
AlignMixup: Improving Representations By Interpolating Aligned Features

Shashanka Venkataramanan1 Ewa Kijak1 Laurent Amsaleg1 Yannis Avrithis2
1Inria, Univ Rennes, CNRS, IRISA 2 Athena RC

Abstract

Mixup is a powerful data augmentation method that in-
terpolates between two or more examples in the input or
feature space and between the corresponding target labels.
However, how to best interpolate images is not well de-
fined. Recent mixup methods overlay or cut-and-paste two
or more objects into one image, which needs care in se-
lecting regions. Mixup has also been connected to autoen-
coders, because often autoencoders generate an image that
continuously deforms into another. However, such images
are typically of low quality.

In this work, we revisit mixup from the deformation
perspective and introduce AlignMixup, where we geomet-
rically align two images in the feature space. The cor-
respondences allow us to interpolate between two sets of
features, while keeping the locations of one set. Interest-
ingly, this retains mostly the geometry or pose of one im-
age and the appearance or texture of the other. We also
show that an autoencoder can still improve representa-
tion learning under mixup, without the classifier ever see-
ing decoded images. AlignMixup outperforms state-of-the-
art mixup methods on five different benchmarks. Code
available at https://github.com/shashankvkt/
AlignMixup_CVPR22.git

1. Introduction

Data augmentation [10, 36, 43] is a powerful regular-
ization method that increases the amount and diversity of
data, be it labeled or unlabeled [16]. It improves the gen-
eralization performance and helps learning invariance [49]
at almost no cost, because the same example can be trans-
formed in different ways over epochs. However, by operat-
ing on one image at a time and limiting to label-preserving
transformations, it has limited chances of exploring beyond
the image manifold. Hence, it is of little help in combating
memorization of training data [67] and sensitivity to adver-
sarial examples [53].

Mixup operates on two or more examples at a time, in-
terpolating between them in the input space [69] or fea-
ture space [58], while also interpolating between target la-

Image 1 Input mixup [69] CutMix [65]

Image 2 Manifold mixup [58] AlignMixup (Ours)

Figure 1. Different mixup methods. AlignMixup retains the pose
of image 2 and the texture of image 1. This different from overlay
(Input and Manifold mixup) or combination of two objects (Cut-
Mix). Manifold mixup and AlignMixup visualized by a decoder
(subsection 3.3) that is not used at training.

bels for image classification. This flattens class represen-
tations [58], reduces overly confident incorrect predictions,
and smoothens decision boundaries far away from training
data. However, input mixup images are overlays and tend
to be unnatural [65]. Interestingly, recent mixup methods
focus of combining two [32, 65] or more [31] objects from
different images into one in the input space, making effi-
cient use of training pixels. However, randomness in the
patch selection and thereby label mixing may mislead the
classifier to learn uninformative features [57], which raises
the question: what is a good interpolation of images?

Bengio et al. [3] show that traversing along the manifold
of representations obtained from deeper layers of the net-
work more likely results in finding realistic examples. This
is because the interpolated points smoothly traverse the un-
derlying manifold of the data, capturing salient characteris-
tics of the two images. Furthermore, [4] show the ability of
autoencoders to capture semantic correspondences obtained
by decoding mixed latent codes. This is because the au-
toencoder may disentangle the underlying factors of varia-
tion. Efforts have followed on mixing latent representations
of autoencoders to generate realistic images for data aug-

https://github.com/shashankvkt/AlignMixup_CVPR22.git
https://github.com/shashankvkt/AlignMixup_CVPR22.git


mentation. However, these approaches are more expensive,
requiring three networks (encoder, decoder, classifier) [4]
and more complex, often also requiring an adversarial dis-
criminator [2, 39]. More importantly, they perform poorly
compared to standard input mixup on large datasets [39],
due to the low quality of generated images.

In this work, we are motivated by the idea of deformation
as a natural way of interpolating images, where one image
may deform into another, in a continuous way. Contrary to
previous efforts, we do not interpolate directly in the input
space, we do not limit to vectors as latent codes and we do
not decode. We rather investigate geometric alignment for
mixup, based on explicit semantic correspondences in the
feature space. In particular, we explicitly align the feature
tensors of two images, resulting in soft correspondences.
The tensors can be seen as sets of features with coordinates.
Hence, each feature in one set can be interpolated with few
features in the other.

By choosing to keep the coordinates of one set or the
other, we define an asymmetric operation. What we obtain
is one object continuously morphing, rather than two ob-
jects in one image. Interestingly, observing this asymmetric
morphing reveals that we retain the geometry or pose of the
image where we keep the coordinates and the appearance
or texture of the other. Figure 1 illustrates that our method,
AlignMixup, retains the pose of image 2 and the texture of
image 1, which is different from existing mixup methods.
Note that, as in manifold mixup, we do not decode, hence
we are not concerned about the quality of generated images.

We make the following contributions:

1. We introduce a novel mixup operation, called Align-
Mixup, advocating interpolation of local structure in
the feature space (subsection 3.2). Feature tensors are
ideal for alignment, giving rise to semantic correspon-
dences and being of low resolution. Alignment is effi-
cient by using Sinkhorn distance [11].

2. We also show that a vanilla autoencoder can further
improve representation learning under mixup training,
without the classifier seeing decoded clean or mixed
images (section 4).

3. We set a new state-of-the-art on image classification,
robustness to adversarial attacks, calibration, weakly-
supervised localization and out-of-distribution detec-
tion against more sophisticated mixup operations on
several networks and datasets (section 4).

2. Related Work

Mixup [69], concurrently with similar methods [30, 56],
introduce mixup, augmenting data by linear interpolation
between two examples. While [69] apply mixup on inter-
mediate representations, it is [58] who make this work, in-
troducing manifold mixup. Without alignment, the result is

an overlay of either images [69] or features [58]. [23] elimi-
nate “manifold intrusion”—mixed data conflicting with true
data. Unlike manifold mixup, AlignMixup interpolates fea-
ture tensors from deeper layers after aligning them.

Nonlinear mixing over random image regions is an al-
ternative, e.g. from masking square regions [14] to cutting
a rectangular region from one image and pasting it onto
another [65], as well as several variants using arbitrary re-
gions [25, 52, 54]. Instead of choosing regions at random,
saliency can be used to locate objects from different images
and fit them in one [31, 32, 44, 57]. Exploiting the knowl-
edge of a teacher network to mix images based on saliency
has been proposed in [12]. Instead of combining more than
one objects in an image, AlignMixup attempts to deform
one object into another.

Another alternative is Automix [72], which employs a
U-Net rather than an autoencoder, mixing at several layers.
It is limited to small datasets and provides little improve-
ment over manifold mixup [58]. StyleMix and StyleCut-
Mix [28] interpolate content and style between two images,
using AdaIN [29], a style transfer autoencoder network. By
contrast, AlignMixup aligns feature tensors and interpolates
matching features directly, without using any additional net-
work.

Alignment Local correspondences from intra-class align-
ment of feature tensors have been used in image registra-
tion [9, 40], optical flow [61], semantic alignment [24, 46]
and image retrieval [50]. Here, we mostly use inter-class
alignment. In few-shot learning, local correspondences be-
tween query and support images are important in finding
attention maps, used e.g. by CrossTransformers [15] and
DeepEMD [68]. The earth mover’s distance (EMD) [47], or
Wasserstein metric, is an instance of optimal transport [59],
addressed by linear programming. To accelerate, [11] com-
putes optimal matching by Sinkhorn distance with entropic
regularization. This distance is widely applied between dis-
tributions in generative models [18, 42].

EMD has been used for mixup in the input space, for
instance point mixup for 3D point clouds [6] and OptTrans-
Mix for images [72], which is the closest to our work. How-
ever, aligning coordinates only applies to images with clean
background. We rather align tensors in the feature space,
which is generic. We do so using the Sinkhorn distance,
which is orders of magnitude faster than EMD [11].

