UðiÞ,
its scale is the product of the largest eigenvalues over all iterations
up to i. The sampling interval s is controlled by this scale, and is
now dependent on p:

sðpÞ ¼∏
i
λðiÞmax: ð10Þ

This means that the next point after p is sampled after sðpÞ steps
along the edge. Finally, if U is the final local shape matrix
measured at p at termination, metric tensor

Mp ¼UTU ð11Þ
is used to define distances in the neighborhood of p. This tensor is
used by the anisotropically weighted α-shapes in Section 3.3.2.

Fig. 4 illustrates how the proposed non-uniform sampling method
captures local shape changes while minimizing the number of
samples. Where edges tend to straight lines, the sampling is sparse,
yet limited by the upper bound k on eccentricities. Where the
curvature increases, the sampling density increases as well to capture
the local details of the shape. The same figure illustrates the effect of
upper bound k. Small k leads to fine representation, hence increased
complexity; excessively large k not only leads to coarse representation,
but may cause nodes to disappear due to overlapping of ellipses, as
will be explained in Section 3.2.1.

Discussion: In the above non-uniform sampling method, the
sampling interval is affected by neighboring edges but there is no
exact relation between the two in theory. An ϵ-sample of the edges
as defined in [28] provides such theoretical guarantees; however,
this requires constructing the medial axis first, which is not only
harder to compute, but also typically requires some form of
sampling in the first place.

Alternatively, the more common option of adjusting the sampling
interval according to edge curvature is very fast since it effectively
operates in one dimension, but does not take into account neighboring
edges at all. This potentially results in too sparse representations when
two edges are close, and can be detrimental to subsequent triangula-
tion and feature detection. Our semi-local approach can be seen as a
compromise between these two alternatives.

3.2. Triangulations

In the following we define the different triangulations used in
our method, which form the basis for the computation of α-
shapes.

3.2.1. Regular triangulation
Regular triangulations are in fact a family of triangulations, para-

metrized by a height function. A triangulation of a point set P in Rn is
called regular if it can be obtained by projecting the lower envelop of a
lifting of P to Rnþ1 [33]. A 2D set of points is lifted to 3D by assigning a
height value to each point p, using height function ω : R2-R. A lifted
point is a 3D point located at ðpx; py;ωðpÞÞ. Next, the lower envelop of
the lifted points in R3 is computed, which is the lower part of the 3D
convex hull of the points. By projecting this lower envelop to R2, a
tessellation of the 2D convex hull of the points is produced. This
tessellation is a regular triangulation.

In this work, we use the additively weighted height function

ωðpÞ ¼ JpJ2�wðpÞ; ð12Þ
with wðpÞ as defined in (1). A point pAP along with its weightwðpÞ
makes up a pair ðp;wðpÞÞ that is called a weighted point. A weighted
point can be seen as a circle centered at p, with radius

ffiffiffiffiffiffiffiffiffiffi
wðpÞ

p
. We

will say that this is the circle of point p. We will also use the same
symbol p for both a circle and a weighted point, and will
disambiguate as necessary.

The weights w have to be carefully selected because they can
make a point disappear. This occurs in case the circle of a point p is
contained in the interior of the circle of another point q. In 3D
space, the lifted point of p does not belong to the lower hull in
this case.

The regular triangulation can be computed incrementally, by
adding the points one by one. Edelsbrunner and Shah [34] have
proved that such a construction is possible and its time complexity
is Oðn log nþnÞ in the 2D case, where n¼ jP j .

3.2.2. Delaunay triangulation
The Delaunay triangulation is the most commonly used trian-

gulation. It belongs to the family of regular triangulations, and
corresponds to height function ωðpÞ ¼ JpJ2. This is equivalent to
zero weight, wðpÞ ¼ 0 for all pAP in our regular triangulation with
additive weights (12). Since the weight function is directly
computed from the coordinates of the sample points in Rn, no
additional input is required.

An incremental edge-flipping algorithm is used to construct the
Delaunay triangulation, with time complexity Oðn log nÞ. The
algorithm starts from a set of three points determining a single
triangle and adds one point at a time. The new triangles formed at
each iteration are checked against the Delaunay properties and if
these are not satisfied, then the common edge of two such
adjacent triangles is flipped.

3.2.3. Constrained Delaunay triangulation
The constrained Delaunay triangulation is only partially Delau-

nay. The properties of the Delaunay or in general the regular
triangulations are not necessarily satisfied here. As input, apart
from the spatial coordinates of the sample points in Rn, a set of
constraints is given, indicating the presence of particular edges.
Each constraint cij is represented by an edge of the form cij ¼ vi; vj

� �
,

indicating that vertices vi and vj should be connected in the
triangulation. The constraints override the Delaunay properties.

In our case, the constraints are defined as consecutive line
segments on image edges. In particular, while following an image
edge to sample points (see Section 3.1), we add as a constraint
each pair of consecutive sampled points. This ensures that the
triangulation edges do not cross the image edges, creating a
representation of the image that respects object boundaries.

