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Abstract

Multi-target unsupervised domain adaptation (UDA)
aims to learn a unified model to address the domain shift
between multiple target domains. Due to the difficulty of
obtaining annotations for dense predictions, it has recently
been introduced into cross-domain semantic segmentation.
However, most existing solutions require labeled data from
the source domain and unlabeled data from multiple tar-
get domains concurrently during training. Collectively, we
refer to this data as “external”. When faced with new
unlabeled data from an unseen target domain, these so-
lutions either do not generalize well or require retraining
from scratch on all data. To address these challenges, we
introduce a new strategy called “multi-target UDA with-
out external data” for semantic segmentation. Specifi-
cally, the segmentation model is initially trained on the
external data. Then, it is adapted to a new unseen tar-
get domain without accessing any external data. This ap-
proach is thus more scalable than existing solutions and re-
mains applicable when external data is inaccessible. We
demonstrate this strategy using a simple method that in-
corporates self-distillation and adversarial learning, where
knowledge acquired from the external data is preserved
during adaptation through “one-way” adversarial learn-
ing. Extensive experiments in several synthetic-to-real and
real-to-real adaptation settings on four benchmark urban
driving datasets show that our method significantly out-
performs current state-of-the-art solutions, even in the ab-
sence of external data. Our source code is available online
(https://github.com/YonghaoXu/UT-KD).

1. Introduction

Among many other computer vision tasks, progress in
deep learning has significantly advanced semantic segmen-
tation [!]. Nevertheless, the particular difficulty of seman-
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Figure 1. Different strategies in cross-domain semantic segmen-
tation. (a) Single-target unsupervised domain adaptation (UDA):
the segmentation model cannot generalize well to unseen domains.
(b) Multi-target UDA: target domains are still predetermined at
training and the model needs to be retrained from scratch on all
data when a new unseen target domain is given, or else it will suf-
fer from the same problem. (c) Our new strategy, multi-target UDA
without external data: the pre-trained model is quickly adapted to
a new unseen target domain without accessing any external data
from the original source or target domains.

tic segmentation, bing a dense prediction task, is that train-
ing a deep learning-based model usually requires a large
amount of pixel-level annotations, which are laborious and
time-consuming to collect. To address this challenge and
mitigate the insufficiency of labeled data, unsupervised do-
main adaptation (UDA) algorithms have been recently de-
veloped for cross-domain semantic segmentation [10, 15].



The latter aims to learn a domain-adaptive segmentation
model by training on labeled source-domain data and un-
labeled target-domain data [16].

So far, most of the existing UDA methods are designed
for a single target domain [29]. The main limitation of such
methods is that the segmentation model may perform well
in the target domain they are trained on, but can hardly gen-
eralize well to other unseen domains [!1]. Consequently,
they are unable to perform effectively, for example, on ur-
ban driving data from different cities with diverse visual
styles and imaging environments, as demonstrated in Fig-
ure 1(a). A natural idea to address this problem is to extend
to multi-target UDA [14,24]. This involves adapting a la-
beled source domain to multiple unlabeled target domains,
as illustrated in Figure 1(b). However, since the target do-
mains are predetermined during training, the model either
does not generalize well to unseen domains or requires re-
training from scratch on all data to do so. This significantly
increases the cost of applying these approaches to new do-
mains and renders them unsuitable when the original exter-
nal data is inaccessible.

To address these challenges, we introduce a new strategy
called multi-target UDA without external data for seman-
tic segmentation. In particular, the segmentation model is
first trained on labeled source-domain and unlabeled target-
domain data from multiple targets. This data is collectively
referred to as external. Then, the pre-trained segmentation
model is adapted to a new unseen target domain without
accessing any external data, as shown in Figure 1(c). This
strategy leverages the knowledge of the pre-trained model
to eliminate the dependency on external data. Therefore, it
is more scalable compared to existing multi-target UDA ap-
proaches and remains applicable even when external data is
inaccessible.

Our contributions are summarized as follows:

1. We introduce a new multi-target UDA strategy for se-
mantic segmentation, where the segmentation model is
adapted quickly to an unseen domain using unlabeled
data of this domain alone, without external data.

2. To exhibit this strategy, we design a simple method
called multi-target knowledge distillation (MT-KD),
which uses self-distillation and adversarial learning
and achieves new state-of-the-art performance on
multi-target UDA for semantic segmentation.

3. As asecond step, we modify MT-KD by removing ac-
cess to labeled data and supervision. This new method,
called unseen target knowledge distillation (UT-KD),
directly adapts a pre-trained MT-KD model to a new
unseen target domain by a novel one-way adversarial
learning strategy, without external data. To the best of
our knowledge, we are the first to do so.

4. To further boost performance, we perform visual style

transfer across multiple domains. We parameterize the
style of each domain by a single vector, thus decou-
pling it from the style transfer process itself. The latter
is performed by a multi-target style transfer network
(MT-STN), which is shared across all domains.

2. Related work
2.1. Single-target unsupervised domain adaptation

Early research for cross-domain semantic segmenta-
tion primarily focuses on the adaptation of source-domain
knowledge to a specific target domain. The prevailing ap-
proach commonly employed involves acquiring domain-
invariant representations through the use of adversarial
learning. This adaptation process can occur within various
spaces, such as the intermediate feature space [ 18], the out-
put feature space [26], or within the realm of fine-grained
categorical features [19]. Given that the primary discrep-
ancy among different domains lies in their visual appear-
ances, an alternative strategy involves the application of vi-
sual style transfer to directly mitigate the domain dispar-
ity [30]. Nonetheless, these methodologies, while effec-
tive within their intended single target domain, tend to ex-
hibit limited generalization capabilities across unseen do-
mains [11].

2.2. Multi-target unsupervised domain adaptation

To address the limitation of single-target UDA, Isobe et
al. [11] propose the first multi-target UDA approach for se-
mantic segmentation. In particular, they first train an expert
model for each source-target pair and then conduct collabo-
rative learning with each expert model to achieve adaptation
between different target domains. Saporta et al. [24] further
extend adversarial learning into the multi-target UDA set-
ting, where one discriminator for each target domain aims to
discriminate that domain from all other target domains. To
achieve more efficient multi-target UDA, Lee et al. [ 14] di-
rectly adapt a single model to multiple target domains with-
out training multiple domain-specific expert models. How-
ever, since the aforementioned multi-target UDA methods
are trained on predetermined multiple target domains, the
entire model still needs to be retrained from scratch on all
data when a new unseen target domain is given; otherwise,
it will suffer from the same limitation of single-target UDA:
it will not generalize well. This makes it difficult to apply
these approaches to unseen domains.

