
Tensor feature hallucination for few-shot learning

Michalis Lazarou1 Tania Stathaki1 Yannis Avrithis2
1Imperial College London

2Athena RC

Abstract

Few-shot learning addresses the challenge of learning
how to address novel tasks given not just limited supervi-
sion but limited data as well. An attractive solution is syn-
thetic data generation. However, most such methods are
overly sophisticated, focusing on high-quality, realistic data
in the input space. It is unclear whether adapting them to
the few-shot regime and using them for the downstream task
of classification is the right approach. Previous works on
synthetic data generation for few-shot classification focus
on exploiting complex models, e.g. a Wasserstein GAN with
multiple regularizers or a network that transfers latent di-
versities from known to novel classes.

We follow a different approach and investigate how
a simple and straightforward synthetic data generation
method can be used effectively. We make two contribu-
tions, namely we show that: (1) using a simple loss func-
tion is more than enough for training a feature genera-
tor in the few-shot setting; and (2) learning to generate
tensor features instead of vector features is superior. Ex-
tensive experiments on miniImagenet, CUB and CIFAR-FS
datasets show that our method sets a new state of the art,
outperforming more sophisticated few-shot data augmenta-
tion methods. The source code can be found at https://
github.com/MichalisLazarou/TFH_fewshot.

1. Introduction
Deep learning continuously improves the state of the art

in different fields, such as natural language understand-
ing [42] and computer vision [30]. However, a fundamental
limitation of representation learning from raw data is the
dependence on large amounts of task-specific or domain-
specific data, labeled or not. This limitation inhibits the ap-
plication of deep learning to real-world problems, such as
rare species classification, where the cost of obtaining and
annotating data from a new domain is high.

To address this limitation, few-shot learning [65, 58, 10]
has attracted significant interest in recent years. Few-shot
learning is concerned with learning not only under limited

Figure 1. CUB original images (row 1) followed by images gen-
erated from separately trained reconstructors using as input tensor
features (row 2) or vector features (row 3). More results and im-
plementation details are given in the supplementary material.

supervision, but also from limited data. This constraint
excludes representation learning from scratch and inhibits
adapting the representation, which is otherwise common in
transfer learning [9, 28] domain/task adaptation [11, 51]
and continual learning [52].

Data augmentation, commonly based on simple input
transformations, is a universal way of regularizing and im-
proving the generalization ability of a model [30], as well as
exploiting unlabeled data [5, 59]. In few-shot learning, re-
cent methods go beyond input transformations towards syn-
thetic data generation and hallucination, either in the image
space [7, 73] or in the feature space [8, 34, 40]. Hence, they
address the data deficiency by augmenting real data with
synthetic, achieving a greater extent of diversity.

The vast majority of generative models focuses on high-
quality, high-resolution images, assuming a large amount of
data. Also, the metrics used to evaluate generative models,
focus on whether the generated data is realistic [18, 54].
Generating high quality, realistic data may not be necessary
in “downstream tasks” such as classification. It is unclear
whether and how state of the art generative models in the
image space can succeed in the few-shot setting.

Most of the recent few-shot feature hallucination meth-
ods focus on generating vectors in the feature space [8, 34,
40]. These vectors are most commonly obtained by global
average pooling (GAP) on the output feature maps. This

https://github.com/MichalisLazarou/TFH_fewshot
https://github.com/MichalisLazarou/TFH_fewshot

embedding
network

support set

conditioner + generator +
query

 augment support tensors

1. tensor
features

2. tensor
prototypes

3. class conditional
vectors

4. latent
vectors

5. generate tensor
features

6. augment support
tensors

7. GAP, prototype
classification

Figure 2. Overview of our method. At inference: 1) Map the support examples xj
i (each color indicates a different class j) into tensor

features fθ′(x
j
i) through the pre-trained embedding network fθ′ . 2) Average xj

i into a tensor prototype pj per class j (3). 3) Map each
pj to a class conditional vector h(pj) through the conditioner network h. Draw M samples zm per class from a k-dimensional normal
distribution N (0, Ik). 5) Generate M class-conditional tensor features g(zm;h(pj)) per class j using generator network g. 6) Augment
the support tensors with the generated tensors. 7) Perform global average pooling (GAP) and average the augmented features into vector
prototype p̄j per class j (5) and classify queries q to nearest prototype. At training (not shown): a) Train fθ using cross-entropy (1). b)
Fine-tune fθ to fθ′ using self-distillation (2). c) Train tensor feature hallucinator (TFH) {h, g} using reconstruction loss (4).

discards spatial details that might be necessary to model the
underlying data distribution. We hypothesize that working
with the feature map tensors directly may be more effec-
tive. To investigate this, we train two image reconstructors
separately: one for tensor features and the other for vector
features obtained by GAP. The latter has the same archi-
tecture as the former, except for one additional upsampling
layer. As shown in Figure 1, the feature map tensors pre-
serve more information indeed.

Motivated by this finding, we explore the potential of
using tensor features instead of vector features in a simple
generative model to improve few-shot classification. We
employ a simple conditioner-generator architecture and we
introduce a simple reconstruction loss between the gener-
ated tensor and the corresponding class prototype tensor.
This allows the generation of a diverse set of synthetic data,
not necessarily realistic, from a limited amount of real data
from a previously unseen task. An overview is shown in
Figure 2. We demonstrate empirically that our model pro-
vides state of the art results, outperforming more sophisti-
cated generative models on a number of benchmarks. Our
contributions are summarized as follows:

1. We are the first to generate tensor features instead of
vector features in the few-shot setting and to leverage
their structural properties (subsection 3.3).

2. We introduce a novel loss function that is simpler than
alternatives in state of the art few-shot synthetic data
generation methods [34, 40, 4] (subsection 3.4).

3. Our tensor feature hallucinator (TFH) sets new state of
the art on three common few-shot classification bench-
marks: miniImagenet, CUB and CIFAR-FS.

4. We demonstrate the robustness of our hallucinator
against using different backbone networks and clas-
sifiers, as well as its applicability to the challenging

setting of cross-domain few-shot learning.

