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ABSTRACT

Self-supervised learning has unlocked the potential of scaling up pretraining to
billions of images, since annotation is unnecessary. But are we making the best
use of data? How more economical can we be? In this work, we attempt to answer
this question by making two contributions. First, we investigate first-person videos
and introduce a “Walking Tours” dataset. These videos are high-resolution, hours-
long, captured in a single uninterrupted take, depicting a large number of objects
and actions with natural scene transitions. They are unlabeled and uncurated, thus
realistic for self-supervision and comparable with human learning.
Second, we introduce a novel self-supervised image pretraining method tailored
for learning from continuous videos. Existing methods typically adapt image-
based pretraining approaches to incorporate more frames. Instead, we advocate
a “tracking to learn to recognize” approach. Our method called DORA, leads
to attention maps that Discover and tRAck objects over time in an end-to-end
manner, using transformer cross-attention. We derive multiple views from the
tracks and use them in a classical self-supervised distillation loss. Using our novel
approach, a single Walking Tours video remarkably becomes a strong competitor
to ImageNet for several image and video downstream tasks.

1 INTRODUCTION
(To the question “Have you read all the books in here?”)
No, only four of them. But I read those very, very carefully.

Jacques Derrida

Learning from large scale datasets has been at the core of great progress. In particular, the field
of self-supervised learning has allowed pretraining of neural networks to scale beyond the size of
labelled datasets. By avoiding costly annotation, strong performance has been demonstrated by
increasing the training dataset sizes into billions of images.

But how well are those images really used? At a rate of one image per second, a dataset of 1B images
would take 317 years to watch. Yet, humans develop functioning visual systems much faster i.e. face
recognition (de Haan et al., 2001) and color sensitivity (Adams, 1987) is developed in three months,
depth perception in five months (Campos et al., 1978) and visual acuity in six months (Sokol, 1978).
Besides potential genetic visual priors in humans, one stark difference is the type of data. Humans
observe their visual surroundings in one continuous stream, only interrupted by sleep. Indeed, learn-
ing visual representations of images from videos is not new. However, previous works have found
significant gaps in performance to image-pretrained models. They have mostly used object-centric
videos scraped from the internet, and adapted image-based pretraining methods to use different
frames as an extra form of data augmentation (Gordon et al., 2020; Parthasarathy et al., 2023).
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Figure 1: Examples of frames from the Walking Tours dataset, containing hours-long, continuous
egocentric 4K videos from urban scenes in different cities, under CC-BY license. There are a large
number of objects and actions in a variety and natural transition of places, e.g. residential area, park,
market, waterfront, etc., with natural transition of lighting conditions and object augmentations.

In this work, we investigate two directions. First, in the direction of data, we introduce a new dataset
of open-source first-person videos, recorded for the purpose of virtual “walking tours”, inspired
by (Wiles et al., 2022). These videos have several advantages. Not only are the individual frames
dense in semantic categories – much more so than movies, as we analyze – but these videos also
directly represent the viewpoint of a human, contain few or no shot cuts nor special effects and are
long (1-3h). Another benefit is their transparency: indeed, one can watch the whole dataset in one
setting. The dataset we create contains 10 Walking Tours (WT) videos with CC-BY license.

Second, in the direction of the method, we develop a new self-supervised image-pretraining method
that is uniquely suited for learning from natural, non-object-centric videos. Our approach is inspired
by observing toddlers first learn to track objects and animals, then to recognize and differentiate
them (Bomba & Siqueland, 1983; Quinn et al., 1993; Spelke & Kinzler, 2007). Our method, called
DORA, is an end-to-end training approach that “tracks to learn to recognize”: given a video clip,
objects in an initial frame are implicitly Discovered and tRAcked across time. The tracked objects
are incentivized to be diverse by introducing a Sinkhorn-Knopp clustering of patch embeddings; the
tracked instances are used as a learning signal for a classical multi-view SSL loss.

Surprisingly, contrary to previous works, we find that our novel method obtains ImageNet-level
performances by training on a single WT video, as evidenced by performances on segmentation and
object detection downstream tasks. While humorously intentioned, Derrida’s quote rings true to
this finding and our results give some hope for alternative directions in SSL that depart from blind
dataset scaling towards more efficient and smarter use of existing video data.

To summarize, our key contributions in this work are as follows:

1. We introduce a new dataset of 10 WT videos, with single-video and mixed-video splits.
The latter is conveniently equal in size to ImageNet. We analyze their usefulness compared
to existing video and image datasets.

2. We propose a new end-to-end self-supervised visual pretraining method called DORA. It
builds upon DINO but is tailored to promote tracking of multiple objects across frames.
We use it to learn strong image encoders and trace the source of its improvements through
extensive ablations.

3. We obtain strong performance on ADE20k segmentation and MS COCO detection, outper-
forming ImageNet-pretrained DINO, while instead pretraining on a single long video.

2 RELATED WORK

Self-supervised learning of image encoders from video data is a very active area of research. Video,
and more generally temporal streams, have long been theorized to be ideal signals for unsupervised
learning (Wiskott & Sejnowski, 2002). In computer vision, early methods have been very diverse
and included pretext tasks such as egomotion prediction (Agrawal et al., 2015; Jayaraman & Grau-
man, 2015), active recognition (Jayaraman & Grauman, 2016), pose estimation (Chakraborty &
Namboodiri, 2017), unsupervised object discovery (Croitoru et al., 2017), dense prediction (Pathak
et al., 2017; Li et al., 2019), optical flow (Mahendran et al., 2018; Xiong et al., 2021), frame order
prediction (Misra et al., 2016), view-point matching (Sermanet et al., 2018; Pirk et al., 2020) or
learning visual correspondences (Wang et al., 2019).