A constrained triangulation is typically constructed by a variant
of the previous algorithm for Delaunay. In this case, constraints are
always added as edges; however, if two such edges intersect, they
are first split at their intersection point. This may happen in the case
of junctions in the image edges. On the other hand, a sequence of
flips is performed to accommodate for non-constrained edges that
intersect with constrained ones. An example of a constrained
Delaunay triangulation is shown in Fig. 5.

3.3. α-shapes

The construction of α-shapes is based on the Delaunay triangu-
lation. Weighted α-shapes are based on a regular triangulation with
an additively weighted height function (12). Anisotropically
weighted α-shapes further use metric tensor (11) obtained by
non-uniform sampling.

3.3.1. Weighted α-shapes
The discussion given here mostly follows [29], but simplifies for

the case of 2 dimensions. We begin with a definition of a regular
triangulation that is alternative to that of Section 3.2.1, because we
need a number of additional quantities for the definition of
weighted α-shapes. Recall that we use the same symbol p to refer
to either a circle or weighted point ðp;wðpÞÞ. Each triangle, line
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segment or point in a triangulation is a 2-, 1-, or 0-simplex
respectively, and we will refer to it as simplex in general.

Given two weighted points p; qAP, we define

πðp; qÞ ¼ Jp�qJ2�wðpÞ�wðqÞ: ð13Þ
Circles p, q intersect at right angles iff πðp; qÞ ¼ 0; we then say that
p, q are orthogonal. Given a point x of zero weight, πðp; xÞ is called
the power of point x with respect to circle p [35]. Given a subset

TDP of three non-collinear points, there is a unique circle that is
orthogonal to all circles of T. Its center has equal powers with
respect to the circles of T, and is called their radical center [35]. We
denote the corresponding weighted point by cT . Now, consider the
2-simplex (triangle) σT ¼ convðTÞ, the convex hull of T. This simplex
is called regular if

πðp; cT Þ ¼ 0 for all pAT ; ð14Þ

πðp; cT Þ40 for all pAP⧹T ; ð15Þ

where (14) is equivalent to cT being orthogonal to all points of T.
The collection R of all regular triangles over P is called the regular
triangulation of P. This definition is equivalent to that of Section
3.2.1. Observe that, if wðpÞ ¼ 0 for all pAT , weighted point cT
reduces to the circumcircle of triangle σT , while power function
(13) reduces to the Euclidean distance. In this unweighted case,
the triangulation reduces to Delaunay.

The collection K of all 2-simplices (triangles) and their faces
(line segments and points) in R is a simplicial complex. If we define
a size ρT Z0 for each simplex σT AK, then the weighted α-complex
of P is the subset of K containing all simplices up to a given size
αZ0:

Kα ¼ fσT AK : ρT oαg: ð16Þ

Finally, the weighted α-shape of P [10] is the union of all such
simplices:

Wα ¼ ⋃
σAKα

σ: ð17Þ

Wα is a polytope that is neither convex nor connected, in general.
In the particular case of α¼ þ1,

Wþ1 ¼ ⋃
σAR

σ ¼ convðPÞ; ð18Þ

the convex hull of P. The difference between the α-shape and the
α-complex is analogous to the difference between the convex hull
and the triangulation of a point set.

It remains to define the size ρT of a point, line segment or
triangle σT , when T contains 1, 2 or 3 points of P, respectively. The
size of a point pAP is always zero. For line segments and triangles,
we use again orthogonal circles, as illustrated in Figs. 6 and 7.

Given a set of two points T ¼ fp; qgDP, there is a pencil (infinite
collection) of coaxial circles that are orthogonal to circles p, q; their
centers lie on a line perpendicular to the line segment σT ¼ σfp;qg, that
is called the radical axis of p, q [35]. However, there is a unique circle cT
of minimum radius over this pencil, subject to (15). The size ρT of line
segment σT is the squared radius of circle cT . In the absence of other

Fig. 5. (a) Delaunay triangulation. (b) Constrained Delaunay triangulation, obtained from (a). Constraints are shown as thick black edges; constraints causing flips as thick
white edges. Edge pixels are shown in green. Observe that constraints enforce triangulation edges to follow image edges, hence the triangulation represents the underlying
structures more accurately. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper)

Fig. 6. Size of a 2-point set fp; qg, as the squared radius of a circle (weighted point)
cT that is orthogonal to circles p; q, on a (a) regular and a (b) Delaunay triangulation.
(c) On anisotropically weighted α-shapes, the space is transformed to “isotropic”
before measuring the size.

Fig. 7. Size of a 3-point set fp; q; rg, as the squared radius of a circle cT that is
orthogonal to p; q; r, on a (a) regular and a (b) Delaunay triangulation. (c) On
anisotropically weighted α-shapes, the space is transformed to “isotropic” before
measuring the size.
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points, the center of cT lies on σT , as shown in Fig. 6a. In the Delaunay
case (zero weights), σT is a diameter of cT (see Fig. 6b).

Similarly, given a set of three non-collinear points T ¼ fp; q; rgDP,
there is a unique circle cT that is orthogonal to p, q, r, as noted above.
Again, the size ρT of triangle σT is the squared radius of circle cT , as
shown in Fig. 7a. In the Delaunay case, cT is the circumscribed circle
of triangle σT (see Fig. 7b). In general, since cT is also orthogonal to p,
q alone, and since the size of edge σfp;qg is the smallest such circle, a
triangle is by definition not smaller than any of its edges. This is
evident by comparing Fig. 6a and b to Fig. 7a and b respectively.