2. Related work

2.1. Few-shot learning

In few-shot learning, the objective is to learn from an
abundant labeled set of base classes how to solve tasks from
a limited support set over a distinct set of novel classes. We
briefly discuss different approaches to this objective, fol-
lowed by a more detailed account of synthetic data genera-
tion, where our contribution lies.

Meta-learning The objective of few-shot classification
fits naturally within meta-learning [56, 64], referring to
learning at two levels, where generic knowledge is acquired
before adapting to more specific tasks. There are different
instantiations of this idea, all sharing the fact that the loss is
computed on a set of examples, called an episode.

Optimization meta-learning aims to learn how to quickly
update the model parameters to novel tasks without over-
fitting. This includes updates in closed form [2], iterative
updates according to the gradient descent [10, 74, 44] and
learnable iterative updates, such as LSTM [50].

Model-based meta-learning aims to learn how to up-
date specific model architectures to novel tasks. This in-
cludes memory-augmented neural networks [55] and meta-
networks, designed explicitly according to the two-level
learning paradigm [43].

Metric learning is a standalone field that overlaps meta-
learning and aims to learn how to compare examples of un-
seen classes [45]. Most often, it amounts to learning an
embedding space where distances or similarities are taken
between a query and individual examples [27], all exam-
ples of a class [65], or the class centroid [58]. A metric or
similarity function may also be learned directly [60].

Representation learning Instead of learning in episodes,
it is simpler to compute the loss on one example at a time,
like standard cross-entropy. Learning a classifier on the
base classes then amounts to representation learning. This
simplified approach has been popularized in few-shot clas-
sification with the cosine-based classifier [49, 13, 36, 6].
Any method that helps in learning a better representation is
applicable in this sense, including pretext tasks [14], self-
distillation [61] and manifold mixup [41].

Task adaptation In few-shot learning, the challenge is
to adapt the representation to novel tasks on limited data
without overfitting. This is possible using metric scal-
ing [47], attention mechanisms [13], task-adaptive pro-
jections [68], set-to-set functions [67], identifying task-
relevant features [33] or growing the architecture [36].

Unlabeled data The constraint of few-shot learning may
be relaxed by accessing more novel-class unlabeled data
(semi-supervised learning) or multiple queries at a time
(transductive inference). This allows exploiting the mani-
fold structure of the additional data, for instance using graph
neural networks [12, 24], label propagation [39], embed-
ding propagation [53] or label cleaning [31].

2.2. Synthetic data generation

Generative models aim to model the underlying data dis-
tribution of the training set in a latent space. Generative ad-
versarial networks (GAN) [15] are by far the most popular
approach. The idea is a zero-sum game between a genera-
tor and a discriminator, such that generated data are realistic
enough to be indistinguishable from real. Several improve-
ments concern the architecture, as well as training and reg-
ularization methods [23, 3, 21].

Other approaches include variational autoencoders
(VAE) [26], imposing a prior distribution in the latent space,
autoregressive (AR) models [63, 46], iteratively generat-
ing samples conditioned on previous steps, and flow-based
models [25, 20], modeling the data distribution explicitly
via invertible transformations.

Most state of the art generative models do not focus on
improving the performance of downstream tasks such as
classification, but rather on image quality metrics such as
Fréchet inception distance (FID) [18] and inception score
(IS) [54]. They also assume access to abundant training
data, which is in direct contrast to the few-shot setting. Even
though recent methods address small datasets [22, 37], they
are limited to unconditional image generation, which in-
hibits their use in novel tasks.

2.3. Synthetic data generation for few-shot learning

In few-shot learning, a generative model can be learned
on base-class data to augment real novel-class data with
synthetic. One of the first ideas in this direction is fea-

ture hallucination [16]. There are several approaches
based on GANs, including MetaGAN [73], which integrates
MAML [10] with a conditional GAN to generate examples
in the input space; AFHN [34], a feature hallucinator us-
ing wGAN [1]; and FUNIT [38], a GAN-based method for
few-shot image-to-image translation.

There are also alternative approaches to GANs, includ-
ing VI-Net [40], which uses a class-conditional VAE as a
feature hallucinator; diversity transfer network (DTN) [4],
which learns how to transfer latent diversities from base to
novel classes; SalNet [71], which hallucinates features by
combining foregrounds and backgrounds from different im-
ages; and IDeMe-Net [7], which combines novel-class sup-
port with similar base-class images.

All the aforementioned methods, including the current
state of the art, use overly complex training regimes, adapt-
ing them to the few-shot setting. For instance, AFHN [34]
adapts the Wasserstein GAN [1] and VI-Net [40] adapts a
variational autoencoder [26]. It is not clear whether such
sophisticated generative models and loss functions are nec-
essary for a “downstream task” like few-shot classification.
At the same time, generating vector features incurs infor-
mation loss as demonstrated in Figure 1.

2.4. On our contribution

Our work falls within generating synthetic data in the
feature space. However, we are the first to train a model to
generate tensor features instead of vector features in few-
shot learning, exploiting the spatial and structural properties
of tensors (subsection 3.3). This allows us to use a simple
reconstruction loss between the generated tensors and their
class prototype (subsection 3.4), while still outperforming
methods using overly complex generative models.

Our model bears similarities to a VAE [26], also used by
VI-Net [40]. Our conditioner and hallucinator networks
play a similar role to encoder and decoder, respectively.
However, rather than predicting the variance and imposing a
prior distribution in the latent space, we condition the model
on class prototypes, also represented by tensor features, and
we use the same prototypes in the reconstruction loss.

To improve representation learning, we use self-
distillation as an auxiliary loss term, following [61] (sub-
section 3.2). We also perform task adaptation by fine-tuning
the hallucinator to novel class data for few iterations.

3. Method
3.1. Problem formulation

We are given a labeled dataset Dbase := {(xi, yi)}Ii=1 of
I examples, with each example xi having a label yi in one
of the classes in Cbase. This dataset is used to learn the pa-
rameters θ of a mapping fθ : X → Rd×h×w from an input
image space X to a feature or embedding space, where fea-

ture tensors have d dimensions (channels) and spatial reso-
lution h× w (height × width).