More recently, there have been considerable advances in self-supervised learning using ImageNet,
with the main theme being extracting multiple augmentations of an image (Chen et al., 2020; Caron
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DATASET DOMAIN EGO PRE BAL ANNOT
AVG. DUR DUR #VIDEOS

FRAME
(SEC) (HR) RESOLUTION

Diverse Pretraining
Kinetics-400 (Kay et al., 2017) Actions ✗ ✓ ✓ Class 10.2 851 400 340 × 255
AVA (Gu et al., 2018) Actions ✗ ✓ ✓ Class 900 107.5 80 320 × 400
WebVid-2M (Bain et al., 2021) Open ✗ ✓ ✗ Weak 18 13k – 320 × 240
HowTo100M (Miech et al., 2019) Instructions ✗ ✓ ✗ Weak 4 135k – –

Egocentric
Epic-Kitchens (Damen et al., 2022) Cooking ✓ ✗ ✗ Loc. 510 100 37 1920 × 1080
Ego-4D (Grauman et al., 2022) Daily ✓ ✗ ✗ Loc. 1446 120 931 1920 × 1080
Meccano (Ragusa et al., 2023) Industry ✓ ✗ ✗ Loc. 1247 849 20 1920 × 1080
Assembly-101 (Sener et al., 2022) Assembly ✓ ✗ ✗ Loc. 426 167 362 1920 × 1080

ImageNet-aligned
R2V2 (Gordon et al., 2020) ImageNet ✗ ✓ ✓ Class – – – 467 × 280
VideoNet (Parthasarathy et al., 2023) ImageNet ✗ ✓ ✓ Class 10 3055 –
Walking Tours (ours) Urban ✓ ✓ ✗ None 4968 23 10 3840 × 2160

Table 1: Walking Tours vs. existing video datasets. EGO: egocentric; PRE: used for pretraining;
BAL: class balance control; ANNOT: annotation type. Weak: associated data per clip (text or other
modality); Class: class label per frame or clip; Loc: localization per frame (e.g. bounding box,
segmentation, mask 3D pose). AVG. DUR: average duration per video; DUR: total duration.

et al., 2021) and training models to pull them together/apart. These methods have since percolated to
learning from video frames (Gordon et al., 2020; Parthasarathy et al., 2023; Tschannen et al., 2020;
Wang & Gupta, 2015; Orhan et al., 2020). Similar to this work, TimeTuning (Salehi et al., 2023)
leverages the passage of time in videos by not treating it as simple augmentations. However, in
contrast to our work, it requires an already image-pretrained backbone. VITO (Parthasarathy et al.,
2023) improves performance relative to ImageNet, by using VideoNet, a large YouTube dataset of
10s videos from a similar class distribution and the same number of examples as ImageNet. In this
paper, we show that it is possible to obtain strong results from a single long video, with a very
different visual distribution compared to ImageNet / VideoNet.

3 WALKING TOURS DATASET

3.1 DATASET COLLECTION AND PROPERTIES

We collect from YouTube a new dataset of urban scenes called “Walking Tours” (WTours, or WT)
comprising 10 egocentric videos of a person walking in different cities in Europe and Asia. The
cities include Amsterdam, Bangkok, Chiang Mai, Istanbul, Kuala Lampur, Singapore, Stockholm,
Venice, and Zurich. We also include a video from a Wildlife safari. Examples are shown in Figure 1.
These videos are captured in 4K resolution (3840 × 2160 pixels) at 60 frames-per-second and are
under Creative Commons License (CC-BY). The minimum video duration is 59 minutes (Wildlife
safari), the maximum is 2 hours 55 minutes (Bangkok) and the average is 1 hour 38 minutes. Such
videos are particularly interesting for visual learning because of the following properties:

1. Large number of objects and actions. Each frame or clip taken from a video depicts several
objects and actions, e.g. walking, riding a bike, sitting, drinking etc.

2. Natural transition in lighting conditions. In some videos, the lighting gradually transitions
from bright (late afternoon) to dim (dusk) then to dark (post sunset).

3. Natural transition in scenes. The videos depict transitions between places, e.g. from city
center to market place to residential areas to parks to water fronts etc.

4. Natural object augmentations. Continuous variation e.g. of pose, deformation, viewpoint,
perspective distortion, relative object position, occlusion, background clutter.

The abundance of information within these videos, encompassing a multitude of objects and com-
plex scenes, presents a formidable challenge for manual annotation or curation, making it appro-
priate for unsupervised pretraining. To the best of our knowledge, we are the first to propose an
egocentric video dataset for pretraining and evaluate it on a wealth of downstream tasks.
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Figure 2: Dataset analysis of a WTours video compared with videos from Epic-Kitchens (Damen
et al., 2022), AVA (Gu et al., 2018) and two entire movies, concatenated or cropped to match the
duration of the WTours video. (a) Lightness vs. time. (b) Number of objects per frame vs. time. (c)
Frequency of classes in entire video. (d) Number of shots. Objects detected by Detic (Zhou et al.,
2022b), trained on ImageNet-21k.

3.2 COMPARISON WITH OTHER VIDEO DATASETS

In Table 1, we compare WTours with existing video datasets. In summary, self-supervised pre-
training on videos has been mostly limited to short, low-resolution datasets that rely on weak an-
notation in the form of video-text pairs (Bain et al., 2021; Miech et al., 2019) or are curated, e.g.
their class balance is controlled, even if their annotation is unused (Kay et al., 2017). ImageNet-
aligned datasets (Gordon et al., 2020; Parthasarathy et al., 2023) contain short videos that are (semi-
automatically) curated and annotated with the same distribution and classes as ImageNet. Egocentric
video datasets (Damen et al., 2022; Grauman et al., 2022; Sener et al., 2022) have long, high-quality
videos, but are the result of significant manual work. In this paper we aim to learn from videos
publicly available online.

WTours videos are continuous, longer and higher-resolution than even other egocentric datasets.
Using object detectors, we find that the average number of object classes is close to that of ImageNet
and there is a high number of objects per frame, making WTours appropriate for representation
learning. WTours is not curated and does not rely on search terms. It is data-first and more open-
ended, thus well suited for the self-supervised setting. It is scalable since it requires no human
labeling effort and more videos can be easily downloaded or even made. We are inspired by a 10k
walking tours videos created by Wiles et al. (2022), which however is not publicly released and not
studied for self-supervised learning. A more detailed discussion is given in subsection A.1.

3.3 DATASET ANALYSIS

In Figure 2, we analyse the properties of a single WTours video compared with videos of the same
length from two other datasets, as well as two movie videos. In summary, our findings are as
follows. From Figure 2(a), WT may exhibit gradual shifts in lightness, transitioning from bright to
dim to dark, while Epic-Kitchens and AVA videos exhibit random brightness fluctuations. Lightness
variations are not well expored in self-supervised pretraining. From Figure 2(b,c), unique classes
appear more frequently and there are more unique objects per frame in WTours than in the other
datasets. This makes WTours semantically richer. From Figure 2(d), WTours and Epic-Kitchens
videos contain only one or two shots per entire video on average, while the other datasets contain
hundreds. In subsection 5.2 and in Appendix C, we show that WTours significantly outperforms
movies in downstream tasks, which is partially attributed to the absence of cuts. More detailed
discussion of dataset analysis is given in subsection A.2.

