The Medial Feature Detector: Stable Regions from Image Boundaries Yannis Avrithis and Kostas Rapantzikos

Overview

- Regions of arbitrary scale and shape, without scale space construction.
- Weighted *distance map* on image gradient, using our exact, linear-time algorithm.
- Weighted *medial axis* by generalizing chord residue, typically used in Voronoi skeletons.
- Decompose medial axis into a graph representing image structure in terms of peaks and saddle points.
- *Reconstruct* regions using the same propagation method, due to a duality property.

dt+medial (45ms) input (270×270) partition (15ms)

- Join regions and select those that are *well enclosed by boundaries*, in agreement with the Gestalt principle of closure; *incomplete boundaries* allowed.
- Select *whole regions* and their *parts* independently.
- Binary code and documentation at http://image.ntua.gr/iva/tools/mfd/

Examples

Weighted distance transform

• Given input f in domain X, define its weighted distance map $h = \mathcal{D}(f)$ as

$$h(x) = \bigwedge_{y \in X} d(x, y) + f(y), \quad x \in X,$$

- where \wedge denotes infimum and d Euclidean distance.
- Given image f_0 , compute gradient magnitude $g = |\nabla f_0|$ and define $f(x) = \sigma/g(x)$ for $x \in X$, where σ is a scale parameter—generalizing the $0/\infty$ indicator function. • Exact group marching (EGM) algorithm: move all points on the propagating front as a
- group, in arbitrary order; *exact* result, *linear* in the number of points.

input

gradient

- For each $x \in X$, its source set S(x) is the set of points $y \in X$ for which d(x, y) + f(y)is minimized, and is used to define the medial axis.
- The source set S(f) of f contains all source points of f in X; $\mathcal{D}(f)$ is uniquely determined by f restricted on S(f).

School of Electrical and Computer Engineering, National Technical University of Athens, Greece

features (3ms)

dt + features

Weighted medial axis

- Point $x \in X$ is a *medial point* if it has at least two distinct sources. The (weighted) medial axis A(f) contains all such points: $A(f) = \{x \in X : |S(x)| > 1\}$.
- Weighted medial axis (WMA) algorithm computes A(f) given $\mathcal{D}(f)$ and S(f), beginning at peaks of $\mathcal{D}(f)$ and propagating based on *residue function* r(x), generalizing chord residue by Ogniewicz and Kubler.

• Using a graph to represent the topology of the source set S(f), compute r(x) in constant time for each $x \in X$; hence WMA is *linear* in the number of points. • Guarantee that A(f) is connected for each component of $X \setminus S(f)$.

Feature detection

- Decompose A(f) and construct weighted graph $\mathcal{G}(f)$ such that: (a) vertices correspond to peaks of $\mathcal{D}(f)$; (b) edges correspond to local minima along A(f) (saddle points of $\mathcal{D}(f)$; (c) edge weights defined as the height at those points.
- Medial axis decomposition (MAD) algorithm constructs $\mathcal{G}(f)$ given $h = \mathcal{D}(f)$ and A(f); equivalent to watershed of -h on A(f), with peaks as markers.

- backpropagating from medial to boundaries; equivalent to watershed of -h on X. component κ with area $a(\kappa)$ and incident edge set $E(\kappa)$ has shape fragmentation factor
- Partition image: invoke EGM with input g(x) = -h(x) if $x \in A(f)$, and $+\infty$ otherwise, • Each edge e of $\mathcal{G}(f)$ is generated at saddle point x(e) with boundary gap w(x(e)); then

$$\phi(\kappa) = \frac{1}{a(\kappa)} \sum_{e \in E(\kappa)} w^2(e^{-i\omega k}) dk = \frac{1}{a(\kappa)} \sum_$$

• Join components in non-increasing order of edge weights and select component κ as a *feature* if $\phi(\kappa) < \tau$ where threshold $\tau > 0$ controls *selectivity*.

(x(e)).

Matching experiment

Retrieval experiment

- same dataset, constructed separately for each detector.

Detector	Features	Space	Query (ms)		mAP	
	$(\times 10^{6})$	(MB)	Index	Rerank	Index	Rerank
MFD	9.32	68	3.96	8.2	0.580	0.617
Hessian-affine	29.03	126	6.72	44.9	0.573	0.614
MSER	13.33	76	4.30	13.2	0.544	0.589
SURF	4.24	34	3.00	1.7	0.531	0.536
SIFT	11.13	82	4.61	8.4	0.457	0.495

objective is highest mAP with reasonable space/time requirements.

Current and future work

- Generic image segmentation; edge detection and grouping.
- Shape-based object detection.

• Matching across viewpoint, zoom, rotation, light, and blur; measure performance in terms of *repeatability* and *matching score*, using SIFT descriptors for all detectors.

• Larger scale *retrieval* using *bag of words* (BoW); ranking by TF-IDF and *fast spatial matching* (FastSM); measure performance in terms of *mean Average Precision* (mAP). • Oxford 5K dataset, comprising 5,062 images with 55 queries. 200K vocabulary from the

• Indexing space and query time depend on the average number of features per image; the

• Exploit exact region shape; other types of features; GPU implementation.