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Introduction

I Scope: search in a large corpus of images and retrieve a specific object

I Challenge: reduce memory requirements without sacrificing performance

I Bag-of-Words (BoW): good performance at low cost, but indexes each local feature separately

I Geometry verification: constantly better performance than BoW, with roughly same memory
requirements

I Compact representations: much lower memory requirements, e.g. Fisher vectors [Perronnin et
al. 2010], not compatible with geometry verification

I Feature Selection: currently only from multiple views

I Our solution: selection from single views via symmetry and repeating pattern detection

Related work: Feature selection from multiple views

I Supervised (by geo-tag):
I informative feature selection [Schindler et al. 2007] [Li & Kosecka 2006]
I foreground object detection [Gammeter et al. 2009]
I scene map construction [Avrithis et al. 2010].

I Unsupervised: Spatial verification of multiple views [Turcot & Lowe 2009]

five different views matched by RANSAC
multiple view selection
[Turcot & Lowe 2009]

single view selection
(this work)

Feature selection from a single view

The entire method is based on the observation that sym-
metry or repeating pattern detection in a single image does
not differ much from spatial matching between two images.
In fact, we only see two issues requiring attention:

1. Spatial matching usually (but not always) assumes one-
to-one correspondence between features of the two im-
ages. This is exactly why constraints like the ratio
test [18] are usually employed when matching descrip-
tors. This is not the case here because a pattern may
be repeating more than twice.

2. Seeking robustness against ‘outliers’, a single trans-
formation model is usually assumed, e.g . similarity or
homography. This is not the rule, as e.g . HPM [31] can
find multiple transformations. But for every symmetry
or repeating pattern we do need a different transfor-
mation: HPM is more appropriate in this sense, but
we also extend FSM [25] in this direction.

3.1 Representation
We assume that an image is represented by a set of local
features X. Each local feature x ∈ X is associated with
a D-dimensional descriptor d(x) ∈ RD, encoding local ap-
pearance, which is then quantized to visual word w(x) ∈W ,
where W is a given visual vocabulary. Assuming features
are scale and rotation covariant, it is also associated with
position p(x) ∈ R2 on the image plane, log-scale σ(x) ∈ R
and orientation θ(p) ∈ (−π, π]. All this information is con-
veniently represented in vector

g(x) = [p(x)T σ(x) θ(x)]T (1)

in R4, encoding local geometry. Log-scale is employed so
that relative scales are expressed as differences rather than
ratios. Orientation is alternatively represented by orthogo-
nal matrix R(x) ∈ R2×2 with detR(x) = 1. Finally, position
is alternatively represented in homogeneous coordinates by
vector p(x) in projective space P2(R).

A feature correspondence within image X is a pair of fea-
tures c ∈ X2. Given correspondence c = (x, y), it is possi-
ble to define a similarity transformation that aligns features
x, y ∈ X in the image plane. It turns out [31] that this
transformation can also be represented by vector

g(x, y) = g(c) = [p(c)T σ(c) θ(c)]T (2)

in R4, where σ(c) = σ(y) − σ(x), θ(c) = θ(y) − θ(x) are
the relative scale and orientation respectively, and p(c) =
p(y) −M(c)p(x) is the relative position (translation), with
M(c) = σ(c)R(c) and R(c) = R(y)R(x)−1.

It is now is possible to use norm ‖g(x, y)‖ to measure the
geometric proximity of features x, y. It is understood here
that relative orientation θ(y)−θ(x) is first taken to its princi-
pal value in (−π, π]. Because feature detectors often respond
with multiple overlapping features around highly distinctive
regions, we need this proximity measure to exclude nearby
features from our search for symmetries. In particular, we
say (x, y) is a valid pair and write v(x, y) if and only if
‖g(x, y)‖ ≥ ρ, with response threshold ρ > 0. Then, given
image X, we define its set of valid correspondences

Cv(X) = {(x, y) ∈ X2 : v(x, y)}. (3)

This set also excludes trivial correspondences (x, x) of a fea-
ture x with itself, since ‖g(x, x)‖ = 0.
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Figure 2: (Top) repeating pattern found by direct
matching; magenta: direct selection. (Bottom) sym-
metry found by flipped matching; green: flipped se-
lection, cyan: back-projected selection. (Left) origi-
nal image. (Right) image to match; all features in
black. Continuous line: tentative correspondences;
dashed: back-projection + symmetry axes.