From the definition of weight function (1) it follows that the
weight wðpÞ of any point p takes values in ½0; ðs=2Þ2�, where s is the
sampling interval. For any two consecutive points T ¼ fp; qg
sampled along an image edge, this ensures that the associated
circles shown in Fig. 6a do not intersect, in which case the size of
the edge σT would be zero. This also prevents one circle being
contained in another in general, which would make points
disappear from the triangulation.

The above general definition of the weighted α-shape may apply
to regular, Delaunay, or constrained Delaunay triangulations. For
Delaunay, we simply set all point weights to zero. For constrained
Delaunay, this does not suffice; we also set the size of all constrained
edges to zero. As discussed in Section 4.1, this makes constrained
edges indeed preserve the boundary of adjacent image regions.

3.3.2. Anisotropically weighted α-shapes
Our anisotropically weighted α-shape is based on weighed

samples accompanied by the metric tensor M (11) obtained by
the shape adaptation process of non-uniform sampling, as des-
cribed in Section 3.1.3. This applies even to uniform sampling, by
invoking the shape adaptation process and explicitly computing M
at each sample.

We begin by creating a regular triangulation using weighted
points as described in Section 3.3.1. Given the metric tensor Mp

associated with each point p, we compute an effective metric
tensor MT for each remaining simplex T in the triangulation. In
particular, we define tensor MT of 1- or 2-simplex (edge or
triangle) T as the average of metric tensors of individual points

in T, normalized for unit determinant such that area is preserved.
That is, given points p; q; r with metric tensors Mp;Mq;Mr respec-
tively, we define

MT ¼
MpþMqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðMpþMqÞ
p ð19Þ

for an edge defined by T ¼ fp; qg, and

MT ¼
MpþMqþMrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðMpþMqþMrÞ
p ð20Þ

for a triangle defined by T ¼ fp; q; rg.
Fig. 8 gives an example of applying (19) to the edge between

points p and q for different relative orientations between asso-
ciated ellipses, and the ratio of the resulting edge size to the
corresponding measurement in the isotropic case. If the major
axes of the ellipses are aligned as in Fig. 8a, the edge size decreases
as if p, q are coming closer (θq ¼ 0; π in Fig. 8c). At the other
extreme, if the axes are parallel as in Fig. 8e, the edge size
increases as if p, q are moving apart (θq ¼ π=2 in Fig. 8f). Finally,
if the two major axes are normal as in Fig. 8b and d, the effects of
the two metric tensors cancel and the edge size is equal to that of
the isotropic case (θq ¼ π=2 in Fig. 8c and θq ¼ 0; π in Fig. 8f).

The effect of metric tensor MT can be seen as applying a linear
transformation to the space around simplex T , given by an effective
local shape matrix U, such that MT ¼UTU. This transformation
makes the space “isotropic”, i.e. ellipses reduce to circles in Figs. 6c
and 7c before measuring the simplex size. Equivalently, it gives rise
to local inner product defined by 〈x; y〉T ¼ 〈Ux;Uy〉¼ xTMTy for
x; yAR2, hence to local distance metric dT defined by

dT ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�yÞTMT ðx�yÞ

q
ð21Þ

for x; yAR2. We use dT to measure all distances between two and
three points in an edge or triangle T; these would be identical to the
Euclidean distances measured in the transformed space of Figs. 6c
and 7c, respectively. Given the distances and point weights, we
measure the size of the simplex exactly as in the isotropic case.

Discussion: Our work differs from Teichmann and Capps [11] in
that they only use an orientation per point and transform the

Fig. 8. Measuring the size ρT of a line segment σT between two points p; q in the anisotropic case, for different orientations θp ; θq of associated ellipses, where θp is fixed to
horizontal in upper row (a,b) or vertical in lower row (d,e). In each case, the right column (c,f) shows the ratio of ρT to the same measurement in the isotropic case versus θq .
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space using prefixed scales, whereas we exploit the entire metric
tensors obtained from shape adaptation, corresponding to general
linear transformations. Further, the triangulation in [11] is initi-
alized as Delaunay and subsequently transformed to partially
anisotropic via a sequence of local flips, which is expensive and
not guaranteed to terminate. To overcome this, the authors
propose to only allow each edge to be flipped once, which is not
deterministic since triangulation depends on the visiting order of
simplices. We rather use a regular triangulation with direct
measurements of simplex sizes using the metric tensors; this
gives comparable results to [11] while being much faster.

On the other hand, Labelle and Shewchuk [27] start from an
anisotropic Voronoi diagram using a metric tensor at each point to
define a local distance metric per cell, as in (21). To convert to a
triangulation, the Voronoi diagram is relaxed such that it does not
contain any orphan regions. The time complexity of creating an
anisotropic Voronoi diagram is Oðn2þ ϵÞ, where ϵ is a positive
constant, which is prohibitive.