2.3. Source-free domain adaptation

While UDA approaches typically necessitate access to
labeled data from the source domain and unlabeled data
from the target domain, the practical application of these
approaches might be hindered by potential privacy issues
that could undermine the availability of source data. In such



Table 1. Characteristics of diverse problem settings in cross-domain semantic segmentation. X,: source data; X}

{ X, bnz: target

data; X,,: “unseen” data used as target at inference, possibly after fine-tuning. EXT: using external data (X or X;) while training on X,
either at pre-training or fine-tuning. Single-target and multi-target UDA have to “see” X, at pre-training. Source-free DA and domain
generalization do not use any domain other than X and X,,. Example: G: GTAS; C: CityScapes; I: IDD.

PRE-TRAINING

SETTING FINE-TUNE EXT KNOWLEDGE FLOW EXAMPLE
SOURCE TARGET

Single-target UDA X X — v X, — X, G—l1

Multi-target UDA X, X U{X,} - v Xs = XL U{X,} G—{C, 1}

Source-free DA X - Xu X X — Xy G-l

Domain generalization X - - X Xs — Xu G-Il

Multi-target UDA w/o external data (ours) X Xy Xu X Xs = &) = Xy (G—0O)—l1

scenarios, an alternative strategy is to directly transfer the
knowledge from a segmentation model pre-trained on the
source domain to the target domain. This setting is known
as source-free domain adaptation [23]. Liu et al. [17] pro-
pose the first source-free domain adaptation approach for
semantic segmentation. Specifically, their approach in-
volves self-supervised learning on the target domain with
both pixel- and patch-level optimization objectives. Huang
et al. [9] further propose a historical contrastive learning
framework using a historical source hypothesis to compen-
sate for absent source data. Kundu et al. [13] use a multi-
head generalization framework with self-training. All of
these methods solely draw knowledge from a single source
domain, as they operate under the assumption that only the
pre-trained segmentation model from the source domain is
at their disposal. Consequently, the transfer of knowledge
from both the source domain and other known target do-
mains remains a non-trivial challenge.

2.4. Domain generalization

In contrast to DA, domain generalization aims to en-
hance a segmentation model’s ability to perform effectively
in new, unseen domains. This improvement is achieved
without utilizing data from the target domain during train-
ing; instead, one or more source domains are employed.
Common strategies employed for domain generalization
include learning domain-agnostic feature representations
[2, 15] and style augmentation [31]. Despite the simplicity
of these methods, their performance is relatively restricted
as they neglect to incorporate any data from the target do-
main during the training phase.

3. Problem formulation

Formally, let X, and X; = {X;, }__, denote the labeled
source-domain data and the unlabeled target-domain data,
respectively, where IV is the number of target domains. This
data is collectively called external. The source domain data
X, contains pairs of the form (z,y), where x € [0,1]% is an
input gray-scale image and y € R¥*C is the correspond-

ing dense one-hot encoded class label; K is the number of
pixels and C' is the number of classes in the segmentation
task. The target domain data A; contains only unlabeled
images = € [0, 1]%. Let X,, denote the new unseen target-
domain data used at inference, consisting of unlabeled im-
ages z € [0, 1]%.

Table | summarizes the characteristics of different
problem settings in cross-domain semantic segmentation.
Single-target UDA, multi-target UDA, and domain gener-
alization are one-stage methods, while source-free DA and
the proposed multi-target UDA without external data in-
clude a second stage of fine-tuning on X,, after pre-training.
We use EXT to refer to using external data (X, or A}) while
training on X, either at pre-training or fine-tuning. The de-
tailed formulation of each setting follows.

Single-target UDA aims to learn a domain adaptive seg-
mentation model F' using the labeled source-domain data
X and the unlabeled target-domain data X;. Since we aim
to conduct inference on the unseen target-domain data X,
in this study, the target-domain data X; will become X, for
single-target UDA methods. The knowledge flow is thereby
from the source domain X to the “unseen” target domain
X, which has to be available at pre-training with X.

Multi-target UDA is trained with X and multiple target-
domain data X; = {X;, }N_,. To adapt to the new unseen
target domain, X, will be regarded as the (N + 1)-th target
domain for multi-target UDA methods and the complete tar-
get domain data used at pre-training will become X;U{ X, }.
Accordingly, the knowledge flow is from the source domain
to multiple target domains: X, — A} U {X,}. Again, X,
has to be available at pre-training with X, and A}.

Source-free DA involves two stages. In the first stage, a
segmentation model F' is pre-trained on the source domain
X . In the second stage, F'is fine-tuned on the unseen target
domain X,,. Thus, the knowledge flow is solely from the
source domain to the unseen target domain: X, — X,,.
The transfer of knowledge from other known target domains
(i.e., X}) is not feasible in this case.

Domain generalization aims to enhance a segmentation



model’s generalization ability to other unseen domains by
training with X alone without seeing any target-domain
data. The knowledge flow is also solely from the source
domain to the unseen target domain: X, — X, in this
case without even adapting to X,,.

The proposed new strategy, multi-target UDA without ex-
ternal data, involves two stages. In the first pre-training
stage, it learns a domain adaptive segmentation model F' on
X, and X;. After pre-training, it is expected that the ob-
tained model F' inherits knowledge from both X and A;.
In the second stage, only the pre-trained model F' and X,
are available. The aim is to to distill the knowledge in F’ and
adapt it to X,, without accessing any external data from X
and X;. Thus, the knowledge flow is first from the source
domain to multiple known target domains, then to the new
unseen target domain: (X; — X;) — X,,.

In this sense, the new strategy is similar to multi-target
UDA in using multiple targets X}, thus acquiring as much
knowledge as is available, and to source-free DA in fine-
tuning on X, without access to external data, thus quickly
adapting to new unseen domains.

4. Methodology

Here, we introduce our methodology and the particular
implementation of our new strategy, multi-target UDA with-
out external data. We first describe our multi-target knowl-
edge distillation (MT-KD) method in detail, which uses
self-distillation and adversarial learning for multi-target
UDA. We then simplify it to derive our new unseen tar-
get knowledge distillation (UT-KD) method, which quickly
adapts a pre-trained MT-KD model to an unseen target do-
main, without accessing any external data from the origi-
nal source or any other target domain. Finally, we intro-
duce a new multi-target style transfer network (MT-STN) to
achieve visual style transfer across multiple domains, which
can serve as an add-on component for style augmentation.