Now, feature correspondences are actually based on ap-
pearance. The simplest way is that of the bag-of-words
model: two features are in correspondence simply when as-
signed the same visual word, which is a vector-quantized ver-
sion of their descriptor. Depending on the method used for
vocabulary construction, quantization may incur significant
information loss [5], and since feature selection is an off-line
process, we choose to work directly in the descriptor space.
In fact, since features are not assigned a visual word before
selection, it is also more efficient to seek neighbors among
the features of X rather than within an entire vocabulary of
typical size 106.

In particular, we define the appearance dissimilarity d(x, y)
of features x, y ∈ X as their distance ‖d(x) − d(y)‖ in the
descriptor space RD. We say that features x, y are similar if
d(x, y) ≤ δ, with similarity threshold δ > 0. Now, given fea-
ture x ∈ X, let its neighborhood N(x) be the set of similar
features that is restricted to the set N k

X(x) of its k-nearest
neighbors in X according to dissimilarity d,

N(x) = {y ∈ X : y ∈ N k
X(x) ∧ d(x, y) ≤ δ}. (4)

We use nearest neighbors to limit the number of correspon-
dences, making the subsequent matching process more effi-
cient; in practice, an approximate nearest neighbor scheme
is used. Then, the set of appearance- or descriptor-based cor-
respondences of image X contains all pairs of x ∈ X with
their neighbors,

Cd(X) = {(x, y) ∈ X2 : y ∈ N(x)}, (5)

Observe that Cd(X) is a relation that is not symmetric in
general. More important, contrary to typical image match-
ing applications, we do not impose any mapping constraint
towards one-to-one correspondence, like the ratio test [18]:
we are seeking repeating patterns and a pattern may be re-
peating more than twice. Definitions (4), (5) allow up to k
repetitions.

Self-matching

The entire method is based on the observation that sym-
metry or repeating pattern detection in a single image does
not differ much from spatial matching between two images.
In fact, we only see two issues requiring attention:

1. Spatial matching usually (but not always) assumes one-
to-one correspondence between features of the two im-
ages. This is exactly why constraints like the ratio
test [18] are usually employed when matching descrip-
tors. This is not the case here because a pattern may
be repeating more than twice.

2. Seeking robustness against ‘outliers’, a single trans-
formation model is usually assumed, e.g . similarity or
homography. This is not the rule, as e.g . HPM [31] can
find multiple transformations. But for every symmetry
or repeating pattern we do need a different transfor-
mation: HPM is more appropriate in this sense, but
we also extend FSM [25] in this direction.

3.1 Representation
We assume that an image is represented by a set of local
features X. Each local feature x ∈ X is associated with
a D-dimensional descriptor d(x) ∈ RD, encoding local ap-
pearance, which is then quantized to visual word w(x) ∈W ,
where W is a given visual vocabulary. Assuming features
are scale and rotation covariant, it is also associated with
position p(x) ∈ R2 on the image plane, log-scale σ(x) ∈ R
and orientation θ(p) ∈ (−π, π]. All this information is con-
veniently represented in vector

g(x) = [p(x)T σ(x) θ(x)]T (1)

in R4, encoding local geometry. Log-scale is employed so
that relative scales are expressed as differences rather than
ratios. Orientation is alternatively represented by orthogo-
nal matrix R(x) ∈ R2×2 with detR(x) = 1. Finally, position
is alternatively represented in homogeneous coordinates by
vector p(x) in projective space P2(R).

