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Abstract—The challenge in few-shot learning is that available
data is not enough to capture the underlying distribution.
To mitigate this, two emerging directions are (a) using local
image representations, essentially multiplying the amount of
data by a constant factor, and (b) using more unlabeled data,
for instance by transductive inference, jointly on a number
of queries. In this work, we bring these two ideas together,
introducing local propagation. We treat local image features as
independent examples, we build a graph on them and we use
it to propagate both the features themselves and the labels,
known and unknown. Interestingly, since there is a number of
features per image, even a single query gives rise to transductive
inference. As a result, we provide a universally safe choice for
few-shot inference under both non-transductive and transductive
settings, improving accuracy over corresponding methods. This
is in contrast to existing solutions, where one needs to choose the
method depending on the quantity of available data.

I. INTRODUCTION

Few-shot learning [1]-[3] is the problem of learning new
tasks from few examples, possibly transferring knowledge
from previous tasks. Against the mainstream paradigm of
having lots of labeled data in deep learning, it limits not only
the amount of supervision but also the amount of data. Given
the variability of appearance in few-shot image classification
benchmarks, learning from few examples without knowledge
of the underlying distribution is truly challenging.

Few-shot learning has been little studied before deep learn-
ing [4]]. Research on few-shot learning is recently becoming
very popular, but is not very mature. On one hand, it is often
connected to meta-learning [3]] in the sense of learning to
compare [1] or to optimize [6]], giving rise to complex ideas
involving second-order derivatives. On the other hand, it boils
down to representation learning, using e.g. metric learning [7]]
or parametric classifiers [8], followed by nearest neighbor
classifiers at inference [9]].

While there are several approaches on generating more
data [3], [10], global spatial pooling into compact image
representations ignores the rich data that is hidden in each
given example. Each image is inherently a collection of data,
which has been exploited by dense classification (DC) at
representation learning [|11|] and naive Bayes nearest neighbor
(NBNN) [[12] at inference.

Using unlabeled data is another popular direction of re-
search, leveraging existing results from transductive infer-
ence [13]], semi-supervised learning [14] and self-supervised
representation learning [15[]. Graph-based methods are at the
core of this effort, using for instance label propagation [13],
feature propagation [[16]] and graph neural networks [|14].

Inria, Univ Rennes, CNRS, IRISA

Yannis Avrithis Sylvaine Picard

Safran

0.94 —
0.93 —
0.92 —
g 091 |- .
5
Q
B
0.9 —
0.89 |- - ©- Local LP (ours) —@— Local LP+Att (ours)
Global LP —— Global LP+ALtt (ours)
NBNN NBNN+ALtt (ours)
0.88 GAP+Proto ® GAP+Proto+Att (ours) [
| | | | |

10 15

number of queries per novel class

20

Fig. 1. CUB 5-way 5-shot classification accuracy vs. number of queries
per novel class. Our local label propagation (LP) outperforms transductive
and non-transductive baselines in all settings. By contrast, global LP only
competes with non-trasductive methods when at least 10 unlabelled queries
are available. Spatial attention (Att) is also our contribution. We use feature
propagation |[16] for all methods. We use feature pooling for local propagation.
Please see for more details.

This work is an attempt to bridge these two ideas, i.e.,
local representations [[12]] and propagation [16]], into a common
framework. Essentially, NBNN [12] measures the average
similarity of local representations of a given image to local
representations of all images in a class; while feature or label
propagation [16] replaces raw (Euclidean) similarities with
similarities taking into account the manifold structure of the
data distribution, and measures a single manifold similarity
of a given image to a class. Our local propagation combines
both by measuring the average manifold similarity of local
representations of a given image to local representations of all
images in a class.

Concretely, we learn a representation using DC [[11]] and we
apply local propagation at inference, without meta-learning:
We break down the convolutional activations of support and
query images into pieces corresponding to different spatial
positions, consider all these pieces as different examples, and
then apply feature or label propagation [[16] to these examples.
Pieces originating in support examples inherit their labels as in
DC [11]] and NBNN [12], while pieces originating in queries



are unlabeled. Since there are a number of unlabeled pieces
per image, this gives rise to transductive inference even in
the case of a single query image. As shown in this
means that our method is a universally safe choice regardless
of the amount of available unlabeled data.