3. AlignMixup
3.1. Preliminaries

Problem formulation Let (x, y) be an image x ∈ X with
its one-hot encoded class label y ∈ Y , where X is the input
image space, Y = [0, 1]k and k is the number of classes.
An encoder network F : X → Rc×w×h maps x to feature
tensor A = F (x), where c is the number of channels and



w × h is the spatial resolution. A classifier g : Rc×w×h →
Rk then maps A to the vector p = g(A) of probabilities
over classes.

Mixup We follow [58] in mixing the representations from
different layers of the network, focusing on the deepest lay-
ers near the classifier. We are given two labeled images
(x, y), (x′, y′) ∈ X × Y . We draw an interpolation fac-
tor λ ∈ [0, 1] from Beta(α, α) [69] and then we interpolate
labels y, y′ linearly by the standard mixup operator

mixλ(y, y
′) := λy + (1− λ)y′ (1)

and inputs x, x′ by the generic formula

Mixf1,f2λ (x, x′) := f2(Mixλ(f1(x), f1(x
′)), (2)

where Mixλ is a mixup operator to be defined. This generic
formula allows interpolation of the input or feature as f2◦f1
according to

input (x) : f1 := id, f2 := F (3)
feature (A) : f1 := F, f2 := id, (4)

where id is the identity mapping. For (3), we define Mixλ
in (2) as standard mixup mixλ (1), like [69]; while for (4),
we define Mixλ as discussed in subsection 3.2.

By default, we train the encoder network and the clas-
sifier by using a classification loss Lc on the output of the
classifier g for mixed examples along with the correspond-
ing mixed labels:

Lc(g(Mixf1,f2λ (x, x′)),mixλ(y, y
′)), (5)

where Lc(p, y) := −
∑k

i=1 yi log pi is the standard cross-
entropy loss. More options using an autoencoder architec-
ture are investigated in section 4.

3.2. Interpolation of aligned feature tensors

Alignment Alignment refers to finding a geometric cor-
respondence between image elements before interpolation.
The feature tensor is ideal for this purpose, because its spa-
tial resolution is low, reducing the optimization cost, and
allows for semantic correspondence, because features close
to the classifier are small. Importantly, we are not attempt-
ing to combine two or more objects into one image [32],
but put two objects in correspondence and then interpolate
into one. We make no assumptions on the structure of in-
put images in terms of objects and we use no ground truth
correspondences.

Our feature tensor alignment is based on optimal trans-
port theory [59] and Sinkhorn distance (SD) [11] in partic-
ular. Let A := F (x),A′ := F (x′) be the c×w×h feature
tensors of images x, x′ ∈ X . We reshape them to c × r
matrices A,A′ by flattening the spatial dimensions, where

r := hw. Then, every column aj , a
′
j ∈ Rc of A,A′ for

j = 1, . . . , r is a feature vector representing corresponding
to a spatial position in the original image x, x′. Let M be
the r × r cost matrix with its elements being the pairwise
distances of these vectors:

mij :=
∥∥ai − a′j

∥∥2 (6)

for i, j ∈ {1, . . . , r}. We are looking for a transport plan,
that is, a r × r matrix P ∈ Ur, where

Ur := {P ∈ Rr×r
+ : P1 = P⊤1 = 1/r} (7)

and 1 is an all-ones vector in Rr. That is, P is non-negative
with row-wise and column-wise sum 1/r, representing a
joint probability over spatial positions of A,A′ with uni-
form marginals. It is chosen to minimize the expected pair-
wise distance of their features, as expressed by the linear
cost function ⟨P,M⟩, under an entropic regularizer:

P ∗ = arg min
P∈Ur

⟨P,M⟩ − ϵH(P ), (8)

where H(P ) := −
∑

ij pij log pij is the entropy of P , ⟨·, ·⟩
is Frobenius inner product and ϵ is a regularization coeffi-
cient. The optimal solution P ∗ is unique and can be found
by forming the r × r similarity matrix e−M/ϵ and then ap-
plying the Sinkhorn-Knopp algorithm [34], i.e., iteratively
normalizing rows and columns. A small ϵ leads to sparser
P , which improves one-to-one matching but makes the opti-
mization harder [1], while a large ϵ leads to denser P , caus-
ing more correspondences and poor matching.

Interpolation The assignment matrix R := rP ∗ is a dou-
bly stochastic r× r matrix whose element rij expresses the
probability that column ai of A corresponds to column a′j
of A′. Thus, we align A and A′ as follows:

Ã := A′R⊤ (9)

Ã′ := AR. (10)

Here, column ãi of c× r matrix Ã is a convex combination
of columns of A′ that corresponds to the same column ai of
A. We reshape Ã back to c×w× h tensor Ã by expanding
spatial dimensions and we say that Ã represents A aligned
to A′. We then interpolate between Ã and the original fea-
ture tensor A:

mixλ(A, Ã). (11)

As shown in Figure 2 (toy example, top right), Ã is geo-
metrically close to A. The correspondence with A′ and the
geometric proximity to A makes Ã appropriate for interpo-
lation with A. Symmetrically, we can also align A′ to A
and interpolate between Ã′ and A′:

mixλ(A
′, Ã′). (12)

When mixing feature tensors with alignment (4), we define
Mixλ in (2) as the mapping of (A,A′) to either (11) or (12),
chosen at random.



Assignment matrix 𝑅

"𝐴 = 𝐴!𝑅"

%𝐴′ = 𝐴𝑅

pairwise
distances (𝑀) Sinkhorn

𝐴

𝐴′

𝐴′

𝐴 "𝐴

%𝐴′

mix# (𝐴, "𝐴)

mix# (𝐴′, %𝐴′)

𝑒!"/$

Figure 2. Feature tensor alignment and interpolation. Cost matrix M contains pairwise distances of feature vectors in tensors A,A′.
Assignment matrix R is obtained by Sinkhorn-Knopp [34] on similarity matrix e−M/ϵ. A is aligned to A′ according to R, giving rise
to Ã. We then interpolate between A, Ã. Symmetrically, we can align A′ to A and interpolate between A′, Ã′. A,A′ on the left (toy
example of 16 points in 2D) shown semi-transparent on the right for reference.

x x′ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 λ

mixλ(A,A′)

mixλ(A, Ã) mixλ(A
′, Ã′)

(a) (b)

mixλ(A,A′)

mixλ(A, Ã) mixλ(A
′, Ã′)

(c) (d)

Figure 3. Visualizing alignment. For different λ ∈ [0, 1], we interpolate feature tensors A,A′ without alignment (top) or aligned feature
tensors (bottom) of two images x, x′ and then we generate a new image by decoding the resulting embedding through the decoder D. (a),
(c) We align A to A′ and mix with (11). (b), (d) We align A′ to A and mix with (12). Only meant for illustration: No decoded images are
seen by the classifier at training.

3.3. Visualization and discussion

Decoder We use a decoder to study images generated
with or without feature alignment. Let f : Rc×w×h → Rd

be a FC layer mapping tensor A to embedding e = f(A).
We use f ◦ F as an encoder and a decoder D : Rd → X
mapping e back to the image space, reconstructing image
x̂ = D(e). The autoencoder is trained using only clean im-
ages (without mixup) using reconstruction loss Lr between
x and x̂, where Lr(x, x

′) := ∥x− x′∥2 is the squared Eu-
clidean distance. We use generated images only for visual-
ization purposes below, but we also use the decoder option-
ally during AlignMixup training in section 4.

Discussion For different λ ∈ [0, 1], we interpolate the
feature tensors A,A′ of x, x′ without or with alignment,
using (11) or (12), and we generate a new image by decod-
ing the resulting embedding through the decoder D.