A feature correspondence within image X is a pair of fea-
tures c ∈ X2. Given correspondence c = (x, y), it is possi-
ble to define a similarity transformation that aligns features
x, y ∈ X in the image plane. It turns out [31] that this
transformation can also be represented by vector

g(x, y) = g(c) = [p(c)T σ(c) θ(c)]T (2)

in R4, where σ(c) = σ(y) − σ(x), θ(c) = θ(y) − θ(x) are
the relative scale and orientation respectively, and p(c) =
p(y) −M(c)p(x) is the relative position (translation), with
M(c) = σ(c)R(c) and R(c) = R(y)R(x)−1.

It is now is possible to use norm ‖g(x, y)‖ to measure the
geometric proximity of features x, y. It is understood here
that relative orientation θ(y)−θ(x) is first taken to its princi-
pal value in (−π, π]. Because feature detectors often respond
with multiple overlapping features around highly distinctive
regions, we need this proximity measure to exclude nearby
features from our search for symmetries. In particular, we
say (x, y) is a valid pair and write v(x, y) if and only if
‖g(x, y)‖ ≥ ρ, with response threshold ρ > 0. Then, given
image X, we define its set of valid correspondences

Cv(X) = {(x, y) ∈ X2 : v(x, y)}. (3)

This set also excludes trivial correspondences (x, x) of a fea-
ture x with itself, since ‖g(x, x)‖ = 0.
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Figure 2: (Top) repeating pattern found by direct
matching; magenta: direct selection. (Bottom) sym-
metry found by flipped matching; green: flipped se-
lection, cyan: back-projected selection. (Left) origi-
nal image. (Right) image to match; all features in
black. Continuous line: tentative correspondences;
dashed: back-projection + symmetry axes.

Now, feature correspondences are actually based on ap-
pearance. The simplest way is that of the bag-of-words
model: two features are in correspondence simply when as-
signed the same visual word, which is a vector-quantized ver-
sion of their descriptor. Depending on the method used for
vocabulary construction, quantization may incur significant
information loss [5], and since feature selection is an off-line
process, we choose to work directly in the descriptor space.
In fact, since features are not assigned a visual word before
selection, it is also more efficient to seek neighbors among
the features of X rather than within an entire vocabulary of
typical size 106.

In particular, we define the appearance dissimilarity d(x, y)
of features x, y ∈ X as their distance ‖d(x) − d(y)‖ in the
descriptor space RD. We say that features x, y are similar if
d(x, y) ≤ δ, with similarity threshold δ > 0. Now, given fea-
ture x ∈ X, let its neighborhood N(x) be the set of similar
features that is restricted to the set N k

X(x) of its k-nearest
neighbors in X according to dissimilarity d,

N(x) = {y ∈ X : y ∈ N k
X(x) ∧ d(x, y) ≤ δ}. (4)

We use nearest neighbors to limit the number of correspon-
dences, making the subsequent matching process more effi-
cient; in practice, an approximate nearest neighbor scheme
is used. Then, the set of appearance- or descriptor-based cor-
respondences of image X contains all pairs of x ∈ X with
their neighbors,

Cd(X) = {(x, y) ∈ X2 : y ∈ N(x)}, (5)

Observe that Cd(X) is a relation that is not symmetric in
general. More important, contrary to typical image match-
ing applications, we do not impose any mapping constraint
towards one-to-one correspondence, like the ratio test [18]:
we are seeking repeating patterns and a pattern may be re-
peating more than twice. Definitions (4), (5) allow up to k
repetitions.

Flipped matching

Tentative Correspondences:

I Valid pairs: Cv(X) = {(x, y) ∈ X2 : v(x, y)}
I Descriptor nearest neighbors: N(x) = {y ∈ X : y ∈ N k

X(x) ∧ d(x, y) ≤ δ}
I Tentative correspondences: Ct(X) = Cd(X) ∩ Cv(X)

I Flipped matching: y′: flipped counterpart of feature y.