4 ATTENTION-BASED MULTI-OBJECT TRACKING

High-level idea We introduce DORA, based on multi-object Discovery and tRAcking. As shown
in Figure 3, it leverages the attention from the [CLS] token of distinct heads in a vision transformer
to identify and consistently track multiple objects within a given frame across temporal sequences.
On these, a teacher-student distillation loss is then applied. Importantly, we do not use any off-the-
shelf object tracker or optical flow network. This keeps our pipeline simple and does not require any
additional data or training. It also ensures that the learned representation is robust.
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Figure 3: DORA, our self-supervised image pretraining method from video. (Left) From an input
frame Xt0 , the output of the second-last layer of the teacher model is used by a multi-object tracker
to generate cross-attention maps T ′

t with frame Xt. We use those to mask Xt (7), feed it to the
student model and apply a distillation loss LO

t between [CLS] token embeddings (8). (Right) In the
tracker, we obtain the query Q, key K and output Z embeddings. From the multi-head attention
maps Ai (1), we draw a subset I of k heads and form object prototypes P by pooling over patch
queries Q̃ (2). We refine them into P ′ to discover distinct objects, using Sinkhorn-Knopp (SK) to
establish correspondences M∗ between P and patch embeddings Z̃ (4) and pooling over Z̃ (5). We
then track the objects over frames Xt by cross-attention T ′

t with patch key embeddings K̃t (6).

Preliminaries We are given a video clip consisting of T frames Xt ∈ Rh×w×c for t ∈ {1, . . . , T},
where h × w is the spatial resolution and c is the number of channels. Each frame is split into
n = hw/p2 non-overlapping patches of resolution p × p. The patches are linearly projected into
embeddings of dimension d and a [CLS] token embedding is prepended. This representation is input
to a transformer encoder (Dosovitskiy et al., 2020). The output embeddings are Zt = gθ(Xt) ∈
R(n+1)×d, where mapping gθ includes the tokenizer and encoder, while θ denotes its learnable
parameters. Given an embedding Z ∈ R(n+1)×d, we write Z = [Z [CLS]; Z̃], where Z [CLS] ∈ R1×d

is the [CLS] token embedding and Z̃ ∈ Rn×d are the patch embeddings.

Following DINO (Caron et al., 2021), there is a student network with parameters θ and a teacher
network with identical architecture and parameters θ′ obtained as the exponential moving average
(EMA) of θ according to θ′ ← αθ′ + (1− α)θ. The encoder is followed by a head that includes an
MLP and a scaled softmax, such that the output token embeddings can be interpreted as probabilities.
We denote by fθ the mapping that includes the tokenizer, encoder and head.

Discovering objects with multi-head attention Starting at a first frame Xt0 , we obtain the query
and key embeddings Q,K ∈ R(n+1)×d from the last transformer layer of the teacher network*.
According to multi-head attention, these embeddings are partitioned as Q = [Q1, . . . , Qh], K =
[K1, . . . ,Kh], where Qi,Ki ∈ R(n+1)×d/h for i = 1, . . . , h and h is the number of heads. For each
head i, the self-attention matrix Ai ∈ R(n+1)×(n+1) is based on the dot-product similarity between
the query and key embeddings:

Ai := softmax
(
Qi(Ki)⊤/

√
d
)
∈ R(n+1)×(n+1). (1)

Given an attention matrix A ∈ R(n+1)×(n+1), let A[CLS] := [a1,2, . . . , a1,n] ∈ R1×n be the [CLS]-
attention vector between the [CLS] and patch embeddings, where ai,j is the element (i, j) of A. We
draw at random a subset I := {i1, . . . , ik} of k < h heads and collect their [CLS]-attention vectors
into AI := [(Ai1)[CLS]; . . . ; (Aik)[CLS]] ∈ Rk×n. Intuitively, as expressed in rows of matrix AI , the
different heads attend to different objects in the frame (Caron et al., 2021).

To represent the k objects in the embedding space, we use matrix AI ∈ Rk×n to form linear
combinations of patch embeddings Q̃ ∈ Rn×d, obtaining object prototypes

P := AIQ̃ ∈ Rk×d. (2)

This can be seen as the representation of k different [CLS] tokens in the full embedding space,
capturing k objects at frame t0. Then, given the key embeddings Kt ∈ R(n+1)×d at another frame

*For simplicity, we drop t0 from the notation.
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t = 1 t = 2 t = 3 t = 4 t = 5

Xt

Tt

T ′
t

Figure 4: For each input frame t of a video clip (top), cross-attention map Tt ∈ Rk×n (3) (middle)
and refined cross-attention map T ′

t ∈ Rk×n (6) (bottom), using Sinkhorn-Knopp algorithm. For
each object, one row of Tt or T ′

t is reshaped as h/p × w/p and upsampled to an h × w attention
map overlaid on the input frame for k = 3 objects encoded in blue, red and green channel. Mixed
colors yellow and cyan for Tt (middle, in red circle) indicate spatial overlap of two objects, while
T ′
t (bottom) yields three well separated objects shown in primary colors blue, red and green.

t, we could track the objects by cross-attention

Tt := softmax
(
PK̃⊤

t /
√
d
)
∈ Rk×n, (3)

where K̃t ∈ Rn×d. Unfortunately, we observe in Figure 4 that the k attention maps obtained this
way are spatially overlapping, meaning that each attention map is not delineating a single object.

Establishing object-patch correspondences To discover spatially distinct objects, we propose to
establish correspondences between prototypes and patch tokens. Let Z = gθ′(Xt0) ∈ R(n+1)×d be
the output embeddings of the teacher network, still at frame t0. We seek a correspondence between
the rows of P ∈ Rk×d and Z̃ ∈ Rn×d, where Z̃ are the patch token embeddings.

The goal is to find a transport plan M ∈ Rk×n that minimizes the expected pairwise cost
C := −PZ̃⊤ ∈ Rk×n between prototypes and patches, while incorporating an entropic regular-
izer with coefficient ϵ. Matrix M is non-negative with row-wise sum 1/k and column-wise sum
1/n, representing a joint probability over P and Z̃ with uniform marginals. The minimal solution
M∗ is unique and can be found by forming the matrix e−C/ϵ and then applying the Sinkhorn-Knopp
(SK) algorithm (Cuturi, 2013), i.e., iteratively normalizing its rows and columns:

M∗ = SK
(
exp

(
PZ̃⊤/ϵ

))
∈ Rk×n, (4)

Observe the similarity with (1) and (3), where scaling is by
√
d rather than ϵ, exp is included in

softmax and normalization is on rows only rather than iterative. Then, similarly with (2), we use the
optimal transport plan M∗ ∈ Rk×n to form linear combinations of patch embeddings Z̃ ∈ Rn×d,
obtaining the refined object prototypes

P ′ = M∗Z̃ ∈ Rk×d. (5)

Now, given the key embeddings Kt ∈ R(n+1)×d at another frame t, we track the objects by the
refined cross-attention, similarly with (3):

T ′
t := softmax

(
P ′K̃⊤

t /
√
d
)
∈ Rk×n, (6)

6



where K̃t ∈ Rn×d. Indeed, Figure 4 confirms that each of the k resulting attention maps is associ-
ated with a spatially distinct object, thanks to the established correspondences.