The knowledge acquired at representation learning is
used to solve novel tasks, assuming access to a dataset
Dnovel, with each example being associated with one of the
classes in Cnovel, where Cnovel is disjoint from Cbase. In
few-shot classification [65], a novel task is defined by sam-
pling a support set S from Dnovel, consisting of N classes
with K labeled examples per class, for a total of L := NK
examples. Given the mapping fθ and the support set S, the
problem is to learn an N -way classifier that makes predic-
tions on unlabeled queries, also sampled from novel classes.
Queries are treated independently of each other. This is re-
ferred to as inductive inference.

3.2. Representation learning

The goal of representation learning is to learn the em-
bedding function fθ that can be applied to Dnovel to ex-
tract embeddings and solve novel tasks. We use fθ fol-
lowed by global average pooling (GAP) and a parametric
base classifier cϕ to learn the representation. We denote by
f̄θ : X → Rd the composition of fθ and GAP. We follow
the two-stage regime by [61] to train our embedding model.
In the first stage, we train fθ on Dbase using standard cross-
entropy loss LCE:

J(Dbase; θ, ϕ) :=

I∑
i=1

ℓCE(cϕ(f̄θ(xi)), yi) +R(ϕ), (1)

where R is a regularization term. In the second stage, we
adopt a self-distillation process: The embedding model fθ
and classifier cϕ from the first stage serve as the teacher
and we distill their knowledge to a new student model fθ′

and classifier cϕ′ , with identical architecture. The student
is trained using a linear combination of the standard cross-
entropy loss, as in stage one, and the Kullback-Leibler (KL)
divergence between the student and teacher predictions:

JKD(Dbase; θ
′, ϕ′) :=

αJ(Dbase; θ
′, ϕ′)+

βKL(cϕ′(f̄θ′(xi)), cϕ(f̄θ(xi))),

(2)

where α and β are scalar weights and θ, ϕ are fixed.

3.3. Feature tensor hallucinator

Existing feature hallucination methods [34, 4, 40, 72, 16]
are trained using vector features, losing significant spatial
and structural information. By contrast, our hallucinator is
trained on tensor features before GAP and generates tensor
features as well. In particular, we use the student model
fθ′ : X → Rd×h×w, pre-trained using (2), as our embed-
ding network to train our tensor feature hallucinator.

The hallucinator consists of two networks: a conditioner
network h and a generator network g. The conditioner

aids the generator in generating class-conditional examples.
Given a set Xj := {xj

i}Ki=1 of examples associated with
each class j = 1, . . . , N , conditioning is based on the pro-
totype tensor pj := p(Xj) ∈ Rd×h×w of class j,

p(Xj) :=
1

K

K∑
i=1

fθ′(xj
i). (3)

The conditioner h : Rd×h×w → Rd′
maps the prototype

tensor to the class-conditional vector sj := h(pj) ∈ Rd′
.

The generator g : Rk+d′ → Rd×h×w takes as input this
vector as well as a latent vector z ∼ N (0, Ik) drawn from
a k-dimensional standard normal distribution and generates
a class-conditional tensor feature g(z; sj) ∈ Rd×h×w for
each class j.

Algorithm 1: Meta-training of tensor hallucinator
input : training set Dbase

input : pre-trained embedding fθ
output: trained tensor hallucinator {h, g}

1 while not done do
2 Sample an N -way K-shot episode E := {Ej}Nj=1 from

Dbase

3 for class j = 1, . . . , N do
4 Obtain class prototype tensor pj := p(Ej) by (3)
5 Map pj to class-conditional vector sj := h(pj)

6 Draw M samples {zm}Mm=1 from N (0, Ik)
7 Generate M class-conditional tensor features

{g(zm; sj)}Mm=1

8 Update parameters of hallucinator {h, g} by (4)

3.4. Training the hallucinator

We train our hallucinator using a meta-training regime,
similar to [34, 8, 57]. At every iteration, we sample a new
episode by randomly sampling N classes and K examples
Ej := {xj

i}Ki=1 for each class j from Dbase. For each class
j = 1, . . . , N , we obtain the prototype tensor pj := p(Ej)
using (3) and the class-conditional vector sj := h(pj) by
the conditioner h. We then draw M samples {zm}Mm=1 from
the standard normal distribution N (0, Ik) and generate M
class-conditional tensor features {g(zm; sj)}Mm=1 using the
generator g. We train our hallucinator {h, g} on the episode
data E := {Ej}Nj=1 by minimizing the mean squared er-
ror (MSE) of generated class-conditional tensor features of
class j to the corresponding class prototype pj :

JH(E;h, g) =
1

MN

N∑
j=1

M∑
m=1

∥g(zm;h(pj))− pj∥2 . (4)

Algorithm 1 summarizes the overall training process of the
hallucinator.

Algorithm 2: Using hallucinator at inference
input : support set S := {Sj}Nj=1
input : pre-trained embedding fθ
input : pre-trained hallucinator {h, g}
output: predicted label for query q ∈ X

1 for class j = 1, . . . , N do
2 Obtain class prototype tensor pj := p(Sj) by (3)
3 Draw M samples {zm}Mm=1 from N (0, Ik)
4 Generate M class-conditional tensor features

Gj := {g(zm;h(pj))}Mm=1
5 Augment the support Sj with generated features Gj

6 Apply GAP and obtain vector class prototypes p̄j by (5)

7 Assign query q to class of nearest prototype to feature f̄θ′ (q)

3.5. Inference

At inference, we are given a few-shot task with a sup-
port set S := {Sj}Nj=1, containing N novel classes with K

examples Sj := {xj
i}Ki=1 for each class j. For each class

j = 1, . . . , N , we use our trained backbone network fθ′

to compute the tensor feature fθ′(xj
i) ∈ Rd×h×w of each

example in Sj and we obtain the prototype pj := p(Sj)
by (3). Then, using our trained tensor feature hallucina-
tor {h, g}, we generate M class-conditional tensor features
Gj := {g(zm;h(pj))}Mm=1, also in Rd×h×w, where zm
are drawn from N (0, Ik). We augment the support fea-
tures fθ′(Sj) with the generated features Gj , resulting in
K + M labeled tensor features per class in total. We now
apply GAP to those tensor features and obtain new, vector
class prototypes in Rd:

p̄j :=
1

K +M

(
K∑
i=1

f̄θ′(xj
i) +

M∑
m=1

ḡ(zm;h(pj))

)
, (5)

where ḡ denotes the composition of g and GAP. Finally,
given a query q ∈ X , we apply GAP to the tensor feature
fθ′(q) and assign it to the class of the nearest vector proto-
type. Algorithm 2 summarizes the inference process.

