
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Walking on the Edge: Fast, Low-Distortion
Adversarial Examples

Hanwei Zhang1,2, Yannis Avrithis1, Teddy Furon1, and Laurent Amsaleg1

1Inria, CNRS, IRISA, Univ Rennes
2East China Normal University

Abstract—Adversarial examples of deep neural networks are
receiving ever increasing attention because they help in under-
standing and reducing the sensitivity to their input. This is
natural given the increasing applications of deep neural networks
in our everyday lives. When white-box attacks are almost always
successful, it is typically only the distortion of the perturbations
that matters in their evaluation.

In this work, we argue that speed is important as well,
especially when considering that fast attacks are required by
adversarial training. Given more time, iterative methods can
always find better solutions. We investigate this speed-distortion
trade-off in some depth and introduce a new attack called
boundary projection (BP) that improves upon existing methods by
a large margin. Our key idea is that the classification boundary
is a manifold in the image space: we therefore quickly reach the
boundary and then optimize distortion on this manifold.

Index Terms—Adversarial attack, Deep learning

I. INTRODUCTION

ADVERSARIAL EXAMPLES [37] are small, usually
imperceptible perturbations of images or other data [9]

that can arbitrarily modify a classifier’s prediction. They have
been extended to other tasks like object detection or semantic
segmentation [45], and image retrieval [25], [39]. They are
typically generated in a white-box setting, where the attacker
has full access to the classifier model and uses gradient
signals through the model to optimize for the perturbation.
They are becoming increasingly important because they reveal
the sensitivity of neural networks to their input [35], [15],
[2] including trivial cases [3], [14] and they easily transfer
between different models [28], [41].

Adversarial examples are typically evaluated by probability
of success and distortion. In many cases, white-box attacks
have probability of success near one, then only distortion
matters, as a (weak) measure of imperceptibility and also of
the difficulty with which adversarial samples can be detected.
The speed of an attack is less frequently discussed. The
fast single-step FGSM attack [17] produces high-distortion
examples where adversarial patterns can easily be recognized.
At the other extreme, the Carlini & Wagner (C&W) attack [8],
considered state of the art, is notoriously expensive. Decou-
pling direction and norm (DDN) [32] has recently shown
impressive progress in distortion and mostly in speed.

Speed becomes more important when considering adver-
sarial training [17]. This defense, where adversarial examples
are used for training, was in fact introduced in the same work

as FGSM. This attack remains the most common choice for
generating those examples because of its speed. However, ad-
versarial training is easily broken [40] unless a more powerful
attack like PGD is used [27].

In this work, we investigate in more depth the speed-
distortion trade-off in the regime of probability of success near
one. We observe that iterative attacks often oscillate across
the classification boundary, taking long time to stabilize. We
introduce a new attack that rather walks along the boundary,
as discussed in Sect. I-B. As a result, we improve the state of
the art in distortion while keeping the number of iterations
at a minimum. Our key idea is that, once we reach the
adversarial region near the boundary, the problem becomes
optimization on a manifold [1], in particular, minimization of
the `2 distortion on a level set of the classification loss. When
in the adversarial region, we project the distortion gradient
on the tangent space of this manifold. We do this simply by
targeting a particular reduction of the distortion while moving
orthogonally to the gradient of the classification loss.

Quantization is another major issue in this literature. Most
papers implicitly assume that the output of a white-box attack
is a matrix where pixel values are real numbers in [0, 1].
Paper [32] is one of the rare works where the output is
quantized. We agree with this definition of the problem.
Indeed, an adversarial image is above all an image. The goal
of an attacker is to publish images deluding the classifier (for
instance on the web), and publishing implies compliance with
pixels encoded in bytes.

Although adversarial training is not the focus of this work,
we do experiment with it to validate that i) our attack is fast
enough for this task, and ii) the network gains a better defense
when being prepared for a worse attack. Recent improvements
in adversarial training [42] are orthogonal to our work, by
replacing the common choice of PGD with our attack.

A. Contributions.
To our knowledge, we are the first to
• Study optimization on the manifold of the classification

boundary for an adversarial attack, providing an analysis
under the constraints of staying on the tangent space of
the manifold and of reaching a distortion budget.

• Investigate theoretically and experimentally the quantiza-
tion impact on the perturbation.

• Achieve at the same speed as I-FGSM [22] (20 iterations)
and under the constraint of a quantization, less distortion

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

x x x x

(a) PGD2 (b) C&W (c) DDN (d) BP (this work)
Fig. 1. Adversarial attacks on a binary classifier in two dimensions. The two class regions are shown in red and blue. Contours indicate class probabilities.
The objective is to find a point in the red (adversarial) region that is at the minimal distance to input x. Gray (black) paths correspond to low (high) distortion
budget ε for PGD2 [22] (a, in green) or parameter λ for C&W [8] (b). The simulation is only meant to illustrate basic properties of the methods. In particular,
it does not include Adam optimizer [20] for C&W.

than state-of-the-art attacks including DDN, which needs
100 iterations on ImageNet.

• Propose a benchmark fairly comparing distortion con-
strained and success constrained attacks (see defini-
tions (3) and (2)).

B. Graphical abstract illustrating the attacks.

To better understand how our attack works, Figure 1 illus-
trates qualitatively a number of existing attacks technically
described in Sect. II-B. On this toy 2d classification problem,
the class boundary and the path followed by the optimizer
starting at input x can be easily visualized.

PGD2, an `2 version of I-FGSM [22], a.k.a. PGD [27],
is controlled by a distortion budget ε and eventually follows
a path on a ball of radius ε centered at x (cf . Fig. 1(a)).
Section IV shows that testing different ε values is an expensive
strategy for finding the optimal distortion budget per image.

C&W [8] depends on a parameter λ that controls the
balance between distortion and classification loss. A low value
leads to failure. A higher value indeed reaches the optimal
perturbation, but with oscillations across the class boundary
(Fig. 1(b)). Therefore, an expensive line search over λ is
performed internally.

DDN [32] increases or decreases distortion on the fly
depending on success and while pointing towards the gradient
direction (Fig. 1(c)). It arrives quickly near the optimal pertur-
bation but still suffers from oscillations across the boundary.

On the contrary, boundary projection (BP), introduced in
this work (cf . Fig. 1(d)), cares more about quickly reaching the
boundary, not necessarily near the optimal solution, and then
walks along the boundary, staying mostly in the adversarial
(red) region. It therefore makes steady progress towards the
solution rather than going back and forth.

C. Related works

Before developing the state-of-the-art of white-box attacks
in Sect. II-B, we point out other related works.
Optimization on manifolds. In the context of deep learning,
stochastic gradient descent on Riemanian manifolds has been
studied, e.g. RSGD [5] and RSVRG [46]. It is usually applied
to manifolds whose geometry is known in analytic form, for
instance Grassmann [5] or Stiefel manifolds [18]. In most
cases, the motivation is to optimize a very complex function

like a classification loss on a well-studied manifold, e.g. matrix
manifold [1]. On the contrary, we optimize a simple quadratic
function (the distortion) on a complex manifold not known in
analytic form, i.e. a level set of the classification loss.
Information Forensics and Security (IFS). The connection
between adversarial examples and the field of IFS has been
made recently. Paper [31] provides a conceptual link between
machine learning and watermarking allowing to transfer at-
tacks and defenses known in one field to another. Paper [33]
adapts a steganalyzer to detect adversarial images.Nearest
Neighbours Search (NNS) is another classical tool in IFS.
Looking at adversarial examples through the lens of NNS pro-
vides a theoretical explanation of the vulnerability of networks
producing high intrinsic dimensionality features [2]. The study
of their neighborhood has been exploited to design adversarial
image detectors [10], [7]. The authors of [13] look at this
problem under the framework of game theory. The authors
of [38] introduce a secret key into the classifier to prevent
white-box attacks. This gives an advantage to the defender
following the Kerckhoffs principle. Security threats also hold
at training time by poisoning the data to conceal backdoors [4].