In Figure 3, we visualize such generated images. Inter-
estingly, by aligning A to A′ and mixing using (11) with
λ = 0, the generated image retains the pose of x and the
texture of x′. In Figure 3(a) in particular, when x is ‘pen-
guin’ and x′ is ‘dog’, the generated image retains the pose of
the penguin, while the texture of the dog aligns to the body
of the penguin. Similarly, in Figure 3(c), the texture from
the goldfish is aligned to that of the stork, while the pose of
the stork is retained. Vice versa, as shown in Figure 3(b,d),
by aligning A′ to A and mixing using (12) with λ = 0, the
generated image retains the pose of x′ and the texture of x.
By contrast, the image generated from unaligned features
appears to be an overlay.

Randomly sampling several values of λ ∈ [0, 1] during
training generates an abundance of samples, capturing tex-
ture from one image and the pose from another. This allows
the model to explore beyond the image manifold, thereby



DATASET CIFAR-10 CIFAR-100 TI
NETWORK R-18 W16-8 R-18 W16-8 R-18

Baseline 5.19 5.11 23.24 20.63 43.40∗

Input [69] 4.03 3.98 20.21 19.88 43.48∗

CutMix [65] 3.27 3.54 19.37 19.71 43.11∗

Manifold [58] 2.95 3.56 19.80 19.23 40.76∗

PuzzleMix [32] 2.93 2.99 20.01 19.25 36.52∗

Co-Mixup [31] 2.89 3.04 19.81 19.57 35.85∗

SaliencyMix [57] 2.99 3.53 19.69 19.59 34.81
StyleMix [28] 3.76 3.89 20.04 20.45 36.13
StyleCutMix [28] 3.06 3.12 19.34 19.28 34.49

AlignMixup (ours) 2.95 3.09 18.29 18.77 33.13
AlignMixup/AE (ours) 2.83 3.15 17.82 18.09 32.73

Gain +0.06 -0.10 +1.52 +1.14 +1.76

Table 1. Image classification top-1 error (%) on CIFAR-10/100
and TI (TinyImagenet). Top-1 error (%): lower is better. Blue:
second best. R: PreActResnet, W: WRN. ∗: reported by [31].

improving its generalization and enhancing its performance
across multiple benchmarks, as discussed in section 4.

4. Experiments
4.1. Implementation details

Architecture We use a residual network as our encoder
F . The output A is a c× 4× 4 tensor. This is followed by
a fully-connected layer as classifier g.

Autoencoder In Figure 3, we have used a decoder to vi-
sualize the effect of feature tensor alignment. In our ex-
periments, we also use a decoder optionally during training
of AlignMixup, to investigate its effect on representation
learning under mixup. This results in a vanilla autoencoder
architecture, which we denote as AlignMixup/AE. We use a
residual generator [21] as the decoder D. The encoder and
decoder have the same architecture.

Training We train AlignMixup using only the classifica-
tion loss Lc (5) on mixed examples. For a given mini-batch
during training, we mix either x or A (using either (11)
or (12) with alignment). We choose between the three cases
uniformly at random. For AlignMixup/AE, we either use
the reconstruction loss Lr on clean examples, training the
encoder and decoder, or the classification loss Lc (5) on
mixed examples, training the encoder and classifier. This
gives rise to a fourth case and we choose uniformly at ran-
dom. The algorithm is in the supplementary material.

Hyperparameters The hyperparameters used for differ-
ent datasets are reported in the supplementary material.

4.2. Image classification and robustness

We use PreActResnet18 [26] (R-18) and WRN16-8 [66]
as the backbone architecture on CIFAR-10 and CIFAR-100
datasets [35]. Using the experimental settings of Man-

METHOD PARAM. MSEC/BATCH TOP-1 ERROR

Baseline 25M 418 23.68
Input† [69] 25M 436 22.58
CutMix† [65] 25M 427 21.40
Manifold† [58] 25M 441 22.50
PuzzleMix† [32] 25M 846 21.24
Co-Mixup∗ [31] 25M 1022 –
SaliencyMix∗ [57] 25M 462 21.26
StyleMix∗ [28] 25M 828 -
StyleCutMix∗ [28] 25M 912 -

AlignMixup (ours) 25M 450 20.68
AlignMixup/AE (ours) 35M 688 18.83

Gain +2.41

Table 2. Image classification top-1 error (%) and computational
analysis on ImageNet using Resnet-50 for 300 epochs. Lower is
better. Blue: second best. ∗: reported by authors; †: reported by
PuzzleMix.

ifold mixup [58] (in supplementary material), we repro-
duce the state-of-the-art (SOTA) mixup methods: base-
line network (without mixup), Input mixup [69], Manifold
mixup [58], CutMix [65], PuzzleMix [32], Co-Mixup [31],
SaliencyMix [57], StyleMix [28] and StyleCutMix [28] us-
ing official code provided by the authors. We do not com-
pare AlignMixup with AutoMix [72] and Re-Mix [5], since
its experimental settings are different from ours and there is
no available code.

In addition, we use R-18 as the backbone network on
TinyImagenet [63] (TI) and reproduce SaliencyMix [57],
StyleMix [28] and StyleCutMix [28] following the exper-
imental settings of [32], and Resnet-50 (R-50) on Ima-
geNet [48], following the training protocol of [32]. Using
top-1 error (%) as evaluation metric, we show the effective-
ness of AlignMixup on image classification and robustness
to FGSM [19] and PGD [41] attacks.

Image classification As shown in Table 1, AlignMixup
and AlignMixup/AE is on par or outperforms the SOTA
methods by achieving the lowest top-1 error, especially
on large datasets. On CIFAR-10, AlignMixup and Align-
Mixup/AE is on par with Co-Mixup and Puzzlemix with
R-18 and WRN16-8. On CIFAR-100, AlignMixup out-
performs StyleCutMix and Manifold mixup by 1.05% and
0.46% with R-18 and WRN16-8, respectively. On TI,
AlignMixup outperforms Co-Mixup by 2.72% using R-18.
From Table 2, AlignMixup/AE outperforms PuzzleMix by
2.41% on ImageNet. While the overall improvement by
SOTA methods on ImageNet over Baseline is around 2%,
AlignMixup/AE improves SOTA by another 2.5%.

Computational complexity Table 2 shows the computa-
tional analysis of AlignMixup training as compared with
baseline and SOTA mixup methods on ImageNet, in terms
of number of parameters and msec/batch on a NVIDIA RTX



ATTACK FGSM PGD

DATASET CIFAR-10 CIFAR-100 TI CIFAR-10 CIFAR-100
NETWORK R-18 W16-8 R-18 W16-8 R-18 R-18 W16-8 R-18 W16-8

Baseline 89.41 88.02 87.12 72.81 91.85 99.99 99.94 99.97 99.99
Input [69] 78.42 79.21 81.30 67.33 88.68 99.77 99.43 99.96 99.37
CutMix [65] 77.72 78.33 86.96 60.16 88.68 99.82 98.10 98.67 97.98
Manifold [58] 77.63 76.11 80.29 56.45 89.25 97.22 98.49 99.66 98.43
PuzzleMix [32] 57.11 60.73 78.70 57.77 83.91 97.73 97.00 96.42 95.28
Co-Mixup [31] 60.19 58.93 77.61 56.59 – 97.59 96.19 95.35 94.23
SaliencyMix [57] 57.43 68.10 77.79 58.10 81.16 97.51 97.04 95.68 93.76
StyleMix [28] 79.54 71.05 80.54 67.94 84.93 98.23 97.46 98.39 98.24
StyleCutMix [28] 58.79 56.12 77.49 56.83 80.59 97.87 96.70 91.88 93.78

AlignMixup (ours) 54.83 56.20 74.18 55.05 78.83 95.42 96.71 90.40 92.16
AlignMixup/AE (ours) 52.13 54.86 76.40 55.44 78.98 97.16 95.32 91.69 92.23

Gain +4.98 +1.26 +3.31 +1.40 +1.76 +1.80 +0.87 +1.48 +1.60

Table 3. Robustness to FGSM & PGD attacks. Top-1 error (%): lower is better. Blue: second best. Gain: reduction of error. TI:
TinyImagenet. R: PreActResnet, W: WRN.