In contrast to previous works that use SK in the context of self-supervised learning to force an equi-
partitioning of images to cluster labels (Asano et al., 2020; Caron et al., 2020; Oquab et al., 2023),
we rather use optimal transport to re-balance spatial correspondences to different objects.

Multi-object masking We use the cross-attention (6) to mask the input video clip for the student
network, such that each masked clip can be considered as a multi-object crop. This crop plays a
similar role with local crops in DINO (Caron et al., 2021), but it has arbitrary shape and tracks an
object over video frames. In particular, given an input frame X ∈ Rh×w×c with cross-attention
matrix T ′ ∈ Rk×n (6) and an object i ∈ {1, . . . , k}, we reshape the i-th row of T ′ as h/p × w/p
and upsample to a h × w attention map to match the spatial resolution of X, as shown in Figure 4.
We repeat along the channel dimension to form tensor Ti ∈ Rh×w×c and we mask X as

Xoi := X⊙Ti, (7)

where ⊙ is the Hadamard product. Following DINO (Caron et al., 2021), given an input frame Xt,
we generate two standard resolution augmented global views Xa

t ,X
b
t . We introduce a multi-object

loss LO
t for frame t, applied to the [CLS] token between the teacher fθ′ output for one global view

Xu
t and the student fθ output for the masked version Xv,oi

t of the other view Xv
t for i ∈ {1, . . . , k},

where u, v ∈ V = {a, b} and u ̸= v:

LO
t :=

∑
u,v∈V

1u ̸=v

k∑
i=1

fθ′(Xu
t )

[CLS] log
(
fθ(X

v,oi
t )[CLS]) . (8)

In addition, as detailed in subsection B.1, we apply a local loss, following multi-crop (Caron et al.,
2020). The overall loss L is the sum of the two losses, averaged over all T frames.

5 EXPERIMENTS

5.1 SETUP

Tasks and methods We perform self-supervised pretraining on a single WT tour video in Venice
(referred to as WTVenice) or all 10 WT videos (referred to as WTall) and compare with other image
and video datasets. To evaluate the quality of the learned representations, we use frozen features
for classification, unsupervised object discovery and video object segmentation. We fine-tune for
semantic segmentation, object detection and object tracking. We compare DORA with SoTA SSL
methods (da Costa et al., 2022) using our settings. We provide more details in individual sections
per task. Implementation details and hyperparameters are given in Appendix B.

5.2 ABLATIONS

We examine the effect of using different pretraining video dataset and different options and param-
eters for DORA, measuring performance of classification on ImageNet-1k (Deng et al., 2009) by
linear probing (LP) accuracy and unsupervised object discovery on Pascal-VOC 2012 (Everingham
et al.) by correct localization (CorLoc) (Siméoni et al., 2021).

Pretraining video dataset We study the impact of pretraining on diverse video datasets, encom-
passing object-centric videos such as Kinetics-400 (K-400) (Kay et al., 2017), egocentric videos
like Epic-Kitchens (EK) (Damen et al., 2022) and a single movie, Movierom (Central). To maintain
uniformity in terms of the number of frames, we curate a subset of videos from K-400 and EK, such
that their total duration is the same as a single WT video. In Table 2a, we observe that although
K-400 is object-centric, pretraining on WTours videos yields superior performance on ImageNet
and Pascal-VOC 2012. Pretraining on a single movie yields is inferior to both WTours and K-400
by a large margin. This is possibly due to the presence of cuts, as studied in Appendix C.

Number of tracked objects We study the impact of the number k of objects. Objects are discov-
ered using attention heads, where the total number of heads is in ViT-S/16 is h = 6. For k > h, we
modify the MSA block as described in subsection B.2. In Table 2b, we observe that k = 3 works

7



METHOD PRETRAIN #FRAMES LP CORLOC
(M)

DINO Movierom 0.19 34.9 51.5
DORA Movierom 0.19 35.3 51.6
DINO K-400∗ 0.2 40.7 52.4
DORA K-400∗ 0.2 43.0 55.2
DINO EK∗ 0.2 38.6 53.5
DORA EK∗ 0.2 41.8 56.0
DINO WTVenice 0.2 33.8 51.2
DORA WTVenice 0.2 44.5 56.2

(a) Video datasets

METHOD k LP CORLOC

DINO ✗ 33.8 51.2
DORA 1 39.9 53.9
DORA 2 43.1 55.7
DORA 3 44.5 56.2
DORA 4 39.2 53.8
DORA 5 36.7 50.3
DORA 6 35.8 48.8
DORA 16 28.3 48.5
DORA 32 27.1 46.8

(b) #Objects k on WTVenice

METHOD SK MASK LP CORLOC

DINO ✗ ✗ 33.8 51.2
DORA ✗ Random 33.0 49.8
DORA ✗ Object 42.5 55.3
DORA ✓ Random 29.9 46.7
DORA ✓ Object 44.5 56.2

(c) SK and masking on WTVenice

Table 2: Effect of parameters. ViT-S/16 pretrained, then frozen. (a) Different pretraining video
dataset, (b) Number k of tracked objects. (c) Random or multi-object mask, without SK (3) and with
SK (6). ∗: subset of videos with same total duration as a single WTours video. K-400: Kinetics-400,
EK: Epic-Kitchens. LP: top-1 accuracy (%) of linear probing on the validation set of ImageNet-1k.
CorLoc: correct localization on validation set of Pascal-VOC 2012.

METHOD EPOCHS PRETRAIN
(a) SEMANTIC SEG. (b) OBJECT DET. (c) INSTANCE SEG.

mIoU GAIN Accm GAIN mAP GAIN mIoU GAIN

ViT-S/16 100 None 25.1 33.3 28.6 24.3
iBOT (Zhou et al., 2022a) 100 WTVenice 33.9 43.3 37.6 33.0
AttMask (Kakogeorgiou et al., 2022) 100 WTVenice 33.6 42.7 36.5 32.5
VITO (Parthasarathy et al., 2023) 300 VideoNet 39.4 – 44.0 –
DINO (Caron et al., 2021) 100 IN-1k 33.9 44.3 39.9 35.1
DORA (ours) 100 WTall 36.9 48.0 40.7 36.3
DINO (Caron et al., 2021) 100 WTVenice 32.4 43.7 37.1 32.1
DORA (ours) 100 WTVenice 35.4 +3.0 45.5 +1.8 39.5 +2.4 34.7 +2.6

Table 3: Semantic segmentation, object detection and instance segmentation. ViT-S/16 pretrained,
then fine-tuned. WTVenice: Walking Tours (ours), single video of Venice; WTall: all videos. IN-1k:
ImageNet-1k. (a) Semantic segmentation: fine-tuning on ADE20k using UperNet. mIoU: mean
IoU; Accm: mean-class accuracy. (b) Object detection and (c) Instance segmentation: fine-tuning
on MS-COCO using Cascade RCNN. mAP: mean average precision; mIoU: mean IoU.

best. We hypothesize that this is a compromise between the number of objects that can be tracked
and the multi-object loss (8) attempting to match small objects with the global crop.

