Motivation & Approach

- Detect blob-like regions of arbitrary shape from single scale edges.
- Compute binary distance transform

- Adjacent vertices u, v correspond to neighboring local maxima of D.
- If there is no edge fragment lying between u, v, then u and v are likely to lie within the same region or along a ridge.
- ▶ If there is an edge fragment, then the gradient at the intersection point will determine at which iteration u and v will be merged, which would be equivalent to removing the fragment.
- A change in the component evolution indicates a significant change in the topology.
- The spatial extent of a region is computed from the edge fragments surrounding the vertices of the component.

Detecting Regions from Single Scale Edges Kostas Rapantzikos, Yannis Avrithis and Stefanos Kollias

National Technical University of Athens, School of Electrical and Computer Engineering

Feature detection

Alg	gorithm 1 Distance Transform Detector
1:	procedure DTD(image I , regions \mathcal{R})
2:	$g \leftarrow \ \nabla G_{\sigma} \star I\ \qquad $
3:	$F \leftarrow \mathrm{EDGEMap}(I)$
4:	$D \leftarrow \text{DistanceTransform}(F)$
5:	$V \leftarrow \text{LocalMaxima}(D)$
6:	$G \leftarrow \text{DelaunayTriangulation}(V)$
7:	$\operatorname{Sort}(E,w)$ > sort
8:	$t \leftarrow 0$
9:	$\mathcal{C} \leftarrow V$
10:	for all $e = (u, v) \in E(G)$ do
11:	$t \leftarrow t + 1$
12:	if $w(e) \leq \min\{\rho(C^{t-1}(u)), \rho(C^{t-1}(v)) \text{ then}\}$
13:	$C^t \leftarrow \operatorname{MERGE}(C^{t-1}(u), C^{t-1}(v)) \triangleright \mathrm{m}$
14:	$\rho(C^t) \leftarrow w(e) + k/ C^t $
15:	end if
16:	end for
17:	$\mathcal{R} \gets \emptyset$
18:	for all $C \in \mathcal{C}$ do
19:	$t \leftarrow \arg \max_s(\Delta \mu(C^s)) \qquad \triangleright \text{ iteration when}$
20:	$H \leftarrow \text{CONVEXHULL}(N(C^t)) \qquad \triangleright \text{ nei}$
21:	$R \leftarrow \text{FitEllipse}(H)$
22:	$\mathcal{R} \leftarrow \mathcal{R} \cup R$
23:	end for
24:	$\mathbf{return} \ \mathcal{R}$
25:	end procedure

Results

RANSAC inliers for three different pairs of images.

after the MSER for the NN strategy. Outperforms both Hessian-Affine and MSER for approximately the same number of detected features under the similarity threshold strategy.

Conclusions

- ► A novel feature detector based on single-scale edges.
- Compares well to state-of-the-art detectors and produces a compact set of interpretable and repeatable features.
- Potential application to wide-baseline matching and feature detection in sequences involving human activity.
- Straightforward extension to spatiotemporal data.

{rap,iavr}@image.tua.gr, stefanos@cs.ntua.gr