Cv(X, Y ) = {(x, y) ∈ X × Y : v(x, y′)}
Cd(X, Y ) = {(x, y) ∈ X × Y : y ∈ N(x)}
Ct(X, Y ) = Cd(X, Y ) ∩ Cv(X, Y )

Solution 1: Spatial self-matching (SSM)

I Inspired by fast spatial matching (FSM)
[Philbin et al. 2007]

I Hypothesis inliers:
IC(h) = {(x, y) ∈ C : ‖p(y)− hp(x)‖ < ε}

I Seek best hypothesis per correspondence

IHC(x, y) = {h ∈ t(C) : ‖p(y)− hp(x)‖ < ε}
I Strength: αC(c) = max{|IC(h)| : h ∈ HC(c)}
I Verified correspondences:
α(C) = {c ∈ C : αC(c) ≥ τα}

I Select features of verified correspondences

I Average running time on SymCity: 95ms

Algorithm SSM

Finally, the set of tentative correspondences of X contains
pairs of similar features that are also valid,

Ct(X) = Cd(X) ∩ Cv(X). (6)

All correspondence definitions so far refer to direct match-
ing, and will be modified accordingly for flipped matching in
section 3.3. Direct matching is illustrated in Figure 2(top),
showing a pattern of three features repeating twice while
undergoing a translation. Observe that tentative correspon-
dences, being valid, exclude ones between a feature and itself
in the two images. The two groups of three correspondences
are essentially the same, being of the form (x, y) and (y, x).
However, correspondences are not always symmetric. The
pattern could repeat three times or more, while all similarity
transformations are allowed.

3.2 Spatial self-matching
In order to detect local symmetries or repeating patterns, we
need stronger evidence than just a set of independent corre-
spondences, each based on the similarity of a single pair of
features. We follow two different approaches, both inspired
by existing methods for spatial matching between two differ-
ent images, which however we apply to self-matching within
a single image. Our first approach seeks groups of geomet-
rically verified correspondences, called inliers; it is inspired
by fast spatial matching (FSM) [25].

Given image X, each correspondence c = (x, y) ∈ Ct(X)
gives rise to a similarity transformation represented by vec-
tor g(c) defined in (2). This transformation has four de-
grees of freedom and may as well be represented by a matrix
t(c) ∈ R3×3, with

t(x, y) = t(c) =

[
M(c) p(c)
0T 1

]
. (7)

This alternative formulation is useful when representing po-
sition in homogeneous coordinates. Then, given transforma-
tion h = t(c) = t(x, y), the position p(z) ∈ R3 of z ∈ X is
transformed to hp(z), the latter standing for a matrix-vector
product.

FSM is a RANSAC-like process. Given image X and its
set of tentative correspondences C = Ct(X), each c ∈ C
defines a transformation hypothesis h = t(c) that is veri-
fied by looking for inliers IC(h) among all correspondences
(x, y) ∈ C, with

IC(h) = {(x, y) ∈ C : ‖p(y)− hp(x)‖ < ε} (8)

for h ∈ R3×3. The inlier set relies on inlier threshold ε > 0,
given in pixels. Among all hypotheses t(C) = {t(c) : c ∈ C},
FSM then seeks the hypothesis h ∈ t(C) with the highest
inlier support |IC(h)|. Here is where we differentiate: we
seek the best hypothesis per individual inlier.

