Speeded-up, relaxed spatial matching

Giorgos Tolias and Yannis Avititis
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Overview

- Fast re-ranking of top matching images in large scale retrieval
- Inspired by Hough voting and pyramid matching.
- Relaxed and flexible matching model.
- Allow non-rigid motion and multiple matching surfaces.
- Linear in the number of correspondences.

Problem

Local shape - transformation space

- Scale and rotation invariant local feature $p \in P$

$$
F(p)=\left[\begin{array}{cc}
M(p) & \mathbf{t}(p) \\
\mathbf{0}^{\mathrm{T}} & 1
\end{array}\right], M(p)=\sigma(p) R(p)
$$

- Set of candidate correspondences C according to proximity in descriptor space (eg visual vocabulary) $C=\{(p, q) \in P \times Q: u(p)=u(q)\}$.
- Relative transformation for correspondence (assignment) $c=(p, q)$

$$
F(c)=F(q) F(p)^{-1}=\left[\begin{array}{cc}
M(c) & \mathbf{t}(c) \\
\mathbf{0}^{\mathrm{T}} & 1
\end{array}\right] .
$$

- Parameter vector: 4 -dof transformation (translation, relative log-scale, relative orientation)

$$
f(c)=(x(c), y(c), \sigma(c), \theta(c)) .
$$

Compatibility of assignments

- For $c, c^{\prime} \in C$, an affinity score $\alpha\left(c, c^{\prime}\right)$ measures their similarity in the transformation

- One-to-one mapping: two assignments $c=(p, q), c^{\prime}=\left(p^{\prime}, q^{\prime}\right)$ are compatible if $p \neq p^{\prime}$ and $q \neq q^{\prime}$, and conflicting otherwise.
Goal
- Identify subset of pairwise compatible assignments that maximizes the total weighted, pairwise affinity.
- Estimate a total image similarity score - no transformation estimation needed.

Hough Pyramid Matching (HPM)

- Hierarchical partition $\mathcal{B}=\left\{B_{0}, \ldots, B_{L-1}\right\}$ of transformation space \mathcal{F} into L levels.
- Histogram pyramid of correspondences into bins $b \in B_{\ell}$ at level ℓ

$$
h(b)=\{c \in C: f(c) \in b\} .
$$

- Detect conflicting correspondences at each level; greedily choose the best one to keep; maintain the remaining in set of erased X. Histogram pyramid is now $h(b)=h(b) \backslash X$ - Isolated correspondences do not form a group; group count of bin b

$$
g(b)=\max \{0,|\hat{h}(b)|-1\} .
$$

- Newly grouped correspondences with c at level ℓ are $g\left(b_{\ell}\right)-g\left(b_{\ell-1}\right)$ and affinity at level ℓ is approximated with a non-increasing function. Strength of c up to level ℓ

$$
s_{\ell}(c)=g\left(b_{0}\right)+\sum_{k=1}^{\ell} 2^{-k}\left\{g\left(b_{k}\right)-g\left(b_{k-1}\right)\right\} .
$$

- Image similarity score as a weighted sum of strengths at the top level

$$
s(C)=\sum_{c \in C \backslash X} w(c) s_{L-1}(c) .
$$

Experimental results

- Memory usage reduction by uniform quantization of local feature shape. - Use 5 levels and 16 bins for each parameter - run length encoding for image id

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \text { image id } & x & y & \log \sigma & \theta & \text { total } \\
\hline 16 & 4 & 4 & 4 & 4 & 32
\end{array}
$$

Inverted file memory usage per local feature, in bits.

- mean Average Precision (mAP) for pyramid and flat matching at different levels L with 2M distractors and re-ranking top 1000 images.

$$
\begin{array}{|c|c|c|c|c|c|}
\hline L & 2 & 3 & 4 & 5 & 6 \\
\hline \text { pyramid } & 0.473 & 0.498 & 0.536 & 0.556 & \mathbf{0 . 5 5 9} \\
\hline \text { flat } & 0.448 & 0.485 & 0.524 & \mathbf{0 . 5 3 4} & 0.509 \\
\hline
\end{array}
$$

- Large scale experiments with up to 2 M distractors

Matching examples

- Matching with HPM (0.6ms). All tentative correspondences are shown. The ones in cyan have been erased. The rest are colored according to strength, with red (yellow) being the strongest (weakest).

- Matching with Fast Spatial Matching (7ms). Inliers with a 4-dof model are

Correspondences as votes in 4D transformation space. Three tones of gray for level affinity.

More matching examples.

