Dense saliency-based spatiotemporal feature points for action recognition

Motivation \& Approach

Derive a spatiotemporal point detector that is based on richer information than cornerness (points of velocity change), periodicity or motion activity measures. - Represent the video as a volume in space-time

- Define a saliency measure for each voxel using spatial proximity, scale and feature conspicuity
Detect space-time-scale maxima of the saliency distribution

Problem

V : video volume defined on a set of points Q with $q=(x, y, t)$ being a space-time point (voxel).

- $\mathbf{F}=\left\{F_{i}\right\}$: set of feature volumes (intensity, color, motion)
- $\mathbf{C}=\left\{C_{i, \ell}\right\}$: set of conspicuity volumes, each one decomposed into scales ℓ
- S : final saliency distribution

Energy formulation

- Initial intensity \& color conspicuity obtained by color opponent theory - Orientation conspicuity computed using spatiotemporal steerable filters tuned to respond to moving stimuli
- Conspicuity volumes interact in order to produce a single saliency measure for each voxel
Each voxel interacts with its space-time neighborhood at the same scale, at neighboring scales and at the rest of the conspicuity volumes

- Competition is realized by minimizing energy E :

$$
E(\mathbf{C})=\lambda_{d} \cdot E_{d}(\mathbf{C})+\lambda_{s} \cdot E_{s}(\mathbf{C})
$$

- composed of data term E_{d} :

$$
E_{d}(\mathbf{C})=\sum_{i} \sum_{l} \sum_{q}\left(C_{i, i}(q)-C_{i, i}^{0}(q)\right)^{2},
$$

- and smoothness term E_{s} :
$E_{s}(\mathbf{C})=E_{1}(\mathbf{C})+E_{2}(\mathbf{C})+E_{3}(\mathbf{C})$.

Constraints

intra-feature E_{1} : defines the interaction among neighboring voxels of the same feature at the same scale and enhances voxels that are incoherent with their neighborhood

$$
E_{1}(\mathbf{C})=\sum_{i} \sum_{\ell} \sum_{q}\left(C_{i, \ell}(q)-\frac{1}{\left|N_{q}\right|} \sum_{r \in N_{q}} C_{i, \ell}(r)\right)
$$

inter-feature E_{2} : defines the interaction among different features so that voxels being conspicuous across all feature volumes become salient

$$
E_{2}(\mathbf{C})=\sum_{i} \sum_{\ell} \sum_{q}\left(C_{i, \ell}(q)-\frac{1}{M-1} \sum_{j \neq i} C_{j, \ell}(q)\right)^{2}
$$

inter-scale E_{3} : defines the interaction across different scales. If a voxel retains a high value along all scales, then it should become more salient.

$$
E_{3}(\mathbf{C})=\sum_{i} \sum_{\ell} \sum_{q}\left(C_{i, \ell}(q)-\frac{1}{L-1} \sum_{n \neq l} C_{i, n}(q)\right)^{2}
$$

Spatiotemporal saliency and feature points

The final saliency distribution is obtained by minimizing the following energy

$$
\frac{\partial E(\mathbf{C})}{\partial C_{k, m}(s)}=\lambda_{d} \cdot \frac{\partial E_{d}(\mathbf{C})}{\partial C_{k, m}(s)}+\lambda_{d} \cdot \frac{\partial E_{s}(\mathbf{C})}{\partial C_{k, m}(s)}
$$

The output is a set of modified conspicuity multi-scale volumes $\hat{\mathbf{C}}=\left\{\hat{C}_{i, \ell}\right\}$ and saliency is computed as $\mathbf{S}=\left\{S_{\ell}\right\}=\frac{1}{M} \cdot \sum_{i=1}^{M} \hat{C}_{i, \ell}$

- Feature points are extracted as the local maxima of the response Detected points are located at regions that exhibit high compactness (proximity), are consistent across scales (scale) and pop-out from their (proximity), are consistent
surroundings (conspicuity)

Experiments

Datasets

Datasets

- KTH: six types of human actions
- KTH: six types of human actions
(handclapping, handwaving, boxing, (handclapping, handwaving, boxing walking, jogging and running)
http://www. nada.kth. se/cvap/acti http://www.nada.kth. se/cvap/actions/ -HOHA: video samples
actions from 32 movies
actions from 32 movies
(AnswerPhone, GetOutCar, HandShake (AnswerPhone, GetOutCar, HandShake,
HugPerson, Kiss, SitDown, SitUp and StandUp)
http://www.irisa.fr/vista/Equipe/
http://www.irisa.fr/vista/tion
People/Laptev/download.html

Results

Conclusions

- A more descriptive spatiotemporal feature point detector
- Compares well to state-of-the-art detectors
- Future work on computational efficiency and more advanced descriptors