We refer to the above approach as prototypical classifier.
In subsection 4.6 we experiment with alternative classifiers
such as logistic regression and support vector machine on
the same augmented (support + generated) features.

4. Experiments
4.1. Datasets

We use three common few-shot classification datasets:
miniImageNet [65, 50], CUB [6, 19] and CIFAR-FS [6, 29].
More details are given in the supplementary material.

4.2. Networks

Our tensor feature hallucinator (TFH) consists of a con-
ditioner network and a generator network. Their architec-
ture depends on the backbone network.

pj

conv 3× 3

flatten

FC

sj

512× 7× 7

256× 5× 5

6400

1024

2×

z sj

concat, reshape

conv⊤ 3× 3

sigmoid

g(z, sj)

2048× 1× 1

512× 7× 7

512× 7× 7

3×

1024 1024

(a) conditioner h (b) generator g

Figure 3. Architecture of our (a) conditioner network h, (b) gen-
erator network g for ResNet-18. See text for more details and for
ResNet-12. conv⊤: transpose convolution.

Backbone Many recent data augmentation methods [8,
7, 34, 40] use ResNet-18 [17] as a backbone embedding
model. To perform as fair comparison as possible, we use
this backbone by default. To investigate the transferabil-
ity and robustness of our tensor hallucinator, we also use a
pre-trained ResNet-12 backbone from the publicly available
code of DeepEMD [70].

For ResNet-18, the embedding dimension is d = 512
and the resolution h × w = 7 × 7. For ResNet-12, it is
d = 640 and h× w = 5× 5.

Conditioner As shown in Figure 3(a), our conditioner h :
Rd×h×w → Rd′

consists of two convolutional layers with
a ReLU activation in-between, followed by flattening and a
fully-connected layer. The convolutional layers use kernels
of size 3 × 3, and stride 1. In the first convolutional layer,
we also use padding 1. The output channels are d and d/2
in the first and second layer, respectively. The dimension of
the class-conditional vector is d′ = 1024.

For ResNet-18, the tensor dimensions of all conditioner
layers are [512× 7× 7], [512× 7× 7], [256× 5× 5], [6400]
(flattening) and [1024]. For ResNet-12, they are [640× 5×
5], [640×5×5], [320×3×3], [2880] (flattening) and [1024].

Generator As shown in Figure 3(b), for ResNet-18, our
generator g : Rk+d′ → Rd×h×w consists of concatenation
of z and sj into (z; sj) ∈ Rk+d′

, followed by reshaping
to (k + d′) × 1 × 1, three transpose-convolutional layers
with ReLU activations in-between and a sigmoid function
at the end. For ResNet-12, the generator architecture is the
same, except that it has only two transpose-convolutional
layers. The dimension of the latent vector z is k = 1024.
All transpose-convolutional layers use kernels of size 3×3,
stride 1 and d output channels.

For ResNet-18, the tensor dimensions of all generator
layers are [2048 × 1 × 1], [512 × 3 × 3], [512 × 5 × 5],

BACKBONE
1-SHOT 5-SHOT

k γ k γ

ResNet-18 15 10−7 10 10−4

ResNet-12 10 10−7 10 10−4

Table 1. Number of steps t and learning rate η for TFH-ft, chosen
on miniImageNet validation set and used in all experiments.

and [512× 7× 7]. For ResNet-12, they are [2048× 1× 1],
[640× 3× 3], and [640× 5× 5].

4.3. Training

Embedding model Similarly to [61], we use SGD opti-
mizer with learning rate 0.05, momentum 0.9 and weight
decay 0.0005. For data augmentation, as in [32], we adopt
random crop, color jittering, and horizontal flip.

Tensor feature hallucinator (TFH) Our TFH is trained
in episodes of N = 5 classes, K = 20 examples per
class and generation of M = 50 class-conditional exam-
ples. We train for 50 epochs, where each epoch consists of
600 episodes. We use Adam optimizer with initial learning
rate 10−4, decaying by half at every 10 epochs.

Novel-task fine-tuning (TFH-ft) Given a novel task, we
also provide an improved solution, TFH-ft, where our hal-
lucinator is fine-tuned on novel-class support examples. We
use exactly the same loss function as in hallucinator train-
ing (4) and we fine-tune for t steps using Adam optimizer
and learning rate η. Table 1 shows the values t and η used
in all experiments.

4.4. Setup

Tasks We consider N -way, K-shot classification tasks
with N = 5 randomly sampled novel classes and K ∈
{1, 5} examples drawn at random per class as support set
S, that is, L = 5K examples in total. For the query set Q,
we draw 15 additional examples per class, that is, 75 exam-
ples in total, which is the most common choice [39, 35, 69].
We measure the classification accuracy as the percentage of
correctly classified queries per task. To reduce the variance,
we report mean accuracy and 95% confidence interval over
600 tasks per experiment, similarly to [34].

Hyperparameters For ResNet-18, we generate M =
100 and M = 2 features per class in 1-shot and 5-shot tasks
respectively using TFH and M = 100 using TFH-ft. For
ResNet-12, we generate M = 1000 and M = 1 features
per class in 1-shot and 5-shot tasks respectively using TFH
and M = 5 using TFH-ft.