Choice of masking and Sinkhorn-Knopp We explore the effect of using a multi-object mask (7)
vs. random block-wise (Zhou et al., 2022a) and the effect of improving object-patch correspondence
through SK in refined cross-attention (6) vs. (3). In Table 2c, we observe that a multi-object mask
leads to a remarkable performance improvement even in the absence of SK. In fact, random block-
wise mask undermines object-patch correspondence, making the effect of SK negative. By contrast,
SK improves performance in the presence of multi-object mask.

5.3 COMPARISON WITH STATE-OF-THE-ART

Dense scene understanding Table 3(a) shows semantic segmentation by fine-tuning on
ADE20k (Zhou et al., 2017) using UperNet (Xiao et al., 2018). DORA outperforms DINO by
3% mIoU, and 1.8% Accm. It is interesting to note that DORA pretrained on 200k frames of a sin-
gle WTours video outperforms DINO pretrained on 1.3M images of ImageNet-1k by 1.5% mIoU. A
more comparable setting is DORA pretrained on 1.5M frames of WTall, which outperforms DINO
pretrained on ImageNet by 3% mIoU. Table 3(b) shows object detection and instance segmentation
by fine-tuning on MS-COCO (Lin et al., 2014) using Cascade RCNN (Cai & Vasconcelos, 2019).
DORA outperforms DINO by 2.4% mAP and 2.6% mIoU. DORA pretrained on WTall outper-
forms DINO pretrained on ImageNet by 0.8% mIoU and 1.2% mAP. This shows that pretraining on
WTours videos significantly improves the generality of DORA to dense prediction tasks, requiring
only one tenth of the total images.

Video understanding Table 4(a) shows video object segmentation by using frozen features on
DAVIS-2017 (Pont-Tuset et al., 2017), which assesses the ability to segment an object over its dy-
namic temporal changes. DORA captures detailed temporal deformations and outperforms baseline
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METHOD EPOCHS PRETRAIN
(a) VIDEO OBJECT SEGMENTATION (b) OBJECT TRACKING

(J&F)m GAIN Jm GAIN Fm GAIN mAO GAIN SR0.5 GAIN SR0.75 GAIN

ViT (Dosovitskiy et al., 2020) 100 None 26.9 25.4 28.3 23.1 19.0 3.4
iBOT (Zhou et al., 2022a) 100 WTVenice 57.4 56.7 58.0 41.5 47.5 16.6
DINO (Caron et al., 2021) 100 IN-1k 59.4 57.4 61.4 46.4 54.3 24.1
DORA (ours) 100 WTall 57.6 55.1 60.2 45.9 53.4 23.7
DINO (Caron et al., 2021) 100 WTVenice 54.6 53.0 56.2 37.4 41.4 13.4
DORA (ours) 100 WTVenice 58.4 +3.8 56.4 +3.4 60.4 +4.2 41.4 +4.0 47.2 +5.8 18.2 +4.8

Table 4: Video object segmentation and object tracking. ViT-S/16 pretrained, then frozen or fine-
tuned. WTVenice: Walking Tours (ours), single video from Venice; WTall: all videos. IN-1k:
ImageNet-1k. (a) Video object segmentation: frozen features on DAVIS-2017. Jm: mean region
similarity; Fm: mean contour-based accuracy. (b) Multi-object tracking: fine-tuning on GOT-10k.
mAO: mean average overlap; SR: success rate, threshold 50% and 75%.

METHOD EPOCHS PRETRAIN
#FRAMES (a) CLASSIFICATION (b) OBJECT DISCOVERY

(M) LP GAIN k-NN GAIN JACC. GAIN CORLOC GAIN

SimCLR (Chen et al., 2020) 100 WTVenice 0.2 26.3 25.9 40.4 50.2
SwAV (Caron et al., 2020) 100 WTVenice 0.2 28.0 26.4 40.6 51.4
iBOT (Zhou et al., 2022a) 100 WTVenice 0.2 36.8 32.8 43.0 53.1
AttMask (Kakogeorgiou et al., 2022) 100 WTVenice 0.2 35.8 31.9 43.5 54.5
VicReg (Bardes et al., 2021) 100 WTVenice 0.2 36.5 30.1 42.7 52.1
DINO (Caron et al., 2021) 100 WTVenice 0.2 33.8 29.9 43.8 51.2
DORA (ours) 100 WTVenice 0.2 45.4 +11.6 33.8 +3.9 44.0 +0.2 56.2 +5.0
DINO (Caron et al., 2021) 100 WTall 1.5 36.6 31.1 42.9 55.8
DORA (ours) 100 WTall 1.5 45.3 +8.7 35.7 +4.6 44.3 +1.4 57.1 +1.3

Table 5: Image classification and object discovery. ViT-S/16 pretrained, then frozen. WTVenice:
Walking Tours (ours), single video from Venice; WTall: all videos. (a) Classification top-1 accuracy
(%) on validation set of ImageNet-1k. LP: linear probing. (b) Unsupervised object discovery on
validation set of Pascal-VOC 2012. Jacc.: Jaccard similarity; CorLoc: Correct Localization.

DINO by 3.4% Jm and 4.2%Fm. Using only a single video for pretraining, DORA achieves almost
the same performance of DINO pretrained on ImageNet (56.4% vs. 57.4% Jm). Table 4(b) shows
multi-object tracking by fine-tuning on GOT-10k (Huang et al., 2021) using SeqTrack (Chen et al.,
2023). GOT-10k assesses the ability to track extremely fast moving objects, objects with illumina-
tion variation and low resolution. DORA achieves significant gains between 4-6% over DINO.

Image classification and unsupervised object discovery We pretrain DORA on WTours and
then we keep it frozen on the downstream task, indicating the quality of the pretrained features.
Table 5(a) shows image classification on ImageNet-1k, measuring accuracy for linear probing and
k-nearest neighbor. Table 5(b) shows unsupervised object discovery on Pascal-VOC 2012, using
attention maps as segmentation masks to measure Jaccard similarity and CorLoc.