2080 TI GPU. AlignMixup has nearly the same computa-
tional overhead as Manifold mixup while achieving 1.82%
increase of accuracy. While SOTA methods like Co-Mixup
and PuzzleMix are computationally more expensive than
AlignMixup by 1.8× and 2.3× respectively, they are out-
performed by AlignMixup by 0.6% on average. Align-
Mixup/AE brings a further 1.85% gain in accuracy over
AlignMixup. It is important to note that 40% increase
in number of parameters of AlignMixup/AE is due to the
residual decoder, which is only used in one out of five cases
on clean images without mixup. Computational complexity
during inference is the same for all methods.

Challenges From Table 1, we observe that AlignMixup
achieves SoTA top-1 error on CIFAR-10 and CIFAR-100.
These results are computed using 2000 epochs following
the experimental settings of [58], which also achieves its
best performance at 2000 epochs. While baseline mixup
methods [28, 31, 32, 57, 65, 69] perform best at 300 epochs,
they do not benefit from long training time. Unlike these
methods, which perform mixup in the image space, Man-
ifold mixup [58] and AlignMixup performs mixup in the
feature space. We hypothesize that this takes longer train-
ing time until the network learns some meaningful repre-
sentations. It is even more challenging in our case, since
we mix features at deeper layers comparing with Manifold
mixup. Empirically, when trained for 2000 epochs instead
of 300 epochs, the top-1 error drops from 21.64 → 19.80 for
Manifold mixup and from 21.38 → 18.29 for AlignMixup.

Robustness to FGSM and PGD attacks Following the
evaluation protocol of [32], we use 8/255 l∞ ϵ-ball for
FGSM and 4/255 l∞ ϵ-ball with step size 2/255 for PGD.
We reproduce the results of competitors for FGSM and
PGD on CIFAR-10 and CIFAR-100; results of baseline,
Input, Manifold, Cutmix and Puzzlemix on TI for FGSM

are as reported in [32] and reproduced for SaliencyMix,
StyleMix and StyleCutMix.

As shown in Table 3, AlignMixup is more robust com-
paring to SOTA methods. While AlignMixup is on par with
PuzzleMix and Co-Mixup on CIFAR-10 image classifica-
tion, it outperforms Co-Mixup and PuzzleMix by 5.36%
and 2.28% in terms of robustness to FGSM attacks. There
is also significant gain of robustness to FGSM on Tiny-
ImageNet and to the stronger PGD on CIFAR-100.

4.3. Overconfidence

Deep neural networks tend to be overconfident about
incorrect predictions far away from the training data and
mixup helps combat this problem. Two standard bench-
marks to evaluate this improvement are their ability to de-
tect out-of-distribution data and their calibration, i.e., the
discrepancy between accuracy and confidence.

Out-of-distribution detection According to [27], in-
distribution (ID) refers to a test example drawn from the
same distribution which the network is trained on, while
a sample drawn from any other distribution is out-of-
distribution (OOD). At inference, given a mixture of ID
and OOD examples, the network assigns probabilities to the
known classes by softmax. An example is then classified
as OOD if the maximum class probability is below a cer-
tain threshold, else ID. A well-calibrated network should be
able to assign a higher probability to ID than OOD exam-
ples, making it easier to distinguish the two distributions.

We compare AlignMixup with SOTA methods trained
using R-18 on CIFAR-100 as discussed in subsection 4.2.
At inference, ID examples are test images from CIFAR-
100, while OOD examples are test images from LSUN
(crop) [64], iSUN [62] and Tiny-ImageNet (crop); where
crop denotes that the OOD examples are center-cropped to



TASK OUT-OF-DISTRIBUTION DETECTION

DATASET LSUN (CROP) ISUN TI (CROP)

METRIC
DET AUROC AUPR AUPR DET AUROC AUPR AUPR DET AUROC AUPR AUPR
ACC (ID) (OOD) ACC (ID) (OOD) ACC (ID) (OOD)

Baseline 54.0 47.1 54.5 45.6 66.5 72.3 74.5 69.2 61.2 64.8 67.8 60.6
Input [69] 57.5 59.3 61.4 55.2 59.6 63.0 60.2 63.4 58.7 62.8 63.0 62.1
Cutmix [65] 63.8 63.1 61.9 63.4 67.0 76.3 81.0 77.7 70.4 84.3 87.1 80.6
Manifold [58] 58.9 60.3 57.8 59.5 64.7 73.1 80.7 76.0 67.4 69.9 69.3 70.5
PuzzleMix [32] 64.3 69.1 80.6 73.7 73.9 77.2 79.3 71.1 71.8 76.2 78.2 81.9
Co-Mixup [31] 70.4 75.6 82.3 70.3 68.6 80.1 82.5 75.4 71.5 84.8 86.1 80.5
SaliencyMix [57] 68.5 79.7 82.2 64.4 65.6 76.9 78.3 79.8 73.3 83.7 87.0 82.0
StyleMix [28] 62.3 64.2 70.9 63.9 61.6 68.4 67.6 60.3 67.8 73.9 71.5 78.4
StyleCutMix [28] 70.8 78.6 83.7 74.9 70.6 82.4 83.7 76.5 75.3 82.6 82.9 78.4

AlignMixup (ours) 74.2 79.9 84.1 75.1 72.8 83.2 84.1 80.3 77.2 85.0 87.8 85.0
AlignMixup/AE (ours) 76.9 83.5 86.7 79.4 75.6 84.1 85.9 81.7 79.7 88.0 89.7 85.7

Gain +6.1 +3.8 +3.0 +4.5 +1.7 +1.7 +2.2 +1.9 +4.4 +3.2 +2.6 +3.8

Table 4. Out-of-distribution detection using PreActResnet18. Det Acc (detection accuracy), AuROC, AuPR (ID) and AuPR (OOD): higher
is better; Blue: second best. Gain: increase in performance. TI: TinyImagenet. Additional results are in the supplementary material.

METRIC TOP-1 LOC. MAXBOXACC-V2
NETWORK VGG-GAP RESNET-50 VGG-GAP RESNET-50

ACoL [70] 45.9 – 57.4 –
ADL [8] 52.4 – 61.3 58.4

Baseline CAM [71] 37.1 49.4 59.0 59.7
Input [69] 41.7 49.3 57.1 60.6
CutMix [65] 52.5 54.8 62.6 64.8
AlignMixup (ours) 53.1 56.2 63.8 65.4

Gain +0.6 +1.4 +1.2 +0.6

Table 5. Weakly-supervised object localization on CUB200-2011.
Top-1 loc.: Top-1 localization accuracy (%), MaxBoxAcc-v2:
Maximal box accuracy [7]. Higher is better. Blue: second best.
Gain: increase of accuracy.

32× 32 to match the resolution of ID images [65]. Follow-
ing [27], we measure detection accuracy (Det Acc) using a
threshold of 0.5, area under ROC curve (AuROC) and area
under precision-recall curve (AuPR).

As shown in Table 4, AlignMixup outperforms SOTA
methods under all metrics by a large margin, indicating that
it is better in reducing over-confident predictions. We fur-
ther observe that Input mixup is inferior to Baseline, which
is consistent with the findings of [65]. More results are
given in the supplementary material.

Calibration According to [13], calibration measures the
discrepancy between the accuracy and confidence level of
a network’s predictions. A poorly calibrated network may
make incorrect predictions with high confidence. In the sup-
plementary, we compare AlignMixup with SOTA methods
using calibration plots and quantitative experiments.