4. Extracting local features

4.1. Tracking components in the filtration

All simplices of the simplicial complex K are typically ordered
by ascending size to obtain what is called a weighted α-filtration
[10]. In this work, we deviate from this standard setting in two
ways. First, we only consider triangles and their edges (line
segments), discarding points. We thus construct complex

K0 ¼ fσT AK : jT jZ2g: ð22Þ
This choice is justified because edge size helps control connectivity
of triangles, while points do not. Second, contrary to (16), we
consider the upper α-complex

Kα ¼K0⧹Kα ¼ fσT AK0 : ρT Zαg ð23Þ
ordered by descending size. As in [10], we need only consider a
finite set of values for α. In particular, we sort all σT AK0 by
descending size ρT to obtain the sequence ðσ1;…; σnÞ where
n¼ jK0 j . If ρi is the size of σi for i¼ 1;…;n, then ρ1Z…Zρn.
Now, if Ki ¼ fσ1;…; σig, we obtain the upper α-filtration

∅¼ K0D…DKn ¼K0: ð24Þ

Starting from the largest element of size ρ1 and decreasing the
value of α towards ρn, the upper α-complex models the growing
cavities of the original shape. To capture its evolving topology, we
construct a component tree, similar to [36].

To define connectedness on the complex, we specify neighbor-
ing relations as follows: the neighbors of each triangle σT AK0

(with jT j ¼ 3) are its three edges, while the neighbors of each
edge σT (with jT j ¼ 2) are the two adjacent triangles in the
triangulation. We denote the neighborhood of simplex σAK0 by
NðσÞ. According to the descending order, and since an edge in a
regular triangulation is not larger than its two adjacent triangles,
the intuition is that this edge can keep the two triangles dis-
connected until it is processed itself. Eventually, this timing
depends on image gradient and local shape.

Given this neighborhood system, we start off with all simplices
in K0 being individual components, and process them in descend-
ing order of size, joining them with their neighbors that have
already been processed. This process is specified in Algorithm 1.
For each component κT in the component tree, we define a size ρT .
This is the size of the last simplex σT that was added to the
component (smallest one) and changed its area. Alternatively, this
is the first added simplex that caused a merging of two previously
disjoint components.

In Fig. 9 we see an example of the upper α-filtration, along with
the proposed neighborhood definition. For α¼1 we start by the
empty set, and as the value of α decreases, more triangles and
edges are added to the upper α-complex. For α¼ 0 we end up with
the convex hull of the input points. Observe the highlighted (blue)
edges, which are not part of the α-complex at each instance. Using
the proposed neighborhood definition, these edges prevent the
different components from merging. The resulting components
correspond to interpretable parts of the depicted objects.

4.2. Measuring significance

Starting from large values of α and tracking the evolution of the
upper α-complex up to the entire image for α¼ 0, different
connected components are formed. These components typically
lie on image regions with distinctive boundaries. The significance
of a component depends on stability, as measured across the α-
filtration, of the corresponding image region.

Fig. 9. Example of the upper α-filtration. From top left to bottom right α decreases, resulting in different instances of the filtration. Highlighted edges (blue) are not yet
processed, keeping the components disjoint. This is in contrast to Fig. 1, where neighboring triangles always belong to the same component and α is in increasing order. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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In order to measure this significance, we compute a strength for
each component. In particular, consider component κU of size ρU ,
which is a set of simplices (triangles and edges) of size greater
than ρU . When κU is joined via a boundary edge σT of size ρT to
another component (say κU0 ) to create a new component κT , we
compute the strength of κU (as well as κU0 ). This means that the
image region underlying κU is surrounded by image edges and the
length of its widest opening is ffiffiffiffiffi

ρT
p .

We choose to evaluate strength measures requiring minor
computational overhead, focusing on information that is readily
available. We have experimented with different strength measures
that exploit different visual and geometrical properties of image
regions under consideration. The first one is based on the area of a
component compared to its maximum boundary opening:

sðκUÞ ¼
aðκUÞ
ρT

; ð25Þ

where aðκUÞ is the total area of component κU—precisely, the area
of the union of all simplices in κU . Since we are processing
simplices in descending order of size, ρT stands in fact for the
largest opening over the boundary of component κU . It follows that
this strength measure favors large components with small (or no)
openings on their boundary, so it is called closure. Since simplex
size ρ measures squared length, closure is a scale invariant
quantity. In order to select a component as an image feature, we
compare its strength against a threshold τ.

A second computationally inexpensive strength measure is
associated with the lifetime of each component. The lifetime is
measured as the difference between the component size ρU and
the size ρT of the newly added edge, which forms component κT .
This lifetime strength measure is defined as

sðκU Þ ¼ ρU�ρT ; ð26Þ

Fig. 10. Detections on objects with simple texture. The number of features per image for all detectors is limited to around 20. (a) WαSH: 23, (b) Constrained-NU: 20, (c)
Anisotropic-NU: 21, (d) Hessian-Affine: 21, (e) MSER: 22, (f) Edge Foci: 23 features. We use non-uniform sampling (NU) for our detector (constrained and anisotropic).

