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PowMix: A Versatile Regularizer for
Multimodal Sentiment Analysis
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and Alexandros Potamianos, Fellow, IEEE

Abstract—Multimodal sentiment analysis (MSA) leverages heterogeneous data sources to interpret the complex nature of human
sentiments. Despite significant progress in multimodal architecture design, the field lacks comprehensive regularization methods. This
paper introduces PowMix, a versatile embedding space regularizer that builds upon the strengths of unimodal mixing-based
regularization approaches and introduces novel algorithmic components that are specifically tailored to multimodal tasks. PowMix is
integrated before the fusion stage of multimodal architectures and facilitates intra-modal mixing, such as mixing text with text, to act
as a regularizer. PowMix consists of five components: 1) a varying number of generated mixed examples, 2) mixing factor reweighting,
3) anisotropic mixing, 4) dynamic mixing, and 5) cross-modal label mixing. Extensive experimentation across benchmark MSA datasets
and a broad spectrum of diverse architectural designs demonstrate the efficacy of PowMix, as evidenced by consistent performance
improvements over baselines and existing mixing methods. An in-depth ablation study highlights the critical contribution of each
PowMix component and how they synergistically enhance performance. Furthermore, algorithmic analysis demonstrates how PowMix
behaves in different scenarios, particularly comparing early versus late fusion architectures. Notably, PowMix enhances overall
performance without sacrificing model robustness or magnifying text dominance. It also retains its strong performance in situations of
limited data. Our findings position PowMix as a promising versatile regularization strategy for MSA. Code will be made available.

Index Terms—Multimodal Learning, Regularization, Multimodal Sentiment Analysis, intra-modal mixing

✦

1 INTRODUCTION

Multimodal Sentiment Analysis (MSA) is the task of
enriching a computer system with affective under-

standing of real-world human-centric video segments. In-
terpreting sentiments from videos is very challenging due to
the multifaceted nature of human communication through
speech, facial expressions, linguistic content, etc. [1]. The
practical applications of MSA are numerous in the digital
era and vary from human-computer interaction (HCI) [2] and
healthcare [3], to opinion mining in reviews [4] and edu-
cation [5]. Despite the advancements in the MSA field [6],
[7], [8], [9], [10], [11], [12], developing an end-to-end system
that effectively analyzes the complex aspects of human
sentiment remains an open research challenge.

Building on the idea that multimodal learning includes
unimodal elements, such as decomposing multimodal pre-
dictions into separate unimodal contributions and multi-
modal interactions [13], we perceive multimodal tasks as
being fundamentally more complex than unimodal. This
suggests that challenges inherent in unimodal setups, such
as overfitting, also exist in multimodal scenarios. In addi-
tion, the diverse nature of input data as manifested by the
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coexistence of the symbolic language modality with lower-
level visual cues, further hinders the learning process.

Despite expectations that multimodal networks would
outperform their unimodal counterparts [14], this is not
consistently observed. It is found that different inputs gen-
eralize at different rates, leading to unexpected performance
degradation [15], as well as a tendency of networks to over-
rely on dominant modalities [16], e.g., text in MSA [17].
Furthermore, studies demonstrate that joint multimodal
training tends to learn a limited spectrum of features and
modalities [18], resulting in suboptimal solutions.

Considering the challenges in multimodal learning, it
is reasonable to speculate that regularization and data
augmentation methods may be beneficial, similar to uni-
modal tasks. Nevertheless, the existing literature on this
topic remains relatively sparse and of limited scope. Some
approaches like Wang et al. [15] and Wu et al. [16], pro-
pose to dynamically reweight unimodal loss terms within
the overall learning objective, while Du et al. [19] suggest
leveraging a unimodal teacher model to improve learning
of unimodal features. However, these methods are tied with
specific learning hypotheses and late fusion architectures,
which constrains their broader applicability.

For more advanced models, like those employed for
MSA, Liu et. al. [20] introduce a learnable auto-encoder for
embedding augmentation within multimodal networks, and
M3 [21] utilizes intense text masking in the latent unimodal
space before fusion, acting as a regularizer. More closely
aligned with our work, AV-MC [22] employs MixUp [23]
independently for acoustic and visual streams, when labels
are available for each modality, requiring three separate
forward propagations, one for the original input and one
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for each unimodal set of mixed examples. However, all
these approaches are bound to specific architectural designs,
fusion strategies and learning assumptions, which restrict
their applicability. Therefore, a broad-spectrum regulariza-
tion framework that transcends such constraints is crucial
for multimodal learning environments such as MSA.

In this work, we introduce PowMix, a novel regulariza-
tion method specifically crafted to improve regularization
in multimodal scenarios and in particular MSA. Unlike
methods designed to handle modality-specific challenges,
PowMix aims to offer a broad-spectrum solution applicable
across a range of datasets and model architectures. As a
member of the mixing algorithm family, it is inspired by
methods like MixUp [23], TransMix [24] and MultiMix [25],
known for their regularization capabilities. PowMix is inte-
grated before the fusion stage in the multimodal architecture
and facilitates intra-modal mixing, e.g., text with text and
audio with audio.

What sets PowMix apart is its novel components that, in
synergy, render it suitable for multimodal contexts. In par-
ticular, the algorithm is characterized by five key features:
1) a varying number of generated mixed examples, 2) mixing
factor reweighting to encapsulate the importance of each
modality for each mini-batch example, 3) anisotropic mixing
for independent mixing across unimodal spaces, 4) dynamic
mixing, a novel element for representation mixing, and 5)
cross-modal label mixing, a new way to aggregate mixed
labels across modalities. PowMix emerges as a versatile
regularizer across MSA datasets and architectures. To the
best of our knowledge, such an approach has not been
previously reported in the literature.

To establish the effectiveness of PowMix, we conduct ex-
periments on three widely used MSA benchmark datasets:
MOSI [26], MOSEI [27], and SIMS [28]. We also employ three
different multimodal architectures: MulT [9], MISA [10],
and Self-MM [11]. These models are chosen because they
perform well and, most importantly, cover a wide range of
architectural designs and learning approaches.

Our main contributions are summarized as follows:

1) We introduce PowMix, a novel regularization
method applied to MSA. It consists of five key com-
ponents, two of which build upon existing ideas and
the other three are entirely novel: anisotropic mix-
ing, dynamic mixing, and cross-modal label mixing.

2) We experimentally validate the effectiveness of
PowMix across diverse MSA datasets and architec-
tures, confirming superior performance over base-
lines and state-of-the-art mixing methods.

3) We conduct an in-depth ablation study of the fea-
tures of PowMix, demonstrating the contribution of
each component to the overall performance. We also
highlight the synergetic impact of these features.

4) We present a comprehensive algorithmic analysis,
demonstrating the behavior of PowMix across dif-
ferent fusion types, its robustness to noise and text
dominance levels, as well as its efficacy under lim-
ited data scenarios.