Baselines: no augmentation We define baselines con-
sisting only of the embedding network fθ (1) or fθ′ (2) at
representation learning and a prototypical classifier at in-
ference, without feature hallucination. We refer to them as

Baseline (1) and Baseline-KD (2), respectively.

Baseline: vector feature hallucinator (VHF) To vali-
date the benefit of generating tensor features, we also gen-
erate vector features by using f̄θ′ : X → Rd includ-
ing GAP (2) as embedding model. In this case, the con-
ditioner h : Rd → Rd′

consists of two fully-connected
layers with a ReLU activation in-between. The generator
g : Rk+d′ → Rd also consists of two fully-connected layers
with a ReLU activation in-between and a sigmoid function
at the end. The dimension d′ of the class-conditional vector
as well as the dimensions of the hidden layers of both the
conditioner and the generator are all set to 512.

Competitors We compare our method with state-of-
the-art data augmentation methods for few-shot learn-
ing, including MetaGAN [73], ∆-encoder [57], salient
network (SalNet) [72], diversity transfer network (DTN)
[4], dual TriNet [8], image deformation meta-network
(IDeMe-Net) [7], adversarial feature hallucination net-
work (AFHN) [34] and variational inference network (VI-
Net) [40].

4.5. Comparison with the state of the art

Standard few-shot classification Table 2 compares our
method with baselines and the state of the art. Most impor-
tant are the comparisons with [8, 7, 34, 40], which use the
same backbone. Our TFH provides new state of the art in
all datasets in both 1-shot and 5-shot tasks, outperforming
all competing few-shot data augmentation methods.

TFH is superior to VFH, especially in miniImageNet 1-
shot, providing almost 3% performance improvement. The
importance of tensor features is clear from the fact that VHF
is worse than AFHN [34] while TFH is better than AFHN
by more than 2% in miniImageNet 1-shot. VFH still out-
performs the state of the art in all other experiments, high-
lighting the effectiveness of our new loss function. Novel-
task fine-tuning (TFH-ft) is mostly beneficial, impressively
even in 1-shot tasks. This shows that our tensor hallucinator
is robust and avoids overfitting. Self-distillation provides a
significant gain in all experiments.

Cross-domain few-shot classification We investigate the
ability of our tensor hallucinator to address domain shift,
carrying out experiments in the cross-domain few-shot clas-
sification setting proposed by [6]. We are not aware of any
other synthetic data generation method that has been ap-
plied to this setting. We train the ResNet-18 backbone and
our tensor hallucinator on miniImageNet as Dbase and solve
novel tasks on CUB and CIFAR-FS as Dnovel. As shown
in Table 3, our tensor hallucinator can address the domain
shift effectively, especially in 1-shot tasks, even without
fine-tuning. Even though the results in 5-shot tasks are less
impressive, our hallucinator still outperforms the Baseline-
KD on miniImageNet→CIFAR-FS, while being on par on

METHOD BACKBONE
miniIMAGENET CUB CIFAR-FS

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MetaGAN [73] ConvNet-4 52.71±0.64 68.63±0.67 – – – –
∆-Encoder† [57] VGG-16 59.90 69.70 69.80±0.46 82.60±0.35 66.70 79.80
SalNet [72] ResNet-101 62.22±0.87 77.95±0.65 – – – –
DTN [4] Resnet-12 63.45±0.86 77.91±0.62 72.00 85.10 71.50 82.80

Dual TriNet [8] ResNet-18 58.80±1.37 76.71±0.69 69.61 84.10 63.41±0.64 78.43±0.64

IDeMe-Net [7] ResNet-18 59.14±0.86 74.63±0.74 – – – –
AFHN [34] ResNet-18 62.38±0.72 78.16±0.56 70.53±1.01 83.95±0.63 68.32±0.93 81.45±0.87

VI-Net [40] ResNet-18 61.05 78.60 74.76 86.84 – –

Baseline (1) ResNet-18 56.81±0.81 78.31±0.59 67.14±0.89 86.22±0.50 65.71±0.95 84.68±0.61

Baseline-KD (2) ResNet-18 59.62±0.85 79.31±0.62 70.85±0.90 87.64±0.48 69.15±0.94 85.89±0.59

VFH (ours) ResNet-18 61.88±0.85 79.63±0.61 75.44±0.85 87.82±0.47 72.31±0.91 85.64±0.64

TFH (ours) ResNet-18 64.49±0.84 79.94±0.60 75.66±0.85 88.39±0.49 73.77±0.85 86.68±0.63

TFH-ft (ours) ResNet-18 65.07±0.82 80.81±0.61 75.76±0.83 88.60±0.47 74.77±0.90 86.88±0.59

Table 2. Standard few-shot classification. Comparison of our TFH, variants and baselines to SOTA few-shot data augmentation methods.
Baseline (1), Baseline-KD (2): prototypical classifier at inference, no feature generation. VFH: our vector feature hallucinator; TFH: our
tensor feature hallucinator; TFH-ft: our tensor feature hallucinator followed by novel-task fine-tuning. †: Delta-encoder uses VGG-16
backbone for miniImageNet and CIFAR-FS and ResNet-18 for CUB.

METHOD
mIN→CUB mIN→CIFAR-FS

1-shot 5-shot 1-shot 5-shot

Baseline (1) 43.14±0.78 62.20±0.70 50.25±0.86 69.43±0.74

Baseline-KD (2) 44.40±0.82 63.83±0.73 51.54±0.89 70.40±0.72

VFH (ours) 44.77±0.79 62.61±0.73 50.36±0.87 69.31±0.74

TFH (ours) 45.67±0.80 63.08±0.73 51.82±0.89 69.77±0.76

TFH-ft (ours) 45.96±0.80 63.64±0.74 53.07±0.86 71.29±0.75

Table 3. Few-shot cross-domain classification. Comparison of our
TFH to variants and baselines as defined in Table 2, using ResNet-
18 trained on miniImageNet (mIN).

miniImageNet→CUB.

