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Motivation & Approach

Detect blob-like regions of arbitrary shape from single scale edges.

I Detect edges using relaxed thresholds

I Compute binary distance transform

I Use Delaunay triangulation of local maxima to capture underlying structure

I Use various criteria to detect salient features

The algorithm

1. Edge map F 2. Distance map D 3. Local maxima V

4. Delaunay triangulation G 5. Convex hulls 6. Detected features
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Fig. 3. (a) Indicative distribution of the weights assigned to components. Each color
represents the evolution of a single component and the dark circle indicates the selected
weight; the selected values by black circles, which correspond to the global maxima.
(b) Graph vertices and corresponding intersection points. The orange line is not the
actual convex hull, but a sketch for illustrative purposes.

peak in the corresponding curve. Hence, we choose to select a component Ct if
iteration t corresponds to the maximum peak in its lifetime.

If Ĉ ⊂ C is the subset of selected components, what remains is to construct
an image region R corresponding to each C ∈ Ĉ. The set R of such regions will
be the output of our region detector. To compute the actual spatial extent of a
region, we use the edge fragments surrounding the vertices of the component,
as depicted in Fig. 3b. Given a vertex u ∈ V (C) and an adjacent edge e with a
non-empty intersection set S(e), define the nearest intersection point

n(u, e) = arg min
p∈S(e)

‖p− u‖. (4)

For instance, vertex u and its nearest intersection points are shown in red in
Fig. 3b, while v and its nearest intersection points are shown in green. Then,
given a component C ∈ Ĉ, we collect all its vertices u ∈ V (C) and all their
nearest intersection points to construct its neighborhood

N(C) =
⋃

u∈V (C)

⋃

e∈E(u)

n(u, e). (5)

Referring to Fig. 3b, and since vertices u, v have been merged to one component,
the neighborhood comprises all red and green intersection points. Finally, we
compute the convex hull of all intersecting points, as depicted by the thick
orange line in Fig. 3b and by the colored lines in Fig. 2f, and fit ellipses. All
steps of our region detector are summarized in Algorithm 1.
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I Adjacent vertices u, v correspond to neighboring local maxima of D.

I If there is no edge fragment lying between u, v, then u and v are likely
to lie within the same region or along a ridge.

I If there is an edge fragment, then the gradient at the intersection point
will determine at which iteration u and v will be merged, which would
be equivalent to removing the fragment.

I A change in the component evolution indicates a significant change in
the topology.

I The spatial extent of a region is computed from the edge fragments
surrounding the vertices of the component.
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Algorithm 1 Distance Transform Detector
1: procedure DTD(image I, regions R)
2: g ← ‖∇Gσ ? I‖ . gradient magnitude at scale σ
3: F ← EdgeMap(I)
4: D ← DistanceTransform(F )
5: V ← LocalMaxima(D)
6: G← DelaunayTriangulation(V )
7: Sort(E,w) . sort edges by non-decreasing weight
8: t← 0
9: C ← V

10: for all e = (u, v) ∈ E(G) do
11: t← t+ 1
12: if w(e) 6 min{ρ(Ct−1(u)), ρ(Ct−1(v)) then . check penalty
13: Ct ← Merge(Ct−1(u), Ct−1(v)) . merge comp. of v into comp. of u
14: ρ(Ct)← w(e) + k/|Ct| . update penalty
15: end if
16: end for
17: R← ∅
18: for all C ∈ C do
19: t← arg maxs(∆µ(Cs)) . iteration where measure change is maximized
20: H ← ConvexHull(N(Ct)) . neighborhood N(C) defined in (5)
21: R← FitEllipse(H)
22: R← R∪R
23: end for
24: return R
25: end procedure

4 Experiments

4.1 Tuning and experimental setup

We first carry out a set on experiments to study the influence of different param-
eters of our detector, hereafter termed as DistDetector. As qualitative parameters
–mainly related to region shape– we identify the weights w of graph edges and
the measure µ related to the evolution of graph components. Although different
choices exist, we use the gradient magnitude g and the shape compactness of
the component. Also, we define penalty τ(C) = k/|C| with k = 0.25 min(r, c)
where r × c is the size of input image I in pixels. As quantitative parameters –
rather related to the trade-off between computational complexity and statistical
performance– we identify the Canny hysteresis thresholds and the density of the
local maxima of EDT. Fig. 4 shows detected regions hysteresis thresholds lower
than those of Fig. 1. Although spurious edges result in more regions, similar
image areas are covered. Fig. 5 shows the performance under four different sam-
pling strategies for EDT local maxima. Overall, we use the “3 × 3” strategy as
default in our experiments, achieving the best trade-off between computational
complexity and performance.

Results

RANSAC inliers for three different pairs of images.

Performance
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Achieves a good trade-off between performance and number of features.
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Performs quite well for a small number of total matches and ranks second
after the MSER for the NN strategy. Outperforms both Hessian-Affine and
MSER for approximately the same number of detected features under the
similarity threshold strategy.

Conclusions

I A novel feature detector based on single-scale edges.

I Compares well to state-of-the-art detectors and produces a compact set of
interpretable and repeatable features.

I Potential application to wide-baseline matching and feature detection in
sequences involving human activity.

I Straightforward extension to spatiotemporal data.
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