The paper is structured as follows: section 2 covers
related work and section 3 provides formulation and back-
ground for our study. Next, section 4 details the PowMix

algorithm, while section 5 outlines our experimental setup.
The core experimental results, as well as the ablation study
and algorithmic analysis, are presented in section 6. Finally,
section 7 draws conclusions and discusses future research
directions.

2 RELATED WORK

This section provides an overview of the literature, be-
ginning with an exploration of works in the MSA field,
which is the core of our experimentation. We then discuss
advancements in mixing techniques within the unimodal
learning context, highlighting their components. Finally, we
present existing multimodal regularizers and highlight their
task and problem specific characteristics.

2.1 Multimodal sentiment analysis

MSA research mainly focuses on building better fusion
schemes and utilizing diverse learning recipes to enhance
representation learning for the task at hand. In particular,
TFN [8] employs outer product of unimodal representations
to capture cross-modal interactions. Poria et al. [29] and Gu
et al. [30] implement multi-level and hierarchical attention
to better contextualize information. DHF [31] applies a
hierarchical fusion mechanism across different levels within
the architecture.

Other types of neural structures employed in MSA in-
clude neural memory modules [27], capsule networks [32],
and graph neural networks [33]. Tsai et al. [9] utilize trans-
formers, where cross-attention blocks act as early fusion
and concatenation serves as late fusion. Rahman et al. [34]
fine-tune a pre-trained BERT [35] model by incorporating a
multimodal shifting layer as early fusion.

Another line of work utilizes more complex learning
recipes such as canonical correlation analysis [12] and cycle-
consistency loss [36] across modalities. Coupling different
learning recipes with pre-trained models has been a popular
choice among researchers. Yu et al. [11] introduce a uni-
modal pseudo-labeling module that backpropagates three
additional losses. Hazarika et al. [10] augment the learning
objective with feature reconstruction loss as well as attract-
ing and repelling objectives.

A two-step hierarchical learning recipe based on mutual
information maximization is proposed in [37], while Sun et
al. [12] propose a meta-learning framework that learns each
unimodal network and then adapts them for the MSA task.
Sun et al. [38] propose a transformer architecture leveraging
dual-level reconstruction loss and an attraction loss in a
Siamese setup between complete and incomplete data. Hu
et al. [39] employ a text encoder-decoder architecture, using
T5 [40], and implement a contrastive loss among unimodal
encoders. The decoder generates text sequences, which are
decoded into MSA-related info such as polarity. Notably,
none of the aforementioned approaches handles multimodal
regularization.
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2.2 Mixing in unimodal learning setups
Regularization1 in unimodal learning setups has been ex-
tensively studied. We primarily focus on techniques that
modify the learning process through mixing-based algo-
rithms such as MixUp [23]. These algorithms are notable
for their regularization benefits and a unique capability to
mix representations in the latent space. This feature is par-
ticularly desired for the development of broad multimodal
regularizers.

Input mixing: Algorithmic approaches in this category
are usually attached to specific types of data. For computer
vision (CV), the most studied field, options have evolved
from fundamental transformations, e.g., translation and
rotation [41], to more advanced methods. These include
MixUp [23] and CutMix [42], which mix pairs of images
in the pixel and label space, as well as AutoMix [43] that
introduces an automatic mixing framework. For a unified
study on vision mixing techniques, we refer to [44].

In natural language processing (NLP), mixing words in
their raw format is not straightforward, leading to ap-
proaches like SSMix [45], which substitutes salient parts of a
sentence with words from another. In the Audio and Speech
domain, SpecMix [46] mixes two spectrogram representa-
tions w.r.t. the frequency domain. Our work shares a similar
idea with TransMix [24], a state-of-the-art CV technique,
proposing pixel-wise reweighting of mixing factors based
on their attention map values.

Latent space mixing: Algorithms in this category
focus on manipulating latent representations. Manifold
MixUp [47] interpolates pairs of hidden representations
along with their labels. Non-Linear MixUp [48] extends
this concept with a non-linear interpolation scheme in the
text embedding space. ReMix [49] favors the minority class
during mixing. Further expanding on these ideas, Speech-
Mix [50] and MixUp-Transformer [51], are variants of Man-
ifold MixUp for speech and NLP tasks respectively.

Closely related to our work is MultiMix [25], a state-of-
the-art method that mixes all representations within a batch
to generate many mixtures. MultiMix also incorporates the
idea of reweighting interpolation factors prior to mixing.
Similarly, PowMix proposes a methodology to generate
more mixed examples than the mini-batch size, yet by inter-
polating fewer examples than MultiMix. These algorithms,
especially MultiMix, represent a methodological shift to-
wards more abstract regularization methods and motivate
the need for techniques beyond unimodal boundaries.

2.3 Regularization in multimodal setups
Here, we position the proposed PowMix in the context
of existing multimodal learning regularization techniques.
Current methods often target specific challenges [15], [19]
or are confined to particular inputs and domains. For ex-
ample, MixGen [52] combines image and text data intra-
modally but is primarily helpful for tasks like retrieval and
captioning. Similarly, cross modal CutMix (CMC) [53] bridges
unpaired image-text datasets cross-modally but has limited

1. In this work, we attribute regularization as any modification we
make to a learning algorithm that is intended to reduce its generaliza-
tion error but not its training error [41].

XT fT

XA fA

XV fV

hT

hA

hV

fF

Fig. 1: Abstract multimodal fusion scheme for MSA architec-
tures including MulT [9], MISA [10] and Self-MM [11].
Independent processing pathways for each modality, repre-
sented by encoders fm, where m ∈ {T,A, V } is the modality
(T : text, A: acoustic, V : video). In models like MulT, en-
coders can incorporate other modalities as inputs too, i.e.,
early-fusion. The hidden representations hm extracted by
the encoders are fed to the fusion network fF , which gener-
ates the final prediction. Depending on the architecture, fF
can manifest as a non-linear feedforward network (MulT),
a single-layer transformer (MISA), a dual linear layer setup
(Self-MM), etc. This scheme abstracts away components of
the architecture not directly related to the prediction task.
Mixing is performed directly on hm.

architecture and task flexibility. By contrast, PowMix is
designed to adapt across a wide range of supervised mul-
timodal classification or regression problems without being
limited to specific input types or architectures.

The embedding space augmentation technique proposed
in [20] marks progress in multimodal regularization. How-
ever, its complexity limits its application, involving addi-
tional learnable parameters, doubled forward propagations,
adversarial-like optimization, and manual output threshold-
ing. Similarly, AV-MC [22], which utilizes MixUp for acous-
tic and visual streams independently, requires unimodal
labels and three forward propagations. PowMix, on the
other hand, offers versatility and broad applicability by not
posing any constraints on the learning setup, particularly in
complex tasks like MSA.