4.6. Ablations

Alternative classifiers We investigate the effect of replac-
ing the prototypical classifier [58] by alternative classifiers
at inference, applied to the same augmented support set
according the features generated by our tensor hallucina-
tor. We consider logistic regression and support vector ma-
chine (SVM) classifiers, both using the scikit-learn frame-
work [48]. As shown in Table 4, our tensor hallucinator
clearly provides the best accuracy results irrespective of the
classifier, while the performance of all three classifiers is
on par. This indicates that individual generated features are
also useful, not just the centroid per class.

Alternative backbone network To investigate the ef-
fect of using alternative backbone networks, we replace
ResNet-18 by ResNet-12 and use the pre-trained networks

METHOD miniIMAGENET CUB

1-shot 5-shot 1-shot 5-shot

LOGISTIC REGRESSION

Baseline (1) 59.20±0.82 77.71±0.61 69.44±0.86 86.19±0.49

Baseline-KD (2) 61.83±0.82 79.27±0.61 72.74±0.88 87.71±0.49

VFH (ours) 62.37±0.83 79.70±0.59 75.06±0.88 87.95±0.46

TFH (ours) 64.03±0.84 79.93±0.60 75.08±0.85 88.82±0.46

TFH-ft (ours) 64.83±0.82 80.49±0.61 75.43±0.85 88.52±0.48

SUPPORT VECTOR MACHINE

Baseline (1) 57.12±0.84 76.45±0.62 67.24±0.87 84.72±0.52

Baseline-KD (2) 60.21±0.84 78.28±0.61 71.23±0.89 86.34±0.52

VFH (ours) 61.95±0.85 79.15±0.60 75.43±0.85 87.46±0.47

TFH (ours) 64.20±0.83 79.62±0.60 75.64±0.85 88.74±0.45

TFH-ft (ours) 65.06±0.82 80.33±0.60 75.77±0.83 88.22±0.46

Table 4. Alternative classifiers. Our TFH, variants and baselines
as defined in Table 2, using ResNet-18, where at inference, the
prototypical classifier is replaced by logistic regression or SVM.

on miniImageNet and CUB provided by DeepEMD [70]1.
We use all three classifiers: prototypical, logistic regression
and SVM. As shown in Table 5, our tensor hallucinator pro-
vides the best results in all settings with a significant perfor-
mance gain of around 3-5% in 1-shot tasks in prototypical
and support vector machines classifiers in both datasets.

Effect of number of generated features We investigate
the effect of the number of generated features per class, M ,
in Table 6. The results are similar for both backbones, high-

1https://github.com/icoz69/DeepEMD

https://github.com/icoz69/DeepEMD

METHOD
miniIMAGENET CUB

1-shot 5-shot 1-shot 5-shot

PROTOTYPICAL CLASSIFIER

Baseline 59.94±0.84 78.65±0.61 66.72±0.90 84.27±0.59

TFH (ours) 64.69±0.83 79.58±0.59 68.71±0.90 84.83±0.53

TFH-ft (ours) 65.16±0.86 79.83±0.65 70.52±0.87 85.02±0.55

LOGISTIC REGRESSION

Baseline 61.83±0.85 79.60±0.60 68.49±0.49 84.75±0.59

TFH (ours) 64.20±0.84 80.21±0.58 68.37±0.92 85.12±0.55

TFH-ft (ours) 64.53±0.53 80.25±0.62 69.59±0.88 85.08±0.55

SUPPORT VECTOR MACHINE

Baseline 59.94±0.84 78.43±0.60 66.72±0.90 83.29±0.60

TFH(ours) 64.62±0.83 79.56±0.58 68.75±0.90 84.05±0.56

TFH-ft(ours) 64.64±0.86 79.88±0.62 69.42±0.88 84.41±0.55

Table 5. Alternative backbone network. Our TFH, variants and
baselines as defined in Table 2, using the publicly available pre-
trained ResNet-12 backbones provided by [70].

FEAT. M
RESNET-18 RESNET-12

1-shot 5-shot 1-shot 5-shot

0 59.62±0.85 79.31±0.62 59.94±0.84 78.65±0.61

1 62.43±0.83 79.33±0.62 63.88±0.85 79.58±0.59

2 63.57±0.87 79.94±0.60 64.01±0.83 79.44±0.61

5 64.42±0.83 79.77±0.61 64.12±0.83 79.49±0.61

10 63.90±0.81 79.64±0.60 64.01±0.85 79.56±0.63

50 63.44±0.86 79.43±0.63 63.67±0.84 79.18±0.65

100 64.49±0.84 79.27±0.60 63.66±0.86 78.89±0.65

500 64.25±0.85 79.71±0.62 64.11±0.86 79.38±0.65

1000 63.76±0.87 79.52±0.62 64.69±0.83 79.48±0.60

Table 6. Effect of number of generated features, M . Using our ten-
sor feature hallucinator (TFH) with the default prototypical classi-
fier and without fine-tuning on miniImageNet.

lighting the generality of our TFH. In all settings, regard-
less of number of generated tensor features, our hallucinator
provides better performance. Remarkably, even 1 or 2 gen-
erated features per class provide a significant gain of around
4% in 1-shot tasks for both networks when compared to 0
(Baseline-KD for ResNet-18 and Baseline for ResNet-12).
Interestingly, the performance of our hallucinator does not
degrade even when 1000 tensor features are generated, still
outperforming the baseline models and providing the best 1-
shot accuracy for ResNet-12. This is significant, since when
generating 1000 features, the vast majority of the support
set consists only of synthetic data.

Visualization of feature embeddings To investigate the
generated feature distribution, we sample a 5-way, 1-shot
novel task, use the support set to generate 500 novel features
per class and visualize the augmented support set in 2D us-

(a) miniImageNet, ResNet-18 (b) CUB, ResNet-18

(c) miniImageNet, ResNet-12 (d) CUB, ResNet-12

Figure 4. t-SNE visualization of the augmented support feature set
of an 1-shot task using both ResNet-18 and ResNet-12 backbones
on miniImageNet and CUB. Colors indicate different classes. ⋆:
support features; •: generated features; ‘×’: query features.

ing t-SNE [62]. As shown in Figure 4, the generated fea-
tures of each class are clustered together, with distinct class
boundaries. This synthetic class-conditional distribution is
improving the classifier performance in the absence of true
data. It can be seen that the query examples are much more
scattered, showing that the variance of each novel class can
be large, highlighting the inherent difficulty of the few-shot
classification problem. If only the support examples were
used, making predictions would be much harder because of
how scattered the queries are.