4.1. Multi-target knowledge distillation

As shown in Figure 2, the key idea of multi-target knowl-
edge distillation (MT-KD) is to conduct self-distillation and
adversarial learning across multiple target domains, so that
the knowledge from the labeled source domain is distilled
and adapted to multiple target domains.

Formally, we aim to learn a student network Fg, using a
teacher network Fr of the same architecture, whose param-
eters ¢’ at iteration 4 are obtained by exponential moving
average (EMA) [25] on the parameters of the student ¢:

or = agyr '+ (1-a)ds, (D
where « is a decay parameter. Both networks are func-
tions of the form F : RE*3 — REXC which map an
input image = € [0,1]¥ to a predicted segmentation map
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Figure 2. Illustration of our multi-target knowledge distillation
(MT-KD). Given a set of labeled images X from the source do-
main and unlabeled images X; = { X, }A—; from multiple target
domains, the student network F’s is trained by cross-entropy L
on the source domain, consistency loss Lcon on the target domains
and adversarial loss Loy in the output space. The teacher network
Fr is obtained by the exponential moving average (EMA) of Fs
parameters. Only one target domain is shown for brevity.

F(x) € REXC The vector F(z)*) € R is a distribution
of predicted class probabilities at pixel k and F'(x)*°) € R
is the predicted probability for class c at pixel k.

On the labeled source domain data X, we define the
supervised dense cross-entropy loss

£CE(X57 FS) = E(r,y)NXSKCE(yv FS(x)) (2)
K

lerly,q) = =32 D_(y™) Tlogg™. 3)

k=1

To distill knowledge from the labeled source domain to
multiple unlabeled target domains, we apply the consis-
tency regularization to the student predictions on unlabeled
examples from multiple target domains by minimizing their
mean squared error (MSE) from the teacher predictions:

[fcon Xt7 FS Z EmNXt con A($>7 FS) 4)

leon(z, Fs) = Z HFS V&) — Pr(x (k)H

where A is an input transformation for data augmentation.
In practice, we adopt CutMix [6] along with the proposed
style transfer network MT-STN. See Appendix C for more
details on the effect of different choices.

To encourage the Fs to yield domain-invariant segmen-
tation maps, we further introduce a discriminator Dy, with
a DCGAN architecture [21] to perform adversarial learn-
ing in the output space across the source and multiple target
domains. In particular, the adversarial loss is defined as

£Oul()(sa Xt7 FS7 Doul) =
N
LT(X,, Fg, Do) + Y L7 (X4, Fs, Dow), (6)

n=1
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Figure 3. Illustration of our unseen target knowledge distillation
(UT-KD). Given a set of unlabeled mages X, from an unseen tar-
get domain, UT-KD distills and adapts the knowledge from a pre-
trained MT-KD model by self-distillation and one-way adversarial
learning. Both student and teacher networks F§, F'. are initial-
ized from the pre-trained model. Same for the discriminator Doy,
which remains frozen.

where the two terms

LY(X,F,D) = Eyuxlog(l— D(F(x))) (7
L7 (X, F,D) =E;.x log D(F(z)) (®)

respectively represent the loss for original examples in each
domain that are treated as positive for the discriminator of
that domain, and the loss for the examples from other do-
mains that are treated as negative accordingly.

Similar to previous adversarial learning work [26], we
optimize (6) through a min-max criterion, where Fg aims
to fool Dy, by maximizing the probability of the target-
domain predictions (segmentation maps) being classified as
source-domain, while D,y aims to discriminate a source
domain prediction from predictions of all target domains.
The complete objective function is thus

min max Lcg + AconLeon + /\outﬁouta )
F S Doy

with factors Ao, and Aoy controlling the balance between

the two terms.

4.2. Unseen target knowledge distillation

Most multi-target UDA approaches for cross-domain se-
mantic segmentation use a predetermined set of target do-
mains [1 1, 14,24]. Thus, the learned model still needs to be
retrained from scratch on all data when a new unseen tar-
get domain is given, which makes it difficult to apply these
approaches to new datasets.

To address this challenge, we introduce a unseen target
knowledge distillation (UT-KD) method that quickly adapts
a pre-trained MT-KD model to a new unseen target domain
without accessing any external data from the source or other
target domains. As shown in Figure 3, this method is a sim-
plified version of MT-KD, where the source-domain data
and the supervised loss are removed. The key idea is to per-
form self-distillation and adversarial learning directly on the
new unseen target domain so that the knowledge from the
pre-trained MT-KD model is distilled and adapted.

To achieve this goal, there are again a student network
F{ and a teacher network F.. We initialize F7. according
to the pre-trained MT-KD model while training F'§ from
scratch. At each iteration, F7. is again obtained by EMA
on the parameters of F§. As in subsection 4.1, we perform
self-distillation on the unseen target domain data using a
consistency loss that minimizes the MSE between the stu-
dent and teacher predictions

‘Céon(Xu? Fé) = ]ExNXugclzon(A(x)a FZS’) (10)

K
o, F) = 223 [ 2™ — By
k=1

where A(z) is data augmentation, as in (4). Although there
are no labels in X, this loss allows the student Fé to self-
train, guided by the teacher F7..

More importantly, we now also have a pre-trained dis-
criminator Dy, from MT-KD that can discriminate seg-
mentation maps between the source and multiple target do-
mains. Considering that the new unseen target domain may
be distinctly different from the source domain, the pre-
trained Dy, should tend to classify predictions for input ex-
amples x € X, as the target domain. Since our goal is to
make the UT-KD model yield domain-invariant segmenta-
tion maps on the unseen target domain, a natural idea is to
perform adversarial learning to fool the pre-trained D, by
maximizing the probability of the unknown target-domain
predictions being classified as the source-domain. Accord-
ingly, the adversarial loss is