3 BACKGROUND
We formulate multimodal sentiment analysis (MSA) as a mul-
timodal fusion task and present an abstract architecture
scheme that encapsulates most existing approaches, as illus-
trated in Figure 1. We then describe unimodal mixing algo-
rithms with a particular focus on Manifold MixUp [47] and
MultiMix [25]. We also briefly outline the idea of reweighting,
a mechanism used in different mixing algorithms [24].

3.1 Preliminaries and notation
Figure 1 shows an abstract multimodal fusion architecture
used in MSA models, e.g., [8], [9], [10], [11], [21]. We have
omitted parts of the architecture not directly involved in
the predictive information flow, such as the decoder in
MISA [10] and the unimodal label generation module in
Self-MM [11]. Our focus is on the input modality encoders
fm and the fusion network fF alone.

Each unimodal input space is denoted as Xm, where m
is the modality, from a set of indices M = {1, . . . ,M}.
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(a) nI = 2 (MixUp) (b) nI = 3 (c) nI = 4 (d) nI = 7 (MultiMix)

Fig. 2: Motivation of PowMix. Given seven 2-dimensional points, we generate 212 points, each as a convex combination of
a random subset of nI points. From left to right, we interpolate pairs, triplets, quadruplets, and all seven points. MixUp (a)
interpolates two points at a time, while MultiMix (d) uses all seven points. By dynamic mixing, PowMix randomly samples
a subset of different cardinality for each generated point, hence can provide mixing instances between interpolation of
pairs and all points. Empirically, we find that mixing from 2 to 4 points gives good performance. •: Original examples; •:
interpolated examples; : convex hull.

The multimodal input space is denoted by the Cartesian
product XM = X1 × · · · × XM . The multimodal input
data is given as the collection D = {X(i), y(i)}Ni=1, where
X(i) = (X

(i)
1 , . . . ,X

(i)
M ) is a multimodal m-tuple with each

X
(i)
m ∈ Xm, y(i) ∈ R is the corresponding label for regression

tasks and N is the number of multimodal m-tuples. When
discussing unimodal concepts, such as Manifold MixUp, we
omit the m subscript.

Each input modality encoder is a mapping fm : XM →
Rdm , where dm is the hidden space dimension. Given mul-
timodal input X ∈ XM, the output of each encoder is
hm = fm(X) ∈ Rdm , allowing for early fusion in general.
The fusion network is a mapping fF : Rd1 ×· · ·×RdM → R.
The complete prediction scheme f is the composition of
input modality mappings with the fusion map, i.e., f(X) =
fF (h1, . . . ,hM ) = fF (f1(X), . . . , fM (X)). All mixing oper-
ations are applied to the hidden representations of an entire
mini-batch, denoted by Hm ∈ RB×dm , where B is the mini-
batch size.

3.2 Manifold MixUp
Manifold MixUp [47] is a unimodal regularization method
that interpolates pairs of hidden representations from differ-
ent input examples using an interpolation factor λ ∈ [0, 1].
Given a pair of representations h(i),h(j) in latent unimodal
space Rd and their labels y(i), y(j), mixing is performed by
the convex combination

h̃ = λh(i) + (1− λ)h(j) (1)

ỹ = λy(i) + (1− λ)y(j). (2)

Following standard practice, λ is sampled from distribution
Beta(α), where α = 1. As shown in Figure 2a, this method
results in mixed embeddings along linear segments between
pairs of examples.

3.3 MultiMix
MutiMix [25], a state-of-the-art mixing method, is incor-
porated in our study for comparative analysis with our

proposed PowMix. Unlike Manifold MixUp, which interpo-
lates pairs of examples, MultiMix interpolates all examples
in a batch and generates a number of mixed examples
that is independent of the mini-batch size. In particular,
given a batch of size B, MultiMix mixes all B hidden
representations, denoted by H ∈ RB×d, to generate nO

mixed examples. This involves randomly sampling nO in-
terpolation vectors in RB from Dirichlet distribution Dir(α),
resulting in an interpolation matrix Λ ∈ RnO×B . Mixing is
then performed by the convex combination

H̃ = ΛH ∈ RnO×d (3)
ỹ = Λy ∈ RnO , (4)

where y ∈ RB denotes the labels of the mini-batch. Param-
eter α is sampled from a uniform distribution U [0.5, 2.0]
by default, which produces mixed examples as shown in
Figure 2d. The number nO of mixed examples is a tunable
hyperparameter. In PowMix, we adopt this idea of nO being
decoupled from the mini-batch size.

3.4 Mixing factor reweighting
Reweighting the mixing factors based on representations
has proven an effective strategy in various MixUp variants,
such as TransMix and MultiMix [24], [25]. This idea is
founded on the principle that reweighting different ele-
ments by assigning them attention-like values can result in
more effective mixtures. The key to this approach is a map-
ping g, which determines the attention weights of mixed
elements. This function is based on attention maps obtained
by transformer architectures in TransMix [24] and a cross-
attention operation over dense features in MultiMix [25].
To keep our approach generic in terms of architecture, we
rather use a simpler mapping g in PowMix.

4 POWMIX
Our proposed multimodal regularization method, PowMix,
is described here in detail. It consists of five key elements:

1) Generating a varying number of mixed examples.
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2) Mixing factor reweighting, adjusting the contribution
of each representation in a mixed example.

3) Anisotropic mixing, i.e., sampling distinct mixing fac-
tors for each latent modality space.

4) Dynamic mixing, allowing the combination of a vari-
able number of embeddings from the mini-batch.

5) Cross-modal label mixing, creating a unified multi-
modal label for each mixed multimodal tuple.

While the first two elements build upon established con-
cepts in the literature (see subsection 3.3 and subsection 3.4
respectively), the other three are entirely novel contribu-
tions, specifically designed to make PowMix perform best
in a multimodal setup. In the following, we provide a
detailed account of how PowMix combines these novel ele-
ments in a multi-step algorithm, and then we discuss their
motivation and impact. We give pseudo-code for PowMix
in algorithm 1.

Algorithm 1: PowMix multimodal mixing.