In particular, for each correspondence c = (x, y) ∈ C, we
define its set of associated hypotheses HC(c) = HC(x, y) ⊆
t(C) that align c as an inlier,

HC(x, y) = {h ∈ t(C) : ‖p(y)− hp(x)‖ < ε}. (9)

We can now define the inlier strength α(c) of correspondence
c as the largest inlier support |IC(h)| over all its associated
hypotheses h ∈ HC(c),

αC(c) = max{|IC(h)| : h ∈ HC(c)}. (10)

The entire self-matching process is summarized in Al-
gorithm 1, which we will refer to as spatial self-matching

Algorithm 1: Spatial self-matching (SSM)

1 procedure α← SSM(C, t; τα)
input : correspondences C, transformations t
parameter: inlier threshold τα
output : inlier strengths α

2 for c ∈ C do . initialize
3 inlier(c)← false . mark as outlier
4 α(c)← 0 . zero strength

5 for c ∈ C do . for all hypotheses
6 if inlier(c) then continue . skip hypothesis?
7 h← t(c) . current hypothesis
8 I ← IC(h) . current inliers (8)
9 if |I| < τα then continue . verified hypothesis?

10 for c′ ∈ I do . for all inliers
11 inlier(c′)← true . mark as inlier
12 α(c′)← max(α(c′), |I|) . update strength

13 return α . inlier strengths

(SSM). The original algorithm [25] is quadratic in the num-
ber of correspondences, since all correspondences are con-
sidered as inliers to all hypotheses. To speed up the pro-
cess, we skip hypotheses arising from correspondences that
have already been counted as inliers for previous hypotheses
(line 6). We have observed that this does not affect feature
selection in practice. The process is now quadratic only in
the worst case, i.e. when no inliers are found at all, but in
practice we get significant computational savings.

Once all inlier strengths have been computed, the set of
spatially verified correspondences α(C) ⊆ C is

α(C) = {c ∈ C : αC(c) ≥ τα}, (11)

with selection threshold τα > 0. Finally, given image X
with tentative correspondences C = Ct(X), we select those
features x ∈ X that are participating in some verified corre-
spondence in α(C),

αd(X) = π1(α(C)) ∪ π2(α(C)), (12)

where, for i = 1, 2, πi(S) is the i-th projection of binary
relation S ⊆ X1 × X2, collecting the i-th element of all its
pairs,

πi(S) = {xi ∈ Xi : (x1, x2) ∈ S}. (13)

We call αd(X) the direct selection of features in X.

3.3 Flipped matching
So far, we have only considered direct similarity transfor-
mations, that is, hypotheses h with deth > 0. How about
opposite transformations with deth < 0, like reflections? In
fact, once the image is reflected, the patch of each local fea-
ture is reflected as well, and its descriptor is no longer the
same, unless the patch is symmetric itself. So reflecting the
local geometry (1) is not enough: we actually need to re-
flect the entire image and extract a new set of features and
descriptors.

Any opposite transformation will do, and we choose hor-
izontal flipping. Let Y be the local feature set extracted
from the flipped image. We assume each feature y ∈ Y has
a flipped, back-projected counterpart y′. This is the projec-
tion of y on the original image with

g(y′) = [w − p1(y) p2(y) σ(y) π − θ(y)]T, (14)

Self-matching Flipped matching

Figure 3: Top: sample group of inliers found by
SSM on original image, capturing a repeating pat-
tern. Bottom: sample group found by SSM between
original and flipped images, capturing a symmetry.

where w is the image width and pi(y), i = 1, 2 are the coor-
dinates of y on the image plane. No descriptor is available
for those features in the original image before selection.

Correspondences are formed exactly as in self-matching,
but are now defined between features x ∈ X, y ∈ Y of the
original and flipped image respectively. The sets of valid,
appearance-based and tentative correspondences (3), (5), (6)
are modified respectively as

Cv(X,Y ) = {(x, y) ∈ X × Y : v(x, y′)}, (15)

Cd(X,Y ) = {(x, y) ∈ X × Y : y ∈ N(x)}, (16)

Ct(X,Y ) = Cd(X,Y ) ∩ Cv(X,Y ). (17)

Observe that valid pairs refer to the same image, so we use
the back-projected feature y′ instead of y in (15).