4.4. Weakly-supervised object localization (WSOL)

WSOL aims to localize an object of interest using only
class labels without bounding boxes at training. WSOL
works by extracting visually discriminative cues to guide
the classifier to focus on salient regions in the image.

We train AlignMixup using the same procedure as for
image classification. At inference, following [65], we com-
pute a saliency map using CAM [71], binarize it using a
threshold of 0.15 and take the bounding box of the mask.
We use VGG-GAP [51] and Resnet-50 [26] as pretrained
on Imagenet [48] and we fine-tune them on CUB200-
2011 [60]. We follow the evaluation protocol by [7] and
use top-1 localization accuracy with IoU threshold of 0.5
and Maximal Box Accuracy (MaxBoxAcc-v2) to compare
AlignMixup with baseline CAM (without mixup), Input
mixup [69], CutOut [14] and CutMix [65].

According to Table 5, AlignMixup outperforms Input
mixup, CutOut and CutMix by 11.4%, 7.3% and 0.6% re-
spectively using VGG-GAP and by 6.9%, 3.8% and 1.4%
respectively using Resnet-50 in terms of top-1 localization
accuracy. Furthermore, AlignMixup outperforms CutMix
by 1.2% and 0.6% using VGG-GAP and Resnet-50 respec-
tively in terms of MaxBoxAcc-v2. It also outperforms dedi-
cated WSOL methods ACoL [70] and ADL [8], which focus
on learning spatially dispersed representations. Qualitative
localization results are given in the supplementary material.

4.5. Ablation study

All ablations are performed on CIFAR-100 using R-18 as
encoder F with feature tensor A being 512×4×4. We study
the effect of mixing at different layers (x, A), by aligning
A or not before mixing, as well as using a decoder D in an
different autoencoder architectures. We report top-1 accu-



METHOD/ARCH LAYERS UNALIGNED ALIGNED

Baseline 76.76 –
Manifold [58] 80.20 -
StyleCutMix [28] 80.66 -

AlignMixup

{x, e} 80.81 –
{A} 79.07 80.28
{e} 78.71 -

{x,A} 80.34 81.71
{x,A, E} 80.46 81.36
{x,A, e} 80.33 81.92

AlignMixup/AE

{x, e} 81.92 -
{A} 79.39 81.04
{e} 79.49 -

{x,A} 81.78 81.85
{x,E} 80.80 81.54

{x,A, e} 81.61 82.18

AlignMixup/AE
{x,A2×2, e} 81.47 81.20
{x,A4×4, e} 81.61 82.18
{x,A8×8, e} 80.49 82.20

AlignMixup/VAE

{x, (µ, σ)} 81.81 –
{x,A} 81.35 81.85

{x, (M,Σ)} 80.45 81.10
{x,A, (µ, σ)} 81.00 81.89

Table 6. Ablations using R-18 on CIFAR-100. Top-1 classification
accuracy (%): higher is better. Arch: autoencoder architecture.
AE: vanilla; VAE: variational [33].

racy (%). All results are in Table 6. The ablation showing
the effect of the number of iterations in Sinkhorn-Knopp
algorithm is summarized in the supplementary material.

Layers We study the choice of layers to mix, regardless
of feature alignment. According to (2), we may mix at
any of two layers, represented by {x,A}. To investigate
more diverse cases, we introduce an additional layer f to
the encoder of AlignMixup and mix its output, which acts as
the latent space of AlignMixup/AE. f could be a FC layer,
which outputs a vector e ∈ R512, or a convolutional layer
of kernel size 2 × 2 and stride 2, producing a 128 × 2 × 2
tensor E. In both cases, mixup is also represented by (2),
where now f1 := f ◦ F and f2 := id. Mixing is now
chosen from {x,A, e} or {x,A,E}. In AlignMixup (no
decoder), among different choices of unaligned layer sets,
mixing {x, e} results in the highest classification accuracy.
Furthermore, AlignMixup/AE outperforms baseline and the
best performing competitor StyleCutMix for all choices of
layers, even when features are unaligned, showing a moti-
vation to use the decoder.

Tensor alignment We investigate the effect of aligning
feature tensors or not before mixing it, by using standard
mixup (2) or (11), (12), respectively. It is important to note
that when e is a vector, we do not align it. In AlignMixup,
we observe that aligning tensors A and E before mixing im-
proves classification accuracy significantly. Furthermore,

we observe that using an additional FC layer for e brings
only minor improvement (81.71 → 81.92), meaning that the
major improvement comes from alignment. Overall, Align-
Mixup/AE works the best when x,A, e are mixed, with A
being aligned. It outperforms StyleCutMix by 1.52%.

Alignment resolution Given the best settings of Align-
Mixup/AE, we investigate the effect of aligning A at dif-
ferent spatial resolutions. The default is 4 × 4, denoted as
A4×4. We also experiment 2× 2 (A2×2), obtained by aver-
age pooling, and 8×8 (A8×8), by removing downsampling
from the last convolutional layer. The accuracy of 8 × 8 is
only slightly better than 4× 4 by 0.02%, while being com-
putationally more expensive. Thus, we choose 4× 4 as the
default. By contrast, aligning at 2 × 2 is worse than not
aligning at all. This may be due to soft correspondences
causing loss of information by averaging.

Autoencoder architecture We compare AlignMixup
with two autoencoder architectures: the vanilla au-
toencoder (AlignMixup/AE), and a variational autoen-
coder [33] (AlignMixup/VAE). The latter has two vectors
µ, σ ∈ R512 instead of e, representing mean and standard
deviation, respectively. We also investigate 128×2×2 ten-
sors, denoted as M,Σ where the two variables are mixed si-
multaneously. As for AlignMixup and AlignMixup/AE, we
investigate different combinations of layers with or without
alignment. All three architectures work best when x,A, e
are mixed. Alignment improves consistently on all three ar-
chitectures. Both AlignMixup and AlignMixup/VAE are in-
ferior to AlignMixup/AE. However, their best settings still
outperform Baseline and StyleCutMix.

5. Conclusion
We have shown that mixup of a combination of input and

latent representations is a simple and very effective pairwise
data augmentation method. The gain is most prominent on
large datasets and in combating overconfidence in predic-
tions, as indicated by out-of-distribution detection. Interpo-
lation of feature tensors boosts performance significantly,
but only if they are aligned.

Our work is a compromise between a “good” hand-
crafted interpolation in the image space and a fully learned
one in the latent space. A challenge is to make progress in
the latter direction without compromising speed and sim-
plicity, which would affect wide applicability.

6. Acknowledgement
This work was in part supported by the ANR-19-CE23-

0028 MEERQAT project and was performed using the HPC
resources from GENCI-IDRIS Grant 2021 AD011012528.
This work was partially done while Yannis was at Inria. We
also thank Konstantinos Tertikas for his amazing help with
adapting AlignMixup to transformers.