Our work focuses on forging adversarial examples. Our
intention is to fairly assess their power with or without
defenses. Inspired by the methodology for assessing water-
marking robustness [16], our protocol introduces in Sect. IV-B
the operating characteristic of an attack. It reveals the trade-
off between distortion and probability of success. We also
pay attention to real life conditions obvious in watermarking
and steganography but overlooked in adversarial literature:
adversarial images are quantized.

II. PROBLEM, BACKGROUND AND STATE OF THE ART

A. Problem formulation

Preliminaries. Let X := {0,∆, . . . , 1 − ∆, 1}n with ∆ :=
1/(L−1) denote the set of grayscale images of n pixels quan-
tized to L levels, and let X̂ := [0, 1]n denote the corresponding
real-valued images. An image of more than one color channels
is treated independently per channel; in this case n stands for
the product of pixels and channels. A classifier f : X̂ → Rk
maps an image x to a vector f(x) ∈ Rc+ representing
probabilities per class over c given classes. The parameters of
the classifier are not shown here because they remain fixed in

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

this work. The classifier prediction π : X̂ → [c] := {1, . . . , c}
maps x to the class label having the maximum probability:

π(x) := arg max
k∈[c]

f(x)k. (1)

The prediction is correct if π(x) = t, the true label.
Problem. Let x ∈ X be a given image with known true label
t. An adversarial example y ∈ X is an image such that the
distortion ‖x− y‖ is small and the probability f(y)t is also
small. This problem takes two forms:

1) Distortion constrained:

min
y∈X

f(y)t subject to ‖x− y‖ ≤ ε, (2)

where ε is a given distortion budget. The performance
is then measured by the probability of success Psuc :=
P(π(y) 6= t) as a function of ε.

2) Success constrained:

min
y∈X
‖x− y‖ subject to π(y) 6= t. (3)

The performance is then measured by the expected dis-
tortion D := E(‖x− y‖).

This work focuses on the second form, but we present
example attacks of both forms in section II-B.
Untargeted attack. The constraint π(y) 6= t in (3) is referred
to as an untargeted attack, meaning that y is misclassified
regardless of the actual prediction. As an alternative, a targeted
attack requires that the prediction π(y) = t′ is a target label
t′ 6= t. We focus on the former.
Loss function. We focus on a white-box attack in this work.
Such an attack is specific to f , which is public. In this setting,
attacks typically rely on exploiting the gradient of some loss
function, using variants of gradient descent. A classification
loss is defined on the probability vector p = f(y) with respect
to the true label t. For an untargeted attack, this is typically
the negative of cross-entropy `(p, t) := log pt. We should
warn that, while the cross-entropy is appropriate for bringing
examples into the region of class t during classifier training,
its negative is in general not appropriate for pulling them out
during an attack. This is because this function is mostly flat
in the class region. A common solution is to normalize the
gradient of ` [17], [32], assuming it is nonzero. We consider
more options in this work. A targeted attack on the other
hand may use − log pt′ , which works fine because it brings
examples into class t′ region.
Distortion. This work focuses on the 2-norm ‖·‖ as a measure
of distortion. Alternatives like 1-norm and ∞-norm are also
common [17], [8]. It is known that none is appropriate for mea-
suring the imperceptibility of adversarial attacks, while more
sophisticated measures like structural similarity (SSIM) [43]
are limited too [34]. Measuring imperceptibility is arguably as
difficult as classification itself.
Integral constraint. The constraint y ∈ X in (2) and (3)
is typically relaxed to y ∈ X̂ during optimization. Some
works conclude the attack by loosely quantizing the optimal
solution onto X , typically by truncation towards zero. To our
knowledge, DDN [32] is the only work to do rounding instead,
and at the end of each iteration. Quantization is becoming an

important issue in adversarial examples because the distor-
tions achieved in recent papers are so small that quantization
impacts a lot the perturbations. Appendix A provides a more
in-depth study of the impact of the quantization.

B. State-of-the-art Attacks

Distortion constrained attacks. Given a distortion budget ε,
the fast gradient sign method (FGSM) [17] performs a single
step in the opposite direction of the (element-wise) sign of the
loss gradient with ∞-norm ε,

y := x− ε sign∇x`(f(x), t). (4)

This is the fastest method for problem (2). In the same work
adversarial training was introduced, this method quickly gen-
erates adversarial examples for training. However, the pertur-
bations are usually high-distortion and visible. The iterative-
FGSM (I-FGSM) [22] initializes y0 := x and then iterates

yi+1 := projB∞[x;ε](yi − α sign∇x`(f(yi), t)), (5)

where projection1 is element-wise to the closed ∞-norm ball
B∞[x; ε] of radius ε and center x, and also to X̂ (element-
wise clipping to interval [0, 1]). This method is also known as
basic iterative method (BIM) [30] and as projected gradient
descent (PGD) [27]. We refer to as PGD2 a 2-norm version
replacing (5) with

yi+1 := projB2[x;ε](yi − αη(∇x`(f(yi), t))), (6)

where η(x) := x/ ‖x‖ denotes 2-normalization, and projection
is to the closed 2-norm ball B2[x; ε] of radius ε and center x,
followed again by element-wise clipping to [0, 1]. Although
this method is part of Cleverhans library [30], it is not
published according to our knowledge.
Success constrained attacks. This family of attacks is typi-
cally more expensive. DeepFool [29] is a popular attack which,
at each iteration, estimates the distortion needed to go to any
class region k 6= t in order to infer which one is the closest..
Paper [37] propose a Lagrangian formulation of problem (3),
minimizing the cost function

J(y, λ) := ‖x− y‖2 + λ`(f(y), t), (7)

where variable λ is a Lagrange multiplier. They carry out this
optimization by box-constrained L-BFGS.

The attack of [8], denoted by C&W in the sequel, pertains
to this approach. A change of variable eliminates the box
constraint, replacing y ∈ X by σ(w), where w ∈ Rn and σ
is the element-wise sigmoid function. The classification loss
encourages the logit log pt to be less than any other log pk for
k 6= t by at least margin m ≥ 0,

`m(p, t) := [log pt −max
k 6=t

log pk +m]+, (8)

where [·]+ denotes the positive part. This function is similar
to the multi-class SVM loss by Crammer and Singer [11],
where m = 1, and, apart from the margin, it is a hard version
of negative cross-entropy ` where softmax is producing the
classifier probabilities. It does not have the problem of being

1We define projA(u) := argminv∈A ‖u− v‖.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

flat in the region of class t. The C&W attack uses the Adam
optimizer [20] to minimize the cost function

J(w, λ) := ‖σ(w)− x‖2 + λ`m(f(σ(w)), t). (9)

for w ∈ Rn. When the margin is reached, loss `m vanishes
and the distortion term pulls σ(w) back towards x, causing
oscillations around the margin. This is repeated for different
λ2 by line search, which is expensive.

Decoupling direction and norm (DDN) [32] is iterating
similarly to PGD2 (6),

yi+1 := projS[x;ρi](yi − αη(∇x`(f(yi), t))), (10)

but projection is to the sphere S[x; ρi] of radius ρi and center
x, and the radius is adapted to the current distortion: It is set to
ρi = (1−γ)‖yi−x‖ if yi is adversarial and to (1+γ)‖yi−x‖
otherwise, where parameter γ ∈ (0, 1). Another difference is
that each iteration is concluded by a projection onto X (rather
than X̂) by element-wise clipping to [0, 1] and rounding.
Discussion. Optimizing around the class boundary is not a
new idea. All of the above attacks do so in order to minimize
distortion; implicitly, even distortion constrained attacks like
PGD2 do so, if the minimum parameter ε is sought (cf . Figure
1(a) and Section IV-B). Even black-box attacks do so [6],
without having access to the gradient function. The difference
of our attack is that our updates are along the class boundary,
i.e., in a direction normal to the gradient.
Other attacks. Generative models like AdvGAN [44] can
not be classified as success or distortion constrained attacks.
This approach is a tour de force generating adversarial image
impressively fast at testing. Yet, the runtime for training is not
mentioned and this is an issue because each target class needs
a dedicated generative network. The distortion is integrated in
the loss at training, but it is not optimized sample by sample
since there is no way to control it during testing. Indeed, the
perturbation is highly visible in [44, Fig. 3] and has larger
distortion than C&W (see their Table 8).

