
Approximate Gaussian Mixtures for Large Scale Vocabularies
Yannis Avrithis and Yannis Kalantidis

National Technical University of Athens

Expanding Gaussian mixtures

I 800 points from an 8-mode 2d Gaussian, initialized at 50 points.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=0, clusters=50

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=1, clusters=15

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=2, clusters=10

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=3, clusters=8

Overview

I Approximate Gaussian Mixtures (AGM): a clustering method
that combines the flexibility of Gaussian mixtures with the scaling prop-
erties needed to construct visual vocabularies for image retrieval. The
algorithm can dynamically estimate the number of clusters.

I Approximate: Keep a fixed number m of nearest neighbors per data
point across iterations so that we: (a) have enough information for
an approximate Gaussian mixture model and (b) speed-up the nearest
neighbor search process.

I Purge: Initialize with all data points as cluster centers and purge
them as necessary using an overlap criterion on neighboring clusters.

I Expand: Clusters neighboring to the ones being purged expand to-
wards empty space, boosting convergence rate.

I Algorithm: A modification of EM, where (a) a P-step (purge) is
interleaved with the E- and M- steps at each iteration; (b) the E-step
is approximate and incremental (N-step); (c) σ is over-estimated at
the M-step (expand).

Purge

I If function q represents any component or cluster, we define the gen-
eralized responsibility γ̂ik = γ̂k(pi) ∈ [0, 1] of component k for com-
ponent i, similar to responsibility γk(x) of k for point x:

γk(x) =
pk(x)

∑K
j=1 pj(x)

→ γ̂k(q) =
〈q, pk〉∑K
j=1〈q, pj〉

,

where pk(x) = πkN (x|µk, σ2
k) and the L2 inner product 〈pi, pk〉 =

πiπkN (µi|µk, (σ2
i +σ2

k)I) measures the overlap of components pi, pk
under the spherical Gaussian model.

I If γ̂ii is the responsibility of component i for itself and given a set K
of components and one component i /∈ K, we define the responsibility
ρi,K ∈ [0, 1] of component i for itself relative to K as

ρi,K =
γ̂ii

γ̂ii +
∑
j∈K γ̂ij

=
‖pi‖2

‖pi‖2 +
∑
j∈K〈pi, pj〉

.

I If ρi,K is large, component i can ‘explain’ itself better than set K as
a whole; otherwise i appears to be redundant. So, if K represents the
components we have decided to keep so far, it makes sense to purge
component i if ρi,K drops below overlap threshold τ ∈ [0, 1].

Expand
8 Yannis Avrithis and Yannis Kalantidis

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=1, clusters=15

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=2, clusters=10

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

iteration=3, clusters=8

Fig. 2. Component expansion for iterations 1, 2 and 3 of the example of Figure 1.
Blue circles: two standard deviations with expansion (17) and λ = 0.25, as in Figure 1;
magenta: without expansion (6); dashed green: inner and outer sum contributions.

3.4 Initializing and terminating

It has been argued [7][6] that sparsely populated regions of the descriptor space
are often the most informative ones, so random sampling is usually a bad choice.
We therefore initialize with all data points as cluster centers, that is, K = N .
Using approximate nearest neighbors, this choice is not as inefficient as it sounds.
In fact, only the first iteration is affected because by the second, the ratio of
clusters that survive is typically in the order of 10%. Mixing coefficients are
uniform initially. Standard deviations are initialized to the distance of the nearest
neighbor, again found approximately.

Convergence in EM is typically detected by monitoring the likelihood func-
tion. This makes sense after the number of components has stabilized and no
purging takes place. However, experiments on large scale vocabularies take hours
or even days of processing, so convergence is never reached in practice. What
is important is to measure the performance of the resulting vocabulary in a
particular task—retrieval in our case—versus processing required.

4 Approximate Gaussian mixtures

Counting D-dimensional vector operations and ignoring iterations, the complex-
ity of the algorithm presented so far is O(NK). In particular, the complexity of
the E-step (13) and M-step (3), (4), (16)-(17) of each iteration is O(NC), where
C = |C| ≤ K ≤ N is the current number of components, and the complexity
of the P-step (Algorithm 1) is O(C2). This is clearly not practical for large C,
especially when K is in the order of N .

Similarly to [1], the approximate version of our Gaussian mixtures clustering
algorithm involves indexing the entire set of clusters C according to their center
µk and performing an approximate nearest neighbor query for each data point
xn, prior to the E-step of each iteration. The former step is O(Cα(C)) and the

I We overestimate the extent of each component as much as this does
not overlap with its neighboring components.