Input: hidden representations Hm ∈ RB×dm

Input: label vector y ∈ RB

Input: number nO of generated mixed examples
Output: mixed representations H̃m ∈ RnO×dm

Output: mixed label vector ỹ ∈ RnO

1 am ← gA(Hm) ▷ attention vector
2 αm ∼ U(0.5, 2) ▷ interpolation hyperparameter
3 Λm ∼ Dir(αm) ▷ interpolation matrix
4 P ∼ U(2, 4) ▷ masking hyperparameter
5 M ∼ Bern(P/B) ▷ mask sampling
6 Λ̃m ← η1(a

⊤
m ⊙M⊙Λm) ▷ normalization

7 H̃m ← Λ̃mHm ▷ representation mixing
8 ỹm ← Λ̃mym ▷ label mixing
9 ỹ← 1

M

∑
m ỹm ▷ cross modal label mixing

4.1 Algorithm

Given a multimodal example X(i) = (X
(i)
1 , . . . ,X

(i)
M ) ∈

XM, we obtain a hidden representation h
(i)
m = fm(X(i)) ∈

Rdm as the output of encoder fm for each modality m ∈ M.
At the mini-batch level, let the matrix Hm ∈ RB×dm hold
the hidden representations of all examples in its rows, where
B is the mini-batch size. Let also vector y ∈ RB denote the
labels y(i) ∈ R for all examples of the mini-batch.

Mixing factor reweighting: First we compute the mixing
factor attention weights am ∈ RB . Specifically, as a form of at-
tention, we use average pooling over the feature dimension
followed by ReLU and normalization across modalities:

am = g(Hm) :=
σ(Hm1dm/dm)∑

m′ σ(Hm′1dm′/dm′)
, (5)

where 1dm ∈ Rdm is an all-ones vector, σ(·) is the ReLU
function and division is performed element-wise. This op-
eration is similar to transformer cross-attention between
query 1dm and key Hm but here normalization is performed
across modalities. We call the use of weights am mixing factor
reweighting. A baseline is to use a uniform a = 1B/M for all
modalities.

Anisotropic mixing: For each modality, we then sample a
different mixing matrix Λm ∈ RnO×B . To do this, we sample
nO distinct B-dimensional interpolation coefficient vectors
from a Dirichlet distribution Dir(αm), with its parameter
αm ∈ RnO drawn from a uniform distribution U(0.5, 2.0),
following [25]. Let’s assume that the latentrepresentation of
each modality is embedded in separate subspaces of an
overall multimodal latent representation space. Since we
use a different mixing matrix per subspace, we call this
approach anisotropic mixing. A simpler alternative is to use
the same Λ ∈ RnO×B for all modalities.

Dynamic mixing: Next, we randomly mask mixing fac-
tors to keep only a small number of nonzero elements
per row of Λm. This limits the interpolation to just a few
examples. Specifically, we sample a binary mask M ∼
Bern(P/B) ∈ RnO×B from a Bernoulli distribution and
apply it element-wise to the mixing matrix Λm.

The hyperparameter P ∈ RnO×B provides a different
value for each element of M and dictates the proportion
of mini-batch examples to interpolate in the representation
space. We find empirically that P ∼ U(2, 4) works well,
corresponding to 2 to 4 nonzero elements on average per
row of Λm.

Since different examples are interpolated for each gen-
erated example, we call this process dynamic mixing. Impor-
tantly, the same binary mask M is used for all modalities
m by default, a choice called mask sharing. An alternative
is to use a different Mm ∈ RnO×B for each modality. The
simplest approach would be not to use any masking, i.e.
setting M = 1nO×B , which deactivates dynamic mixing.

Interpolation operation: Given the mixing factor atten-
tion weights am ∈ RB and the binary mask M ∈ RnO×B ,
we multiply element-wise with the mixing matrix Λm ∈
RnO×B and re-normalize over the mini-batch dimension to
obtain the reweighted mixing matrix

Λ̃m = η1(a
⊤
m ⊙M⊙Λm) ∈ RnO×B , (6)

where η1 here denotes ℓ1-normalization of rows and ⊙ is
Hadamard product (with vectors broadcasting to matrices
as needed). In this product, attention weights am are scaling
the columns of the mixing matrix, while the binary mask M
is selecting subsets from each row.

Now, using Λ̃m, we generate nO mixed examples per
modality. In particular, given the hidden representations
Hm and the labels y, we perform intra-modal interpolation
for modality m by

H̃m = Λ̃mHm ∈ RnO×dm (7)

ỹm = Λ̃my ∈ RnO . (8)

This is similar with (3), (4), but Λ̃m is reweighted, masked
and unique for each modality. Formally, it expresses convex
combinations of different input examples in the representa-
tion space and their labels, due to nonnegativity of Λ̃m and
its rows summing to 1.

Cross-modal label mixing: Finally, we compute a single
multimodal label ỹ ∈ RnO for the mini-batch by averaging
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ỹm over modalities:

ỹ =
1

M

∑
m

ỹm. (9)

This step, called cross-modal label mixing, is only meaningful
when mixing factor reweighting and anisotropic mixing are
used, in which case ỹm are different for each modality.

4.2 Discussion
We now discuss the key features of PowMix, to better
understand the underlying idea of each algorithmic com-
ponent.

Varying number of mixed examples: PowMix enables
the generation of a variable number nO of mixed examples.
These mixtures lie in the convex hull of the mini-batch in
the representation space. The value of nO is a hyperpa-
rameter, which is decoupled from the mini-batch size and
much larger in practice. As such, it generates a plethora of
mixtures, leading to more loss terms being calculated per
example during model training. As in MultiMix [25], it is
hypothesized that this provides a better approximation of
the expected risk integral.

Mixing factor reweighting: Prior works [24], [25] per-
form mixing factor reweighting on dense features of image
patches, applied to a unimodal task. By contrast, our ap-
proach is inherently multimodal, reweighting the mixing
factors of each mini-batch example by normalizing across
modalities. Our intuition is that by reweighting each modal-
ity in a multimodal m-tuple according to the sum of its
features we are able to reduce the impact of uninforma-
tive (near zero) unimodal instances in the representation
space. Unlike prior work [24], [25], our approach is also
agnostic to the architecture and pooling mechanism of the
input modality encoders. We experimentally verify that it
improves performance.

Anisotropic mixing: Given m hidden tensors Hm ∈
RB×dm , PowMix samples a separate mixing matrix Λm ∈
RnO×B for each modality m. This enables modality-specific
mixing, that is, the ability of the algorithm to exhibit dif-
ferent mixing strategies across modalities. This property is
shown to be critical for PowMix to perform well.

Dynamic mixing and power set: Considering the forma-
tion of the reweighted mixing matrix Λ̃m (6), we track two
sources of randomness. The first is due to mixing factors
in Λm, sampled from the Dirichlet distribution, which is
common in prior mixing methods, e.g. [25]. The second is
due to the binary mask M, sampled from the Bernoulli
distribution, which is unique to our method. One may
interpret the interpolation process as sampling a subset of
examples from the power set P of the mini-batch in the
representation space. The subset sampling is then followed
by the formation of a convex combination based on the
selected representations. This is a dynamic mixing process
in the sense of using a different subset for each generated
mixed example. The PowMix acronym of the proposed
method alludes to the use of the power set P .