III. METHOD

Our attack is an iterative process with a fixed number K of
iterations. Stage 1 aims at quickly producing an adversarial
image, whereas Stage 2 is a refinement phase decreasing
distortion. The key property of our method is that while in the
adversarial region during refinement, it tries to walk along the
classification boundary by projecting the distortion gradient
onto the tangent hyperplane of the boundary. Hence we call it
boundary projection (BP).

A. Stage 1

This stage begins at y0 = x and iteratively updates in the
direction of the gradient of the loss function as summarized in
Algorithm 1. The gradient is 2-normalized (line 3) and then
scaled by two parameters (line 4): a fixed parameter α > 0
and a parameter γi that is increasing linearly with iteration
i ≤ K as follows

γi := γmin +
i

K + 1
(1− γmin) < 1, (11)

2Referred to as c in [8].

where γmin ∈ (0, γmax). This makes the updates slow at the
beginning to keep distortion low, then faster until the attack
succeeds. Parameter α is set empirically to a value large
enough so that Stage 1 returns an adversarial image in less
than K iterations with high probability. This schedule of γi is
meant to adjust the level of distortion to each original image,
since a single value would be hard to fit all cases. After the
update, Clipping is element-wise (line 4).

B. Stage 2

Once Stage 1 has succeeded, Stage 2 continues by iteratively
considering two cases: if yi is adversarial, case OUT aims at
minimizing distortion while staying in the adversarial region.
Otherwise, case IN aims at decreasing the loss while control-
ling the distortion. Both work with a first order approximation
of the loss around yi:

`(f(yi + u), t) ≈ `(f(yi), t) + u>g, (12)

where g = ∇x`(f(yi), t). The perturbation at iteration i is
δi := yi − x. Stage 2 is summarized in Algorithm 2. Cases
OUT and IN illustrated in Fig. 2 are explained below.
Case OUT takes as input yi outside class t region, i.e.
π(yi) 6= t (line 5). It outputs yi+1 which is a quantized
version of vector z (line 9). The construction of z stems
from two constraints. First, we control the distortion of the
next perturbation imposing the constraint ‖z− x‖ = ε, so
that z will lie on the hypersphere S[x; ε]. This radius uses
again the scheduling (11), ε = γi ‖δi‖ < ‖δi‖, such that
updates decelerate to convergence once the attack has already
succeeded. We also impose that z lies on

P := {v ∈ Rn : 〈v − yi, ĝ〉 = 0}, (13)

the tangent hyperplane of the level set of the loss at yi, normal
to ĝ. This second constraint aims at maintaining the value of
the loss, up to the first order.

Consider the projection v? := x+ rĝ of x onto hyperplane
P , where r := 〈δi, ĝ〉. If r < ε, the hypersphere intersects
the hyperplane as shown in Fig. 2(a), and both constraints are
met. From the infinity of points in this intersection, we pick
the one closest to yi:

z = v? + η(yi − v?)
√
ε2 − r2. (14)

If r ≥ ε, then S[x; ε]∩P = ∅. We prefer to relax the constraint
on the distortion, and choose z = v?, which is by definition

Algorithm 1 Stage 1
Input: x: original image to be attacked
Input: t: true label (untargeted)
Output: y with π(y) 6= t or failure, iteration i

1: Initialize y0 ← x, i← 0
2: while (π(yi) = t) ∧ (i < K) do
3: ĝ← η(∇x`(f(yi), t)) . η: 2-normalization
4: yi+1 ← clip[0,1](yi − αγiĝ)
5: i← i+ 1
6: end while

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Algorithm 2 Stage 2
Input: t: true label (untargeted), i current iteration number
Input: yi: current adversarial image, ε: distortion budget
Output: yK

1: while i < K do
2: δi ← yi − x . perturbation
3: ĝ← η(∇x`(f(yi), t)) . direction
4: r ← 〈δi, ĝ〉
5: if π(yi) 6= t then . OUT
6: ε← γi ‖δi‖ . distortion control
7: v? ← x + rĝ
8: z← v? + η(yi − v?)

√
[ε2 − r2]+

9: yi+1 ← QOUT(z,yi) . quantization (17)
10: else . IN
11: ε← ‖δi‖ /γi . distortion control

12: z← yi −
(
r +

√
ε2 − ‖δi‖2 + r2

)
ĝ

13: yi+1 ← QIN(z,yi) . quantization (20)
14: end if
15: i← i+ 1
16: end while

the closest point of P to x. Note that v? = yi if δi, ĝ are
collinear.

This is formally summarized as follows:

z := arg min
v∈V
‖v − yi‖ (15)

V := arg min
v∈P
|‖v − x‖ − ε| . (16)

Here, V is the set of points on P having distortion close to
ε. If r < ε, V = S[x; ε] ∩ P 6= ∅ as illustrated in Fig. 2(a),
otherwise V = {v?}. The solution z has a unique closed form,
implemented in line 8.

Directly quantizing vector z onto X by Q(·), the
component-wise rounding, modifies its norm (see App. A).
This pulls down our effort to control the distortion. Instead,
the process QOUT(z,yi) in line 9 looks for the scale βOUT of
the perturbation to be applied such that ‖Q(yi+β(z−yi))‖ =
‖z‖. This is done with a simple line search over β. Then,

QOUT(z,yi) := Q(yi + βOUT(z− yi)). (17)

Case IN takes as input yi inside class t region, i.e. π(yi) = t
(line 10). We control distortion ε = ‖δi‖ /γi > ‖δi‖ (11)
such that updates decelerate as in Case OUT. We then solve
the problem:

z := arg min
v∈S[x;ε]

〈v, ĝ〉 , (18)

i.e., find the point z at the intersection of sphere S[x; ε] and
the ray through yi in the direction opposite of g as shown in
Fig. 2(b). The solution is simple:

z = yi −
(
r +

√
ε2 − ‖δi‖2 + r2

)
ĝ, (19)

Vector z moves away from yi along direction −ĝ by a step
size so to reach S[x, ε]. Case IN is not guaranteed to succeed,
but invoking it means that Stage 1 has succeeded.

x

yig

V

ε

z

P

v?
x

yi
g

ε

z

(a) (b)

Fig. 2. Refinement stage of BP. Case OUT when |V | > 1 (a); case IN (b).

Again a direct rounding jeopardizes the norm of the update
z−yi. Especially, quantization likely results in Q(z) = Q(yi)
if ‖z−yi‖ < βmin = 0.1 (see App. A). Instead of a line search
as in method OUT, line 13 just makes sure that this event will
not happen:

QIN(z,yi) = Q(yi + βIN(z− yi)), (20)

with βIN = max(1, βmin/‖z− yi‖).

C. Discussion

The heuristic scheduling (11) builds on a simpler idea of
DDN [32], where parameter γ is constant across iterations.
This scheduling controls the distortion: In stage 1, updates are
small at the beginning to keep distortion low, then larger until
the attack succeeds. In stage 2, updates are decreasing as γi
tends to 1. It increases the distortion when the current image
is correctly classified (IN) and decreases the distortion when
the current image is adversarial (OUT).

The fact that (γi)i is strictly increasing shows that, in Stage
2, an IN iteration (distortion grows by 1/γi) followed by
an OUT iteration (distortion decays by γi+1 < 1) is indeed
equivalent to a milder IN in the sense that the distortion grows
γi+1/γi > 1 smaller than 1/γi. Similarly, OUT followed by IN
is equivalent to a mild OUT in the sense that distortion decays
by γi/γi+1 < 1. Both cases lead towards the class boundary
by a factor that tends to 1. If the algorithm keeps alternating
between OUT and IN and we only look at the OUT iterates
(remember, all attacks output the successful iterate of least
distortion), this is equivalent to strictly decreasing distortion.
This behavior is more stable than having a constant parameter
as in DDN.

