

Approximate Gaussian Mixtures for Large Scale Vocabularies

Expanding Gaussian mixtures

Overview

- Approximate Gaussian Mixtures (AGM): a clustering method that combines the flexibility of Gaussian mixtures with the scaling properties needed to construct visual vocabularies for image retrieval. The algorithm can *dynamically* estimate the number of clusters.
- **Approximate:** Keep a fixed number *m* of nearest neighbors per data point across iterations so that we: (a) have enough information for an approximate Gaussian mixture model and (b) speed-up the nearest neighbor search process.
- **Purge:** Initialize with all data points as cluster centers and purge them as necessary using an overlap criterion on neighboring clusters.
- **Expand:** Clusters neighboring to the ones being purged expand towards empty space, boosting convergence rate.
- ► Algorithm: A modification of EM, where (a) a P-step (purge) is interleaved with the E- and M- steps at each iteration; (b) the E-step is approximate and incremental (N-step); (c) σ is over-estimated at the M-step (expand).

Purge

Expand

Project page & code: http://image.ntua.gr/iva/research/agm/

Yannis Avrithis and Yannis Kalantidis

National Technical University of Athens

▶ If function q represents any component or cluster, we define the generalized responsibility $\hat{\gamma}_{ik} = \hat{\gamma}_k(p_i) \in [0, 1]$ of component k for com*ponent* i, similar to responsibility $\gamma_k(x)$ of k for point x:

$$\gamma_k(x) = \frac{p_k(x)}{\sum_{j=1}^K p_j(x)} \quad \rightarrow \quad \hat{\gamma}_k(q) = \frac{\langle q, p_k \rangle}{\sum_{j=1}^K \langle q, p_j \rangle},$$

where $p_k(x) = \pi_k \mathcal{N}(x|\mu_k, \sigma_k^2)$ and the L^2 inner product $\langle p_i, p_k \rangle =$ $\pi_i \pi_k \mathcal{N}(\boldsymbol{\mu}_i | \boldsymbol{\mu}_k, (\sigma_i^2 + \sigma_k^2) \mathbf{I})$ measures the *overlap* of components p_i, p_k under the spherical Gaussian model.

• If $\hat{\gamma}_{ii}$ is the responsibility of component *i* for *itself* and given a set \mathcal{K} of components and one component $i \notin \mathcal{K}$, we define the responsibility $\rho_{i,\mathcal{K}} \in [0,1]$ of component *i* for itself *relative to* \mathcal{K} as

$$\rho_{i,\mathcal{K}} = \frac{\hat{\gamma}_{ii}}{\hat{\gamma}_{ii} + \sum_{j \in \mathcal{K}} \hat{\gamma}_{ij}} = \frac{\|p_i\|^2}{\|p_i\|^2 + \sum_{j \in \mathcal{K}} \langle p_i, p_j \rangle}.$$

▶ If $\rho_{i,\mathcal{K}}$ is large, component *i* can 'explain' itself better than set \mathcal{K} as a whole; otherwise i appears to be redundant. So, if \mathcal{K} represents the components we have decided to *keep* so far, it makes sense to purge component *i* if $\rho_{i,\mathcal{K}}$ drops below *overlap threshold* $\tau \in [0,1]$.

▶ We *overestimate* the extent of each component as much as this does not overlap with its neighboring components.

► The re-estimation equation for the covariance of each component can be decomposed into $D\sigma_k^2 = \frac{N_k}{N_k} \Sigma_k + \frac{N_k}{N_k} \overline{\Sigma}_k$ where the *inner sum* Σ_k expresses a weighted average distance from μ_k of data points that are better 'explained' by component k, hence fits the underlying data of the corresponding cluster.

• We bias the weighted sum towards the outer sum $\overline{\Sigma}_k$, and the reestimation equation becomes $D\sigma_k^2 = w_k \underline{\Sigma}_k + (1 - w_k) \overline{\Sigma}_k$, where $w_k = \frac{N_k}{N_k}(1-\lambda)$ and $\lambda \in [0,1]$ is an expansion factor.

Approximate Gaussian mixtures

Algorithm 2: Incr	
\mathbf{input} : m best ne	
output : updated r	
1 f	or $n = 1, \ldots, N$ d
2	$\mid \mathcal{B}(\mathbf{x}_n) \leftarrow \mathcal{C} \cap \mathcal{B}$
3	$(\mathcal{R},d) \leftarrow \mathrm{NN}_m$
4	for $k \in \mathcal{B}(\mathbf{x}_n)$
5	$d_k^2 \leftarrow \ \mathbf{x}_n - \mathbf{x}_n\ $
6	$\mathcal{A} \leftarrow \mathcal{B}(\mathbf{x}_n) \cup \mathcal{F}$
7	for $k \in \mathcal{A}$ do
8	
9	SORT \mathcal{A} such the such that \mathcal{A} such tha
10	$ \mathcal{B}'(\mathbf{x}_n) \leftarrow \mathcal{A}[1,]$

Retrieval experiments

- descriptors.

► Large scale experiment: Generic vocabulary from 6.5M descriptors on Oxford dataset + 1M distractors from WC.

Contact: {ykalant, iavr}@image.ntua.gr