E/

out

(XuaFé') :[’_(XU7F§7D0ut)a (12)

where the negative loss £~ is defined in (8). Since there is
no source data, there is no positive term as in (6). Thus, this
is one-way adversarial learning. According to our knowl-
edge, we are the first to introduce such an approach in do-
main adaptation. In addition, we keep the discriminator
D, fixed, as pre-trained by MT-KD. This is what prevents
the segmentation model F{ from forgetting the knowledge
acquired from the external data while it is being adapted.
There is thus no maximization as in (9), and the complete
objective function becomes

min )\con‘céon + )‘OUt‘C:)ut‘ (13)
Fy

4.3. Multi-target style transfer network

To further mitigate the visual appearance shift between
the source and multiple target domains and boost the perfor-
mance of MT-KD, we introduce a multi-target style transfer
network (MT-STN). As shown in Figure 4, the main idea is
to simultaneously learn the style of each domain. A shared
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Figure 4. Illustration of our multi-target style transfer network
(MT-STN). Given a set of labeled images X from the source
domain and unlabeled images X; = {X;,}A_; from multiple
target domains, the style transfer network 7' learns to either re-
construct, guided by the reconstruction loss Ly, or transfer the
style of the input image to another domain, guided by the ad-
versarial loss L,4v, depending on the style parameters V' that are
plugged into 7" as shown in Figure 5. There is one discriminator
Ds, Dy = {Ds, }2_, and one set of learnable style parameters
Vi, Ve = {V4, }A_, for each domain. We use 4, to denote the
transferred image from domain a to b. Learning is unsupervised.
Only one target domain is shown for brevity.

network can then transfer the style from one domain to an-
other, simply by plugging in the target style, while main-
taining the content of the original image.

Formally, we represent a style as V' = {~, 3}, where
v, 8 € R are scaling and shifting parameters in a feature
space of dimension d. We denote by V; the source do-
main style and by V; = {V;, }2V_, the target domain styles.
Given a style V, the style transfer network 7" maps an image
x € [0,1]¥ to another image T'(x, V') € [0, 1]%. We write
Ty (x) = T(x,V) for brevity. Figure 5 illustrates the ar-
chitecture of T, containing a series of conditional instance
normalization (CIN) layers [5], all taking the same style as
input. Given an intermediate feature map f of 7', the CIN
operation with style V' = {, 8} is defined as

CIN(f,V) =~ (W) + 8, (14)

where u(f) and o(f) are the mean and standard deviation
over spatial dimensions independently for each channel in
f, and all operations are element-wise. Importantly, the pa-
rameters V' = {v, 5} used in (14) are independent of the
network 7', which can transfer from one style to another
simply by switching V. The way we learn {~, 5} differs
from CIN, which learns each style from a single image, us-
ing a style loss on that image [5]. Instead, we aim to learn
each style from all training images of one domain, and we
achieve this by an adversarial loss.

To maintain the content of the input image for each do-
main, we define the reconstruction loss
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Figure 5. Architecture of style transfer network 7" in our MT-STN.
Domain style parameters V' are plugged into 1" as parameters of
a series of conditional instance normalization (CIN) layers. Here,
input image x,, from target domain X, is transferred to the style
V; of source domain X, denoted as z+,, s = T'(x4,,, Vs). More
examples shown in Figure 4.

Erec(Xsa Xtha ‘/;7Vt) =

N
Eonx, bee(®, Tv,) + > Earx, bec(®, Ty, ), (15)

n=1

where, given an image = and a mapping F’,
bree(, F) = ||lz = F()]]; - (16)

To achieve style transfer between different domains, we
define a discriminator for each domain. We denote by
D, the discriminator for the source domain and by D; =
{D; }N_, the discriminators for the target domains. We
then formulate an adversarial loss across domains

EadV(XS7XtaT7‘/87Vt7DSaDt) =

N
LY(X,,id, Do) + Y L7 (X4, Tv,, Do)+

n=1

N
S (£H(Xy,.id, Dy,) + £7(Xo, Ty, Dyy)) (A7)
n=1

where the positive and negative loss £, £~ are defined
in (7), (8) and id is the identity function. That is, original
images of a domain are treated as positive by the discrim-
inator of that domain (first and third term), while images
with style transferred to a domain are treated as negative by
the discriminator of that domain (second and fourth term).
The complete objective function is

min max L + AadvLad 18
T,‘/'S7vt DS,Dt rec adv/~adv ( )

where \,qy is the weighting factor for the adversarial loss.

5. Experiments
5.1. Datasets and metrics

Four benchmark urban driving datasets are adopted
in our experiments, including one synthetic dataset



(GTAS [22]) and three real-world datasets (CityScapes [3],
Indian Driving (IDD) [27], and Mapillary [20]).

GTAS contains 24,966 high-quality labeled frames from
the realistic open-world computer games Grand Theft Auto
V (GTAS). Each frame is generated from the fictional city
Los Santos, based on Los Angeles in Southern California.

CityScapes contains real-world vehicle-egocentric im-
ages collected from 50 cities in Germany and its surround-
ing countries. It is split into training and validation sets of
2,975 and 500 examples respectively.

IDD is a diverse street-view dataset that captures un-
structured traffic on roads in India. It is split into training
and validation sets of 6,993 and 981 examples respectively.

Mapillary is a street-view dataset containing high-
resolution images collected from all over the world and di-
verse imaging devices. It is split into training and validation
sets of 18,000 and 2,000 examples respectively.

For fair comparisons, we follow the same label mapping
protocol used in [14,24] and standardize the label set with
7 shared super classes among all four datasets, including
flat, construction, object, nature, sky, human, and vehicle.
When CityScapes, IDD, or Mapillary are used as target do-
mains, only unlabeled images are used at training according
to the UDA setting, while the evaluation is conducted with
the corresponding labeled validation set.

We report quantitative segmentation results using per-
class IoU, mean intersection-over-union (mloU) over the 7
shared super classes, and the average mloU over different
target domains.

5.2. Implementation details

Following [ 14,24, 28], we use DeepLab-v2 [1] with the
ResNet-101 [8] network pre-trained on ImageNet [4] as the
segmentation model for both the student F's and the teacher
Fr for fair comparisons. The discriminator D, has a DC-
GAN [21] architecture with 5 convolutional layers of kernel
4 x 4 and stride of 2. The EMA parameter « in (1) is set to
0.999. The loss factors .o, and Aoy in (9) and (13) are set
to 100 and 103, respectively.

The data augmentation function A in (4) is implemented
with the CutMix [6] strategy and the proposed visual style
transfer network 7'. For each target-domain input image
x4, € Xy, , we first transfer its visual style to the source
domain with ;o = T(xy,,Vs). Then, we use CutMix
to generate a mixed example from two transferred target-
domain examples. Finally, the teacher predictions for the
original two target-domain examples are mixed to produce
a pseudo label for the student prediction of the mixed exam-
ple. For function A in (10), the implementation is the same
except that we do not perform visual style transfer on the
unseen target domain.