From all the possible increasing sequences that go to 1 as
i goes to the maximum number of iterations, we pick the
simplest one: a linear sequence. All this behaviour is controlled
by a single parameter, which simplifies the algorithm. That is
the only heuristic.

IV. EXPERIMENTS

In this section we compare our method boundary projection
(BP) to the attacks presented in Sect. II, namely: FGSM [17],
I-FGSM [22], PGD2 (6), C&W [8], and DDN [32]. This
benchmark is carried out on three well-known datasets, with
a different neural network for each.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

A. Parameters of the attacks
Below we specify the attacks parameters for each dataset.

Appendix C details the networks and training parameters.
For the distortion constrained attacks i.e. FGSM, I-FGSM

and PGD2, we test a set of ε and calculate Psuc and D
according to our evaluation protocol (cf . section IV-B). For
C&W, we test several parameter settings and pick up the
optimum setting as specified below. For DDN, the parameter
settings are the default [32], i.e. ε0 = 1.0 and γ = 0.05.
MNIST [24]. App. C details the network with accuracy 0.99.
Parameters. α = 0.08 for I-FGSM, α = ε/2 for PGD2. For
C&W: for 5× 20 iterations3, learning rate η = 0.5 and initial
constant λ = 1.0; for 1×100 iterations, η = 0.1 and λ = 10.0.
CIFAR10 [21]. App. C details the network with accuracy 0.93.
Parameters. α = 0.08 for I-FGSM, α = ε/2 for PGD2. For
C&W: for 5× 20 iterations, learning rate η = 0.1 and initial
constant λ = 0.1; for 1×100 iterations, η = 0.01, and λ = 1.0.
ImageNet [23] comprises 1,000 images from ImageNet [12].
We use InceptionV3 pre-trained [36] whose accuracy is 0.96.
Parameters. α = 0.08 for I-FGSM, α = 3 for PGD2. For
C&W: for 5× 20 iterations, learning rate η = 0.01 and initial
constant λ = 20; for 1×100 iterations, η = 0.01 and λ = 1.0.

B. Evaluation protocol
We evaluate an attack by its runtime, two global statis-

tics Psuc and D, and by an operating characteristic curve
D → P(D) measuring distortion vs. probability of success
as described below.

Since we focus on the speed-distortion trade-off, we mea-
sure the required time for all attacks. For the iterative attacks,
the complexity of one iteration is largely dominated by the
computation of the gradient, which requires one forward and
one backward pass through the network. It is thus fair to
gauge their complexity by this number, referred to as iterations
or ‘# Grads’. Indeed, the actual timings of 100 iterations of
I-FGSM, PGD2, C&W, DDN and BP are 1.08, 1.36, 1.53,
1.46 and 1.17 s/image on average respectively on ImageNet,
using Tensorflow, Cleverhans implementation for I-FGSM and
C&W, and authors’ implementation for DDN.

We measure distortion when the adversarial images are
quantized by rounding each element to the nearest element
in X . This makes sense since adversarial images are meant to
be stored or communicated as images rather than real-valued
matrices. DDN and BP adversarial images are already quan-
tized. For reference, we report distortion without quantization
in Appendix IV-D2.

Given a test set of N ′ images, we only consider its subset
X of N images that are classified correctly without attack.
The accuracy of the classifier is N/N ′. Let Xsuc be the subset
of X with Nsuc := |Xsuc| where the attack succeeds and let
D(x) := ‖x− y‖ be the distortion for image x ∈ Xsuc.
The global statistics are the success probability Psuc and
conditional average distortion D

Psuc :=
Nsuc

N
, D :=

1

Nsuc

∑
x∈Xsuc

D(x). (21)

3C&W performs line search on λ: “5 × 20” means 5 values of λ, 20
iterations for each.

TABLE I
SUCCESS PROBABILITY PSUC AND AVERAGE DISTORTION D OF OUR
METHOD BP ON IMAGENET WITH DIFFERENT quantization strategies.

Grads Psuc D

Rounding in the end 20 1.00 1.44
100 1.00 1.43

Rounding at each iteration 20 1.00 0.41
100 1.00 0.32

Rounding with QIN , QOUT
20 1.00 0.35

100 1.00 0.28

Here, D is conditioned on success. Indeed, distortion makes
no sense for a failure.

We define the operating characteristic of a given attack
over the set X as the function P : [0, Dmax] → [0, 1], where
Dmax := maxx∈Xsuc D(x). Given D ∈ [0, Dmax], P(D) is
the probability of success subject to distortion being upper
bounded by D,

P(D) :=
1

N
|{x ∈ Xsuc : D(x) ≤ D}|. (22)

This function increases from P(0) = 0 to P(Dmax) = Psuc. We
sample one intermediate point: Pupp := P(Dupp) is the success
rate within a distortion upper bounded by Dupp ∈ (0, Dmax).

It is difficult to define a fair comparison of distortion
constrained attacks to success constrained attacks (see sec-
tion II-B). For the first family, we run a given attack several
times over the test set with different distortion budget ε. The
attack succeeds on image x ∈ X if it succeeds on at least one
of the runs, and the distortion D(x) is the minimum distortion
over all successful runs. All statistics are then evaluated as
above.

C. Experimental investigations

Before addressing the benchmark, this section investigates
on the role of quantization and of the parameters in BP.

1) Quantization: Table I shows the critical role of quan-
tization in our method BP. Since this attack is iterative and
works with continuous vectors, one may quantize only at the
end of the process, or at the end of each iteration. Another
option is to anticipate the detrimental action of quantizing by
adapting the length of each step accordingly, as done by QIN(·)
and QOUT(·) in Algorithm 2. The experimental results show
that the key is to quantize often so to let the next iterations
compensate. Anticipating and adapting gives a substantial
extra improvement.

2) Parameter Study: There are two parameters in BP: α
and γmin. Both determine the step size of stage 1, while γmin
also determines the step size of stage 2. We consider 4 values
for α, i.e. 1, 2, 3, 4 and 9 values for γmin, i.e. 0.1, 0.2, ..., 0.9.
For each pair of values, we evaluate BP with 20 iterations on
a validation set, which we define as a random subset sampled
of the training set: 10000 images for MNIST and CIFAR10,
and 1000 images for ImageNet. As shown in Fig. 3, success
probability is close to one in all cases, while average distortion
is in general stable up to γmin = 0.8. We choose α = 2 and
γmin = 0.7 for all experiments.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

0.2 0.4 0.6 0.8
1.4

1.5

1.6

1.7

1.8

γmin

D

0.2 0.4 0.6 0.8
0.96

0.97

0.98

0.99

1

γmin

P
su

c

α = 1

α = 2

α = 3

α = 4

(a) MNIST (b) MNIST

0.2 0.4 0.6 0.8

1

1.5

2

2.5

γmin

D

0.2 0.4 0.6 0.8
0.96

0.97

0.98

0.99

1

γmin

P
su

c

α = 1

α = 2

α = 3

α = 4

(c) CIFAR10 (d) CIFAR10

0.2 0.4 0.6 0.8

0.5

1

1.5

2

2.5

γmin

D

0.2 0.4 0.6 0.8
0.96

0.97

0.98

0.99

1

γmin

P
su

c

α = 1

α = 2

α = 3

α = 4

(e) ImageNet (f) ImageNet

Fig. 3. Success probability Psuc and average distortion D for different values
of parameters α and γmin of BP with 20 iterations.

D. Benchmark

This section compares different attacks mentioned in this
paper, with or without quantization, on various classifiers.

1) Attack evaluation with quantization: Table II summa-
rizes the global statistics of the benchmark. Fig. 4 offers a
more detailed view per dataset with operating characteristic.