In practice, the effect of sampling a subset prior to
forming a convex combination is that Λ̃m is sparse, having a

small number of nonzero entries per row (2 to 4 on average
according to our default settings). Thus, only few mini-batch
examples are interpolated for each generated mixture. While
it is possible to control the entropy of mixing factors by
adjusting the hyperparameter αm of the Dirichlet distri-
bution in sampling Λm itself, it is shown experimentally
that true sparsity is superior in our multimodal problem.
As shown in Figure 2b and Figure 2c, PowMix can pro-
vide mixing instances between interpolation of pairs, as in
Manifold Mixup [47], and all mini-batch examples, as in
MultiMix [25]. Sharing the binary mask M across modalities
is empirically shown to be essential for PowMix to work
well.

Cross-modal label mixing: PowMix uses mixing factor
reweighting and anisotropic mixing, which result in differ-
ent reweighted mixing matrices Λ̃m (6) and thus different
mixed labels ỹm (8) for each modality m. To unify these
into a single label vector ỹ, PowMix averages the mixed
labels ỹm over modalities (9). This assumes equal contri-
bution from each modality in label generation. While this
assumption may not hold universally, empirical evidence
has demonstrated its effectiveness in practice. The averaging
operation is purely multimodal, intertwining label informa-
tion across different modalities.

5 EXPERIMENTAL SETUP
We evaluate PowMix and other mixing techniques over
three benchmark datasets for MSA and three distinct
archetypal multimodal networks. In the following, we pro-
vide a detailed description of our experimental setup.

5.1 Benchmark datasets
MOSI: CMU-MOSI [26] is an English MSA benchmark
dataset consisting of YouTube videos (≈ 2.5h), featuring
monologues where individuals express opinions, stories and
reviews. These videos range from 2-5 minutes in length.
CMU-MOSI contains 2199 utterance-level video segments
from 93 videos and 89 distinct speakers (41 female and
48 male), with an average segment length of 4.2 sec. Each
segment is manually transcribed and annotated with senti-
ment intensity scores ranging from -3 (strongly negative) to
3 (strongly positive).

MOSEI: CMU-MOSEI [27] is the largest MSA benchmark
dataset (≈ 66h). Compared to MOSI, it offers a more diverse
range of samples, video topics and speakers. MOSEI con-
tains 23,453 manually transcribed and annotated utterance-
level video segments from 1000 distinct speakers and covers
250 topics. The average segment length is 7.28 sec, with
segmentation based on punctuation from the high-quality
manual transcriptions. Each segment is manually annotated
in a Likert scale from -3 to 3 as in MOSI.

SIMS: The CH-SIMS [28] is a Chinese MSA benchmark
dataset, comparable in size to MOSI (≈ 2.3h). It consists
of 2281 utterance-level monologue video segments from 60
diverse videos, including movies, TV series, and variety
shows. Each segment is manually segmented, transcribed,
and annotated with sentiment intensity scores ranging from
-1 (strongly negative) to 1 (strongly positive). While SIMS
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provides both multimodal and unimodal annotations, we
only leverage the multimodal labels. The average length of
each video segment is 3.67 sec.

5.2 Multimodal features
Processing raw multimodal video streams is computation-
ally intensive and might also face copyright issues. There-
fore, benchmarks in this field typically include a set of
extracted features [26], [27], [28]. Since feature extraction
for emotion and sentiment is a challenge with varied ap-
proaches [54], direct algorithm comparison can be prob-
lematic. In our study, we utilize the feature set provided in
[54] for fair comparison across benchmarks.

Text modality: Semantic word embeddings mainly
rely on pretrained language models. Following [54],
we use BERT [35] embeddings adopted from their
open-source transformer implementations [55]. In par-
ticular, we use bert-base-uncased for English and
bert-base-chinese for the Chinese language. Eventu-
ally, each word is tokenized and represented as a 768-dim
word vector.

Acoustic modality: The acoustic modality predominantly
uses hand-crafted features. MOSI and MOSEI employ the
COVAREP [56] framework to extract low-level descrip-
tors (LLDs) like pitch and 12 Mel-freq cepstral coefficients
(MFCCs), yielding a 74-dim frame-level feature. For SIMS,
we use Librosa [57], resulting in a 33-dim acoustic represen-
tation per frame.

Video modality: Standard video features for MSA tasks
include facial landmarks, eye gaze, and facial action units.
For MOSI and MOSEI, 35 facial action units are extracted
using Facet 2, focusing on emotion-related movements. In
SIMS, the OpenFace2.0 toolkit [58] extracts 68 facial land-
marks, 17 facial action units, and other features, forming a
709-dim frame-level representation.

5.3 Evaluation metrics
Performance metrics: Aligning with existing literature
[9], [10], [11], [54], we evaluate MSA as a regression task us-
ing mean absolute error (MAE) and Pearson correlation (Corr).
Classification accuracy, denoted as Acc-k for k classes, is also
used by mapping regression scores to discrete categories.
For binary metrics (Acc-2, F1), in line with [9], [54], we ex-
clude neutral (zero-valued) predictions, focusing on positive
versus negative values.

Robustness metrics: Evaluating MSA model robustness,
especially against textual modality dominance, is crucial
[17], [59]. We assess model robustness under various noisy
inputs using the same metrics as for performance.

5.4 Competitors and MSA models
We compare our PowMix multimodal regularization
method against Manifold MixUp [47] and state-of-the-art
MutiMix [25], as discussed in section 3.

2. https://imotions.com/platform

TABLE 1: Properties of MSA archetypal models. FT-BERT:
BERT encoder fine-tuning; Backbone: unimodal encoder; Ob-
jectives: number of objectives in learning recipe. CA: cross-
attention; SA: self-attention.

MODEL FT-BERT BACKBONE EARLY / LATE FUSION OBJECTIVES

MulT 1D-CNN CA / Concat 1
MISA ✓ LSTM — / SA + Concat 4
Self-MM ✓ LSTM — / Concat 4

All comparisons are performed on three different
archetypal MSA architectures, namely MulT [9], MISA [10]
and Self-MM [11]. These models have demonstrated strong
performance across the datasets we examine [54]. As shown
in Table 1, they represent a diverse range of architectural
choices, including LSTM, CNNs, and transformers. They
also employ various fusion strategies and unique learning
recipes, including single-task and multi-task objectives. We
reproduce those three models for fair comparison. We also
report other models from the literature to provide a holistic
performance overview.

LF-DNN: The late fusion deep neural network (LF-
DNN) [60] learns unimodal features separately for each
modality, then concatenates them for multimodal predic-
tion.

TFN: The tensor fusion network (TFN) [8] employs LSTM
for text and averages acoustic and visual features. Latent
representations from DNN-processed modalities are con-
catenated, forming a high-dimensional multimodal space.

MAG-BERT: In the MAG-BERT [34] model, a multimodal
adaptation gate is introduced and integrated with a pre-
trained BERT backbone to handle multimodal information
processing.