Table 2. Quantitative cross-domain semantic segmentation results
from GTAS (G) to CityScapes (C) and IDD (I) datasets.

g 2
S < = 3 5 =
METHOD FLow & @ & s % 2 = ] S | MIoU AvVG
URMA [23] G—C C X |91.1 789 261 807 746 609 677 68.6 67.1
(source-free) G-I I X930 529 158 785 904 548 746 65.7 i
AdvStyle [31] G—C C X |872 718 255 822 810 599 792 69.5 672
(domain gen.) G—1 I X |8.2 499 134 779 909 559 785 64.9 )
G—-C C v |935 805 260 785 785 551 764 | 69.8(%) 66.5
AdvEnt [28] G—-C I X |913 523 133 761 887 467 748 | 6335 :
(single-target) G-I C X | 786 792 248 776 83.6 487 448 | 62573 63.8
G-I I v |912 531 160 782 90.7 479 789 | 65.1(%) B
G—C C v |959 855 402 848 8l4 o641 822 | 76345 724
MT-KD G—C I X |925 583 192 793 918 569 81.6 | 68.55, :
(single-target) G—I C X | 953 837 359 839 785 647 799 | 745147 72.9
G-I 1 v | 942 583 250 829 928 61.6 853 | 7143 :
AdvEnt [28] G—{C,I} C v |939 802 262 790 805 525 78.0 | 70.0102 674
(multi-target) | G—{C,I} 1 v |91.8 545 144 768 903 475 783 | 64.8,,3 ’
MTKT [24] G—={C.I} C v |945 820 237 80.1 840 510 77.6 | 704105 68.2
(multi-target) G*}{C. I} I v |914 566 132 773 914 514 799 | 6595 :
ADAS [14] G—{C,I} C v |951 826 398 846 812 63.6 80.7 | 754156 712
(multi-target) | G={C,I} I v |90.5 63.0 222 737 879 543 769 | 669 5 )
MT-KD G—{C,I} C v |96.2 853 403 851 80.1 652 836|765 738
(multi-target) G—{C.I} I v |941 603 232 827 927 603 853 | 71245, :
UT-KD (G=D—=C C X |97.0 847 412 851 818 643 852 | 77.0:7-
(multi-target)  (GC)=»I 1 X | 927 591 245 793 919 610 850 | 70.5:5 4

Bold: best IoU (%) over all methods in each target domain. Green / red: mloU gain
/ loss w.r.t. the corresponding per-target baseline, marked by ‘*’. EXTERN: using
external data from the source or other target domains.

Table 3. Quantitative cross-domain semantic segmentation results
from GTAS (G) to CityScapes (C) and Mapillary (M) datasets.

= Z
g & 5 s 2 s 3
METHOD FLow & ool S S 2 3 = H MIoU  AvVG
URMA [23] G—=C C X |91.1 789 261 807 746 609 677 68.6 69.5
(source-free) G—-M M X |83 713 390 729 904 565 745 70.4 )
AdvStyle [31] G—C C X |82 718 255 822 810 599 792 69.5 702
(domain gen.) G—M M x| 875 709 334 728 909 621 79.1 70.9 )
G—C C v |935 805 260 785 785 551 764 | 69.8(*) 66.6
AdvEnt [28] G—C M X |8.8 690 302 712 915 353 595 | 6345 :
(single-target) G—M C X |83 793 195 769 846 477 63.0 | 6584 67.7
G—M M v/ | 8.5 726 310 753 941 507 73.8 | 69.6 (%) .
G—C C V|99 855 402 848 814 641 822 7635 757
MT-KD G—=C M X |87 762 441 755 941 630 833 5 o
(single-target) G—-M C X |96.6 845 377 847 805 618 828 5T 753
G—M M v/ |90.0 764 475 741 937 60.1 84.6 | 752:55 )
AdvEnt [28] G—{C,M} C v |931 805 240 779 810 525 750 69.1;07 68.9
(multi-target) | G—={C,M} M v |90.0 713 311 730 926 46.6 76.6 | 68.7,9 )
MTKT [24] G—{C,M} C v |950 816 236 80.1 836 537 798| 7l.1113 70.9
(multi-target) | G—={C,M} M v |90.6 733 310 753 945 522 798 | 70.8+ > )
ADAS [14] G—{C,M} C v |94 835 351 838 849 623 813|753 73.9
(multi-target) | G—{C,M} M v | 88.6 737 410 754 934 585 772 | 726430 .
MT-KD G—{C.M} C v/ |93 856 398 855 825 64.5 83.5] 7687, 76.0
(multi-target) | G—={C,M} M v | 899 76.7 463 735 932 638 84.1 7537 :
UT-KD (G—-M)—»C C X |96.6 847 431 854 828 626 829 | 76. 8»7 0 759
(multi-target) | (G=C)—»M M X | 90.1 752 467 762 944 60.1 829 | 75.1455 .

Bold: best IoU (%) over all methods in each target domain. Green / red: mIoU gain
/ loss w.r.t. the corresponding per-target baseline, marked by ‘*’. EXTERN: using
external data from the source or other target domains.

5.3. Synthetic-to-real adaptation

We first evaluate the performance of the proposed meth-
ods against existing approaches in the synthetic-to-real
adaptation scenario, where the labeled GTAS5 dataset is
adopted as the source domain and the unlabeled CityScapes,
IDD, and Mapillary datasets are used as the multi-target do-
mains. Results are reported in Tables 2, 3, and 4. It can be
observed that AdvEnt [28] trained with the single-target do-
main adaptation setting generally yields lower mloU scores
compared to its counterpart in the multi-target domain adap-



Table 4. Quantitative cross-domain semantic segmentation results
from GTAS (G) to CityScapes (C), IDD (I), and Mapillary (M)
datasets.

g % s s s -

METHOD FLOW g Al 8§ 3 F ¥ 32 2 | MIoU Ave
URMA [23] G—=C C X |91.1 789 261 807 746 609 67.7 68.6
(source-free) G-I I v 930 529 158 785 904 548 746 65.7 68.2