In terms of average distortion, all iterative attacks perform
much better than the single-step FGSM. The performances of
C&W are on par with those of I-FGSM, which is unexpected
for this more elaborated attack design. The reason is that C&W
is put under stress in our benchmark. It usually requires a
bigger number of iterations to deliver high quality images.
Note that it is possible to avoid the line search on parameter
λ as shown in row 1×100. However, it requires a fine tuning so
that this single value works over all the images of the dataset.
This is not possible for ImageNet.

DDN and our method BP are clearly ahead of the bench-
mark. DDN yields lower distortion on MNIST at fewer itera-
tions, but its probability of success is not satisfying. DDN is
indeed better than BP only on CIFAR10 at 100 iterations.
Fig. 4 reveals that the two attacks have similar operating
characteristic on all datasets but this is because it refers to
100 iterations.

In terms of success rate, FGSM fails on MNIST; on CI-
FAR10, I-FGSM and PGD2 fail as well; finally on ImageNet,
C&W fails too. DDN also fails on ImageNet at 20 iterations.

Increasing the number of iterations helps but not at the same
rate for all the attacks. For instance, going from 20 to 100
iterations is waste of time for I-FGSM while it is essential for
decreasing the distortion of DDN or making PGD2 efficient on

ImageNet. Most importantly, our attack BP brings a dramatic
improvement in the speed vs. distortion trade-off. Just within
20 iterations, the distortion achieved on ImageNet is very low
compared to the others. Section IV-D4 shows the speed vs.
distortion trade-off in more detail.

Statistics of BP stages are as follows: On CIFAR-10 and
MNIST, Stage 1 takes 7 iterations on average. On ImageNet,
Stage 1 takes on average 3 iterations out of 20, or 8 iterations
out of 100. Appendix B shows examples of images along
with corresponding adversarial examples and perturbations for
different methods.

2) Attack evaluation without quantization: Table III is the
equivalent of Table II but without the integral constraint: the
attack is free to output any real matrix provided that the pixel
values all belong to [0, 1]. When the distortion is large, there
is almost no difference.

When an attack delivers low distortion on average with
real matrices, the quantization may lower the probability of
success. This is especially true with the iterative attacks finding
adversarial examples just nearby the border between the two
classes. Quantization jeopardizes this point and sometimes
brings it back in the true class region. More importantly,
the impact of the quantization on the distortion is no longer
negligible. This is clearly visible when comparing Table III
and Table II for DDN and BP over ImageNet.

Similarly, Fig. 5 is the equivalent of Fig. 4 without the
integral constraint. By comparing the two figures, it can be
seen that PGD2 and C&W, but also DDN and BP, are im-
proving on ImageNet by having significantly lower distortion.
This agrees with measurements of success rate in Table III,
where PGD2 and C&W are not failing as they do in Table II
with quantization. Our BP is still the strongest attack over all
datasets.

3) Attack evaluation on robust models: Table IV is similar
to Table II but is evaluating attacks on robust models. In
particular, on MNIST and CIFAR10, we use the same models
as described in Section IV-A, which we adversarially train
according to [27]. On ImageNet, we use off-the shelf4 In-
ceptionV3 obtained by ensemble adversarial training on four
models [40].

In general, DDN and BP outperform all other attacks in
terms of either average distortion D or success rate Pupp.
On ImageNet in particular, all other attacks have significantly
higher distortion and fail in terms of success rate. DDN has
significantly greater distortion than BP and fails in terms of
success rate at 20 iterations, while at 100 iterations BP still
has lower distortion. DDN and BP have similar performance
on CIFAR10. On MNIST, DDN fails in terms of probability of
success at 20 iterations, while at 100 iterations BP is superior.

Fig. 6 shows a more detailed view of operating characteris-
tics, similarly to Fig. 4 for models trained on natural images.
We can see that BP is still ahead of the competition. It is close
to DDN, but this is because Fig. 6 refers to 100 iterations. The
two attacks outperform all others by a large margin.

4) Speed vs. distortion trade-off: Figure 7(a) is a graphical
view of some results reported in Table II with more choices

4https://github.com/tensorflow/models/tree/master/research/adv imagenet
models

https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

TABLE II
SUCCESS PROBABILITY PSUC AND AVERAGE DISTORTION D WITH QUANTIZATION. PUPP IS THE SUCCESS RATE UNDER DISTORTION BUDGET DUPP = 2

FOR MNIST, 0.7 FOR CIFAR10, AND 1 FOR IMAGENET.

MNIST CIFAR10 ImageNet
Attack # Grads Psuc D Pupp Psuc D Pupp Psuc D Pupp

FGSM 1 0.99 5.80 0.00 0.95 5.65 0.00 0.88 9.18 0.00

I-FGSM 20 1.00 3.29 0.17 1.00 3.54 0.00 1.00 4.90 0.00
100 1.00 3.23 0.18 1.00 3.53 0.00 1.00 4.90 0.00

PGD2
20 1.00 1.80 0.63 1.00 0.66 0.76 0.63 3.63 0.00

100 1.00 1.74 0.66 1.00 0.60 0.84 1.00 1.85 0.00

C&W 5×20 1.00 1.94 0.56 0.99 0.56 0.81 1.00 1.70 0.00
1×100 0.98 1.90 0.57 0.87 0.38 0.76 0.97 2.57 0.00

DDN 20 0.82 1.40 0.70 1.00 0.63 0.74 0.99 1.18 0.05
100 1.00 1.41 0.87 1.00 0.21 0.98 1.00 0.43 0.97

BP (this work) 20 1.00 1.45 0.86 0.97 0.49 0.87 1.00 0.35 0.96
100 1.00 1.37 0.91 0.97 0.30 0.97 1.00 0.28 1.00

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

C&W

DDN

FGSM

I-FGSM

PGD2

BP

(a) MNIST (b) CIFAR10 (c) ImageNet
Fig. 4. Operating characteristics on MNIST, CIFAR10 and ImageNet. The number of iterations is 5× 20 for C&W and 100 for I-FGSM, PGD2, DDN and
our BP.

TABLE III
SUCCESS PROBABILITY PSUC AND AVERAGE DISTORTION D without quantization. PUPP MEASURED AT DUPP = 2 FOR MNIST, 0.7 FOR CIFAR10, AND 1

FOR IMAGENET.

MNIST CIFAR10 ImageNet
Attack # Grads Psuc D Pupp Psuc D Pupp Psuc D Pupp

FGSM 1 0.99 5.81 0.00 0.97 4.78 0.00 0.85 3.02 0.00

I-FGSM 20 1.00 3.22 0.27 1.00 3.54 0.00 1.00 4.47 0.00
100 1.00 3.16 0.29 1.00 3.53 0.00 1.00 4.47 0.00

PGD2
20 1.00 1.76 0.63 1.00 0.51 0.77 0.64 3.94 0.36

100 1.00 1.70 0.66 1.00 0.43 0.85 0.95 1.11 0.61

C&W 5×20 1.00 1.93 0.56 1.00 0.56 0.81 1.00 1.37 0.23
1×100 1.00 1.89 0.57 0.97 0.38 0.84 1.00 1.87 0.06

DDN 20 0.82 1.39 0.70 1.00 0.62 0.74 1.00 0.76 0.95
100 1.00 1.41 0.87 1.00 0.20 0.98 1.00 0.28 0.99

BP (this work) 20 1.00 1.41 0.86 0.97 0.33 0.87 1.00 0.20 1.00
100 1.00 1.35 0.91 0.97 0.18 0.97 1.00 0.16 1.00

of number of iterations between 20 and 100, and only for
ImageNet where our performance gain is the most significant.
Just within 20 iterations, its distortion D is already so much
lower than that of other attacks, that its decrease (-20% at
100 iterations) is not visible in Fig. 7. On the contrary,
more iterations are useless for I-FGSM, and PGD2 achieves
low distortion only with more than 50 iterations. Figure 7(b)
confirms that the probability of success is close to 1 for both
DDN and BP for the numbers of iterations considered.

