Dense saliency-based spatiotemporal feature points for action recognition

Motivation & Approach

Derive a spatiotemporal point detector that is based on richer information than cornerness (points of velocity change), periodicity or motion activity measures.

- Represent the video as a volume in space-time
- Define a saliency measure for each voxel using spatial proximity, scale and feature conspicuity
- Detect space-time-scale maxima of the saliency distribution

- $\blacktriangleright V$: video volume defined on a set of points Q with q = (x, y, t) being a space-time point (voxel).
- $\mathbf{F} = \{F_i\}$: set of feature volumes (intensity, color, motion)
- $\mathbf{V} = \{C_{i,\ell}\}$: set of conspicuity volumes, each one decomposed into scales ℓ
- \blacktriangleright S: final saliency distribution

Energy formulation

- Initial intensity & color conspicuity obtained by color opponent theory
- Orientation conspicuity computed using spatiotemporal steerable filters tuned to respond to moving stimuli
- Conspicuity volumes interact in order to produce a single saliency measure for each voxel
- Each voxel interacts with its space-time neighborhood at the same scale, at neighboring scales and at the rest of the conspicuity volumes

 \blacktriangleright Competition is realized by minimizing energy E:

$$E(\mathbf{C}) = \lambda_d \cdot E_d(\mathbf{C}) + \lambda_s \cdot E_s(\mathbf{C})$$

 \blacktriangleright composed of *data term* E_d :

 $E_d(\mathbf{C}) = \sum_i \sum_l \sum_q (C_{i,\ell}(q) - C_{i,\ell}^0(q))^2,$

 \blacktriangleright and *smoothness term* E_s :

$$E_s(\mathbf{C}) = E_1(\mathbf{C}) + E_2(\mathbf{C}) + E_3(\mathbf{C}).$$

Constraints

intra-feature E_1 : defines the interaction among neighboring voxels of the same feature at the same scale and enhances voxels that are incoherent with their neighborhood

$$E_1(\mathbf{C}) = \sum_i \sum_{\ell} \sum_{q} \left(C_{i,\ell}(q) - \frac{1}{|N_q|} \sum_{r \in N_q} C_{i,\ell}(r) \right)$$

inter-feature E_2 : defines the interaction among different features so that voxels being conspicuous across all feature volumes become salient

$$E_2(\mathbf{C}) = \sum_i \sum_{\ell} \sum_{q} \left(C_{i,\ell}(q) - \frac{1}{M-1} \sum_{j \neq i} C_{j,\ell}(q) \right)$$

inter-scale E_3 : defines the interaction across different scales. If a voxel retains a high value along all scales, then it should become more salient.

$$E_3(\mathbf{C}) = \sum_i \sum_{\ell} \sum_q \left(C_{i,\ell}(q) - \frac{1}{L-1} \sum_{n \neq l} C_{i,n}(q) \right)$$

Spatiotemporal saliency and feature points

The final saliency distribution is obtained by minimizing the following energy $\frac{\partial E(\mathbf{C})}{\partial C_{k,m}(s)} = \lambda_d \cdot \frac{\partial E_d(\mathbf{C})}{\partial C_{k,m}(s)} + \lambda_d \cdot \frac{\partial E_s(\mathbf{C})}{\partial C_{k,m}(s)}$

The output is a set of modified conspicuity multi-scale volumes $\hat{f C} = \{\hat{C}_{i,\ell}\}$ and saliency is computed as $\mathbf{S} = \{S_\ell\} = \frac{1}{M} \cdot \sum_{i=1}^M \hat{C}_{i,\ell}$ Feature points are extracted as the local maxima of the response

Detected points are located at regions that exhibit high compactness (*proximity*), are consistent across scales (*scale*) and pop-out from their surroundings (*conspicuity*)

Kostas Rapantzikos, Yannis Avrithis and Stefanos Kollias

National Technical University of Athens, School of Electrical and Computer Engineering

Experiments

- walking, jogging and running)
- actions from 32 movies StandUp)

Results

Method	Accuracy	Cla
Schuldt <i>et al.</i> (reported in Wong <i>et al.</i>)	26.95%	ſ
Schuldt <i>et al.</i> (implemented by us)	50.33%	ſ
Oikonomopoulos <i>et al.</i> (reported in Wong <i>et al.</i>)	64.79%	
Wong <i>et al.</i>	80.06%	ſ
Dollár <i>et al.</i> (implemented by us)	79.83%	ſ
Dollár <i>et al.</i>	81.20%	ſ
Ours	88.30%	ſ
Ke <i>et al.</i>	80.90%	
Schuldt <i>et al.</i>	71.70%	C C
Niebles <i>et al.</i>	81.50%	p
Willems <i>et al.</i>	84.36%	C C
Jiang <i>et al.</i>	84.40%	LPE
Laptev <i>et al.</i>	91.80%	mo

Conclusions

- A more descriptive spatiotemporal feature point detector
- Compares well to state-of-the-art detectors

Future work on computational efficiency and more advanced descriptors