Fig. 11. Detections on objects with simple texture, using default parameters. (a) WαSH: 85, (b) Constrained-NU: 53, (c) Anisotropic-NU: 94, (d) Hessian-Affine: 808, (e)
MSER: 88, (f) Edge Foci: 284 features.
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and, due to the descending order, is always positive. Again, all
components with lifetime greater than a threshold τ are selected
as features.

A third measure is similar to that used in MSER. The MSER
detector forms components on actual image pixels, where proces-
sing order is determined by intensity level. Its strength measure is
defined as the relative change of the area of a component for a
given change in intensity. In our case, when component κU is
merged with another one and creates component κT , this measure
would be

sðκUÞ ¼
aðκUÞ�aðκT Þ

aðκU Þ
;

which is also positive. However, since changes in component areas
are not as smooth in our case as when working with pixels, this
measure is rather noisy. Hence we propose a strength measure
that combines lifetime as well:

sðκUÞ ¼ ðρU�ρT Þ
aðκU Þ

aðκUÞ�aðκT Þ
: ð27Þ

The form of (27) is inversely proportional to a relative rate of change
in area, so this strength measure is called stability. As in MSER, a
component is stable if its strength is locally maximum over the
filtration. A stable component is selected as feature if this local
maximum exceeds neighboring values by at least a threshold τ.

Finally, we exploit an ellipticity measure to evaluate its natural
connection to the shape of regions we aim to detect. We first
compute the moments up to order 2 (namely m00, m10, m01, m11,
m20 and m02) of all triangles in the triangulation. Moments are
computed analytically using only the coordinates of the three
vertices of each triangle. Then, while constructing the component
tree, we incrementally compute the moments of every component
in the filtration using the moments of its two children compo-
nents. This requires only a few extra additions at each tree node.

After the component tree is constructed, we traverse it once
more to compute the central moments μ at each tree node, as

described in [37]. At the same time, we compute the simplest
affine moment invariant, as described in [38]:

I1 ¼
μ20μ02�μ211

μ400
:

Finally, the ellipticity of a shape is defined as

sðκU Þ ¼
16π2I1 if I1r

1
16π2

;

1
16π2I1

otherwise:

8>><
>>: ð28Þ

This measure takes values in ½0;1�, and is maximized for a perfect
ellipse [39]. Again, ellipticity is compared to a threshold τ in order
to select a component as a feature.

4.3. Feature detection algorithm

The pseudocode of the entire method is given in Algorithm 1.
Initially, the normalized gradient per pixel is computed and given
as input to the Canny operator. The resulting edges E are sampled
using one of the methods described in section 3.1. The sampled
points P are triangulated using Delaunay, constrained Delaunay or
regular triangulation as described in Section 3.2. Given the
triangulation R, the simplicial complex K and the simplex size
map ρ are then computed. In the case of anisotropically weighted
α-shapes, the triangulation has to be regular. The neighborhood
map N of the triangles and edges is computed, while complex K0 is
as defined in (22).

We use two different tree structures to keep track of connected
components, as in [36]. The first is a forest where each simplex
serves as the root of a subtree containing all larger simplices in the
same component. We maintain a list of children for each simplex,
using function AddChild, while all simplices are initially assumed
to be leaves. The second is a standard disjoint set forest, with
simplices pointing only to their parent, manipulated by the
functions MakeSet, Find and Union [40].

Fig. 12. Detections in outdoor scene. Detector thresholds are tuned to extract around 130 features per image. (a) WαSH: 122, (b) Constrained-NU: 136, (c) Anisotropic-NU:
114, (d) Hessian-Affine: 137, (e) MSER: 134, (f) Edge Foci: 135 features.
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Algorithm 1. Proposed feature detector.

The two structures are interconnected via pointer root. The
second is used for efficiency, and the first is used to collect
information. In particular, for each selected component, we collect
its simplices via breadth-first search in the subtree of its root
simplex and fit a patch to their convex hull, which is not shown in
Algorithm 1. The complexity of constructing the component tree is
quasi-linear in n, that is, linear for all practical purposes [36].

4.4. Qualitative results

In order to obtain a deeper understanding of the quality of
detected features, we show in the sequel a number of examples
that highlight different aspects of the proposed detector and
visually compare to other detectors. Figs. 10 and 11 show detected
features on an image of the textureless dataset of [4], depicting
three hand tools. All detectors are tuned to return approximately

the same number of features per image in Fig. 10, while default
settings are used in Fig. 11. WαSH [12] uses weighted α-shapes on
a regular triangulation and uniform sampling.

Our detector captures well-delineated regions that cover all
objects of interest. The anisotropic variant appears to better
capture elongated structures compared to the constrained one.
Both cover all essential parts of the objects when asked for more
features, as shown in Fig. 11. The Hessian-Affine detector
extracts multiple overlapping features at different scales, so
fails to capture significant object details when the number of
features is limited. This is corrected using the default settings,
however the number of features increases dramatically in
this case.