E. Defense evaluation with adversarial training

We also test under adversarial training [17]. The network
is re-trained with a dataset composed of the original training
set and the corresponding adversarial images. This training
is special: at the end of each epoch, the network is updated

and fixed, then the adversarial images for this new update are
forged by some reference attack, and the next epoch starts
with this new set. This is tractable only if the reference attack
is fast. We use it with FGSM as the reference attack.

It is more interesting to study DDN and BP as alternatives
to FGSM: at 20 iterations, they are fast enough to play the role
of the reference attack in adversarial training. In this case, we
follow the training process suggested by [32]: the model is first
trained on clean examples, then fine-tuned for 30 iterations
with adversarial examples. As shown in Table V, DDN and
BP perform equally better than FGSM on CIFAR10, in terms
of either average distortion or success rate. Among the reliable
attacks (i.e. whose Psuc is close to 1), the worst attack now
requires a distortion three times larger than the distortion of
the worst attack without defense. In the same way, on MNIST,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

C&W

DDN

FGSM

I-FGSM

PGD2

BP

(a) MNIST (b) CIFAR10 (c) ImageNet

Fig. 5. Operating characteristics on MNIST, CIFAR10 and ImageNet without quantization. The number of iterations is 5×20 for C&W and 100 for I-FGSM,
PGD2, DDN and our BP.

TABLE IV
SUCCESS PROBABILITY PSUC , AVERAGE DISTORTION D, AND SUCCESS RATE PUPP UNDER adversarial training WITH PGD AS THE REFERENCE ATTACK,
FOLLOWING [27] FOR MNIST AND CIFAR10; AND ensemble adversarial training [40] FOR IMAGENET. PUPP MEASURED AT DUPP = 2 FOR MNIST, 0.7

FOR CIFAR10, AND 1 FOR IMAGENET.

MNIST CIFAR10 ImageNet
[27] [27] [40]

Attack # Grads Psuc D Pupp Psuc D Pupp Psuc D Pupp

FGSM 1 0.48 5.69 0.05 0.98 6.21 0.00 0.44 2.98 0.00

I-FGSM 20 1.00 4.99 0.08 1.00 4.53 0.00 1.00 4.92 0.00
100 1.00 4.99 0.08 1.00 4.56 0.00 1.00 4.93 0.00

PGD2
20 0.99 2.76 0.19 1.00 1.03 0.41 0.76 2.14 0.00

100 1.00 2.68 0.20 1.00 1.02 0.41 0.98 1.59 0.00

C&W 5×20 0.99 2.75 0.27 0.98 1.41 0.22 0.98 2.85 0.00
1×100 0.94 2.22 0.34 0.60 0.77 0.27 0.97 2.41 0.00

DDN 20 0.43 1.61 0.32 0.97 0.92 0.41 0.99 1.10 0.23
100 1.00 2.12 0.48 1.00 0.87 0.42 1.00 0.34 0.98

BP (this work) 20 1.00 2.17 0.46 1.00 0.94 0.41 1.00 0.35 0.94
100 1.00 2.00 0.51 1.00 0.88 0.43 1.00 0.23 0.99

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

0 2 4 6

0

0.2

0.4

0.6

0.8

1

D

P
su

c

C&W

DDN

FGSM

I-FGSM

PGD2

BP

(a) MNIST (b) CIFAR10 (c) ImageNet ens4

Fig. 6. Operating characteristics of attacks against robust models: adversarial training with PGD as the reference attack [27] for MNIST and CIFAR10, and
ensemble adversarial training [40] for ImageNet. The number of iterations is 5× 20 for C&W and 100 for I-FGSM, PGD2, DDN and our BP.

the distortion of the worst case attack doubles going from 1.37
(baseline) to 2.73 (BP defense). In most cases, BP is a better
defense than DDN, forcing the attacker to have 20% more
distortion. Note that for a given defense, the strongest attack
is almost always BP.

V. CONCLUSION

The main idea of BP is to travel on the manifold defined by
the class boundary while seeking to minimize distortion. This
travel is operated by the refinement stage, which alternates
on both sides of the boundary, but attempts to stay mostly
in the adversarial region. Referring to section II-A, BP is in
effect doing for the success constrained problem what PGD2

is doing for the distortion constrained problem: BP minimizes
distortion on the class boundary manifold (a level set of the
classification loss), while PGD2 minimizes the classification
loss on a sphere (a level set of the distortion).

BP also takes into account the detrimental effect of quan-
tization. By doing so, the amplitude of the perturbation is
controlled from one iteration to another. The main advantage
of our attack is the small number of iterations required to
achieve both reliability (probability of success close to one)
and high quality (low average distortion).

APPENDIX A
PREDICTING DISTORTION AFTER QUANTIZATION

This appendix aims at predicting when the quantization
cancels the perturbation, assuming that they are independent
of each other. Iteration i starts with a quantized image yi ∈ X ,
adds update u ∈ Rn, and then quantizes s.t. yi+1 = Q(yi+u).
Quantization is done by rounding with step ∆ := 1/(L− 1):
yi+1,j = yi,j+ej if uj ∈ (ej−∆/2, ej+∆/2] with ej ∈ ∆Z.
Border effects where yi,j + ej /∈ X are neglected.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

TABLE V
SUCCESS PROBABILITY PSUC , AVERAGE DISTORTION D, AND SUCCESS RATE PUPP UNDER adversarial training DEFENSE WITH I-FGSM, DDN, OR BP AS

THE REFERENCE ATTACK. PUPP MEASURED AT DISTORTION DUPP = 2 FOR MNIST, AND 0.7 FOR CIFAR10.

MNIST CIFAR10
Attack → PGD2 DDN BP PGD2 DDN BP

↓ Defense 20 100 20 100 20 100 20 100 20 100 20 100

baseline
Psuc 1.00 1.00 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97
D 1.80 1.74 1.40 1.41 1.45 1.37 0.66 0.59 0.63 0.21 0.49 0.30
Pupp 0.63 0.66 0.70 0.87 0.86 0.91 0.76 0.84 0.74 0.98 0.87 0.97

FGSM
Psuc 1.00 1.00 0.51 1.00 0.89 1.00 1.00 1.00 1.00 1.00 0.99 1.00
D 1.92 1.85 1.28 1.60 1.92 1.58 0.68 0.62 0.59 0.24 0.67 0.24
Pupp 0.48 0.53 0.44 0.72 0.53 0.73 0.72 0.79 0.80 0.98 0.72 0.99

DDN
Psuc 0.99 1.00 0.29 1.00 0.99 1.00 1.00 1.00 0.98 1.00 1.00 1.00
D 3.03 2.89 1.68 2.38 2.69 2.27 0.95 0.94 0.77 0.71 0.75 0.68
Pupp 0.12 0.14 0.20 0.32 0.28 0.34 0.52 0.52 0.54 0.55 0.56 0.58

BP
Psuc 0.94 0.96 0.36 1.00 0.95 1.00 1.00 1.00 0.97 1.00 1.00 1.00
D 3.14 3.12 1.65 2.81 2.98 2.73 0.96 0.94 0.75 0.70 0.76 0.69
Pupp 0.15 0.15 0.24 0.27 0.25 0.26 0.55 0.55 0.57 0.59 0.56 0.59

20 40 60 80 100
0

1

2

3

4

5

Grad

D

DDN
BP
C&W
I-FGSM
PGD2

(a)

20 40 60 80 100
0.9

0.92

0.94

0.96

0.98

1

Grad

P
su

c

DDN
BP
I-FGSM
PGD2

C&W

(b)
Fig. 7. (a) Average distortion vs. number of iterations on ImageNet. I-
FGSM is not improving with iterations because it is constrained by ε. (b)
Corresponding probability of success.

We now take a statistical point of view where the update is
modelled by a random vector U uniformly distributed over the
hypersphere of radius ρ, the norm of the perturbation before
quantization. The quantization noise is now random, denoted
by Ej ∈ ∆Z for pixel j, introducing a distortion

D2 =

n∑
j=1

(yi+1,j − yi,j)2 =

n∑
j=1

E2
j . (23)

The expectation of a sum is always the sum of the ex-
pectations, whatever the dependence between the summands:
E(D2) =

∑n
j=1E(E2

j) = nE(E2
j). This expectation is not

null if P(|Ej | ≥ ∆) > 0 since E(D2) ≥ n∆2
P(|Ej | ≥ ∆).