In summary, we make the following contributions:

o We study graph-based propagation on local (pixel) and
semi-local (clusters) representations across of images for
feature and label propagation for the first time.

o We apply this idea to few-shot learning, effectively gen-
erating more data and propagating through it, bringing
even the case of single queries into transductive inference.

e We show that an extremely simple spatial attention
mechanism is not only essential in our local propagation,
but also brings significant gains in all baselines.

« We show consistent gains in most datasets and settings,
including transductive and non-transductive.

II. RELATED WORK

Few shot learning. While studies before deep learning have
been scarce [4], [[17]], [18], few-shot learning has become
a very popular problem beginning mainly from matching
networks [|1]] and prototypical networks [2]]. Seen as a meta-
learning problem of learning to compare in episodes, these
solutions amount essentially to metric learning, and indeed
such methods have been revisited in the context of few-
shot learning [7], [[19]. Simpler methods have highlighted
the importance of representation learning. These include for
instance nearest-neighbor classifiers without meta-learning [9]
and simple variants of supervised classifiers like a cosine
classifier 8], [20], [21].

More data. Since the main challenge in few-shot learning is
the lack of data, several approaches focus on finding more.
These include augmentation in the feature space [22] or by
combining spatial elements of images [23]], [24]], generation
in the feature space [3] or images [25], [26], image-to-image
translation [10], [27]], using base-class data [28]], [29], or even
true additional data, unlabeled [30] or weakly labeled [31]].
By contrast, we generate more data “for free” by just looking
more carefully within the existing data.

Transductive inference. Another possibility is to consider
multiple queries jointly and exploit their distribution, even
though they are unlabeled. This gives rise to transductive
inference [13[], [32]], [33]. Most well-known are transductive
propagation networks (TPN) [13], which use label propaga-
tion [34] in a meta-learning setting. Recently, this direction
is becoming very popular [[16]], [35]-[40]. Most related to our
work is the very recent embedding propagation [16], which
propagates the features as well as the labels. We do the same
without meta-learning and most importantly, all propagation
is local.

Semi/self-supervised learning. Using unlabeled data in an in-
ductive setting gives rise to semi-supervised learning by using
pseudo-labels [41]], graph-based methods [[14]], or feature-space
augmentation [22], [42]. It is also common to use auxiliary

unsupervised objectives like rotation [15], [22]]. While we do
not address an inductive setting, our work is a direct exten-
sion of graph-based methods, hence it can be applied to an
inductive setting too, much like label propagation itself [43],
or combined with any other objective.

Attention. It is common to use attention and adaptation
mechanisms in the feature space [1f], [21]], [44[]-[47]. However,
despite being the subject of a pioneering work in 2005 [4],
looking at local information in images has not been studied
more recently in few-shot learning, until dense classification
(DC) [11] and naive Bayes nearest neighbor (NBNN) [12]. We
use the former for representation learning. The latter is similar
to our work in using local representations at inference, the
difference being that we apply propagation. These works have
been followed by studies on spatial attention [48]-[51] and
alignment [52]]-[55]]. We experiment with an extremely simple
spatial attention mechanism in this work, which requires no
learning and boosts significantly all baselines.

Local propagation. Whatever is propagated (similarities,
features, or labels), there are two extremes in graph-based
propagation. At one extreme, vertices are global represen-
tations of images, and the graph represents a dataset. This
can be used e.g. for similarity search [56] or semi-supervised
classification [|34], [57]. At the other extreme, vertices are local
representations of pixels in an image, which can be used e.g.
for interactive [58], [59] or semantic [60] segmentation, or
both [61]]. Regional representations across images have been
used for similarity search [62], but we believe we are the
first to use local (pixel) or semi-local (clusters) representations
across images for feature or label propagation.