Figs. 12 and 13 depict two more examples on an outdoor and an
indoor scene. For fair comparison, detectors are again tuned
towards a fixed number of features, different for each image. In
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Fig. 13, the anisotropic variant performs best, capturing most of
the outstanding regions of the image like the almost circularly
shaped color rings. Our detectors are the only ones to capture the
repeating tile structure on the wall. MSER performs well, but also

yields several noisy elongated regions along tile boundaries. Edge
foci are expected to perform very well on circular regions.
However, the concentric circles of different radii are not
detected here.

Fig. 13. Detections in indoor scene. Detector thresholds are tuned to extract around 400 features per image. (a) WαSH: 413, (b) Constrained-NU: 380, (c) Anisotropic-NU:
405, (d) Hessian-Affine: 425, (e) MSER: 432, (f) Edge Foci: 413 features. Observe the tiles at the lower part of the image that trigger our detector.

Fig. 14. Evaluation of the proposed strength measures. Keeping the number of features approximately the same for each measure, we plot (a) repeatability and (b) matching
score versus target image (2–6), with increasing difficulty from left to right. Measurements are averaged over the six image sequences.

Fig. 15. Repeatability and matching score for (i) α-shapes on Delaunay, (ii) α-shapes on constrained Delaunay, (iii) weighted (isotropic) α-shapes on regular, and (iv) weighted
anisotropic α-shapes on regular triangulation. U: uniform sampling; NU: non-uniform sampling. Measurements are averaged over the six image sequences.
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5. Experiments

We first investigate the pros and cons of all variants of the
proposed detector and fine-tune parameters on a matching experi-
ment using the standard dataset of Mikolajczyk et al. [19]. A
comparison to the state-of-the-art follows on a matching and a
retrieval experiment using the dataset of [19] and Oxford 5K [41],
respectively. The first dataset involves matching across different
viewpoint, rotation, zoom, etc., while performance is measured in
terms of repeatability and matching score. To enhance objectiveness
we use the VLBenchmarks framework, which is a recently intro-
duced implementation by Lenc et al. [42]. The second dataset
contains 5K images depicting buildings and 55 query images with
ground-truth. It is used in a larger scale retrieval experiment, where
performance is measured in terms of mean average precision (mAP).

5.1. Strength measures

In this section we compare the strength measures of Section 4.2
and select the most appropriate one. The selection is based upon
computing the repeatability and matching score on a small-scale
experiment. We extract approximately the same number of
features per image by modifying the thresholds for every different
strength measure.

We use six image sequences from the dataset of [19] to evaluate
the effect of scale and rotation (boat), changes in viewpoint (wall

and graffiti), illumination (leuven) and image blur (bikes and trees).
Each image sequence consists of six images where matching of the
first to the remaining five is increasingly difficult. Fig. 14 shows the
measurements of our detector using all strength measures under
varying effect of blur, scale, rotation, illumination and affine
transformation. These measurements are obtained using weighted
(isotropic) α-shapes on a regular triangulation with uniform
sampling.

While the number of features per image is kept approximately
the same, we observe a high variation of the values depending on
the different measures that is indicative of their role. Overall, the
closure and lifetime measures exceed the other measures in both
scores. For all the following experiments we adopt the closure
measure.

5.2. Sampling, triangulation, and α-shapes

In the following we evaluate all α-shape variants, i.e. for each
two sampling methods of Section 3.1 (uniform, non-uniform), we
consider four combinations of the triangulations discussed in
Section 3.2 (Delaunay, constrained Delaunay, regular) with the
two α-shapes discussed in Section 3.3 (weighted, anisotropic). The
four combinations are given in Fig. 15. As in Section 5.1, for each
combination we measure the average repeatability and matching
score on the same image sequences.

Fig. 16. Comparison of our constrained and anisotropic detectors to state-of-the-art in sequences boat, wall and graffiti. #features: number of features detected per image.
Hess: Hessian-affine. U: uniform; NU: non-uniform. (a) Repeatability. (b) Matching score. (c) #features.
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The results of the evaluation are depicted in Fig. 15. α-shapes on
Delaunay triangulation with either uniform or non-uniform sam-
pling are inferior to the rest. On the other hand, constrained
Delaunay gives the best results followed by the anisotropically
weighted α-shapes on regular triangulation, so we limit the
following matching experiments to these two combinations.

The sampling step s is empirically set to 11 for the uniform
sampling case. In certain cases, non-uniform sampling is out-
performed by the uniform one, presumably because at these cases
the fixed step of the latter is close to the optimal one. For the non-
uniform sampling case, after a series of qualitative experiments on
images of varying detail, we set the eccentricity upper bound of
non-uniform sampling to k¼ 3 (see Section 3.1.3). The initial size
of neighborhood p of each sample point p is set to 11� 11 pixels.
Due to adaptation, the effect of this initial size on the final
sampling density is minor, so we keep it relatively small to prevent
increasing the computational cost of the sampling method.

5.3. Comparisons: matching

Focusing on the constrained and anisotropic cases of our
detector, we compare to a number of state of the art methods on
the matching experiment. In particular, we select the best per-
forming detectors of [19], namely Hessian-Affine and MSER, along
with three recent detectors, namely MFD [6], EF [5] and KAZE [7].

Features are extracted by the corresponding publicly available
executables, which we have integrated in VLBenchmarks. For all
detectors, default parameters are used.