This r.v. Ej takes a value depending on the scalar product
Sj := U>cj , where cj is the j-th canonical vector. This scalar
product lies in [−ρ, ρ], so that P(Ej ≥ ∆) = 0 if ∆/2 > ρ.
Otherwise, |Ej | ≥ ∆ when |Sj | ≥ ∆/2, which happens when
U lies inside the dual hypercone of axis cj and semi-angle
θ = arccos(c) with c := ∆/2ρ. The probability of this event

is equal to the ratio of the solid angles of this dual hypercone
and the full space Rn. This quantity can be expressed via the
incomplete regularized beta function I:

P(|Ej | ≥ ∆) =

{
1− Ic2(1/2, (n− 1)/2), if c ≤ 1

0, otherwise

For large n, this probability approximately equals 2Φ(−
√
nc).

In the end, the lower bound of E(D2) after quantization
depends on ∆, n, and ρ the norm of the perturbation before
quantization. When n = 3 ∗ 2992 (i.e. ImageNet), this lower
bound equals ∆2 (i.e. the smallest distortion if not null) for
ρ = 0.1. When the update has a smaller norm, quantization is
likely to kill it, yi+1 = yi, and we waste one iteration.

APPENDIX B
ADVERSARIAL IMAGE EXAMPLES

Fig. 8 shows the worst-case ImageNet examples for BP
along with the images generated by all methods and the cor-
responding normalized perturbations. FGSM has the highest
distortion over all methods and BP the lowest. DDN has the
highest ∞-norm distortion. Observe that for no method is the
perturbation visible, although this is a worst-case example.

APPENDIX C
NETWORKS AND TRAINING PARAMETERS

MNIST [24]. We use a simple network with three con-
volutional layers and one fully connected layer. The first
convolutional layer has 64 features, kernel of size 8 and stride
2; the second has 128 features, kernel 6 and stride 2; the third
has 128 features, kernel 5 and stride 1. It uses LeakyRelu
activation [26]. The loss function is the cross-entropy.

We train the network with the 60, 000 images of the training
set. After a random initialization, training lasts 6 epochs with
batch size 128, learning rate 0.001, and the optimizer is Adam.
Between epochs, the training data are shuffled.
CIFAR10 [21]. We use a simple CNN network with nine
convolutional layers, two max-pooling layers, two dropout
layers, ending in global average pooling and a fully connected
layer. Batch normalization [19] is applied after every convo-
lutional layer. It also uses LeakyRelu. The loss function is

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

original image FGSM: I-FGSM: PGD2: C&W: DDN: BP:
D=6.08 D= 5.05 D= 3.23 D=1.74 D=2.11 D=1.00

D=6.08 D= 4.97 D= 3.23 D=1.84 D=2.02 D=0.86

D=6.07 D= 5.01 D= 3.24 D=2.04 D=1.45 D=0.82

D=6.09 D= 4.98 D= 3.24 D=2.45 D=1.75 D=0.82

D=6.04 D= 5.00 D= 3.22 D=1.82 D=1.67 D=0.81

Fig. 8. Original (left), adversarial (top row) and scaled perturbation (below) images against InceptionV3 on ImageNet. The five images are the worst 5 images
for BP requiring the strongest distortions, yet these are smaller than the distortions necessary with all other methods (The red color means that the forged
image is not adversarial). Perturbations are inverted (low is white; high is colored, per channel) and scaled in the same way for a fair comparison.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

the cross-entropy. All the kernels of the convolutional layers
are initialized with HeReLuNormal initializer, and their kernel
size is 3. For the first three convolutional layers, the number of
filters is 128 and the padding mode is ‘same’. For the following
three convolutional layers, the number of filters is 256 and
the padding mode is ‘same’. For the last three convolutional
layers, the padding mode is ’valid’. The seventh layer has 512
filters, while 256 filters for the eighth layer, and 128 filters for
the last layer. The parameter α for LeakyRelu is 0.1, and the
rate for dropout is 0.5. The pool size of the max pooling layer
is 2, the strides shape is 2 and the padding mode is ‘valid’.
The pool size of the average pooling layer is 2 and the strides
shape is 6 and the padding mode is ‘valid’.

We trained the model with the 60, 000 images of the training
set. After a random initialization, training lasts 200 epochs
with batch size 128, learning rate 0.001, and the optimizer is
Adam. Between epochs, the training data are shuffled.
ImageNet [23]. We use InceptionV3 [36] with the pre-trained
model from TensorFlow-Slim image classification library5.
Robust models - Attack evaluation. We use the same network
for MNIST and CIFAR10, but the training differs. We follow
the adversarial training method [27], i.e. the models are trained
with training data and their adversarial version generated by
PGD2. For MNIST, PGD2 iterates 40 times with ε = 0.3 while
α = 0.01. The training batch size is 50 over 100 epochs. For
CIFAR10, PGD2 iterates 100 times, with ε = 8/255 while
α = 2/255. The training batch size is 128 over 200 epochs.
Between epochs, the training data are shuffled.

The robust model for ImageNet is ensemble adversarial
training [40], which is directly taken from TensorFlow library6.
Robust models - Defense evaluation. The networks on
MNIST and CIFAR10 are the same as before.

On MNIST, it is trained from scratch with the same setup
but with training data and their adversarial examples. FGSM
defense model uses FGSM with ε = 0.3. DDN and BP
defense model use these attacks with 20 iterations and the
same parameters as described in the attack methods.

On CIFAR10, only FGSM defense model is trained from
scratch. For DDN and BP defense model, we follow the
training suggested by [32]. The model is first trained on
clean examples, then fine-tuned for 30 iterations with adver-
sarial examples. The parameters are initialized randomly. The
optimizer is Momentum Optimizer, the initial learning rate
is 0.001 and the momentum is 0.9. It is trained with 200
epochs and the batch size 128. Between epochs, the training
data are shuffled. FGSM defense model uses FGSM with
ε = 0.3. DDN and BP defense model use these attacks with
20 iterations and same parameters as attack methods.

Experiments run on TensorFlow1.8.0-py2.7 over CUDA
9.0.176 ; Cleverhans [30] v2.0.0 produces the existing attacks.

ACKNOWLEDGMENT

T.F. is supported by the ANR-AID chaire SAIDA.

5https://github.com/tensorflow/models/tree/master/research/slim
6https://github.com/tensorflow/models/tree/master/research/adv imagenet

models

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on
matrix manifolds. Princeton University Press, 2009.

[2] L. Amsaleg, J. E. Bailey, D. Barbe, S. Erfani, M. E. Houle, V. Nguyen,
and M. Radovanovic. The Vulnerability of Learning to Adversarial
Perturbation Increases with Intrinsic Dimensionality. In Proc. of WIFS
2017, Rennes, France, December 2017.

[3] A. Azulay and Y. Weiss. Why do deep convolutional networks generalize
so poorly to small image transformations? Technical report, 2018.

[4] M. Barni, K. Kallas, and B. Tondi. A new backdoor attack in cnns
by training set corruption without label poisoning. In 2019 IEEE
International Conference on Image Processing (ICIP), pages 101–105,
Sep. 2019.

[5] S. Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE
Transactions on Automatic Control, 58(9):2217–2229, 2013.

[6] W. Brendel, J. Rauber, and M. Bethge. Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models.
In ICLR, 2018.

[7] R. Caldelli, R. Becarelli, F. Carrara, F. Falchi, and G. Amato. Exploiting
cnn layer activations to improve adversarial image classification. In
2019 IEEE International Conference on Image Processing (ICIP), pages
2289–2293, Sep. 2019.

[8] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In IEEE Symp. on Security and Privacy, 2017.

[9] N. Carlini and D. Wagner. Audio adversarial examples: Targeted attacks
on speech-to-text. Technical report, 2018.