III. PRELIMINARIES

Problem. A few-shot classification task comprises a dataset
D = {(xi,yi)}; of support examples x; € X and labels
yi, where X is an input space. Each label is represented by a
one-hot vector y; := ey,, where {e;}_; is the standard basis
of R¢, ¢; € C is a label index and C := [] := {1,...,c}
is a set of novel (unseen) classes. The number n of support
examples is assumed to be small. The most common setting
is s examples per novel class, with e.g. s € {1,5,10}, so
that n = cs, referred to as c-way, s-shot classification. The
objective of the task is to learn a classifier f : X — RS on
the support data D. This classifier maps a new query example
x from X to a probability distribution p = f(x). A discrete
prediction w(p) in C follows, where
7(p) := argmax p; (1
J€lc]
is the class of of maximum probability and p; is the j-th
element of p.

Before we are presented with few-shot classification tasks,
we are given a dataset D := {(X;,¥:)}i, of training
examples x; € X and labels y; = €., where Zi € C and
C := [¢] is a set of base classes, disjoint from C'. The number
n of training examples is assumed to be large enough to
learn a representation of data in X, or otherwise accumulate



knowledge that facilitates solving new tasks. We call this
process base training. The problem of few-shot classification
amounts to designing both the base training process given D
and how to solve new tasks given D.

Transductive setting. It is possible that in each few-shot
classification task we are given a set Q) := {q;}/_, of query
examples and a prediction is required for all queries in Q).
In this case, although query examples are unlabeled, we can
take advantage of this additional data and learn a classifier f
that is a function of both the labeled support data D and the
unlabeled queries ). This transductive setting implies semi-
supervised learning.

Representation. The classifier is built on top of an embedding
function ¢g : X — R"¥¢, with parameters 6 that are learned at
base training. Given an example x € &, this function yields a
r X d feature tensor ¢g(x), where r represents the dimensions
of a spatial domain 2 and d the feature dimensions. For X
comprising 2D images, the feature is a w X h X d tensor that
is the activation of the last convolutional layer, r := w X h is
the spatial resolution and 2 := [w] x [h] is the spatial domain.
The feature can still be a vector in R? in the special case
r = 1, e.g. using global spatial pooling. The feature tensor
F := ¢p(x) contains a feature vector F'(r) = ¢g(x)(r) € R?
for each spatial position r € 2.

IV. BACKGROUND

Cosine classifier. Initially used in face verification [63], [64],
a simple form of base training that was introduced to few-
shot learning independently by Qi et al. [20] and Gidaris
and Komodakis [21f], is to learn a parametric linear classifier
that consists of a fully-connected layer without bias on top of
the embedding function ¢y, followed by softmax and cross-
entropy. If W := (w;)%_, is the collection of class weights
with w; € R"¥9, the classifier is defined by

fow (x) := o (pleos(¢p(x), W;)]5—1) . @)
for x € X, where cos is cosine similarity, p € RT is
a trainable scale parameter and o : R™ — RY' is the
softmax function o (a) := (e®,...,e%)/ > e for a € R®.
The representations (features and class weights) either retain
resolution r > 1 and are flattened to vectors of length rd, or
are pooled to vectors of length d (r = 1), by global spatial
pooling. Base training amounts to minimizing the cost function
J(D;0, W) Zé fow (%), :) 3)
over 6, W, where {(p,y) := —log {y,p) fory € {0,1}¢ and
p € Rﬁ_, is the cross-entropy loss.
Prototypes. A popular classifier for few-shot classification
tasks is the prototype classifier, introduced by Snell et al. [2].
If Z; := {i € [n] : y; = e;} denotes the indices of support
examples labeled in class j, then the prototype of this class j
is given by the average features

py = |I| Z% x;) )

of those examples for j € C. Again, features are either
flattened or pooled to vectors first. Then, denoting by M :=
(p; j )¢ =1 the collection of prototypes, a query x € X' is mapped
to fg,n(x), as defined by (2).

Naive Bayes nearest neighbor (NBNN). In the revival [12]
of the classic image-to-class approach [65]], one collects, for
each class j € [c], the features V} := {¢g(x;)(r) }icz, req of
all spatial positions of all support examples labeled in class j.
Then, given a query x € X with feature tensor F' := ¢y (x),
for each class j, a score

=2 >

reQ veNNy, (F(r))

cos(F(r),v) 3

is defined as the average cosine similarity over the features
F(r) at all spatial positions r € ) and their k-nearest
neighbors NNy, (F(r)) in Vj. Then, the prediction for x is
the class of maximum score.