5. Conclusion

In this work, we have introduced a conceptually simple
tensor feature hallucinator that improves the state of the art
on synthetic data generation for few-shot learning classifi-
cation. We have provided evidence showing that the struc-
tural properties of tensors provide a significant performance
gain, allowing for a simplification of the loss function and
training regime. We have also shown the importance of
complementing with improved representation learning, as
well as task adaptation by fine-tuning on the augmented
support set, which reduces the risk of overfitting.

Potential future directions include: improving our hallu-
cinator architecture; experimenting with different loss func-
tions to train our hallucinator; and investigating the use of
our hallucinator in different settings, such as long-tailed
recognition or incremental learning.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In ICML, 2017.
[2] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and An-

drea Vedaldi. Meta-learning with differentiable closed-form
solvers. arXiv preprint arXiv:1805.08136, 2018.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[4] Mengting Chen, Yuxin Fang, Xinggang Wang, Heng Luo,
Yifeng Geng, Xinyu Zhang, Chang Huang, Wenyu Liu, and
Bo Wang. Diversity transfer network for few-shot learning.
In AAAI, 2020.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020.

[6] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang,
and Jia-Bin Huang. A closer look at few-shot classification.
In ICLR, 2019.

[7] Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu,
and Martial Hebert. Image deformation meta-networks for
one-shot learning. In CVPR, 2019.

[8] Z. Chen, Y. Fu, Y. Zhang, Y. Jiang, X. Xue, and L. Si-
gal. Multi-level semantic feature augmentation for one-shot
learning. IEEE Transactions on Image Processing, 2019.

[9] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,
Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep
convolutional activation feature for generic visual recogni-
tion. In ICML, 2014.

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, 2017.

[11] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In ICML, 2015.

[12] Victor Garcia and Joan Bruna. Few-shot learning with graph
neural networks. arXiv preprint arXiv:1711.04043, 2017.

[13] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In CVPR, 2018.

[14] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018.

[15] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014.

[16] Bharath Hariharan and Ross Girshick. Low-shot visual
recognition by shrinking and hallucinating features. In
CVPR, 2017.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local nash equi-
librium. In NeurIPS, 2017.

[19] Nathan Hilliard, Lawrence Phillips, Scott Howland, Artëm
Yankov, Courtney D Corley, and Nathan O Hodas. Few-shot
learning with metric-agnostic conditional embeddings. arXiv
preprint arXiv:1802.04376, 2018.

[20] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and
Pieter Abbeel. Flow++: Improving flow-based generative
models with variational dequantization and architecture de-
sign. In ICML, 2019.

[21] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017.

[22] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative
adversarial networks with limited data. arXiv preprint
arXiv:2006.06676, 2020.

[23] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019.

[24] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D
Yoo. Edge-labeling graph neural network for few-shot learn-
ing. In CVPR, 2019.

[25] Diederik P Kingma and Prafulla Dhariwal. Glow: Gener-
ative flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039, 2018.

[26] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[27] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
ICML workshop, 2015.

[28] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Big transfer (BiT): General visual representation learning. In
ECCV, 2020.

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, 2009.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012.

[31] Michalis Lazarou, Yannis Avrithis, and Tania Stathaki. It-
erative label cleaning for transductive and semi-supervised
few-shot learning. arXiv preprint arXiv:2012.07962, 2020.

[32] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In CVPR, 2019.

[33] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler,
and Xiaogang Wang. Finding task-relevant features for few-
shot learning by category traversal. In CVPR, 2019.

[34] Kai Li, Yulun Zhang, Kunpeng Li, and Yun Fu. Adversar-
ial feature hallucination networks for few-shot learning. In
CVPR, 2020.

[35] Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibao
Zheng, Tat-Seng Chua, and Bernt Schiele. Learning to
self-train for semi-supervised few-shot classification. In
NeurIPS, 2019.

[36] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei
Bursuc. Dense classification and implanting for few-shot
learning. In CVPR, 2019.

[37] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed El-
gammal. Towards faster and stabilized GAN training for
high-fidelity few-shot image synthesis. arXiv e-prints, pages
arXiv–2101, 2021.

[38] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsuper-
vised image-to-image translation. In CVPR, 2019.

[39] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho
Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate
labels: Transductive propagation network for few-shot learn-
ing. arXiv preprint arXiv:1805.10002, 2018.

[40] Qinxuan Luo, Lingfeng Wang, Jingguo Lv, Shiming Xiang,
and Chunhong Pan. Few-shot learning via feature hallucina-
tion with variational inference. In WACV, 2021.

[41] Puneet Mangla, Nupur Kumari, Abhishek Sinha, Mayank
Singh, Balaji Krishnamurthy, and Vineeth N Balasubrama-
nian. Charting the right manifold: Manifold mixup for few-
shot learning. In WACV, 2020.

[42] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Čer-
nockỳ, and Sanjeev Khudanpur. Recurrent neural network
based language model. In Eleventh annual conference of the
international speech communication association, 2010.

[43] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In
ICML, 2017.

[44] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[45] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In CVPR, 2016.

[46] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse
Espeholt, Alex Graves, and Koray Kavukcuoglu. Con-
ditional image generation with pixelcnn decoders. arXiv
preprint arXiv:1606.05328, 2016.

[47] Boris Oreshkin, Pau Rodríguez López, and Alexandre La-
coste. TADAM: Task dependent adaptive metric for im-
proved few-shot learning. In NeurIPS, 2018.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. JMLR, 2011.

[49] Hang Qi, Matthew Brown, and David G Lowe. Low-shot
learning with imprinted weights. In CVPR, 2018.