MulT: The multimodal transformer (MulT) [9] employs a
1D-CNN as a unimodal backbone for reducing the dimen-
sionality of input features. MulT uses early fusion through
cross-attention (CA) blocks. These blocks facilitate interaction
and integration of information across different modalities.
After this early fusion step, the model processes the com-
bined multimodal streams using self-attention (SA) mecha-
nisms. The output of these processes is then concatenated
for the final prediction. All mixing operations are integrated
prior to concatenation. MulT is optimized based on a single
task loss.

MISA: The MISA model [10] uses LSTM networks to
process audio and video modalities. For the text modality, it
fine-tunes the BERT encoder. MISA is designed to embed
unimodal representations into both a shared multimodal
space and distinct unimodal spaces. This design promotes
the extraction of common features across modalities while
also preserving modality specific features.

In the final stages, MISA decodes all these six repre-
sentations (from both common and individual spaces) in
one branch for reconstruction, while in another branch, it
independently merges them using SA to make the final pre-
diction. MISA thus combines a task loss with reconstruction,
repelling and attractive objectives. All mixing algorithms are

https://imotions.com/platform
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employed before the SA block, treating the six representa-
tions as independent modalities.

Self-MM: The Self-MM model [11] also relies on LSTM
networks to process the audio and visual features. For the
text modality, it fine-tunes the BERT encoder. Self-MM im-
plements a pseudolabeling component called unimodal label
generation module (ULGM), which generates unimodal labels
from the multimodal label and the unimodal embeddings.
These generated labels then influence the learning process
through backpropagation. For the final prediction, Self-MM
concatenates the unimodal representations and processes
them through a dual linear layer setup. The model combines
a task loss with an additional loss for each modality, derived
from the pseudolabeling network. All mixing operations are
integrated before concatenation.

5.5 Implementation details
We employ the M-SENA framework [54] for MSA model
evaluation, implementing all models in PyTorch [61] and
conducting all experiments on a single NVIDIA RTX 3090.
We use the Adam [62] optimizer with early stopping and
set hyperparameters per M-SENA’s guidelines3. Results for
MulT, MISA and Self-MM are reproduced from open-source
implementations for fair comparison.

Mixing is integrated before the late fusion stage in train-
ing and excluded during inference. For Self-MM model,
following official recommendations [11], we initiate mixing
only after the first two epochs for SIMS and MOSEI, and
after one epoch for MOSI. Metrics are averaged over at least
five independent runs, while robustness assessments use 15
runs, following [54], [63].

For PowMix, we sample the masking probability as
P ∼ U(2, 4) and the interpolation hyperparameter as
α ∼ U(0.5, 2.0). For MultiMix, we use the default hyper-
parameters from [25], while Manifold MixUp performs best
with α = 1.0. When tuning hyperparameters such as the
probability pmix of applying the mixing algorithm, as well as
the number nO of generated mixed examples for MultiMix
and PowMix, we employ the following strategy. Initially,
nO is set to 256, and pmix is optimized. Subsequently, nO is
optimized based on the optimal pmix value. The process may
be repeated if the results are not satisfying. For Manifold
MixUp, because of the small batch size, we process batches
twice the baseline size, split each batch in half and perform
mixing between the two halves.

6 EXPERIMENTAL RESULTS
We evaluate PowMix against competitors over a diverse set
of multimodal networks across different MSA benchmark
datasets. All latent feature regularizers are applied before
the late fusion part of each architecture.

6.1 Comparison with the state of the art
To ensure a fair comparison between different mixing meth-
ods and consistency across all evaluation metrics, we repro-
duce MulT, MISA and Self-MM baseline models. Addition-
ally, we present results from established frameworks, which

3. https://github.com/thuiar/MMSA/blob/master/src/MMSA/
config/config regression.json

are generally comparable with our reproduced results. We
primarily compare our results to the reproduced ones.

Table 2 evaluates PowMix against the state of the art.
These results clearly show that integrating PowMix leads to
consistent performance improvements across all metrics and
datasets over the reproduced baseline models. This result
clearly illustrates the width of applicability and consistency
of the proposed method across various architectures, fusion
schemes and learning recipes. Notably, in the vast majority
of the examined metrics (72%), Manifold MixUp and Multi-
Mix fail to improve or even harm performance compared
to the baseline. By contrast, all models are benefited by
multimodal regularization across all setups. Next, we take a
closer look at individual datasets.

MOSI: By using PowMix, Self-MM outperforms all ex-
amined models, both reproduced and original. For MulT,
improves by 0.75 Acc-2 and 0.023 MAE.

MOSEI: By using PowMix, MISA improves by 0.95 Acc-
5 and 1.04 Acc-7. Self-MM improves by 0.86 for binary
metrics, outperforming its original results by 1.0 on average
and even outperforming MISA, which has better baseline
performance on these metrics.

SIMS: PowMix significantly boosts all models. By using
PowMix, MulT outperforms the stronger baseline Self-MM
model across three metrics, which clearly confirms the ben-
efits of regularization in multimodal architectures.

6.2 Ablation study
To investigate the effect of each hyperparameter and al-
gorithmic component in PowMix, we conduct extensive
experiments on MOSEI (largest benchmark) with Self-MM
(best performing model).

6.2.1 Subset sampling
In this experiment, we perform an ablation on subset sam-
pling from the mini-batch prior to forming convex combina-
tions in PowMix. This is controlled by a uniform distribu-
tion U(a, b) used to sample the hyperparameter P ∈ RnO×B

of the Bernoulli distribution from which we sample the
binary mask M ∈ RnO×B . This uniform distribution means
that there are from a to b nonzero entries on average in each
row of the mask M, thus also each row of the reweighted
mixing matrix Λ̂m. In turn, this means that we are interpo-
lating from a to b mini-batch examples on average.

Figure 3 shows the results for a variety of choices for a, b.
According to both metrics, the intervals are ranked by de-
creasing performance as U(2, 4), U(2, 8), U(4, 6), U(2, 16),
and U(6, 8). This highlights the importance of sampling a
small subset of mini-batch examples (both a and b being
small) and the sparsity of Λ̂m, justifying our dynamic mix-
ing process. Notably, even the least effective choice, U(6, 8),
still outperforms the baseline Self-MM model. We choose
U(2, 4) by default in PowMix based on these results.

6.2.2 Number of generated mixed examples
Figure 4 shows the effect of the number nO of generated
mixed examples. We observe that a smaller number of
generated mixed examples, such as 24 or 25, does not

https://github.com/thuiar/MMSA/blob/master/src/MMSA/config/config_regression.json
https://github.com/thuiar/MMSA/blob/master/src/MMSA/config/config_regression.json
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TABLE 2: State of the art comparisons. M.MixUp: Manifold MixUp. †: results reported in [54]; all other results are reproduced.
↑ / ↓: higher/lower is better. Red: worse than the baseline; bold: best for each MSA model.

