SymCity: Feature Selection by Symmetry for Large Scale Image Retrieval

Introduction

Scope: search in a large corpus of images and retrieve a specific object
Challenge: reduce memory requirements without sacrificing performance
Bag-of-Words (BoW): good performance at low cost, but indexes each local feature separately
Geometry verification: constantly better performance than BoW, with roughly same memory
requirements
Compact representations: much lower memory
al. 2010], not compatible with geometry verification
Our solution: selection from single views via symmetry and repeating pattern detection

Related work: Feature selection from multiple views

Supervised (by geo-tag):
Supervised (by geo-tag):

- informative feature selection [Schindler et al. 2007] [Li \& Kosecka 2006]
i informative feature selection ISchindler et al. 2007]
- foreground boject detection [Gimmeter etal 2009]
- scene map construction [Avitithis et al al. 2010]
- Unsupervised: Spatial verification of multiple views [Turcot \& Lowe 2009]

Feature selection from a single view

Tentative Correspondences:
Valid pairs: $C_{v}(X)=\left\{(x, y) \in X^{2}: v(x, y)\right\}$
Descriptor nearest neighbors: $N(x)=\left\{y \in X: y \in \mathcal{N}_{X}^{k}(x) \wedge d(x, y) \leq \delta\right\}$
Flipped matching: y^{\prime} : flipped counterpart of feature y.
$C_{v}(X, Y)=\left\{(x, y) \in X \times Y: v\left(x, y^{\prime}\right)\right\}$
$C_{0}(X, Y)$
$C_{d}(X, Y)=\{(x, y) \in X \times Y: y \in N(x)\}$
$C_{t}(X, Y)=C_{d}(X, Y) \cap C_{d}(X Y)$
$C_{t}(X, Y)=C_{d}(X, Y) \cap C_{v}(X, Y)$

Solution 1: Spatial self-matching (SSM)

Self-matching

Flipped matching

Selected features: Original (red) flipped (green) and back-projected (blue)

Solution 2: Hough pyramid self-matching (HPSM)

- Based on Hough pyramid matching [Tolias \& Avrithis 2011]

Same correspondences as in SSM but linear in the number of correspondences
No inlier counting or transformation estimation
Strength: geometrical consistency with all correspondences
No one-to-one mapping as in original HPM
Average running time on SymCity: 16.2 ms

Correspondences in a single bin at level 0 , All tentative correspondences, with red Correspondences in a single bin at level 0, Al tentative correspondences, with red
reveal a symmetric feature group
(yellow) being the strongest (weakest)

Selection examples

Experiments
Datasets: World Cities (WC) and new dataset SymCity
SymCity dataset: 953 annotated photos from 299 groups; a single image from each group indexed in
SymCity dataset: 953 annotated photos from 299 groups;

Sample images from the SymCity dataset

SSM vs HPSM using 100K distractors from WC

Large scale experiments using 1 M distractors from WC