References
[1] David Alvarez-Melis and Tommi S Jaakkola. Gromov-

wasserstein alignment of word embedding spaces. In
EMNLP, 2018. 3

[2] Christopher Beckham, Sina Honari, Vikas Verma, Alex
Lamb, Farnoosh Ghadiri, R Devon Hjelm, Yoshua Bengio,
and Christopher Pal. On adversarial mixup resynthesis. In
NeurIPS, 2019. 2

[3] Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah
Rifai. Better mixing via deep representations. In ICML,
2013. 1

[4] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfel-
low. Understanding and improving interpolation in autoen-
coders via an adversarial regularizer. In ICLR, 2019. 1, 2

[5] Jie Cao, Luanxuan Hou, Ming-Hsuan Yang, Ran He, and
Zhenan Sun. Remix: Towards image-to-image translation
with limited data. In CVPR, 2021. 5

[6] Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas
Mensink, Pascal Mettes, Pengwan Yang, and Cees GM
Snoek. Pointmixup: Augmentation for point clouds. In
ECCV, 2020. 2

[7] Junsuk Choe, Seong Joon Oh, Seungho Lee, Sanghyuk
Chun, Zeynep Akata, and Hyunjung Shim. Evaluating
weakly supervised object localization methods right. In
CVPR, 2020. 7

[8] Junsuk Choe and Hyunjung Shim. Attention-based dropout
layer for weakly supervised object localization. In CVPR,
2019. 7

[9] Christopher B Choy, JunYoung Gwak, Silvio Savarese, and
Manmohan Chandraker. Universal correspondence network.
In NeurIPS, 2016. 2

[10] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. AutoAugment: Learning augmentation
strategies from data. In CVPR, 2019. 1

[11] Marco Cuturi. Sinkhorn distances: lightspeed computation
of optimal transport. In NeurIPS, 2013. 2, 3

[12] Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, and
Nasser M Nasrabadi. Supermix: Supervising the mixing data
augmentation. In CVPR, 2021. 2

[13] Morris H DeGroot and Stephen E Fienberg. The comparison
and evaluation of forecasters. Journal of the Royal Statistical
Society: Series D (The Statistician), 1983. 7

[14] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 2, 7

[15] Carl Doersch, Ankush Gupta, and Andrew Zisserman.
Crosstransformers: spatially-aware few-shot transfer. In
NeurIPS, 2020. 2

[16] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas
Brox. Unsupervised feature learning by augmenting single
images. In ICLR Workshops, 2014. 1

[17] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 2010. 13

[18] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning
generative models with sinkhorn divergences. In AISTATS,
2018. 2

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In ICLR,

2015. 5
[20] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,

Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. Levit: A vision transformer in convnet’s clothing
for faster inference. In ICCV, 2021. 12

[21] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of
wasserstein gans. In ICLR, 2018. 5

[22] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In ICML, 2017.
12

[23] Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as
locally linear out-of-manifold regularization. In AAAI, 2019.
2

[24] Kai Han, Rafael S Rezende, Bumsub Ham, Kwan-Yee K
Wong, Minsu Cho, Cordelia Schmid, and Jean Ponce. Sc-
net: Learning semantic correspondence. In ICCV, 2017. 2

[25] Ethan Harris, Antonia Marcu, Matthew Painter, Mahesan Ni-
ranjan, and Adam Prügel-Bennett Jonathon Hare. Fmix: En-
hancing mixed sample data augmentation. arXiv preprint
arXiv:2002.12047, 2020. 2

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5, 7

[27] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. In ICLR, 2017. 6, 7, 12

[28] Minui Hong, Jinwoo Choi, and Gunhee Kim. Stylemix: Sep-
arating content and style for enhanced data augmentation. In
CVPR, 2021. 2, 5, 6, 7, 8, 12, 13

[29] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017. 2

[30] Hiroshi Inoue. Data augmentation by pairing samples for im-
ages classification. arXiv preprint arXiv:1801.02929, 2018.
2

[31] Jang-Hyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh
Song. Co-mixup: Saliency guided joint mixup with super-
modular diversity. In ICLR, 2021. 1, 2, 5, 6, 7, 11, 12, 13

[32] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puz-
zle mix: Exploiting saliency and local statistics for optimal
mixup. In ICML, 2020. 1, 2, 3, 5, 6, 7, 11, 12, 13

[33] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. In ICLR, 2014. 8

[34] Philip A Knight. The Sinkhorn-Knopp algorithm: conver-
gence and applications. SIAM Journal on Matrix Analysis
and Applications, 2008. 3, 4, 11

[35] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009. 5

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 2012. 1

[37] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 13

[38] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV, 2016.



13
[39] Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao, Jun-

liang Yan, Jun Wang, Site Li, Ping Jia, and Jane You. Data
augmentation via latent space interpolation for image classi-
fication. In ICPR, 2018. 2

[40] Jonathan Long, Ning Zhang, and Trevor Darrell. Do con-
vnets learn correspondence? In NIPS, 2014. 2

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018. 5

[42] Giorgio Patrini, Rianne van den Berg, Patrick Forre, Mar-
cello Carioni, Samarth Bhargav, Max Welling, Tim Ge-
newein, and Frank Nielsen. Sinkhorn autoencoders. In Un-
certainty in Artificial Intelligence, 2020. 2

[43] Mattis Paulin, Jérôme Revaud, Zaid Harchaoui, Florent Per-
ronnin, and Cordelia Schmid. Transformation pursuit for im-
age classification. In CVPR, 2014. 1

[44] Jie Qin, Jiemin Fang, Qian Zhang, Wenyu Liu, Xingang
Wang, and Xinggang Wang. Resizemix: Mixing data with
preserved object information and true labels. arXiv preprint
arXiv:2012.11101, 2020. 2

[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NIPS, 2015. 13

[46] Ignacio Rocco, Relja Arandjelović, and Josef Sivic. End-to-
end weakly-supervised semantic alignment. In CVPR, 2018.
2

[47] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The
earth mover’s distance as a metric for image retrieval. IJCV,
2000. 2

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, 2015. 5, 7

[49] Patrice Y Simard, Yann A LeCun, John S Denker, and
Bernard Victorri. Transformation invariance in pattern
recognition—tangent distance and tangent propagation. In
Neural networks: tricks of the trade. 1998. 1

[50] Oriane Siméoni, Yannis Avrithis, and Ondrej Chum. Local
features and visual words emerge in activations. In CVPR,
2019. 2

[51] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 7

[52] Cecilia Summers and Michael J Dinneen. Improved mixed-
example data augmentation. In WACV, 2019. 2

[53] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In ICLR, 2014. 1

[54] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Ri-
cap: Random image cropping and patching data augmenta-
tion for deep cnns. In ACML, 2018. 2

[55] Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tan-
moy Bhattacharya, and Sarah Michalak. On mixup train-
ing: Improved calibration and predictive uncertainty for deep
neural networks. In NeurIPS, 2019. 12

[56] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada.
Learning from between-class examples for deep sound
recognition. In ICLR, 2018. 2

[57] A F M Uddin, Mst. Monira, Wheemyung Shin, TaeChoong

Chung, and Sung-Ho Bae. SaliencyMix: A saliency guided
data augmentation strategy for better regularization. In
ICML, 2021. 1, 2, 5, 6, 7, 12, 13

[58] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolating
hidden states. In ICML, 2019. 1, 2, 3, 5, 6, 7, 8, 11, 12, 13

[59] Cédric Villani. Optimal transport: old and new. Springer
Science & Business Media, 2008. 2, 3

[60] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California In-
stitute of Technology, 2011. 7

[61] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui, and
Cordelia Schmid. Deepflow: Large displacement optical
flow with deep matching. In ICCV, 2013. 2

[62] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In CVPR, 2010. 6

[63] Leon Yao and John Miller. Tiny imagenet classification with
convolutional neural networks. Technical report, Standford
University, 2015. 5

[64] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015. 6, 12

[65] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019. 1, 2, 5, 6, 7, 11, 12, 13

[66] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In BMVC, 2016. 5

[67] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning re-
quires rethinking generalization. In ICLR, 2017. 1

[68] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In CVPR,
2020. 2

[69] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 1, 2, 3, 5, 6, 7, 11, 12, 13

[70] Xiaolin Zhang, Yunchao Wei, Jiashi Feng, Yi Yang, and
Thomas S Huang. Adversarial complementary learning for
weakly supervised object localization. In CVPR, 2018. 7

[71] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, 2016. 7, 11

[72] Jianchao Zhu, Liangliang Shi, Junchi Yan, and Hongyuan
Zha. Automix: Mixup networks for sample interpolation via
cooperative barycenter learning. In ECCV, 2020. 2, 5



A. Algorithm
AlignMixup and AlignMixup/AE are summarized in al-

gorithm 1. By default (AlignMixup), for each mini-batch,
we uniformly draw at random one among three choices
(line 2) over mixup on input (x) or feature tensors (A, using
either (11) or (12) for mixing). For AlignMixup/AE, there
is a fourth choice where we only use reconstruction loss on
clean examples (line 7).