MODEL
MOSI MOSEI SIMS

ACC2↑ F1↑ MAE↓ CORR↑ ACC5↑ Acc7↑ ACC2↑ F1↑ MAE↓ CORR↑ ACC5↑ Acc7↑ ACC2↑ F1↑ MAE↓ CORR↑

LF-DNN† 79.39 79.45 0.945 0.675 - - 82.78 82.38 0.558 0.731 - - 76.68 76.48 0.446 0.567
TFN† 78.02 78.09 0.971 0.652 - - 82.23 81.47 0.573 0.718 - - 77.07 76.94 0.437 0.582
MAG-BERT† 83.41 83.47 0.761 0.772 - - 84.87 84.85 0.539 0.764 - - 74.44 71.75 0.492 0.399
MulT† 80.21 80.22 0.912 0.695 - - 84.63 84.52 0.559 0.733 - - 78.56 79.66 0.453 0.564
MISA† 82.96 82.98 0.761 0.772 - - 84.63 84.52 0.559 0.733 - - 76.54 76.59 0.447 0.563
Self-MM† 84.30 84.31 0.720 0.793 - - 84.06 84.12 0.531 0.766 - - 80.04 80.44 0.425 0.595

MulT 80.26 80.32 0.927 0.689 40.10 34.71 84.07 83.93 0.564 0.731 53.97 52.56 77.77 77.99 0.442 0.584
+ M.MixUp 80.41 80.36 0.928 0.686 39.14 34.26 84.02 83.92 0.563 0.729 54.19 52.50 78.09 77.95 0.445 0.576
+ MultiMix 80.46 80.49 0.911 0.688 39.33 34.96 84.08 84.01 0.563 0.733 53.99 52.39 78.09 77.87 0.445 0.575
+ PowMix 81.01 80.99 0.904 0.696 40.65 35.00 84.44 84.38 0.559 0.738 54.26 52.75 79.04 78.51 0.437 0.595

MISA 82.93 82.95 0.772 0.774 47.55 42.10 84.51 84.47 0.549 0.759 53.57 51.96 76.59 76.20 0.457 0.550
+ M.MixUp 83.08 83.12 0.783 0.770 46.94 42.10 84.50 84.32 0.551 0.755 53.61 52.10 75.60 75.47 0.460 0.549
+ MultiMix 82.82 82.86 0.780 0.778 47.06 41.80 84.55 84.47 0.551 0.757 53.94 52.30 76.67 76.15 0.455 0.547
+ PowMix 83.49 83.50 0.761 0.780 48.02 42.65 84.97 84.86 0.543 0.762 54.52 53.00 77.35 76.97 0.441 0.569

Self-MM 84.22 84.23 0.724 0.791 52.22 45.64 84.26 84.24 0.532 0.765 55.52 53.85 78.16 78.15 0.417 0.592
+ M.MixUp 84.38 84.37 0.722 0.792 53.50 46.33 84.24 84.23 0.532 0.765 55.57 53.82 78.56 78.58 0.414 0.594
+ MultiMix 84.35 84.38 0.723 0.792 52.45 45.89 84.17 84.16 0.547 0.751 54.53 52.84 77.62 77.77 0.426 0.576
+ PowMix 84.76 84.78 0.712 0.795 53.86 46.88 85.11 85.10 0.528 0.770 55.87 54.25 79.02 78.94 0.412 0.599
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Fig. 3: The effect of subset sampling in PowMix, as controlled
by the uniform distribution U(a, b) used to sample the
hyperparameter P ∈ RnO×B of the Bernoulli distribution
from which we sample the binary mask M ∈ RnO×B . Using
Self-MM model on MOSEI. ↑ / ↓: higher/lower is better.

significantly benefit the model, whereas a very large num-
ber, like 211, seems suboptimal. The best-performing values
are found among {27, 28, 29}, with 28 performing best. We
underline that PowMix is effective over a very wide range
of nO values, outperforming the baseline Self-MM model
for all values tested.

6.2.3 Algorithmic components
By turning four critical algorithmic components on/off dur-
ing training, we study their effect on PowMix. In paricular,
we examine anisotropic mixing, mixing factor reweighting,
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Fig. 4: Impact of the number nO of generated mixed examples
on MOSEI. ↑ / ↓: higher/lower is better.

TABLE 3: Effect of algorithmic components of PowMix:
anisotropic mixing (Aniso.), mixing factor reweighting
(Reweight), cross-modal mask sharing (M. Share), and dy-
namic mixing (D.Mix). Using Self-MM model on MOSEI.
↑ / ↓: higher/lower is better.

ANISO. REWEIGHT M.SHARE D.MIX ACC2↑ ACC5↑ MAE↓

✓ ✓ ✓ ✓ 85.11 55.87 0.528
✓ ✓ ✓ 84.90 55.60 0.529

✓ ✓ ✓ 85.00 55.77 0.528
✓ ✓ ✓ 84.99 55.30 0.531
✓ ✓ 84.62 55.21 0.535
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Fig. 5: Unimodal evaluation analysis on MOSEI. Effect of
PowMix on performance of encoders fm of individual
modality m ∈ {T,A, V } and fusion network fF for different
MSA architectures. fm evaluated by training a linear head
on each modality representations (hm), while keeping fm
frozen. fF evaluated based on Table 2. T : text; A: acoustic;
V : video. MulT: early fusion; Self-MM: late fusion. ↑ / ↓:
higher/lower is better.

cross-modal mask sharing and dynamic mixing. It is im-
portant to note that cross-modal label mixing (9) is linked
with other components. When turning off mixing factor
reweighting and anisotropic mixing, we also turn off cross-
modal label mixing, since in this case ỹm (8) are the same
across modalities. When turning dynamic mixing off, i.e.,
use unit mask in (6), we assume that the mask sharing
feature is also deactivated.

Table 3 shows that dynamic mixing, i.e., using sparse
binary masks, is the most important component of PowMix.
Morever, mask sharing, i.e., masking the same examples
across modalities, is also a crucial component. Therefore,
we use a sparse shared cross-modal mask in all our exper-
iments. Anisotropic mixing is also essential, as its absence
lowers performance. The benefit of reweighting is also clear,
supporting findings from other studies [24]. These findings
underscore the synergetic impact of the features of PowMix;
removing any of them leads to a drop in performance.

6.3 Analysis
To better understand how PowMix works and affects the
models, we conduct analysis experiments on MOSEI.

6.3.1 Unimodal evaluation
In this experiment, we explore how PowMix influences each
modality before fusion, as well as fusion itself. Referring to
Figure 1, we denote by fm each input modality encoder
with m ∈ {T,A, V } (T : text, A: acoustic, V : video) and by
fF the fusion network. We train the model with and without
PowMix. After training, we assess the performance of each
modality by training a linear head on the output of each

modality representations (hm), while keeping fm frozen.
The fusion network fF is evaluated based on Table 2. We
repeat each experiment three times and report the average
performance.