[10] F. Carrara, F. Falchi, R. Caldelli, G. Amato, and R. Becarelli. Adversarial
image detection in deep neural networks. Multimedia Tools and
Applications, 78(3):2815–2835, Feb 2019.

[11] K. Crammer and Y. Singer. On the algorithmic implementation of
multiclass kernel-based vector machines. Journal of Machine Learning
Research, 2(Dec), 2001.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In CVPR, pages 248–255.
Ieee, 2009.

[13] L. Dritsoula, P. Loiseau, and J. Musacchio. A game-theoretic analysis
of adversarial classification. IEEE Trans. Information Forensics and
Security, 12(12):3094–3109, 2017.

[14] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry. A rotation
and a translation suffice: Fooling cnns with simple transformations.
Technical report, 2017.

[15] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard. Robustness of
classifiers: From adversarial to random noise. Technical report, 2016.

[16] T. Furon and P. Bas. Broken arrows. EURASIP Journal on Information
Security, 2008(1), 2008.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv:1412.6572, 2014.

[18] M. Harandi and B. Fernando. Generalized backpropagation, etude de
cas: Orthogonality. Technical report, 2016.

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference
on Machine Learning, 2015.

[20] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2015.

[21] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. Technical report, 2009.

[22] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the
physical world. arXiv:1607.02533, 2016.

[23] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang,
T. Pang, J. Zhu, X. Hu, C. Xie, et al. Adversarial attacks and defences
competition. arXiv:1804.00097, 2018.

[24] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database.
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2,
2010.

[25] J. Li, R. Ji, H. Liu, X. Hong, Y. Gao, and Q. Tian. Universal perturbation
attack against image retrieval. Technical report, 2018.

[26] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In ICML, volume 30, 2013.

[27] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv:1706.06083,
2017.

[28] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal
adversarial perturbations. arXiv:1610.08401, 2016.

[29] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In CVPR, 2016.

[30] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Ku-
rakin, C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan,
K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg,
J. Uesato, W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber, and

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models
https://github.com/tensorflow/models/tree/master/research/adv_imagenet_models

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

R. Long. Technical report on the cleverhans v2.1.0 adversarial examples
library. arXiv:1610.00768, 2018.

[31] E. Quiring, D. Arp, and K. Rieck. Forgotten siblings: Unifying attacks
on machine learning and digital watermarking. In 2018 IEEE European
Symposium on Security and Privacy (EuroS P), pages 488–502, April
2018.

[32] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and
E. Granger. Decoupling direction and norm for efficient gradient-based
l2 adversarial attacks and defenses. Technical report, 2018.

[33] P. Schöttle, A. Schlögl, C. Pasquini, and R. Böhme. Detecting adversarial
examples - a lesson from multimedia security. In 2018 26th European
Signal Processing Conference (EUSIPCO), pages 947–951, Sep. 2018.

[34] M. Sharif, L. Bauer, and M. K. Reiter. On the suitability of lp-norms for
creating and preventing adversarial examples. arXiv:1802.09653, 2018.

[35] C.-J. Simon-Gabriel, Y. Ollivier, B. Schölkopf, L. Bottou, and D. Lopez-
Paz. Adversarial vulnerability of neural networks increases with input
dimension. Technical report, 2018.

[36] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
2818–2826, 2016.

[37] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus. Intriguing properties of neural networks.
arXiv:1312.6199, 2013.

[38] O. Taran, S. Rezaeifar, T. Holotyak, and S. Voloshynovskiy. Defending
against adversarial attacks by randomized diversification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 11226–11233, 2019.

[39] G. Tolias, F. Radenovic, and O. Chum. Targeted mismatch adversarial
attack: Query with a flower to retrieve the tower. In Proc. of ICCV,
2019.

[40] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel.
Ensemble adversarial training: Attacks and defenses. arXiv:1705.07204,
2017.

[41] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. The
space of transferable adversarial examples. arXiv:1704.03453, 2017.

[42] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu. On the
convergence and robustness of adversarial training. In ICML, 2019.

[43] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Trans. on
image processing, 13(4), 2004.

[44] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song. Generat-
ing adversarial examples with adversarial networks. arXiv preprint
arXiv:1801.02610, 2018.

[45] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille. Ad-
versarial examples for semantic segmentation and object detection.
arXiv:1703.08603, 2017.

[46] H. Zhang, S. J. Reddi, and S. Sra. Riemannian svrg: Fast stochastic
optimization on riemannian manifolds. In NIPS, pages 4592–4600, 2016.

Hanwei Zhang received her bachelor’s degree in
computer science in 2015 and the M.Sc. degree in
2017 from East China Normal University. She is now
a Ph.D student of PRogram Of Sino-French Educa-
tion for Research (PROSFER) between East China
Normal University and cole Normale Suprieure de
Rennes. She works at IRISA Rennes under the
supervision of Laurent Amsaleg, Yannis Avrithis and
Teddy Furon in the Linkmedia team.

During the Ph.D, her research focuses on security
issues in machine learning, especially on adversarial

examples for deep learning systems.

Yannis Avrithis received the MSc degree in Com-
munications and Signal Processing from the Uni-
versity of London, UK, in 1994, and the PhD de-
gree from National Technical University of Athens,
Greece, in 2001.

He is currently a Research Scientist at Inria
Rennes-Bretagne Atlantique, carrying out research
on computer vision and machine learning. Before
that he was at the National and Kapodistrian Uni-
versity of Athens and at the National Technical
University of Athens, where he lead the Image and

Video Analysis research team.
He has been involved in 16 European, 5 French and 10 Greek research

projects. He has co-supervised 12 PhD theses and 16 Diploma theses. He
has published 3 theses, 3 edited volumes, 29 articles in journals, 112 in
conferences and workshops, and 8 book chapters.

Yannis Avrithis has contributed to the organization of 23 conferences and
workshops, and is a Reviewer in 15 scientific journals and 15 conferences.
He has been Associate Editor for EURASIP Journal on Image and Video
Processing.

Teddy Furon received the M.Sc. degree in 1998
and the PhD degree in signal processing in 2002,
both from Telecom ParisTech. His fields of interest is
the security related to multimedia, signal processing,
and artificial intelligence.

He has worked both in industry (Thomson, Tech-
nicolor) and academia (Univ. Cath. de Louvain,
Belgium, and now Inria Rennes, France, in the
Linkmedia team). He co-founded of the company
LAMARK protecting rights of photo agencies.

M. Teddy Furon received the Brittany Best Young
Researcher prize in 2006. He is the co-author of 80 conference papers, 20
journal articles, 6 book chapters and 9 patents. He has been Associate Editor
for four journals, including IEEE Trans. on Inf. Forensics and Security.

Laurent Amsaleg received his PhD from the Uni-
versity of Paris 6. He is now a senior researcher
at CNRS. He leads the Linkmedia research group,
at the IRISA/INRIA Lab in Rennes, France. His
research interests include high dimensional indexing
at scale and multimedia analytics, as well as the
many facets of the security issues in relation with
the processing of extremely large collections of mul-
timedia material. Topics dealing with privacy and
adversarial machine learning are therefore central to
his work.

	Introduction
	Contributions.
	Graphical abstract illustrating the attacks.
	Related works

	Problem, background and state of the art
	Problem formulation
	State-of-the-art Attacks

	Method
	Stage 1
	Stage 2
	Discussion

	Experiments
	Parameters of the attacks
	Evaluation protocol
	Experimental investigations
	Quantization
	Parameter Study

	Benchmark
	Attack evaluation with quantization
	Attack evaluation without quantization
	Attack evaluation on robust models
	Speed vs@let@token . distortion trade-off

	Defense evaluation with adversarial training

	Conclusion
	Appendix A: Predicting distortion after quantization
	Appendix B: Adversarial image examples
	Appendix C: Networks and training parameters
	References
	Biographies
	Hanwei Zhang
	Yannis Avrithis
	Teddy Furon
	Laurent Amsaleg