G—-M M X |83 713 390 729 904 565 745 70.4
AdvStyle [31] G—C C X |82 718 255 822 810 599 792 69.5
(domain gen.) G-I I v |82 499 134 779 909 559 785 64.9 68.4
G—M M X |85 709 334 728 909 62.1 79.1 70.9
G—C C v |935 805 260 785 785 551 764 | 69.8(*)
G—=C I X |91.3 523 133 76.1 887 467 748 | 6335 655
G—C M X | 868 690 302 712 915 353 595 | 6345
AdvEnt [28] G-I C X |786 792 248 776 836 487 448 | 62573
(single-target) G-I I v |912 531 160 782 90.7 479 789 | 65.1(*) 655
i G-I M X |85 712 324 728 928 513 737|690,
G—M C X |83 793 195 769 846 47.7 63.0 | 658,
G—-M I X |[91.7 543 130 773 923 474 768 | 647,04 66.7
G—M M v |85 726 310 753 941 50.7 73.8 | 69.6 (%)
G—C C v |959 855 402 848 814 641 822 76345
G—C I X |925 583 192 793 918 569 81.6 685134 733
G—=C M X [ 897 762 441 755 941 63.0 833 75155
MTKD G—l1 C X |953 837 359 839 785 647 799 74517
(single-target) G-I I v |942 583 250 829 928 616 853 7143 734
G—I M X | 899 756 429 747 938 60.8 82.6 74347
G—=M C X |9.6 845 377 847 805 618 828 75557
G—M I x|944 581 261 816 922 568 817 701350 73.6
G—M M v |90 764 475 741 937 60.1 84.6 7525
AdvEnt [25] G—{C,1,M} C v |936 806 264 781 815 519 764 | 69.8-
(multi-target) G—{C,1,M} I v |920 546 157 772 905 508 786 | 65645 67.8
G—{C,1,M} M v 892 724 324 730 927 41.6 749 | 68.0,¢
MTKT [24] G—{C,1,M} C v |9%6 807 238 790 845 51.0 79.2 | 70406
(multi-target) G—{C.1,M} I V|97 556 145 780 926 498 794 | 6595 69.1
G—{C,1,M} M v |95 737 325 755 943 512 802 | 7Lls
ADAS [14] G—{C,1,M} C v |958 824 383 824 850 605 802|749,
(multi-target) G—{C,1, M} I v |89 527 250 781 921 510 779|667, 71.3
G—{C,I,M} M v [892 715 452 758 923 56.1 754 | 72246
MTKD G—{C,1, M} C v |953 856 397 845 823 655 814 7635
(multitargey | G—{CLM} 1 v/ [039 597 228 8§21 927 603 846 708 74l
G—{C.1,M} M v/ 899 765 469 734 932 638 842 754455
MTKD' G—{1, M} C X |967 843 382 847 789 646 843 759,
(mulli-large() G—{C.M} I X |939 586 227 814 917 577 820 697, 735
G—{C, 1} M X | 897 763 441 754 941 63.0 834 751455
UT-KD G—{ILMph—C C X |97.0 850 417 855 819 651 849 77375
(multi-target) (G—{C,MpPh—T T X |950 589 306 838 915 60.7 850 7227, 750
(G—{C.Ih—M M X |89.8 740 464 766 944 645 842 757,

Bold: best IoU (%) over all methods in each target domain. Green / red: mloU gain
/ loss w.r.t. the corresponding per-target baseline, marked by ‘*’. EXTERN: using
external data from the source or other target domains. MT-KD: direct transfer from
a pre-trained MT-KD model to an unseen target domain.

tation setting, which demonstrates the advantage of incor-
porating multi-domain data into training.

In all multi-target domain adaptation scenarios, the pro-
posed method MT-KD obtains the highest mIoU scores
and outperforms the existing state-of-the-art methods like
ADAS [14] by a large margin, more than 2% mloU.
Qualitative adaptation results of MT-KD from GTAS to
CityScapes, IDD, and Mapillary are shown in Figure 6.

Another intriguing finding is that the proposed method
UT-KD yields very competitive performance compared to
MT-KD, although it does not access any external data. In
Table 4 for example, MT-KD yields 74.1% averaged mIoU
and UT-KD yields 75.0%, even outperforming MT-KD by
0.9% and ADAS [14] by 3.7%. In Table 2 and Table 3,
it is nearly on par with MT-KD, losing only by 0.1%, and
still outperforms ADAS [14] by 2.5% and 2% respectively.
Considering that in real-world scenarios, it is more com-
mon to get access to pre-trained models than to complete
street-view datasets collected from other cities because of
data privacy, our UT-KD is more flexible and more practi-

Ground truth

Input images

No adaptation MT-KD UT-KD

Figure 6. Qualitative cross-domain semantic segmentation results
from GTAS to CityScapes, IDD, and Mapillary datasets.

cal without losing on performance.

6. Conclusion

In this paper, we introduce a new strategy for conducting
multi-target unsupervised domain adaptation for semantic
segmentation without relying on external data. To imple-
ment this idea, we first propose the multi-target knowledge
distillation (MT-KD) method, which achieves multi-target
UDA for semantic segmentation using adversarial learn-
ing and self-distillation, setting new state-of-the-art perfor-
mance. As a simplified version, we further propose the un-
seen target knowledge distillation (UT-KD) method, which
rapidly adapts a pre-trained MT-KD model to a new un-
seen target domain through “one-way” adversarial learning,
without accessing any external data from the source or other
target domains. Despite its simplicity, UT-KD is more scal-
able than existing multi-target UDA solutions in handling
unseen domains, especially under data privacy constraints.
It does not compromise performance compared to MT-KD
and still outperforms other state-of-the-art methods. To fur-
ther address the visual appearance shift, we perform visual
style transfer across multiple domains by parameterizing
the style of each domain through a single vector, thus de-
coupling it from the style transfer process itself. The lat-
ter is accomplished by a multi-target style transfer network
(MT-STN), which is shared across all domains.

Although the proposed methods are originally designed
for the cross-domain semantic segmentation task, they may
also be helpful for solving other cross-domain tasks. We
will explore it in future work.
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Supplementary Material

In this supplementary material, we provide more training
details as well as quantitative and qualitative results.

A. Training details

We use stochastic gradient descent (SGD) with a learn-
ing rate of 2.5 x 107° to train Fg, while Do, is trained by
the Adam optimizer [|2] with a learning rate of 10~° and
B1 = 0.9, B2 = 0.99. For both optimizers, we set a weight
decay of 5 x 10~° and adopt the “poly” learning rate de-
cay schedule, where the initial learning rate is multiplied by
(1 —14/I)P with p = 0.9, where i is the current iteration and
I the total number of iterations, set to 50, 000.