V. LOCAL PROPAGATION

A. Base training

Dense classifier. We use a dense classifier for base training,
introduced by Lifchitz er al. [[11]. Rather than flattening or
pooling, the classifier fow : X — R:_Xé maps an example x
to a tensor of probabilities over spatial positions, by applying
a cosine classifier (2) densely at each position

fow (%) = [o (pleos(do(x)(r), W))l5=1)] e (©)

where the class weights W are shared over locations with
w; € R?. Cross-entropy applies to all spatial positions using
the same class label, and cost function (3) becomes

J(D;0,W) szfewxz

i=1reQ

Vi) (7

Local spatial pooling. Dense classification avoids global
spatial pooling by going to the other extreme of applying the
loss to every position. This happens regardless of whether the
effective receptive field is large enough to represent the class
at hand, so it assumes an appropriate resolution of the feature
tensor. However, it has been observed that it helps to use input
images of higher resolution than the standard benchmarks [66],
which we follow. This results in features of accordingly higher
resolution, where each position corresponds to small details.
We solve this by applying local spatial pooling on the feature
tensor, both before dense classification at base training as well
as at new classification tasks.

B. Few-shot classification

Spatial attention. Before we can use features of all spatial
positions as data, it is important to suppress the background,
which appears frequently across positions and images, without
being discriminative for the classification task. There are
different approaches, such as learning a class-agnostic spatial
attention mechanism [48]], [49] or simply by a form of pooling
over feature channels [67]. We follow the latter approach.



Fig. 2. Examples of images, each with the corresponding spatial attention
heatmap and clusters used in feature pooling (black indicates regions below
threshold in the heatmap). The first two lines correspond to CUB, the last
two to minilmageNet. We use 7 = 0.3 for spatial attention and m = 10 for
feature pooling.

In particular, given an example x € X with feature tensor
F := ¢g(x), we select a subset of feature vectors a(F) C R?
at spatial positions r € €2 where the ¢5-norm is at least 7 > 0
relative to the maximum over the domain:

a(F) = {F(x) : [F(o)l| = 7max | F(t) |, r € Q). (®)

Examples are shown in [Figure 2| We find this mechanism par-
ticularly effective for its simplicity, not only for our method,
but also for all baselines. No spatial attention is a special case
where 7 = 0.

Feature pooling. Propagation tends to amplify elements that
appear frequently in a dataset. Local propagation does the
same for elements originating from different spatial positions,
which in turn depends on the scale of objects relative to
the spatial resolution. This can be particularly harmful with
elements originating from background clutter and bypass con-
dition (8), exactly because they appear frequently.

To obtain a fixed-size representation that only depends on
the content, we perform pooling in the feature space into a
fixed number of vectors per example. We do so by clustering:
given an example x € & with selected feature vectors
a(¢e(x)) (8), we obtain m clusters by k-means. We represent
the corresponding m feature centroids as columns in the d xm
matrix gg(x). Examples are shown in We use this
representation only for local propagation. Global propagation
and no feature pooling are special cases where m = 1 and
m = w X h respectively.

Local propagation. We develop this idea under the transduc-
tive setting because it is more general: The non-transductive
is the special case where ¢ = 1, the set of queries @ = {q;}
is singleton and we are making a prediction for q;. Given the
support examples in D and queries (), we represent the feature
centroids of both as columns in the d X ¢ matrix

V= ( go(x1) g0(aq) ) 9

90(Xn) go(d1)

%]
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Fig. 3. Examples of CUB query images in 5-way 5-shot non-transductive
tasks, each followed by the heatmap of predicted probability for the correct
class using a prototype classifier, then using local label propagation. (a), (b)
Local label propagation helps classifying to the correct class. (c) Both give a
correct prediction. (d) Local label propagation fails.