For mixup, we use only classification loss (5) (line 24).
Following [58], we form, for each example (x, y) in the
mini-batch, a paired example (x′, y′) from the same mini-
batch regardless of class labels, by randomly permuting
the indices (lines 1,10). Inputs x, x′ are mixed by (2),(3)
(line 12). Feature tensors A and A′ are first aligned and
then mixed by (2),(11) (A aligns to A′) or (2),(12) (A′

aligns to A) (lines 14,23).

Algorithm 1: AlignMixup/AE (parts involved in
the AE variant indicated in blue)

Input: encoders F ; embedding e, decoder D; classifier g
Input: mini-batch B := {(xi, yi)}bi=1

Output: loss values L := {ℓi}bi=1

1 π ∼ unif(Sb) ▷ random permutation of {1, . . . , b}
2 mode ∼ unif{clean, input, feat, feat′} ▷ mixup?
3 for i ∈ {1, . . . , b} do
4 (x, y)← (xi, yi) ▷ current example
5 if mode = clean then ▷ no mixup
6 x̂← D(e(F (x))) ▷ encode/decode
7 ℓi ← Lr(x, x̂) ▷ reconstruction loss

8 else ▷ mixup
9 λ ∼ Beta(α, α) ▷ interpolation factor

10 (x′, y′)← (xπ(i), yπ(i)) ▷ paired example
11 if mode = input then ▷ as in [69]
12 out← F (mixλ(x, x

′))

▷ (2),(3) else ▷ mode ∈ {feat, feat′}
13 if mode = feat′ then ▷ choose (12) over (11)
14 SWAP (x, x′), SWAP (y, y′)

15 A← F (x) , A′ ← F (x′) ▷ feature tensors
16 A← RESHAPE c×r(A) ▷ to matrix
17 A′ ← RESHAPE c×r(A′)
18 M ← DIST(A,A′) ▷ pairwise distances (6)
19 P ∗ ← SINKHORN(exp(−M/ϵ)) ▷ tran.

plan (8)
20 R← DETACH(rP ∗) ▷ assignments
21 Ã← A′R⊤ ▷ alignment (9)
22 Ã← RESHAPE c×w×h(Ã) ▷ to tensor
23 out← f(mixλ(A, Ã)) ▷ (2),(11)

24 ℓi ← Lc(g(out),mixλ(y, y
′)) ▷ classification

loss (5)

In computing loss derivatives, we backpropagate through
feature tensors A,A′ but not through the transport plan

P ∗ (line 20). Hence, although the Sinkhorn-Knopp algo-
rithm [34] is differentiable, its iterations take place only
in the forward pass. Importantly, AlignMixup is easy to
implement and does not require sophisticated optimization
like [31, 32].

B. Hyperparameter settings
CIFAR-10/CIFAR-100 We train AlignMixup using SGD
for 2000 epochs with an initial learning rate of 0.1, de-
cayed by a factor 0.1 every 500 epochs. We set the mo-
mentum as 0.9 with a weight decay of 0.0001 and use a
batch size of 128. The interpolation factor is drawn from
Beta(α, α) where α = 2.0. Using these settings, we repro-
duce the results of SOTA mixup methods for image classi-
fication, robustness to FGSM and PGD attacks, calibration
and out-of-distribution detection. For alignment, we apply
the Sinkhorn-Knopp algorithm [34] for 100 iterations with
entropic regularization coefficient ϵ = 0.1.

TinyImagenet We follow the training protocol of Kim et
al. [32], training R-18 as stage-1 encoder F using SGD for
1200 epochs. We set the initial learning rate to 0.1 and de-
cay it by 0.1 at 600 and 900 epochs. We set the momentum
as 0.9 with a weight decay of 0.0001 and use a batch size
of 128 on 2 GPUs. The interpolation factor is drawn from
Beta(α, α) where α = 2.0. For alignment, we apply the
Sinkhorn-Knopp algorithm [34] for 100 iterations with en-
tropic regularization coefficient ϵ = 0.1.

ImageNet We follow the training protocol of Kim et
al. [32], where training R-50 as F using SGD for 300
epochs. The initial learning rate of the classifier and the
remaining layers is set to 0.1 and 0.01, respectively. We de-
cay the learning rate by 0.1 at 100 and 200 epochs. We set
the momentum as 0.9 with a weight decay of 0.0001 and use
a batch size of 100 on 4 GPUs. The interpolation factor is
drawn from Beta(α, α) where α = 2.0. For alignment, we
apply the Sinkhorn-Knopp algorithm [34] for 100 iterations
with entropic regularization coefficient ϵ = 0.1.

We also train R-50 on ImageNet for 100 epochs, follow-
ing the training protocol described in Kim et al. [31].

CUB200-2011 For weakly-supervised object localization
(WSOL), we use VGG-GAP and R-50 pretrained on Ima-
geNet as F . The training strategy for WSOL is the same
as image classification and the network is trained without
bounding box information. In R-50, following [65], we
modify the last residual block (layer 4) to have stride
2 instead of 1, resulting in a feature map of spatial resolu-
tion 14×14. The modified architecture of VGG-GAP is the
same as described in [71]. The classifier is modified to have
200 classes instead of 1000.

For fair comparisons with [65], during training, we re-
size the input image to 256 × 256 and randomly crop the
resized image to 224× 224. During testing, we directly re-



NETWORK RESNET-50

Baseline 24.03
Input [69] 22.97
Manifold [58] 23.30
CutMix [65] 22.92
PuzzleMix [32] 22.49
Co-Mixup [31] 22.39
StyleMix [28] 24.06
StyleCutMix [28] 22.71

AlignMixup (ours) 22.0

Gain +0.39

Table 7. Image classification on ImageNet for 100 epochs using
ResNet-50. Top-1 error (%): lower is better. Blue: second best.
Gain: reduction of error.

size to 224×224. We train the network for 600 epochs using
SGD. For R-50, the initial learning rate of the classifier and
the remaining layers is set to 0.01 and 0.001, respectively.
For VGG, the initial learning rate of the classifier and the
remaining layers is set to 0.001 and 0.0001, respectively.
We decay the learning rate by 0.1 every 150 epochs. The
momentum is set to 0.9 with weight decay of 0.0001 and
batch size of 16.

C. Additional experiments
ImageNet classification Following the training protocol
of [31], Table 7 reports classification performance when
training for 100 epochs on ImageNet. Using the top-1
error (%) reported for competitors by [31], AlignMixup
outperforms all methods, including Co-Mixup [31]. Im-
portantly, while the overall improvement by SOTA meth-
ods over Baseline is around 1.64%, AlignMixup improves
SOTA by another 0.4%.

Experiments using transformers We apply mixup to
LeViT-128S [20] on ImageNet for 100 epochs. For Align-
Mixup, we align the feature tensors in the last layer of
the convolution stem. The top-1 accuracy is: baseline
67.4%, input mixup 68.3%, manifold mixup 67.8%, Cut-
Mix 68.7%, AlignMixup 69.9%. Thus, we outperform input
mixup and CutMix by 1.6% and 1.2% respectively, which
in turn outperform the baseline by 0.9% and 1.3% respec-
tively. This means that the improvement brought by mixing
is roughly doubled.