To train MT-STN, we use the Adam optimizer for 20
training epochs with weight decay 5 x 10~° and learning
rate 2.5 x 10~% and 10~° for the generator and discrimina-
tors, respectively. Each mini-batch consists of one source-
domain image and one target-domain image. The loss factor
Aagy 10 (17) is empirically set to 103,

At inference, we use the teacher network Fp for MT-
KD and F7. for UT-KD as obtained at the end of training to
perform semantic segmentation of input test images.

B. Real-to-real adaptation

We further conduct experiments on a real-to-real adapta-
tion setting, where the labeled dataset CityScapes is adopted
as the source domain and the unlabeled datasets IDD and
Mapillary are used as the multi-target domains. As can be
observed from Table 5, our MT-KD achieves again the best
multi-target domain adaptation performance compared to
existing approaches. UT-KD yields 74.6% averaged mIoU,
which is again higher than MT-KD by 0.7% and ADAS [14]
by 1.9%, despite not having access to external data. These
results confirm the high practical value of our new UDA
strategy without external data.

C. Ablation study

MT-KD Table 6 shows how loss factors Ay, and Acop af-
fect performance. MT-KD in general can tolerate a wide
range of Aoy and is more sensitive to A.,,. Based on these
results, we empirically set Ay, = 1073 and A\on = 100.

Table 7 shows the contribution of each component in
MT-KD performance. We find that adversarial learning
alone cannot bring about satisfactory performance. By con-
trast, combining adversarial learning and self-distillation
brings significant improvement.

Table 8 shows the effect of different augmentation strate-
gies for self-distillation in MT-KD. While Gaussian noise is
common [7,25], we find that CutMix is superior in cross-
domain semantic segmentation. In addition, our MT-STN
brings further improvement by directly reducing the visual

10

Table 5. Quantitative cross-domain semantic segmentation results
from CityScapes (C) to IDD (I) and Mapillary (M) datasets.

5z
g & ER s 32
RN g 2 g 2 £ £
METHOD FLow ol 8 % E H g | MIoU Ave
URMA [23] C—I I X ]939 560 234 837 936 520 79.2 68.8 68.4
(source-free) C—=M M Xx |81 716 265 708 922 565 709 68.1 :
AdvStyle [31] C—I I X ]939 529 186 829 926 512 769 67.0 68.8
(domain gen.) C—->M M X |85 702 344 773 931 566 737 70.6 :
C—I I v ]932 534 165 834 934 514 795 | 67.3(% 68.0
AdvEnt [28] C—I M X |82 700 285 754 93.6 49.1 76.7 | 6882 :
(single-target) C—-M I X |91.8 522 159 802 91.1 457 77.6 | 650,23 65.8
C—M M v | 874 659 282 728 92.1 469 727 | 66.6 (*) o
C—l I v ]937 592 298 83.6 933 621 853 | 72445, 740
MT-KD C—I1 M X | 903 750 462 77.6 942 639 823 | 75649 :
(single-target) C—=M I x|951 580 287 848 92,6 577 81.8 | 712139 730
C—=M M v |86 734 479 752 935 628 84.1 | 75256 )
AdvEnt [28] | C={ILM} 1 v |933 530 172 828 922 493 79.6 | 66.8,5 67.0
(multi-target) | C—{LM} M v |87.7 659 29.0 732 915 479 757 | 67307 ’
MTKT [24] C{LM} I v |936 549 186 840 945 534 792 | 6831, 69.0
(multi-target) | C—{ILM} M v | 883 704 31.6 759 944 509 77.0 | 69.8:5> :
ADAS [14] C—{LM} 1 V - - - - - - - 70.4+3.4 77
(multi-target) | C={LM} M vV | - - - - - - - | 50485 |
MT-KD C—{LM} I v |930 60.8 294 809 926 623 853 | 7204 739
(multi-target) | C—{LM} M v | 903 755 487 753 93.6 632 84.7 | 75993 )
UT-KD C—=M-—=I T X |954 596 327 864 945 583 84.0| 7295 74.6
(multi-target) | (C=D—M M X [ 90.5 759 470 779 951 638 84.7 | 76495 :

Bold: best IoU (%) over all methods in each target domain. Green / red: mIoU gain
/ loss w.r.t. the corresponding per-target baseline, marked by “*’. EXTERN: using
external data from the source or other target domains.

Table 6. Parameter analysis of Aoy and Acon in MT-KD from GTAS
(G) to CityScapes (C) and IDD (I) datasets.

A 1074 5x 1074 107% 1072 [ Aeow 1 10 100 150
C 760 766 765 763 | C 734 725 765 762
1707 709 712 699 | 1 685 699 712 70.1

Bold: best mloU (%) scores in each target domain.

Table 7. Ablation study of MT-KD from GTAS (G) to CityScapes
(C), IDD (1), and Mapillary (M) datasets.

METHOD Loz Low Len | C I M | Avg.

No adaptation v 637 644 694 | 658
Adversarial learning v/ v 72.8 675 719 | 70.7
Self-distillation v v 75.7  69.1 747 | 73.1
MT-KD v v v 763 708 754 | 74.1

Bold: best mIoU (%) scores in each target domain.

Table 8. Comparison of different augmentation strategies for self-
distillation in MT-KD from GTAS (G) to CityScapes (C), IDD (1),
and Mapillary (M) datasets.

METHOD | C I M | Avg.

No augmentation 73.1 66.7 72.1 | 70.6
Gaussian noise w/o MT-STN | 73.3 66.8 72.7 | 70.9
Gaussian noise w/ MT-STN | 73.2 679 73.1 | 714
CutMix w/o MT-STN 76.6 694 749 | 73.6
CutMix w/ MT-STN 76.3 70.8 754 | 74.1

Bold: best mloU (%) scores in each target domain.

appearance shift between different domains. The combina-
tion of the two strategies brings an overall improvement of
3.5% average mloU compared with no augmentation.
Figure 7 and Table 9 show how EMA decay parameter
« affects the performance of MT-KD. As the parameter o
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Figure 7. MT-KD average mloU vs. EMA decay parameter o on
GTAS5—{CityScapes, IDD}.

Table 9. Effect of EMA decay parameter o on MT-KD from GTAS
(G) to CityScapes (C) and IDD (I) datasets.

a 0 0.5 09 0.99 0.999 0.9999 1
669 548 743 751 75.7 73.1 63.7
W/0 Loy 1 572 61.1 668 675 69.1 67.7 644
Avg. 620 579 705 713 724 704  64.0
C 345 323 604 755 765 742 637
W/ Lout 1 475 21.7 595 687 712 69.4 644
Avg. 410 27.0 599 721 738 71.8  64.0

Bold: best mIoU (%) scores in each target domain.