Given the set Cf = Ct(X,Y ) of tentative correspondences
between X and Y , the SSM process of section 3.2 remains
identical. Let α(Cf ) be the resulting set of spatially verified
correspondences. The second set of features we select, the
flipped selection, contains those features of X that partici-
pate in a verified correspondence in α(Cf ) and are nowhere
near any feature in αd(X) that is already selected,

αf (X) = π1(α(Cf )) \v αd(X). (18)

By A \v B we denote those features of A that are valid with
respect to B,

A \v B = {a ∈ A : v(a, b) for all b ∈ B}. (19)

The third set of features, the back-projected selection, con-
tains those features of Y that participate in a verified cor-
respondence. We actually use their back-projected counter-
part in this case, again ignoring ones that are near selected

Figure 4: Initial (left) and selected (right) features
by SSM. Original, flipped and back-projected selec-
tions shown in red, green and blue respectively.

features in αd(X) ∪ αf (X),

α′f (X) = [π2(α(Cf ))]′ \v (αd(X) ∪ αf (X)), (20)

where A′ = {y′ : y ∈ A} denotes the back-projection of
feature set A ⊆ Y . It is now time to extract descriptors
from the original image for those selected, back-projected
features. Finally, the complete set of selected features con-
tains the direct, flipped and back-projected selections,

α(X) = αd(X) ∪ αf (X) ∪ α′f (X). (21)

We will just say that α(X) is the set of selected features for
X. They are the only features to be assigned a visual word
and indexed for retrieval.

Flipped matching is illustrated in Figure 2(bottom), show-
ing a pattern of six features that is symmetric with a ver-
tical axis of symmetry. Four of the features (in green) are
detected on the original image, giving the flipped selection,
and four (in black) on the flipped image; the two groups
have two features in common, detected in both images. The
two features that are only detected on the flipped image give
the back-projected selection (in cyan) on the original image.
Apart from this exception, we are showing for each image
only the features that are detected and participating in some
correspondence of the chosen pattern or group.

Figure 3 illustrates SSM matching between an image X
and itself as well as its flipped counterpart Y , detecting a
feature group corresponding to a repeating pattern and a
symmetry, respectively, on a real image. There are a lot
more detected feature groups not shown here. For the same
image, Figure 4 depicts all available original features along
with the three different sets of selections made by SSM, in
particular the direct (αd), flipped (αf ) and back-projected
(α′f ) selections.

3.4 Relaxed spatial self-matching
Given a set of tentative correspondences C, the spatial self-
matching process of section 3.2 is based on FSM [25] and
is quadratic in the number of correspondences, |C|, in the
worst case. On the other hand, Hough pyramid matching
(HPM) [31] is a recent, relaxed spatial matching method,
which is linear in |C| and is shown to outperform FSM in
spatial re-ranking for image retrieval. HPM is not only faster
by not requiring inlier counting, but also free of any thresh-
old defining what an inlier is, like ε in (8) or (9). Further, it
assigns a strength value to each individual correspondence,

Selected features: Original (red),
flipped (green) and back-projected (blue)

Solution 2: Hough pyramid self-matching (HPSM)

I Based on Hough pyramid matching [Tolias & Avrithis 2011]

I Same correspondences as in SSM but linear in the number of correspondences

I No inlier counting or transformation estimation

I Strength: geometrical consistency with all correspondences

I No one-to-one mapping as in original HPM

I Average running time on SymCity: 16.2msHough pyramid self-matching – toy
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Selection examples

Selection examples

Experiments

I Datasets: World Cities (WC) and new dataset SymCity

I SymCity dataset: 953 annotated photos from 299 groups; a single image from each group indexed in
the database and the rest used as queries; publicly available

SymCity dataset

• 953 annotated photos

• 299 groups

• One single image from each group in the database

• Rest 645 used as queries

Sample images from the SymCity dataset
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Project page, code & dataset: http://image.ntua.gr/iva/research/symcity/ Contact: {gtolias, ykalant, iavr}@image.ntua.gr

http://image.ntua.gr/iva/research/symcity/