On both tasks, non-contrastive methods (DINO, iBOT, VICReg) outperform contrastive methods
(SimCLR, SwAV), when pretrained on a single WT video. Importantly, non-contrastive methods are
also more efficient to train, since no negative pairs are used. Also on both tasks, DORA outperforms
DINO by a large margin, e.g. 11.6% LP and 3.9% k-NN on classification, when trained on a single
WT video. Comparing DORA on WTVenice with the WTall dataset, the improvement brought by the
full dataset is small when using DORA, although it is 10 times larger.

In Appendix D, we show that DORA outperforms SoTA methods on all tasks on ImageNet-1k.

6 CONCLUSIONS

We have introduced a dataset of 10 walking tour videos – first-person videos taken by people touring
a city, with no cuts, high resolution and that are hours long. We show that learning from clips
taken from these videos is surprisingly powerful: with an appropriately tailored self-supervised
learning method for videos, we obtain representations that rival those obtained on ImageNet when
transferring to popular downstream image and video tasks. This differs from previous state-of-the-
art approaches to learning image encoders from video, which also obtain such results but require
large video datasets, following closely the ImageNet blueprint.
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Our proposed learning method DORA is inspired by DINO, generalizing it to video by incorporating
implicit multi-object tracking across video clips. We observe that the method leads to interesting
emergent attention masks within the transformer model, that seem to latch on to particular objects,
even through occlusions. This makes it uniquely suited to our newly introduced dataset.
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A MORE ON WALKING TOURS

In Table 6, we provide statistics of individual videos in the WTours dataset. In the following, we first
compare WTours with other video datasets and then analyze WTours videos in terms of automati-
cally extracted information, including lightness, shot changes and number of objects and categories
depicted.

A.1 COMPARISON WITH OTHER VIDEO DATASETS

In Table 1, we compare WTours with different types of existing video datasets. Self-supervised
pretraining on videos has been mostly limited to video datasets that rely on weak annotation in
the form of video-text pairs (Bain et al., 2021; Miech et al., 2019) or even are curated, e.g. their
class balance is controlled, even if their annotation is unused (Kay et al., 2017). Their average clip
duration is small, e.g. less than 20 sec, and their resolution is also small, limiting the capacity to
detect objects at a greater distance. By contrast, WTours videos are continuous, hours-long at high
resolution and provide natural transitions of scenes and viewing conditions. They are not curated
and thus better suited for the self-supervised setting.

ImageNet-aligned datasets such as R2V2 (Gordon et al., 2020) and VideoNet (Parthasarathy et al.,
2023) contain videos that are curated and annotated with the same distribution and classes as Ima-
geNet, meant for pretraining image encoders. These videos are short, i.e. 10 seconds on average. By
contrast, WTours consists of a continuous stream of egocentric video, where the average number of
classes is close to that of ImageNet, as shown in subsection 3.3. The rich information contained in
4K resolution, together with a high number of objects in a frame, makes it appropriate for represen-
tation learning. Importantly, the continuity and absence of curation make it more realistic and more
comparable with human learning. Our dataset does not rely on a set of objects, human activities or
other search terms but instead is data-first and more open-ended.
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VIDEO
(a) PROPERTIES (b) ANALYSIS

DOMAIN
#FRAMES DURATION #SHOTS

#OBJECTS / #CLASSES
(×1000) (MIN) FRAME (AVG.)

Amsterdam Urban 147.4 72.6 0 48 684
Bangkok Urban 314.7 153.0 12 44 703
Chiang Mai Urban 122.2 87.5 2 40 711
Istanbul Urban 122.4 82.8 0 42 604
Kuala Lampur Urban 131.1 77.2 0 39 689
Singapore Urban 174.0 71.0 0 49 732
Stockholm Urban 119.7 70.4 0 32 590
Venice Urban 197.8 90.0 0 39 701
Wildlife Wildlife 85.7 59.3 1 12 374
Zurich Urban 117.0 64.0 1 40 572
Average 153.2 82.8 1.6 38.5 636

Table 6: Individual WTours video statistics. (a) Properties. (b) Analysis: shots detected by (Castel-
lano); objects and classes detected by Detic (Zhou et al., 2022b), trained on ImageNet-21k.

Despite the large number of high-quality videos, egocentric video datasets (Damen et al., 2022;
Grauman et al., 2022; Sener et al., 2022) have been used only for downstream tasks and thus come
with extensive annotation. In comparison, WTours has 4-10 times longer average duration and twice
the frame resolution. While WTours is smaller in terms of total duration and number of videos, it is
scalable under the self-supervised setting since it requires no human labeling effort and more videos
can be easily found, downloaded or even made. This makes collecting more data as simple as a walk
in the park.

Very long video datasets. A large dataset of 10k WTours videos was created recently by (Wiles et al.,
2022) but was not publicly released and not studied for self-supervised learning. Another dataset
having hour-long videos is introduced in (Khan et al., 2020), in the context of sports analytics; it has
not been explored for self-supervised learning either.

A.2 DATASET ANALYSIS

Here we present a more detailed discussion on the dataset analysis of subsection 3.3. We refer to
Figure 2, where we analyse the properties of a single WTours video compared with videos of the
same length from Epic-Kitchens (Damen et al., 2022) and AVA (Gu et al., 2018) datasets, as well as
two movie videos, an action movie and a romantic movie.

Variation in lightness We measure the change in perceived brightness using the lightness value
(L) across consecutive frames. From Figure 2(a), we observe a gradual shift at roughly 150 min
into the WTours video, transitioning from bright to dim to dark. By contrast, Epic-Kitchens and
AVA videos exhibit random brightness fluctuations, alternating between dim and bright conditions.
Typically, self-supervised pretraining happens on datasets with uniform brightness levels. Datasets
featuring such brightness variations are less expored.

Variation in number of objects Using Detic (Zhou et al., 2022b), a DETR-style object detector
trained on ImageNet-21k, we detect objects in each frame. Figure 2(b) shows the number of objects
per frame and Figure 2(c) shows their frequency in the entire video. We observe that the WTours
video contains 703 unique object categories, while Epic-Kitchens has 373, AVA has 663 and Movie-
2 has 259. The unique objects appear more frequently and there are more unique objects per frame
in WTours than in the other datasets. This makes WTours semantically richer, despite coming from
one continuous stream of video. Using videos with a large number of objects can encourage the
model to capture complex relations and variations in the data. Detailed statistics of objects and
classes per WTours video are given in Table 6(b). Except for the wildlife video, WTours videos in
general contain 40 or more objects per frame and 600 or more unique object categories per video.