[50] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. 2016.

[51] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters.
arXiv preprint arXiv:1705.08045, 2017.

[52] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In CVPR, 2017.

[53] Pau Rodríguez, Issam Laradji, Alexandre Drouin, and
Alexandre Lacoste. Embedding propagation: Smoother
manifold for few-shot classification. ECCV, 2020.

[54] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved
techniques for training GANs. In NIPS, 2016.

[55] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. Meta-learning with
memory-augmented neural networks. In ICML, 2016.

[56] Jürgen Schmidhuber. Evolutionary principles in self-
referential learning, or on learning how to learn: the meta-
meta-... hook. Master’s thesis, Technische Universität
München, 1987.

[57] Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary,
Mattias Marder, Abhishek Kumar, Rogerio Feris, Raja
Giryes, and Alex Bronstein. Delta-encoder: an effective
sample synthesis method for few-shot object recognition. In
NeurIPS, 2018.

[58] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In NeurIPS, 2017.

[59] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han
Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. arXiv
preprint arXiv:2001.07685, 2020.

[60] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In CVPR, 2018.

[61] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-
fication: a good embedding is all you need? arXiv preprint
arXiv:2003.11539, 2020.

[62] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-SNE. JMLR, 9(11), 2008.

[63] Aaron Van Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In
ICML, 2016.

[64] Ricardo Vilalta and Youssef Drissi. A perspective view
and survey of meta-learning. Artificial Intelligence Review,
18(2):77–95, 2002.

[65] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In NIPS, 2016.

[66] Davis Wertheimer, Luming Tang, and Bharath Hariharan.
Few-shot classification with feature map reconstruction net-
works. In CVPR, 2021.

[67] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In CVPR, 2020.

[68] Sung Whan Yoon, Jun Seo, and Jaekyun Moon. Tapnet:
Neural network augmented with task-adaptive projection for
few-shot learning. In ICML, 2019.

[69] Zhongjie Yu, L. Chen, Zhongwei Cheng, and Jiebo
Luo. TransMatch: A transfer-learning scheme for semi-
supervised few-shot learning. CVPR, 2020.

[70] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
DeepEMD: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In CVPR,
2020.

[71] Hongguang Zhang, Jing Zhang, and Piotr Koniusz. Few-
shot learning via saliency-guided hallucination of samples.
In CVPR, 2019.

[72] Hongguang Zhang, Jing Zhang, and Piotr Koniusz. Few-
shot learning via saliency-guided hallucination of samples.
In CVPR, 2019.

[73] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua
Bengio, and Yangqiu Song. MetaGAN: An adversarial ap-
proach to few-shot learning. NeurIPS, 2018.

[74] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hof-
mann, and Shimon Whiteson. Fast context adaptation via
meta-learning. In ICML, 2019.

Supplementary material

A. Datasets
miniImageNet This is a widely used few-shot image clas-
sification dataset [65, 50]. It contains 100 randomly sam-
pled classes from ImageNet [30]. These 100 classes are
split into 64 training (base) classes, 16 validation (novel)
classes and 20 test (novel) classes. Each class contains 600
examples (images). We follow the commonly used split
provided by [50].

CUB This is a fine-grained image classification dataset
consisting of 200 classes, each corresponding to a bird
species. We follow the split defined by [6, 19], with 100
training, 50 validation and 50 test classes.

CIFAR-FS This dataset is derived from CIFAR-100 [29],
consisting of 100 classes with 600 examples per class. We
follow the split provided by [6], with 64 training, 16 valida-
tion and 20 test classes.

When using ResNet-18 as a backbone network, images
are resized to 224 × 224 for all datasets, similarly to other
data augmentation methods [34, 8, 7, 40]. When using
ResNet-12, they are resized to 84× 84, similarly to [70].

RECONSTRUCTOR NETWORK

Layer Output shape

Input 512× 7× 7
ResBlockA 256× 14× 14
ResBlockA 128× 28× 28
ResBlockA 64× 56× 56
TranspConv3x3, stride=2 64× 113× 113
ResBlockB 3× 226× 224
Bilinear interpolation 3× 224× 224

Table 7. Image reconstructor architecture. ResBlockA is exactly
the same as ResBlockB except that it uses ReLU activation func-
tion, while ResBlockB uses sigmoid.

B. Image reconstructors
We carried out an experiment to investigate whether

the output tensor features without global average pooling
(GAP) can provide more spatial information to aid the re-
construction of the original image, when compared to vector
features obtained by GAP. A similar experiment has been
carried out by [66] to visualize the tensor feature maps. We
train two image reconstructors using a variant of an inverted
ResNet-18 architecture with an additional transposed con-
volution layer, as shown in Table 7. The first is a tensor
reconstructor, exactly as in Table 7. The second is a vec-
tor reconstructor taking a 512× 1× 1 input. It is identical,
except that it begins with an additional upsampling layer to
adapt spatial resolution to 7× 7.

We train each image reconstructor separately, taking as
input the features as provided from the pre-trained ResNet-
18 backbone, with and without GAP. For fair comparison,
both reconstructors use exactly the same training settings,
with ℓ1 reconstruction loss as the loss function, batch size
128, Adam optimizer with an initial learning rate of 0.01
and 500 epochs with learning rate decreasing by a factor of
4 every 100 epochs. Similarly to Figure 1, is evident from
Figure 5 that images reconstructed from tensor features are
perceptually more similar to the original. The same holds
for generated tensor and vector features, as shown in Fig-
ure 6. This experiment is for visualization purposes only;
these images are not used in any way by our method.

Figure 5. CUB images reconstructed from tensor/vector features of original images. Each set of 3 rows depicts the original images (row
1), followed by the images reconstructed by the tensor (row 2) and the vector (row 3) reconstructor. Meant for visualization only.

Figure 6. CUB images reconstructed from our generated tensor/vector features. Each set of 3 rows depicts the original images (row 1),
followed by the images reconstructed by the tensor (row 2) and the vector (row 3) reconstructor. Meant for visualization only.