Out-of-distribution detection We compare AlignMixup
with SOTA methods, training R-18 on CIFAR-100 as dis-
cussed in subsection 4.2. At inference, ID examples are test
images from CIFAR-100, while OOD examples are test im-
ages from LSUN [64] and Tiny-ImageNet, resizing OOD
examples to 32 × 32 to match the resolution of ID im-
ages [65]. We also use test images from CIFAR-100 with

DATASET LSUN (RESIZE) TI (RESIZE)

METRIC
DET AU AUPR AUPR DET AU AUPR AUPR
ACC ROC (ID) (OOD) ACC ROC (ID) (OOD)

Baseline 67.6 73.3 76.6 68.9 65.1 70.6 73.1 67.1
Input [69] 61.5 66.5 66.4 65.8 59.6 63.8 63.0 63.4
Cutmix [65] 71.3 77.4 79.1 75.5 69.1 79.4 79.8 73.3
Manifold [58] 67.8 78.9 76.3 71.3 62.5 77.8 76.8 72.2
PuzzleMix [32] 74.9 79.9 84.0 77.5 73.9 77.3 80.6 71.9
Co-Mixup [31] 73.8 82.6 86.8 76.9 68.1 78.9 82.5 74.2
SaliencyMix [57] 75.8 79.7 82.2 84.4 75.3 81.2 83.8 79.5
StyleMix [28] 73.0 74.6 72.4 73.4 72.9 79.5 78.2 74.6
StyleCutMix [28] 74.3 83.1 86.9 78.9 73.8 80.9 83.1 76.3

AlignMixup (ours) 76.1 84.3 87.1 85.8 74.7 82.6 86.1 80.9
AlignMixup/AE (ours) 77.0 85.8 87.9 83.7 76.2 84.8 87.2 82.3

Gain +2.1 +2.7 +1.0 +1.4 +0.9 +3.6 +3.4 +2.8

NOISE UNIFORM GAUSSIAN

Baseline 58.3 75.3 75.0 69.0 60.8 64.3 62.9 63.9
Input [69] 50.0 67.9 71.8 71.7 60.2 65.0 63.1 64.1
Cutmix [65] 74.8 80.0 84.9 72.4 75.7 79.0 84.0 70.9
Manifold [58] 69.8 75.9 83.2 71.9 70.8 78.8 81.3 71.6
PuzzleMix [32] 78.6 85.2 86.0 74.4 78.5 85.1 85.9 74.3
Co-Mixup [31] 80.4 87.6 87.4 75.2 81.6 78.6 89.5 74.2
SaliencyMix [57] 83.1 87.4 89.1 76.6 82.4 85.4 81.1 81.3
StyleMix [28] 75.3 71.8 77.8 65.5 78.0 75.2 84.3 71.0
StyleCutMix [28] 84.5 83.2 88.6 78.3 84.8 81.9 83.3 73.9

AlignMixup (ours) 86.9 89.1 93.6 77.7 86.7 87.9 91.8 77.4
AlignMixup/AE (ours) 88.0 90.6 94.0 80.8 86.0 87.2 91.9 75.6

Gain +3.5 +3.0 +4.9 +2.5 +1.9 +2.8 +2.4 -3.9

Table 8. Out-of-distribution detection on different datasets (top)
and under different noise (bottom) using PreActResnet18. Det
Acc (detection accuracy), AuROC, AuPR (ID) and AuPR (OOD):
higher is better. Blue: second best. Gain: increase in performance.
TI: TinyImagenet.

Uniform and Gaussian noise as OOD samples. Uniform
is drawn from U(0, 1) and Gaussian from N (µ, σ) with
µ = σ = 0.5. All SOTA mixup methods are reproduced
using the same experimental settings. Following [27], we
measure detection accuracy (Det Acc) using a threshold
of 0.5, area under ROC curve (AuROC) and area under
precision-recall curve (AuPR).

As shown in Table 8, AlignMixup outperforms SOTA
methods under all metrics by a large margin, indicating that
it is better in reducing over-confident predictions.

Calibration We compare AlignMixup with SOTA meth-
ods , training R-18 on CIFAR-100 as discussed in subsec-
tion 4.2. All SOTA mixup methods are reproduced using
the same experimental settings. We compare qualitatively
by plotting accuracy vs. confidence. As shown in Figure 4,
while Baseline is clearly overconfident and Input and Mani-
fold mixup are clearly under-confident, AlignMixup results
in the best calibration among all competitors. We also com-
pare quantitatively, measuring the expected calibration er-
ror (ECE) [22] and overconfidence error (OE) [55]. As
shown in Table 9, AlignMixup outperforms SOTA methods
by achieveing lower ECE and OE, indicating that it is better
calibrated.



Vanilla Input Manifold CutMix PuzzleMix Co-Mixup AlignMixup

0 1 0 1 0 1 0 1 0 10 10 1

1 1 11111

Confidence

A
cc
ur
ac
y

Figure 4. Calibration plots on CIFAR-100 using PreActResnet18: near diagonal is better. We plot accuracy vs. confidence, that is,
probability for the predicted class.

METRIC ECE OE

Baseline 10.25 1.11
Input [69] 18.50 1.42
CutMix [65] 7.60 1.05
Manifold [58] 18.41 0.79
PuzzleMix [32] 8.22 0.61
Co-Mixup [31] 5.83 0.55
SaliencyMix [57] 5.89 0.59
StyleMix [28] 11.43 1.31
StyleCutMix [28] 9.30 0.87

AlignMixup (ours) 5.78 0.41
AlignMixup/AE (ours) 5.06 0.48

Gain +0.77 +0.14

Table 9. Calibration using PreActResnet18 on CIFAR-100.
ECE: expected calibration error; OE: overconfidence error. Lower
is better. Blue: second best. Gain: reduction of error.

In
pu

t
m

ix
up

[6
9]

IoU = 0.27 IoU = 0.41

C
ut

M
ix

[6
5]

IoU = 0.59 IoU = 0.52

A
lig

nM
ix

up
(O

ur
s)

IoU = 0.76 IoU = 0.63

Figure 5. Localization examples using ResNet-50 on CUB200-
2011. Red boxes: predicted; green: ground truth.

Qualitative results of WSOL Qualitative localization re-
sults shown in Figure 5 indicate that AlignMixup en-
codes semantically discriminative representations, resulting
in better localization performance.

Object detection Following the settings of CutMix [65],
we use Resnet-50 pretrained on ImageNet using Align-
Mixup as the backbone of SSD [38] and Faster R-CNN [45]
detectors and fine-tune it on Pascal VOC07 [17] and MS-
COCO [37] respectively. AlignMixup outperforms CutMix
mAP by 0.8% (77.6 → 78.4) on Pascal VOC07 and 0.7%
(35.16 → 35.84) on MS-COCO.

D. Additional ablations

ITERATIONS (i) 0 10 20 50 100 200 500 1000

AlignMixup 80.98 80.96 81.31 81.42 81.71 81.50 81.34 81.28

Table 10. Ablation of the number of iterations in Sinkhorn-Knopp
algorithm using R-18 on CIFAR-100. Top-1 classification accu-
racy(%): higher is better.

Iterations in Sinkhorn-Knopp The default number of it-
erations for the Sinkhorn-Knopp algorithm in solving (8)
is i = 100. Here, we investigate more choices, as shown
in Table 10. The case of i = 0 is similar to cross-
attention. In this case, we only normalize either the rows
or columns in (7) once, such that P1 = 1/r (when A
aligned to A′) or P⊤1 = 1/r (when A′ aligned to A).
We observe that while AlignMixup outperforms the best
baseline–StyleCutMix (80.66)–in all cases, it performs best
for i = 100 iterations.


	1 . Introduction
	2 . Related Work
	3 . AlignMixup
	3.1 . Preliminaries
	3.2 . Interpolation of aligned feature tensors
	3.3 . Visualization and discussion

	4 . Experiments
	4.1 . Implementation details
	4.2 . Image classification and robustness
	4.3 . Overconfidence
	4.4 . Weakly-supervised object localization (WSOL)
	4.5 . Ablation study

	5 . Conclusion
	6 . Acknowledgement
	A . Algorithm
	B . Hyperparameter settings
	C . Additional experiments
	D . Additional ablations