Variation in shots Egocentric videos are typically captured in a single uninterrupted take, with
exceptions being post-processed special effects or cuts. In Figure 2(d), we find that, on aver-
age, WTours and Epic-Kitchens videos contain only one or two shots per entire video, while
AVA contains 406, an action movie (Movieact) (Skiptrace) contains 2000 and a romantic movie
(Movierom) (Central) contains 667. The substantial number of shots in movies and AVA poses chal-
lenges for representation learning methods that rely on object tracking or optical flow. In subsec-
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tion 5.2, we show that WTours significantly outperforms movies in downstream tasks, which may be
attributed to the absence of cuts. The number of shots per WTours video is also given in Table 6(b).

B MORE ON EXPERIMENTAL SETUP

B.1 MULTI-CROP

Following DINO (Caron et al., 2021) and iBOT (Zhou et al., 2022a), we apply the multi-crop strat-
egy (Caron et al., 2020). In particular, we generate m local crops Xℓi

t of smaller resolution for
i ∈ {1, . . . ,m}. The local loss LLC

t for frame t is applied to the [CLS] token between the teacher
fθ′ output for a global view Xu

t and the student fθ output for the local crop Xℓi
t for i ∈ {1, . . . ,m}:

LLC
t :=

∑
v∈V

m∑
i=1

fθ′(Xv
t )

[CLS] log
(
fθ(X

ℓi
t )

[CLS]
)

(9)

The overall loss L is the sum of the multi-object loss LO
t (8) and the local loss LLC

t (9), averaged
over all T frames:

L :=
1

T

T∑
t=1

(LO
t + LLC

t ). (10)

B.2 IMPLEMENTATION DETAILS

Code will be published as open-source code. We use ViT-S/16 (Dosovitskiy et al., 2020) as the
backbone in all our experiments. For each mini-batch, we randomly sample clips from the video,
consisting of T = 8 frames temporally separated by 1 second i.e. we sample one frame every
30. Objects discovered in the first frame are tracked over the following 7 frames. Since each frame
contains several different objects, applying the standard multi-crop augmentation (Caron et al., 2020)
to the entire frame would result in crops with very different visual content or noisy positive pairs.
Instead, we apply multi-crop to a 300 × 300 crop that we first take from the frame. Following
DINO (Caron et al., 2021), we obtain two global crops and six local crops. Masking (7) is applied
to the global crops seen by the student for the multi-object loss (8), while local crops are seen directly
by the student for the local loss (9). We train for 100 epochs by default.

Objects are discovered using attention heads, where the total number of heads is in ViT-S/16 is lim-
ited to h = 6. For the purpose of the ablation of the number k of objects for k > h in Table 2b,
we modify the MSA block in the final layer, resulting in configurations of 16 and 32 heads. Con-
sequently, we can identify and track up to 16 and 32 objects within the video clip. To accomplish
this, we decompose the query and key embeddings of dimension d = 768 into 16 and 32 subvec-
tors, resulting in new feature dimensions of 24 and 12 respectively, as opposed to 64 for 6 heads.
In Table 2b, we observe that tracking 16 or 32 objects results in overall poor performance possibly
due to the small feature dimension, which encodes poor representations.

B.3 HYPERPARAMETERS

ImageNet-1k: Linear probing and k-NN We pretrain DORA in a self-supervised setting with
ViT-S/16 using DINO for 100 and 300 epochs. We use two global and six local crops for each clip
and train on 8 A100 GPUs with a global batch size of 16× 8 = 128. We use LARS with a learning
rate of 5× 10−4, minimum learning rate of 1× 10−6, global crop scale of [0.4, 1.0] and local crop
scale [0.05, 0.4].

For linear probing, we follow (Caron et al., 2021) and use the frozen features of the transformer
backbone to train a linear classifier in a supervised setting. We use global batch size of 1024 on the
training set and evaluate on the validation set of ImageNet-1k. We use top-1 accuracy (%) as our
evaluation metric. For k-NN, we freeze the backbone and extract features of training images, then
use a k-nearest neighbour classifier with k = 20.

Pascal-VOC 2012: Object discovery We use the validation set of Pascal VOC 2012 (Everingham
et al.), which comprises a total of 1449 images. Following LOST (Siméoni et al., 2021), we use the
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averaged self-attention map, extracted from the final layer of a our pretrained ViT-S/16, to retain
80% of the mass. We use the Jaccard similarity J measured as overlap between predicted mask P
and the ground truth mask G as J(P,G) = G∩P

G∪P . We also use CorLoc, which measures the number
of correct predicted boxes, where a predicted box is said to be correct if its IoU ≥ 0.5.

ADE20k: Semantic segmentation We evaluate DORA on ADE20k (Zhou et al., 2017) for se-
mantic segmentation. The dataset includes 20,000 images in the training set and 2,000 images in
the validation set. We use UperNet (Xiao et al., 2018) as the segmentation model and use DORA
pretrained on WT to initialize the backbone. Following the experimental settings in iBOT (Zhou
et al., 2022a), we use AdamW (Loshchilov & Hutter, 2019) with an initial learning rate of 6×10−5,
weight decay of 1×10−2, and linear warmup of 1,500 iterations. We fine-tune for 160,000 iterations
with a batch size of 4.

MS-COCO: Object detection We evaluate DORA for object detection and instance segmentation
on MS-COCO. We use Cascade Mask R-CNN (Cai & Vasconcelos, 2019), which produces bounding
boxes and instance masks simultaneously on the COCO dataset. We use a multi-scale training
strategy, where we resize images to have a shorter side ranging between 480 and 800, ensuring that
the longer side does not exceed 1,333 pixels. The learning rate is 1 × 10−4 and the weight decay
is 0.05. During training, we fine-tune the entire network using a 1× schedule, which involves 12
epochs with learning rate reductions by a factor of 10 at epochs 9 and 11. We explore different layer
decay rates, specifically 0.65, 0.75, 0.8, 0.9, with a rate of 1.0 indicating no decay.

To generate hierarchical feature maps, we utilize the features produced by layers 4, 6, 8, and 12
of our network and apply two deconvolutions for layer 4, one deconvolution for layer 6, identity
mapping for layer 8, and max-pooling for layer 12. These post-processing steps enable the creation
of hierarchical feature representations. It is important to note that we do not employ multi-scale
testing in our experiments.

DAVIS-2017: Video object segmentation We assess the performance of DORA for video object
segmentation on DAVIS 2017 dataset (Pont-Tuset et al., 2017), which involves segmenting between
2 to 4 objects within the video frames. We follow DINO (Caron et al., 2021) and evaluate on
video frames with a resolution of 480p. We apply label propagation on the attention map from our
pretrained model and use mean region-based similarity Jm and mean contour-based accuracy Fm

as our evaluation metrics.