The scores for all image sequences are depicted in Figs. 16 and
17 along with the number of detected features per image. Our
detectors achieve a great balance between performance and
number of features. They perform among the best in all cases,
while keeping the number of features considerably low and
remaining quite invariant to all examined transformations. The
latter is mainly attributed to the proposed selection criterion
applied to the α-filtration and—naturally—to the stability of image
edges across scale.

5.4. Comparisons: image retrieval

In the following we evaluate the performance of our detectors
and compare to state of the art by setting up an image retrieval
experiment using the Oxford 5K dataset. Comparisons are per-
formed against the same detectors as in the matching experiment
of Section 5.3 as well as the SIFT and SURF detectors which are
commonly used.

Again, default parameters are used for all competitive detec-
tors. This results in SURF having the lowest number of features
(6:84� 106 for the whole dataset). Considering that a small
number of features are crucial for retrieval efficiency, we adjust

Fig. 17. Comparison of our constrained and anisotropic detectors to state-of-the-art in sequences leuven, bikes and trees. #features: number of features detected per image.
Hess: Hessian-affine. U: uniform; NU: non-uniform. (a) Repeatability. (b) Matching score. (c) #features.
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the selection threshold of all our proposed detector variants so
that they also give approximately 7� 106 descriptors for the entire
dataset. Though we are not reporting all relevant results, perfor-
mance does not change much when choosing default parameters
instead, and in many cases it is higher, at the expense of more
features. Fig. 18 shows example responses on an Oxford 5K image,
using the settings of the retrieval experiment.

We extract SIFT descriptors for all detectors except SURF and
KAZE, for which we use the SURF descriptor. This is a natural choice
for SURF, while KAZE performs better with SURF descriptors than
with SIFT. We build two visual codebooks of different sizes for each
detector, namely 50K and 200K, by clustering descriptors on a
sample of the dataset using approximate k-means [41]. We use the
bag-of-words (BoW) model with tf-idf weighting for representation,

Fig. 18. Detections on a sample image from Oxford 5K, using the parameters of the retrieval experiment. (a) WαSH: 1453, (b) Constrained-NU: 1250, (c) Anisotropic-NU:
1315, (d) Hessian-Affine: 6921, (e) MSER: 1229, (f) Edge Foci: 4294 features.

Table 1
Retrieval results on Oxford 5K with a 200K codebook. The number of features refers to the entire dataset. Detection time is average per image. Query times are average
per query.

Detector Features(�106) Detection time (s) Inverted file (MB) BoW query (s) FastSM query (s) BoW (mAP) FastSM (mAP)

HessAff 29.02 6.54 128.8 1.61 6.10 0.578 0.608
MSER 13.33 0.40 78.8 0.88 2.20 0.568 0.593
SIFT 11.13 5.24 84.0 0.95 5.29 0.494 0.516
SURF 6.84 0.43 53.5 0.64 3.45 0.575 0.591
EF 19.72 13.63 146.2 1.81 4.69 0.528 0.566
KAZE 13.82 6.59 99.6 1.67 1.91 0.487 0.541
MFD 7.64 2.98 58.4 0.68 0.93 0.600 0.600
WαSH/Uniform
Delaunay 7.54 1.38 52.1 0.88 1.11 0.580 0.577
Constrained 7.17 1.57 50.3 0.84 1.01 0.588 0.590
Weighted 6.85 2.01 48.1 0.83 1.16 0.595 0.594
Anisotropic 7.00 3.90 48.6 0.85 1.08 0.621 0.615

WαSH/Non-uniform
Delaunay 7.09 2.89 50.4 0.84 0.96 0.592 0.592
Constrained 7.27 3.52 50.9 0.86 0.99 0.610 0.597
Weighted 7.71 3.98 53.6 0.88 1.07 0.557 0.560
Anisotropic 7.47 6.60 50.4 0.89 1.08 0.602 0.594
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an inverted file for indexing, and fast spatial matching (FastSM) [41]
for spatial verification. BoW histograms are matched using histo-
gram intersection following ℓ1 normalization, while for verification
we set the minimum number of inliers to 7. The evaluation metric is
mean Average Precision (mAP).

Tables 1 and 2 provide detailed statistics including the total
number of features, the average detection time per image, inverted
file size, average query time and mAP measurements for all
detectors, using the 200K and 50K visual codebooks respectively.
The number of detected features and the detection time per image
are the same in both cases, but they are repeated for easier
reference and comparisons. The number of features used is critical,
since it determines both the amount of memory used for the index
and the query time especially for spatial verification, with FastSM
being quadratic in the number of features.

The performance of all our proposed detector variants is at or
above the state-of-the-art, despite using a low number of features,
hence having a much lower memory footprint. In particular, we
get roughly 1=4 of the features detected by Hessian-affine. The
benefit in terms of query time is also considerable. A comparison
of Tables 1 and 2 shows clearly that increasing the size of the
codebook boosts the performance of all detectors.