£

where ¢ := (n + ¢)m. Following [62], we use the pair-
wise similarity function s(vi,va) = [cos(vi,vz)]] where
~v > 1, and construct the reciprocal k-nearest neighbor graph
of the columns of V, represented by the ¢ x ¢ symmet-
ric nonnegative adjacency matrix Wy with zero diagonal.
Following , this matrix is symmetrically normalized as
Wy := Dy Wy Dy /%, where Dy := Wi/ 1, is the degree
matrix of the graph and 1, is the ¢ x 1 all-ones vector.

Extending , given any matrix A € R“*? (or row vector
for u = 1), its propagation on V is defined as

pr(A) == A(1 — a)(I — aWy) "L (10)

This is a smoothing operation on the graph of V, where
parameter o € [0,1) controls the amount of smoothing:
Columns of A corresponding to similar columns of V' are
averaged together. It is infinitely-recursive, as revealed by the
series expansion of the matrix inverse [34].

The operation (T0) is called local propagation because the
graph is defined on local representations originating from
different spatial positions of the given images. Global propa-
gation is the special case of having m = 1 cluster per image.
This is the same as global average pooling (GAP), with or
without spatial attention.

Local feature propagation. Using A = V, u = d in (10},
local feature propagation amounts to propagating V' on itself:

(1)

in the sense that similar feature vectors in columns of V are
averaged together, becoming even more similar. No feature
propagation is a special case where a =0, V =V.

Vi=py(V),

Local label propagation. Given the propagated features
\%4 1i we form a new graph with normalized adjacency
matrix W\7' Extending , we form the ¢ X t zero-one
label matrix Y with one row per class and one column per
spatial position over support examples and queries. A column
corresponding to a spatial position of a support example x; is
defined as the one-hot label vector y;; a column corresponding
to a position of a query q; is zero:

Y = ( YI]-yTn Yn]-yTn Ocxm Ocsxcm ) (12)



where O.x,, is the ¢ X m zero matrix and there are ¢ such
matrices. Using A =Y, u = c in (10), local label propagation
then amounts to propagating Y on V:

Y =pp(Y), 13)

such that spatial positions with similar feature vectors obtain
similar class scores. This may make little difference on labeled
(support) examples, but is a mechanism for spatial positions
of unlabeled (query) examples to obtain label information as
propagated from spatial positions of labeled examples with
similar features.

Inference. In ¢ x ¢ matrix Y’ l) there is one row per class
and one column per spatial position over support examples and
queries. Y is nonnegative; by column-wise ¢;-normalizing it
into ¢ x ¢ matrix Y, we can interpret columns as probability
distributions over classes per position. For each query example
q, if ffl is the corresponding ¢ X m submatrix of Y, we
average these distributions over positions, obtaining a distri-
bution p; := Yilm /m. Finally, as in , we make a discrete
prediction 7(p;) = arg max;¢[q pi; as the class of maximum
probability. This operation is similar to NBNN (5], but the
quantities being averaged have undergone propagation rather
than being direct similarities. shows examples of
predicted probability for the correct class per spatial location.
Local label propagation results in spatially smooth predictions
that covers a large portion of the object.

VI. EXPERIMENTS

A. Experimental setup

Datasets. We evaluate our method on two datasets that are
common in few-shot learning. The first, MinilmageNet, is a
subset of ImageNet ILSVRC-12 [68]]. It contains 600 images
for each of its 100 classes. Following the work of Ravi and
Larochelle [|69]], we use 64 classes for base training, 16 classes
for validation and 20 classes for test. We resample all images
to 224 x224, similarily to [8]], [66]. The second dataset, CUB-
200-2011 [70]], referred to as CUB below, was introduced to
few-shot learning by Hilliard er al. [71]. It contains 11,788
images from 200 distinct bird species. Following the splits of
Ye et al. [[72]], we use 100 classes for base training, 50 for
validation and 50 for testing. We crop images using bounding
box annotations and resample them to 224 x224.

Network. We test our method on a ResNet-12 embedding
network. Introduced in [46], this network is now commonly
used in the few-shot learning community. With input images of
size 224 x 224, the embedding features are tensors of resolution
14 x14. To adapt the the larger images before applying a dense
classifier [[I1], we apply average pooling on these feature
tensors, with kernel size 3x3 and stride 1 without padding.
The resulting tensors are of resolution 12x12.