The results are shown in Figure 5. All modalities perform
well in the MulT architecture (fm), which uses early fusion.
Applying PowMix improves fA by 0.47 Acc-2 and fV by
1.57, which is significant, while fT shows minimal im-
provement (0.03). The fusion network fF improves notably
by 0.37 Acc-2, though this is less than the per-modality
improvement.

By contrast, the Self-MM architecture, which uses late
fusion, shows different trends. Here, the acoustic and visual
modalities perform substantially worse (≈ 63 Acc-2) than
the dominant text modality (83.87). With PowMix, the au-
dio and visual streams show minor improvements (≈ 0.07),
but the text modality fT improves significantly by 0.88 Acc-
2. Interestingly, this gain is directly transferred to the fusion
network fF , improving it by 0.85 Acc-2.

These findings are mutually informative. We interpret
the results based on architectural differences and unimodal
feature analysis from [19]. In MulT, the substantial per-
modality improvements do not translate to similar multi-
modal predictive gains. Due to its early fusion approach,
the gain of each modality is inherently multimodal, limiting
the margin for additional gain at the final fusion stage.
Conversely, in Self-MM, the significant boost in the text
stream sufficiently enhances the performance of the final
fusion layer, which aligns with the concept that unimodal
improvements directly benefit the fusion process.

6.3.2 Robustness to noise
Next, we investigate the impact of PowMix on model
robustness. We train MulT and Self-MM models with and
without PowMix using clean data and then evaluate them
in noisy conditions. In particular, we randomly drop input
frames from each modality (temporal drop) with a proba-
bility p determining the noise intensity and ranging from
5% to 40%. This drop occurs either in a correlated fashion
(simultaneously across all modalities) or independently. We
average the results over the two noise types.

Figure 6 shows that both MulT and Self-MM are im-
pacted by noise. Interestingly, integrating PowMix does not
significantly alter the effect of noise, as indicated by the
slope of the curves. Models trained with PowMix maintain
their gain over baselines in noisy conditions. Notably, MulT
exhibits greater noise robustness than Self-MM, as indicated
by a smaller drop of performance.

6.3.3 Modality dominance
For dominance analysis, we inject noise solely into the text
modality to assess the conditional dependence of the model
on language to make predictions. The noise is applied in two
forms: completely dropping the text modality input with
probability p or replacing it with a mean representation over
the training set [16]. We average the results across these two
noise variants.

Figure 7 shows the results for both MulT and Self-MM
models. It reveals that text-only noise significantly affects
both models, confirming the text dominance in MSA models
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Fig. 6: Robustness to noise analysis on MOSEI. Input frames randomly dropped with probability ranging from 5% to 40%.
Average metrics reported over dropping being aligned across modalities and independent. ↑ / ↓: higher/lower is better.

10 20 30 40
77

78

79

80

81

82

83

noise (%)

F1
(↑

)

MulT
MulT+PowMix

10 20 30 40

64

66

68

70

72

noise (%)

C
or

r
(↑

)

MulT
MulT+PowMix

10 20 30 40
74

76

78

80

82

84

noise (%)
F1

(↑
)

Self-MM
Self-MM+PowMix

10 20 30 40
64

66

68

70

72

74

noise (%)

C
or

r
(↑

)

Self-MM
Self-MM+PowMix

Fig. 7: Modality dominance analysis on MOSEI. Text modality input completely dropped with probability ranging from 5%
to 40% or replaced with a mean representation over the training set. Average metrics reported over the two scenarios. ↑ / ↓:
higher/lower is better.
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Fig. 8: Limited data analysis. Model trained on progressively
larger portions of MOSEI. ↑ / ↓: higher/lower is better.

as observed in prior work [21], [64]. Importantly, PowMix-
trained models consistently outperform the baselines across
all examined noise levels.

6.3.4 Limited data
This experiment investigates the effectiveness of PowMix
in limited data scenarios. We opt for the MulT model for
its simple training process and lower parameter usage. The
model is trained on progressively larger portions of MOSEI.
As shown in Figure 8, the model trained with PowMix
consistently outperforms the baseline across all data sizes.
This performance enhancement is most pronounced in the
lower data regime, specifically between 10 − 20% of the
data, where we observe an improvement of ≈ 1.21 Acc-2
and ≈ 0.022 MAE. This finding underlines the similarity of
PowMix to other regularization techniques, often showing
greater improvements in scenarios with limited data.

7 CONCLUSIONS
The increasing complexity of neural networks, especially
in multimodal scenarios, underscores the critical need for
effective regularization techniques. With the focus of MSA
research on developing advanced architectures and diverse
learning strategies, there is a clear demand for versatile
multimodal regularization methods. To address this, we
have introduced PowMix, a novel approach specifically
tailored for multimodal tasks. PowMix incorporates five
key elements: 1) generating a varying number of mixed
examples, 2) mixing factor reweighting, 3) anisotropic mix-
ing, 4) dynamic mixing, and 5) cross-modal label mixing.
These elements collectively form an algorithm that improves
training in multimodal contexts.

Our extensive experimentats across various MSA
datasets and models demonstrate the broad applicability
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and consistent performance improvements of PowMix. De-
tailed ablation studies uncover the synergistic nature of its
components, emphasizing that the full set of components
is essential for its effective operation. Removing any al-
gorithmic component results in performance degradation.
Moreover, the ablation highlights the robustness of the algo-
rithm to several hyperparameter choices, a valuable quality
of the algorithm. Extented analysis shows that PowMix
operates differently yet effectively in both early and late
fusion architectures. Moreover, we find that the integration
of PowMix into MSA models preserves robustness without
sacrificing performance or enhancing text dominance and
offers consistent gains across different scales of data.

Future research on PowMix is promising. One impor-
tant direction is the application of PowMix in other mul-
timodal tasks beyond MSA, to further validate its versa-
tility and efficacy in diverse environments. Investigating
the integration of PowMix with more and diverse neural
network architectures could further establish it as a generic
multimodal regularizer. Another potential direction is to
examine how PowMix performs under unsupervised or
semi-supervised learning scenarios. This could contribute to
the development of more generalized multimodal learning
frameworks, capable of handling a wider spectrum of real-
world tasks. Further in-depth analysis of each component
of PowMix could provide a clearer understanding of both
the individual as well as the collective contributions to the
learning process. Such insights could lead to the develop-
ment of more refined, targeted and even explicit regulariza-
tion methods. Finally, the exploration of learnable mixing
strategies could further advance the state of the current
multimodal regularization arsenal.
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