Table 10. Ablation study of UT-KD from GTAS (G) to CityScapes
(C) and IDD (I) datasets.

METHOD Loy Lo | (GD=C (GO | Avg.

No adaptation 74.5 68.5 71.5
Adversarial learning v’ 63.9 64.8 64.3
Self-distillation v 76.1 69.6 72.8
UT-KD v v 77.0 70.5 73.7

Bold: best mIoU (%) scores in each target domain.

Table 11. Comparison of different augmentation strategies for
self-distillation in UT-KD from GTAS (G) to CityScapes (C) and
IDD (I) datasets.

METHOD | G=D—=C (G=C)—=I | Avg.
No augmentation 75.8 68.8 72.3
Gaussian noise 75.9 68.0 71.9
CutMix 77.0 70.5 73.7

Bold: best mloU (%) scores in each target domain.

approaches 1, the mloU values increases and then drops
sharply for o > 0.999. Based on these results, we em-
pirically set o = 0.999.

UT-KD Table 10 shows the contribution of each compo-
nent in UT-KD performance. An intriguing phenomenon is
that adversarial learning alone is harmful. A possible expla-
nation is that it needs the assistance of a more stable loss, as
is the case of cross-entropy in MT-KD. By contrast, when
combined with self-distillation, it further improves perfor-
mance by 0.9% average mloU, reaching a total improve-
ment of 2.2% compared with no adaptation.

Table 11 shows the effect of different augmentation
strategies for self-distillation in UT-KD. Again, we find that
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Figure 8. UT-KD average mloU vs. EMA decay parameter o on
GTA5—{CityScapes, IDD}.

CutMix works best.

As described in subsection 4.2, we train UT-KD by per-
forming self-distillation on the unseen target domain data
using a consistency loss that minimizes the MSE between
the student and teacher predictions, where F7. is again ob-
tained by EMA on the parameters of F§. A simple base-
line to achieve this goal is to perform knowledge distillation
from a frozen teacher Fq’f, as initialized from the pre-trained
MT-KD model. Accordingly, we define the frozen consis-
tency loss as the MSE between predictions from the student
and the frozen teacher

Ltro(Xus Fé') =Esx, E::/()H(A(x)v Fé) 19)

K
1 2
Uina ) = 2= 3 [ F5@)® = Fp@) ™. o)
k=1

Table 12. UT-KD mloU with and without frozen consistency loss
from GTAS (G) to CityScapes (C) and IDD (I) datasets.

METHOD Ly Lin Lo | G=D=C | (GHO)—1  Avg.

No adaptation 74.5 68.5 71.5
Adversarial v 63.9 64.8 64.3
Self-distillation v 76.1 69.6 72.8
UT-KD v v 77.0 70.5 73.7

Frozen v 73.7 66.8 70.2
Adversarial + Frozen v v 73.9 66.8 70.3
Self-distillation + Frozen v v 76.0 69.7 72.8
UT-KD + Frozen v v v 76.1 69.9 73.0

Bold: best mIoU (%) scores in each target domain.

Table 12 shows the additional ablation study of UT-KD
including this loss. An intriguing phenomenon is that using
Lo (19) alone is harmful, dropping performance by 1.3%
average mloU compared to no adaptation. A possible ex-
planation is that the pseudo label generated by the frozen
teacher is not accurate since it is directly initialized with the
pre-trained MT-KD model, without refinement from EMA.
Another interesting finding is that the adversarial loss L],
when combined with L, is not as harmful as when used
alone, which confirms its nature as an auxiliary loss. Other
than that, all options involving Ly, are inferior to those that
do not, and the best option remains £, + L. ..

Figure 8 and Table 13 further show how EMA decay pa-
rameter « affects the performance of UT-KD. Similar to



Table 13. Effect of EMA decay parameter o on UT-KD from
GTAS (G) to CityScapes (C) and IDD (I) datasets.

o 0 05 09 099 0999 09999 1
(GoD—C 33 375 680 757 761 754 745
wlo £, (G=C)—1 53 246 649 680 69.6 692 685
Avg. 43 310 664 718 728 723 715
(G=D—C 35 354 553 755 710 162 745
wiL, (G=C)—I 53 341 592 682 705 697 685
Avg. 44 347 572 718 737 729 715

Bold: best mloU (%) scores in each target domain.

C—{G,1. M}

1-{G, C, M}

Figure 9. Visual style transfer results with GTAS (G), CityScapes
(C), IDD (1), and Mapillary (M). Red-boxed images are the origi-
nal inputs in each domain.

MT-KD, as the parameter o approaches 1, the mloU val-
ues increase and then drop sharply for o > 0.999. Thus, we
empirically set o = 0.999.

MT-STN Figure 9 shows style transfer results between
the four datasets using MT-STN. We find that MT-STN
can learn the inherent visual style of each domain and per-
form synthetic-to-real, real-to-synthetic, or real-to-real style
transfer between different domains.

D. Additional qualitative results

Figure 10 shows more synthetic-to-real style transfer re-
sults from GTAS to CityScapes, IDD and Mapillary using
MT-STN. Figure 11 shows more real-to-real style transfer
results from/to CityScapes, IDD, and Mapillary using MT-
STN. More qualitative cross-domain semantic segmentation
results from GTAS5 to CityScapes, IDD, and Mapillary are
shown in Figure 12. UT-KD can generally yield competi-
tive or slightly better segmentation results than MT-KD, al-
though it does not access any external data. This is more ev-
ident on small objects like traffic signs and poles, as shown
in the second row on the IDD dataset.
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Figure 10. Synthetic-to-real style transfer results from GTAS (G)
to CityScapes (C), IDD (I), and Mapillary (M). Images in red
frames are the original inputs.

Figure 11. Real-to-real style transfer results from/to CityScapes
(C), IDD (1), and Mapillary (M). Images in red frames are the orig-
inal inputs.
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Figure 12. Qualitative cross-domain semantic segmentation results from GTAS (G) to CityScapes (C), IDD (I), and Mapillary (M) datasets.
MT-KD is trained on all three target domains (i.e., G—{C, I, M}), while UT-KD is initialized with the pre-trained MT-KD model on two
target domains and then fine-tuned on the third target domain only als gunknown (e.g., (G—{C, 1})—M for Mapillary).