Base Training. We train the network from scratch using
stochastic gradient descent with Nesterov momentum on mini-
batches of size 32. The learning rate schedule is set according
to the 5-way 5-shot validation accuracy.
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Fig. 4. Spatial attention on GAP+Proto [2]: 5-way few-shot classification
accuracy vs. threshold 7, relative to 7 = 0 (no attention).

Evaluation protocol. For each dataset, we obtain a unique
embedding network resulting from base training. All methods
are then applied to the same features. For all experiments, we
sample 2000 5-way few-shot tasks from the test set, each with
15 queries per class. We report average accuracy as well as
95% confidence interval. We evaluate two different settings: In
the non-transductive setting, queries are treated as 75 distinct
sets (Q with only one query each, whereas in the transductive
setting, there is a single set () with all 75 queries.

Baselines. In the non-transductive setting, we compare our
method with variants of four existing few-shot inference
methods. The first, referred to as GAP+Proto, applies global
average pooling (GAP) on feature tensors and then uses a
prototype classifier [2]] on the support set @). The second is
the inference mechanism of the matching network [1], while
the third, referred to as Local Match, is a modified version
as follows. For each support example x with feature tensor
F := ¢9(x), we use local feature vectors F'(r) at all positions
r € 2 as independent support examples, with the same label
as x. We do the same on queries and average the class score
vectors over positions. The fourth is the inference mechanism
of NBNN [12]] @) For each method, we experiment with and
without our spatial attention mechanism (8). For Local Match
and NBNN, we select a subset of local features per image. For
GAP+Proto and Matching Net, we apply GAP to the selected
subset only.

In the transductive setting, we compare with the inference
mechanism of global label propagation [13], [16], with and
without global embedding propagation [16]]. These baselines
are again evaluated with and without spatial attention. We
always include spatial attention in our local propagation, but
we experiment with and without feature pooling, with and
without feature propagation.

B. Ablation studies

Overall, our method has five parameters. Two refer to
optional components related to local information: the threshold
7 for spatial attention and the number of clusters m for feature
pooling. The other three refer to propagation, like all related
methods dating back to [34]]: the number of neighbors % in the



1072

2 [~| —e— CUB I-shot .
- - CUB 5-shot
» 19| —e— MI I-shot - 7
£ - ®- MI 5-shot
5 1 .
<
o
2
g 05 .
2
0 — .
05 b1 | | | | | [

Fig. 5. Spatial attention on our local label propagation, including feature
pooling and feature propagation: 5-way few-shot classification accuracy vs.
threshold 7, relative to 7 = 0 (no attention). All other parameters fixed to
optimal.

graph, the exponent -y in the feature similarity function and «,
controlling the amount of the smoothing. For all experiments,
we perform a fairly exhaustive parameter search over a small
set of possible values per parameter and we make choices
according to validation accuracy. We present a summary of
parameter search independently for 7 and m, keeping other
parameters fixed to the optimal.

Spatial Attention. As shown in |[Figure 4| referring to
GAP+Proto baseline, there is an optimal range of 7 in
[0.3,0.5], such that we filter out the uniformative local feature
without removing too much information. The same behavior

appears in referring to our best method for each
setting. For the remaining of the experiments, we fix 7 to 0.3.

Feature pooling. This is a compromise between global pool-
ing and a full set of local features per image, which brings a
consistent small improvement compared to both, while making
local propagation more efficient by limiting the graph size.
According to referring again to our best method for
each setting, there is an optimal number m of clusters that
depends on the dataset and setting (transductive or not, 1/5-
shot). On CUB, we use m = 40 for 1-shot and m = 60 for
5-shot. On minilmageNet, we use m = 60 in both cases.

Propagation parameters. Propagation has been extensively
researched in the past, so we do not report the study of its
parameters. It is known for instance that o should be close to 1
and there is a local maximum with respect to k, which depends
on the quantity of the data [62]]. After parameter search, for
most experiments we set « = 0.9, y =4, and k =5, k£ = 50
respectively for global and local propagation.