GOT-10k: Object tracking We evaluate the object-tracking performance of DORA on the GOT-
10k dataset (Huang et al., 2019). This is a large-scale benchmark for object tracking that contains
563 categories of common moving objects. The training set contains around 10,000 videos and the
test set contains 180 videos. Another challenging aspect of this dataset is that the object classes in
the training and test set are non-overlapping. We use the SeqTrack (Chen et al., 2023) codebase to
evaluate the performance of different methods on this dataset. In particular, we initialize the encoder
weights of SeqTrack with the self-supervised weights and keep them frozen during training. While
training, we only update the parameters of the lightweight decoder which consists of 2 transformer
blocks. We use all the default hyperparameters. We report mean average overlap (mAO) and success
rate (SR) at different thresholds. The mAO measures the class-balanced average overlap between
the ground truth and predicted bounding boxes whereas SR indicates the percentage of accurately
tracked ground truth bounding boxes where the overlap crosses a certain threshold.

C MORE ABLATIONS

Pretraining WT video We study the effect of pretraining on different videos of WTours. In
Table 7a, we observe that the effect is minimal on both image classification and unsupervised object
discovery. Notably, the fluctuation in illumination conditions within the Bangkok video influences
the performance on image classification. It is also interesting to note that, while pretraining on
Amsterdam is best on image classification, pretraining on Venice is best on object discovery. This
could be due to the large overlap of objects in these videos with respect to the downstream datasets.
However, the consistency of our method across diverse videos indicates that DORA is robust to
variations in scenes, number of objects and lighting conditions.
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VIDEO LP CORLOC

Amsterdam 45.4 54.5
Bangkok 42.1 54.3
Chiang Mai 44.9 55.5
Istanbul 44.5 54.6
Kuala Lampur 43.9 54.1
Singapore 42.7 54.7
Stockholm 44.1 54.7
Venice 44.5 56.2
Wildlife 44.0 54.9
Zurich 44.9 54.4
Mean 44.1 54.8

(a) WT videos

METHOD PT LP CORLOC

DINO WT 33.8 51.2
DORA Movie 35.3 51.6
DORA Movie† 39.8 54.8
DORA WT 44.5 56.2

(b) Cuts

Table 7: Effect of pretraining video and cuts. ViT-S/16 pretrained, then frozen. (a) Different WTours
video, using DORA. (b) Effect of cuts. ∗: subset of videos with same total duration as a single
WTours video. †: sampling without cuts. LP: top-1 accuracy (%) of linear probing on the validation
set of ImageNet-1k. CorLoc: correct localization on validation set of Pascal-VOC 2012.

METHOD EPOCHS
CLASSIFICATION OBJECT DISC. SEMANTIC SEG. OBJECT DET.
LP k-NN JACC CORLOC MIOU ACCm MAP MIOU

DINO (Caron et al., 2021) 100 71.4 69.0 44.5 59.6 33.9 44.3 37.1 32.1
iBOT (Zhou et al., 2022a) 100 72.1 69.4 44.5 59.7 35.2 45.1 38.9 34.4
DORA⋆ (ours) 60 71.9 69.4 44.4 60.0 35.4 44.9 39.3 34.9
DORA⋆ (ours) 100 72.2 69.6 44.8 60.2 35.8 45.1 39.9 35.1

Table 8: Pretraining on ImageNet-1k. ViT-S/16 pretrained, then frozen (classification and object
discovery, same settings as Table 5) or fine-tuned (semantic segmentation and object detection, same
settings as Table 3). DORA⋆: DORA without tracking; when pretrained for 60 epochs, it has the
same training time as DINO and iBOT.

Presence of cuts We now analyse the effect of cuts in representation learning. Cuts are defined
as instant transitions from one shot to the next, which is frequent in movies. In action movies, a
single shot lasts around 4 seconds, while in romance movies, around 12 seconds on average†. To
understand the effect of cuts, we compare pretraining on WTours videos and a romance movie. We
use PySceneDetect (Castellano) to extract the cut timestamps in the movie and we pretrain DORA
by sampling clips that do not intersect cuts; cuts naturally do not exist in WT videos. In Table 7b,
we observe that the performance improves significantly in the absence of cuts, as tracking in DORA
will fail across a cut.

D MORE COMPARISONS WITH STATE OF THE ART

Pretraining on ImageNet-1k We pretrain DORA on ImageNet-1k and compare with SoTA meth-
ods on multiple tasks. Unlike videos, we discover objects but do not track them. Instead, images in
a mini-batch are processed independently. Given an input image X, we obtain refined object proto-
types as usual (5), but the refined cross-attention (6) is with K̃t replaced by K̃ of the same image
X. The same image X is masked for the student (7). The loss is given again by (8) and (9) with Xt

replaced by X, averaged over the mini-batch. We refer to this version as DORA without tracking or
DORA⋆.

DINO (Caron et al., 2021) and iBOT (Zhou et al., 2022a) use only one global crop for the student,
while DORA uses k object crops. To compensate, we perform an experiment where we pretrain
DORA⋆ for 60 epochs and the competitors for 100, thus all methods having the same training time.

From Table 8, we observe that DORA outperforms state-of-the-art self-supervised learning (SSL)
methods like DINO and iBOT on image downstream tasks. This demonstrates that the multi-object
loss not only enhances performance when pretrained on WTours videos but also achieves superior
results when pretrained on ImageNet-1k images.

†https://stephenfollows.com/many-shots-average-movie/
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Figure 5: For each input frame Xt of a video clip, refined cross-attention map T ′
t ∈ Rk×n (6), using

Sinkhorn-Knopp. For each object, one row of T ′
t is reshaped as h/p × w/p and upsampled to an

h × w attention map overlaid on the input frame for k = 3 objects encoded in blue, red and green
channel. T ′

t yields three well separated objects shown in blue, red and green.
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Figure 6: For each input frame Xt of a video clip, refined cross-attention map T ′
t ∈ Rk×n (6), using

Sinkhorn-Knopp. For each object, one row of T ′
t is reshaped as h/p × w/p and upsampled to an

h × w attention map overlaid on the input frame for k = 3 objects encoded in blue, red and green
channel. T ′

t yields three well separated objects shown in blue, red and green.
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E MORE VISUALIZATIONS

Figures 5 and 6 show example attention maps obtained using SK on different clips. These figures
show that SK (6) leads to attention maps that exhibit spatial locality and are well aligned with objects
in the scene. Remarkably, the masks seem to be even robust to occlusions, as shown in the sequence
with a bicycle moving behind traffic lights.
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