Using the anisotropically weighted α-shapes on a regular
triangulation gives the best results, exceeding the state-of-the-
art, followed by the constrained and weighted cases, confirming
the results of Sections 5.2 and 5.3. The high performance of the

anisotropic detector comes with the cost of higher detection time
per image, which is due to the warping done per simplex (see
Section 3.3.2) and the extraction of the metric tensor describing
the local shape (see Section 3.1.3).

Non-uniform sampling in many cases slightly decreases per-
formance. When combined with the weighted α-shapes, the
performance drop is significant. The reason is that when the
sampling step s increases along a straight image edge, so does
the weight of the points by (1). This causes the circle of the
weighted point to grow isotropically, and make points of neigh-
boring edges disappear (see Section 3.2.1).

Non-uniform sampling also adds a computational overhead
that is not negligible. However, it eliminates one parameter from
the detector, which can significantly decrease the time needed for
tuning. In small scale applications, where fine-tuning the sampling
step is feasible, using uniform sampling can lead to better results.
On the other hand, non-uniform sampling should be preferred for
large-scale applications, where features are practically extracted
without fine-tuning to minimize off-line preprocessing.

MFD performs similar to our detector and has approximately
the same number of features, an observation that led us to an
additional experiment where both detectors are tuned to produce
a significantly smaller number of regions. Our aim is to test the
ability of these detectors to scale up. By reducing the number of
features detected, we need to also decrease the size of the
codebook to prevent overfitting. In this setup, we create

Table 2
Retrieval results on Oxford 5K with a 50K codebook. The number of features refers to the entire dataset. Detection time is average per image. Query times are average
per query.

Detector Features (�106) Detection time (s) Inverted file (MB) BoW query (s) FastSM query (s) BoW (mAP) FastSM (mAP)

HessAff 29.02 6.54 116.2 2.71 25.17 0.489 0.516
MSER 13.33 0.40 71.2 1.32 6.57 0.489 0.524
SIFT 11.13 5.24 75.9 1.51 8.35 0.422 0.446
SURF 6.84 0.43 47.8 0.88 3.75 0.466 0.497
EF 19.72 13.63 132.1 3.11 26.01 0.455 0.500
KAZE 13.82 6.59 89.4 2.62 7.30 0.403 0.464
MFD 7.64 2.98 51.9 0.94 2.45 0.531 0.540
WαSH/Uniform
Delaunay 7.54 1.38 47.0 1.15 1.60 0.521 0.537
Constrained 7.17 1.57 45.3 1.20 1.27 0.541 0.553
Weighted 6.85 2.01 43.2 1.05 1.37 0.544 0.566
Anisotropic 7.00 3.90 43.6 1.12 1.32 0.553 0.567

WαSH/Non-uniform
Delaunay 7.09 2.89 45.4 1.08 1.43 0.514 0.526
Constrained 7.27 3.52 45.9 1.11 1.45 0.551 0.567
Weighted 7.71 3.98 48.3 1.13 1.51 0.476 0.465
Anisotropic 7.47 6.60 45.4 1.13 1.20 0.532 0.551

Table 3

Retrieval results comparing our detectors to MFD, with a lower number of detected features, targeting 3� 106 features for the entire dataset. Here smaller 50K and 100K
codebooks are used to avoid overfitting.

Detector Features (�106) Inverted file (MB) BoW (mAP) FastSM (mAP)

50K 100K 50K 100K 50K 100K

MFD 2.59 18.8 20.4 0.516 0.534 0.517 0.537
WαSH/Uniform
Delaunay 3.13 20.8 22.2 0.530 0.544 0.523 0.537
Constrained 3.06 20.3 21.7 0.537 0.552 0.524 0.548
Weighted 3.09 20.5 21.9 0.527 0.546 0.520 0.543
Anisotropic 3.27 21.4 22.8 0.532 0.552 0.537 0.563

WαSH/Non-uniform
Delaunay 3.19 21.6 23.0 0.522 0.532 0.530 0.538
Constrained 3.07 20.5 21.8 0.539 0.549 0.529 0.542
Weighted 2.96 20.0 21.4 0.469 0.486 0.460 0.476
Anisotropic 3.10 20.1 21.5 0.511 0.531 0.518 0.531
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codebooks of 50K and 100K visual words. The performance of all
proposed detectors is still high in all cases, especially with the
100K visual codebook, as shown in Table 3. These results verify our
previous observations, as the anisotropically weighted α-shapes
perform best.

6. Discussion

In this paper we have proposed a local feature detector based
on edge-driven triangulation and geometrical representations that
produces distinctive and stable image features. We extend our
previous work [12] by proposing a non-uniform sampling method
based on local image shape, requiring no user input. We also
exploit local shape information at each sample by introducing the
anisotropically weighted α-shapes. Finally, we propose and eval-
uate a number of different measures to select dominant compo-
nents of the resulting α-filtration.

Our detector extracts a relatively small number of features that
are highly distinctive and exhibit high image coverage. The
resulting features are also remarkably tolerant to image transfor-
mations (scale, rotation and affine), lighting changes and blurring.
These properties make our detector an ideal choice for large scale
applications (e.g. large scale image retrieval or classification). Our
experimental validation supports these observations: in most
cases, our detector outperforms the state of the art in a number
of matching and retrieval experiments.
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