C. Results

presents a complete set of results our method and
baselines in different settings, using different options. We
discuss the effect of our contributions below.

Spatial attention. We use spatial attention with our method
but we also combine it with baselines for fair comparison.
It is an extremely simple mechanism that consistently im-
proves few-shot classification accuracy in most cases, includ-

—e— CUB I-shot - ®- CUB 5-shot —&— CUB 1-shot TR - ©- CUB 5-shot TR
—&— MI I-shot - @- MI 5-shot MI 1-shot TR MI 5-shot TR
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Fig. 6. Feature pooling on our local propagation: 5-way few-shot classification
accuracy vs. number of clusters m, relative to m = 10 for better visualiza-
tion. TR: transductive. We use spatial attention in all settings and feature
propagation only in transductive. All other parameters fixed to optimal.

ing global or local, with propagation or not, transductive or
not. The only exception is Local Match on minilmageNet. The
gain is more pronounced on 1-shot tasks, which is expected as
information selection is more important when information is
scarce. It reaches 3% for the baselines and 2% for propagation
on CUB, as well as 1% on minilmageNet.

Feature pooling. Clustering the set of local features into a
given number of clusters for each image is bringing small ac-
curacy improvements when combined with propagation, local
or global. In particular, spatial attention and feature pooling
brings a 0.30% to 0.75% increase of accuracy compared
to spatial attention alone on CUB (transductive and non-
transductive). An exception is minilmageNet non-transductive
where feature pooling gives slightly worse accuracy by an
insignificant margin.

Label propagation. In the non-transductive setting, global
label propagation fails. Its performance is similar or inferior
to GAP+Protonet. This is to be expected, as this is method a
transductive method, so it is not a natural choice given only
one query. By contrast, our local label propagation succeeds
even in this setting, with up to 2.7% improvement on CUB
5-way 1-shot compared to GAP+Proto. One exception is
minilmageNet 5-way 1-shot, where GAP+Proto is better by
a small margin; in this case however, the other local baselines
(Local Match and NBNN) are worse than both GAP+Proto
and our local label propagation, by a larger margin.

In the transductive setting, label propagation, global or
local, always helps by using unlabeled data. Our local label
propagation with spatial attention and feature pooling im-
proves 5-way 1-shot accuracy over the non-transductive setting
by 6% and 5.5%, on CUB and minilmageNet respectively. This
improvement is lower for 5-shot tasks as more labeled data are
used. Compared with global label propagation, it improves by
up to 1.5% on 5-shot, CUB and minilmageNet.

Feature propagation. In the non-transductive setting, feature
propagation is mostly harmful, especially when used with



our local label propagation, which remains the best option,
together with feature pooling. In the transductive setting
however, it helps both global and local label propagation, the
only exception being 5-shot, minilmageNet. In the case of
local label propagation with feature pooling, the gain is up to
2% and 1.5% on 1-shot, CUB and minilmageNet respectively.
Therefore this combination is the most effective, improving
over our best non transductive result by 8% and 6.5% on 1-
shot, CUB and minilmageNet respectively.

Universality. As shown in [Figure 1| our local label propaga-
tion is a universally safe choice for few-shot inference under
both transductive and non-transductive settings. This is in
contrast to existing methods such as global label propagation,
where the user needs to make decisions depending on the
amount of unlabeled data that is available.

Comparison to existing methods. also includes a
number of recent few-shot learning methods. For fair com-
parison, all reported results are using the same ResNetl2 as
embedding network. We observe that our baseline GAP+Proto
is better than these models on non-transductive 5-shot classi-
fication on minilmageNet. Our method is then outperforming
those models as well. In the transductive setting, global
propagation is weaker than existing methods, but our best
setting of local propagation (including spatial attention, feature
pooling, feature propagation and label propagation) is stronger
in general. The only exception is 1-shot classification on CUB,
where LR+ICI [[13] is stronger by a small margin.