I The re-estimation equation for the covariance of each component can

be decomposed into Dσ2
k =

Nk
Nk

Σk +
Nk
Nk

Σk where the inner sum Σk
expresses a weighted average distance from µk of data points that are
better ‘explained’ by component k, hence fits the underlying data of
the corresponding cluster.

I We bias the weighted sum towards the outer sum Σk, and the re-
estimation equation becomes Dσ2

k = wkΣk + (1 − wk)Σk, where

wk =
Nk
Nk

(1− λ) and λ ∈ [0, 1] is an expansion factor.

Approximate Gaussian mixturesApproximate Gaussian Mixtures for Large Scale Vocabularies 9

Algorithm 2: Incremental m-nearest neighbors (N-step)

input : m best neighbors B(xn) found so far for n = 1, . . . , N
output: updated m best neighbors B′(xn) for n = 1, . . . , N

1 for n = 1, . . . , N do // for all data points
2 B(xn)← C ∩ B(xn) // ignore purged neighbors
3 (R, d)← NNm(xn) // R: m-NN of xn; d: distances to xn

// (such that d2k = ‖xn − µk‖2 for k ∈ R)
4 for k ∈ B(xn) \ R do // for all previous neighbors. . .
5 d2k ← ‖xn − µk‖2 // . . . find distance after µk update (M-step)

6 A ← B(xn) ∪R // for all previous and new neighbors. . .
7 for k ∈ A do // . . . compute unnormalized. . .
8 gk ← (πk/σ

D
k) exp{−d2k/(2σ2

k)} // . . . responsibility of k for xn

9 Sort A such that i < k → gi ≥ gk for i, k ∈ A // keep the top-ranking. . .
10 B′(xn)← A[1, . . . ,m] // . . .m neighbors

latter O(Nα(C)), where α expresses the complexity of a query as a function of
the indexed set size; e.g . α(C) = logC for typical tree-based methods. Respon-
sibilities γnk are thus obtained according to (13) for n = 1, . . . , N , k ∈ C, but
with distances to cluster centers effectively replaced by metric

d2m(x,µk) =

{
‖x− µk‖2, if k ∈ NNm(x)
0, otherwise,

(18)

where NNm(x) ⊆ C denotes the approximate m-nearest neighborhood of query
point x ∈ RD. Each component k found as a nearest neighbor of data point xn is
subsequently updated by computing the contributions γnk, γnkxn, γnk‖xn−µk‖2
to Nk (hence πk in (3)), µk in (4), σ2

k in (16)-(17), respectively, that are due
to xn. The M-step thus brings no additional complexity. Similarly, the P-step
involves a query for each cluster center µk, with complexity O(Cα(C)). It follows
that the overall complexity per iteration is O(Nα(C)). In the case of FLANN,
α(C) is constant and equal to the number of leaf checks per query, since we are
only counting vector operations and each split node operation is scalar.

Now, similarly to [5], we not only use approximate search to speed up clus-
tering, but we also exploit the iterative nature of the clustering algorithm to
enhance the search process itself. To this end, we maintain a list of the m best
neighbors B(xn) found so far for each data point xn, and re-use it across it-
erations. The distance of each new nearest neighbor is readily available as a
by-product of the query at each iteration, while distances of previous neighbors
have to be re-computed after update of cluster centers (4) at the M-step. The
list of best neighbors is updated as outlined in Algorithm 2.

This incremental m-nearest neighbors algorithm is a generalization of [5],
which restricts to m = 1 and k-means only. It may be considered an N-step
in the overall approximate clustering algorithm, to be performed prior to the
E-step—in fact, providing responsibilities as a by-product. The additional cost

Retrieval experiments

I Datasets: Oxford Buildings and World Cities (WC).

I Tuning: Specific vocabulary on Barcelona dataset–550K SURF
descriptors. Approximate Gaussian Mixtures for Large Scale Vocabularies 11

0 5 10 15 20 25

0.84

0.86

0.88

iteration

m
A
P

λ = 0.00

λ = 0.15

λ = 0.20

λ = 0.25

0.4 0.5 0.6 0.7

0.84

0.86

0.88

0.9

overlap threshold, τ

m
A
P

iter 2

iter 5

iter 10

iter 20

Fig. 3. Barcelona-specific parameter tuning. (left) mAP performance versus iteration
during learning, for varying expansion factor λ and fixed τ = 0.5. (right) mAP versus
overlap threshold τ for different iterations, with fixed λ = 0.2.