In parallel with this work, two methods appeared very
recently, which are stronger than our solution on minilmageNet
but weaker on CUB: (1) DGPN [40], which is yet another
graph-based method and could be easily integrated with our
local propagation. (2) DeepEMD [55]], which is based on pair-
wise image alignment. This is more challenging to integrate,
for instance one would need to use alignment in the definition
of the graph itself. This can be interesting future work.

VII. CONCLUSION

Our local propagation framework takes the best of both
worlds: more data from local representations and better use of
this data from propagation. It provides a unified solution that
works well given few labeled data and an arbitrary number of
unlabeled data. As a result, it works better that solutions meant
for the standard few-shot inference and at the same time better
than solutions meant for transductive few-shot inference. Two
secondary contributions are extremely simple and effective: (a)
our feature pooling helps control the additional cost related to
local features, while improving performance in most cases;
(b) our spatial attention helps not only our method but all
baselines too, by a significant margin on 1-shot classifica-
tion. Our solution only affects inference, so it can easily be
plugged into any alternative representation learning method. It
is general enough to integrate other state-of-the-art solutions,
like pairwise image alignment, other forms of propagation and
propagation on several layers.

CUB minilMAGENET

METHOD AP 1-sHOT 5-SHOT 1-sHOT 5-SHOT
GAP+Proto [2] 74.854+048 90.38+027 63.39+046 81.214032
GAP+Proto [2] v 77.104+047 91.24+026 64.224045 81.714031
Matching Net [1] 74854048 89.23+029 63.39+046 78.144033
Matching Net [1] v 77.10+047 89.954028 64.22+045 78.704033
Local Match [1]] 75.92+046 89.164028 64.05+046 78.454034
Local Match [1]] v 78294045 90.60+026 63.58+046 78.014035
NBNN [12] 76.214+045 89.59+027 64.90+045 79.744032
NBNN [12] v 79.14+044 91404025 65.18+045 80.004031

GLOBAL LABEL PROPAGATION, NON-TRANSDUCTIVE

74.694+048 87.964030 63.39+046 75.89+4036
Propagation v 76.94+047 89.14+030 64.22+045 76.40+036
v V' 77234046 88.78+031 63414045 T77.04+037

LocAL LABEL PROPAGATION (THIS WORK), NON-TRANSDUCTIVE

78.24+044 91.074026 65.52+045 80.494031
Propacation v 79.02+044 91.814025 65.74+045 81.13+031
pag v v 79774044 9207025 65.59+045  80.73+031
v v v 79324044 91.52+025 64.43+045 80.264032
GLOBAL LABEL PROPAGATION, TRANSDUCTIVE
83.64+048 90.63+027 70.074+051 80.96+0.34
Propagation v 85.52+046 91.67+027 70.67+051 81.44+033
v v 87.18+046 91.88+027 72.54+054 81.38+035
LocCAL LABEL PROPAGATION (THIS WORK), TRANSDUCTIVE
83.044+043 91.89+025 69.954+048 82.13+031
Propagation v 85.334+042 92.50+025 71.004048 82.87+0.30
Pag v v 85.80+041 92924024 71124048 82.83+031
v v v 8777+0a1 93.35+023 72.57+051 82.76+033
OTHER MODELS, NON-TRANSDUCTIVE
SNAIL [44] - - 55.714099 68.8840.92
TADAM [46] - - 58.50+030 76.7040.30
DC+IMP [11] - - 62.534+0.19  79.77+0.19
Neg-Cosine [73] - - 62.334+082  80.94+0.59
OTHER MODELS, TRANSDUCTIVE

TPN [13] - - 59.46 75.65

LR+ICT [39] 88.06 92.53 66.80 79.26
EPNet [16] 82.854+081 91.324+041 66.50+089 81.06+0.60

TABLE 1

5-WAY FEW-SHOT CLASSIFICATION ACCURACY, COMPARING OUR LOCAL
(FEATURE AND LABEL) PROPAGATION TO BASELINES AND EXISTING
WORK. A: SPATIAL ATTENTION (OUR WORK, ALSO APPLIED TO
BASELINES). P: FEATURE POOLING (CLUSTERING) (OUR WORK). F:
FEATURE PROPAGATION [16]].
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