Figure 3 (left) shows mAP against number of iterations for different values
of λ. Compared to λ = 0, it is apparent that expansion boosts convergence rate.
However, the effect is only temporary above λ = 0.2, and performance eventually
drops, apparently due to over-expansion. Now, τ controls purging, and we expect
τ ≥ 0.5 as pointed out in section 3.2. Since ρi,K is normalized, τ = 0.5 appears to
be a good choice, as component k ‘explains’ itself at least as much as K in (12).
Figure 3 (right) shows that the higher τ the better initially, but eventually
τ = 0.55 is clearly optimal, being somewhat stricter than expected. We choose
λ = 0.2 and τ = 0.55 for the remaining experiments.

5.3 Comparisons

We use FLANN [17] for all methods, with 15 trees and precision controlled
by checks, i.e. the number of leaves checked per ANN query. We use 1, 000
checks during assignment, and less during learning. Approximation in AGM is
controlled by memory m, and we need m FLANN checks plus at most m more
distance computations in Algorithm 2, for a total of 2m vector operations per
iteration. We therefore use 2m checks for AKM and RAKM in comparisons.
Figure 4 (left) compares all methods on convergence for m = 50 and m = 100,
where AKM/RAKM are trained for 80K vocabularies, found to be optimal.

AGM not only converges as fast as AKM and RAKM, but also outperforms
them for the same learning time. AKM and RAKM are only better in the first
few iterations, because recall that AGM initializes from all points and needs a
few iterations to reach a reasonable vocabulary size. The relative performance
of RAKM versus AKM is not quite as expected by [5]; this may be partly due
to random initialization, a standing issue for k-means that AGM is free of, and
partly because performance in [5] is measured in distortion rather than mAP in
retrieval. It is also interesting that, unlike the other methods, AGM appears to
improve in mAP for lower m.

I Large scale experiment: Generic vocabulary from 6.5M descriptors
on Oxford dataset + 1M distractors from WC.12 Yannis Avrithis and Yannis Kalantidis

0 2 4 6 8

0.88

0.89

0.9

vop / point (×103)

m
A
P

AGM-50

AKM-100

RAKM-100

AGM-100

AKM-200

RAKM-200

104 105 106

0.25

0.3

0.35

0.4

0.45

0.5

distractors

m
A
P

AGM-1

AGM-3

AGM-5

RAKM-1

RAKM-3

RAKM-5

Fig. 4. (Left) Barcelona-specific mAP versus learning time, measured in vector opera-
tions (vop) per data point, for AGM, AKM and RAKM under varying approximation
levels, measured in FLANN checks. There are 5 measurements on each curve, corre-
sponding, from left to right, to iteration 5, 10, 20, 30 and 40. (Right) Oxford buildings
generic mAP in the presence of up to 1 million distractor images for AGM and RAKM,
using query-side soft assignment with 1, 3 and 5 NNs.

Method RAKM AKM AGM

Vocabulary 100K 200K 350K 500K 550K 600K 700K 550K 857K

No distractors 0.430 0.464 0.471 0.479 0.486 0.485 0.476 0.485 0.492

20K distractors 0.412 0.427 0.439 0.440 0.448 0.441 0.437 0.447 0.459

Table 1. mAP comparisons for generic vocabularies of different sizes on Oxford Build-
ings with a varying number of distractors, using 100/200/200 FLANN checks for
AGM/AKM/RAKM respecively, 40 iterations for AKM/RAKM, and 15 for AGM.

For large scale image retrieval, we train generic vocabularies on an inde-
pendent dataset of 15K images and 6.5M descriptors, and evaluate on Oxford
buildings in the presence of up to one million distractors from world cities. Be-
cause experiments are very expensive, we first choose the best competing method
for up to 20K distractors as shown in Table 1. We use m = 100 in this experi-
ment, with 40 iterations for AKM/RAKM, and only 15 for AGM. This is because
we are now focusing on mAP performance rather than learning speed, and our
choices clearly favor AKM/RAKM. It appears that 550K is the best size for
RAKM, and AKM is more or less equivalent as expected, since their difference
is in speed. AGM is slightly better with its vocabulary size C = 857K being
automatically inferred, keeping λ = 0.2, τ = 0.55 as explained in section 5.2.

Keeping exactly the same settings, we extend the experiment up to 1M dis-
tractors for the RAKM 550K and AGM 857K vocabularies under query-side
soft-assignment, as depicted in Figure 4 (right). Without any further tuning

Project page & code: http://image.ntua.gr/iva/research/agm/ Contact: {ykalant, iavr}@image.ntua.gr

http://image.ntua.gr/iva/research/agm/

